
� � � � � � � � � � � 	 � � � � 
 �
� �
 � � � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � �

 ! " # $ % & ' ( ) * % + , $ - ( ) . / , $ 0  ) , 1 2 1
3 4 5 6 4 7 8 9 : ; ; < = > ? @ A B @ C C

D E F G H I H J K L I M N O M P Q R H F H S K J K F L T M L U
V K F K I H W M X K Y Z [ G K I \ E W M N ] M P L I M \ ^ L M E F P

_ 7 8 ` a b 5 8 c d e f g h ` i 8 ` j ki 4 l g 5 m d ; 5 f n o p b q 5 f 8 ` r
s t u v w x x y z { | } ~ � � � y v u y � } | | �

� � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �   ¡ � � � � � � ¢ � � £ � � �¤ � � ¥ ¦¤ � � � � � � � � � � � � � � � � � � � � � � � � � � � � ¥ � � � � £ � � �§ � £ ¨ � � � � ¦ © � � ª � � � � � «� � ¬ � ¡ � � � � �� � � � � � � � � � � ­ � � � � � � � � � � � � � � � � ® � ¯ � � � «� �� � � � � � � � � � � � � � � � � � � � �   ° ¡ � � � � � � ¢ � � £ � � �¥ ¦ � � � � ± � � � � ² ­ � � � ¦ ¨ � � � � � � � �

³ ¤ � � ¥ ¦¤ � � � � � � � � � � � � � � � � � � � � � � � � � � � � ¥ � � � � £ � � �§ � £ ¨ � � � � ¦ © � � ª � � � � � «� � ¬ � ¡ � � � � �� � � � � � � � � � � ­ � � � � � � � � � � � � � � � � ® � ¯ � � � «� �� � � � � � � � � � � � � � � � � � � � �   ° ¡ � � � � � � ¢ � � £ � � �¥ ¦ � � � � ± � � � � � � � ² ­ � ­ � � � � ¦ ¨ � � � � � � � �

´ � � � � � � � � � � � � � � � � � � µ � �© � � ª � � � � � ¶� ¤ � � � � � � µ � � � � · � � ª � � �¸ � � � � � ¹ � £ � � º � � � � » � � � ¼ ° · � � ª � � � ¦ � � ¦ ½ � � ª � � ¡ � � ¾ � � £

¿ # 1 À Á Â Ã
/ , $ 0  ) Ä Á Á Å

W I A S
» � � � Æ Ç È É Ê Ë Ç È Ì Í Î Ï Ð Ñ Ò Ê Í È Ó Ô Ç Î Î Ì Õ Í Ç È Ì Ö × Ø Ù » § � » Ù » ¢ � Ú Ù » ¢ �   Ù » ¢ � ° �
Û Ê Ü Ý Ö Þ ß Î Ç × ß à É Þ Ç Î Ê Î Ø � � � � � � ª � ª � � � � � � � � � � � � � £ � � � � � � ¾ � � � � � � � ¬ � � � � � � � ¨ � � � � � � � � � � ¨ � � � � � � ª � � � � � �� � � ¯ � � � � ¯ £ � � � ¾ � £ � � � �
á � � � � � � � � � � � ­ � � � � � � � � � � � ¨ � � � � â � � � � � � � ® � � � � � � � ¾ � ¾ � £ � � � � � � � � � � � � � � ¾ � � � � � ® ¡ Ù ¼ � ã ¥ � � � � £ � �¹ � � ¯ ä � � � � � � � ® ¡ �   � ã � � £ � � � � � � � � � � å � � � � � æ � � � � � � � � ¥ � � � � £ � � º � � � � � � � � «� � § � £ ¨ � � � � ¦ © � � ª � � � � � «� � ¬ �¡ � � � � � � � � � � � � � � � � � ¯ � � � � � � � � � º � � � � â � � ¥ � � � � ¥ ¨ � � � � � � � � � � � � ¯ � � � � � � � � � ¨ � � � � � � � � � � � � � � � � � · � £ £ �� �



ç .  è , . - éê ,  , $ % è $ ë ì í î ) % è  è ( è ï ð( $ ñ ) * , ò ë ) . è , ñ ) ë 0 é %  % ( ) . ó è # & ' ë % è  ô õ ê î ñ ó ö÷ # ' $ , ) % è $ ë ì , Ã øÀ Á À À ù / , $ 0  )ú , $ ! ë ) é
" ë û ü ý þ ø Ã Á Ä Á þ þ ø ù Åç í ÷ ë  0 ü ÿ $ , ÿ $  ) è � ò  ë % í - , $ 0  ) 1 . ,ê # $ 0 . ê  . , ê , - ü ' è è ÿ ü � � ò ò ò 1 ò  ë % í - , $ 0  ) 1 . , �



Abstract

In this paper we propose the GHADA risk management model that is based on the gener-
alized hyperbolic (GH) distribution and on a nonparametric adaptive methodology. Com-
pared to the normal distribution, the GH distribution possesses semi-heavy tails and rep-
resents the financial risk factors more appropriately. Nonparametric adaptive methodology
has the desirable property of being able to estimate homogeneous volatility over a short
time interval and reflects a sudden change in the volatility process. For DEM/USD ex-
change rate and German bank portfolio data, the proposed GHADA model provides more
accurate Value at Risk calculations than the models with assumptions of the normal and t

distributions. All calculations and simulations are done with XploRe.

1 INTRODUCTION

After the breakdown of the fixed exchange rate system of the Bretton Woods Agreement
in 1971, a sudden increase of volatility was observed in financial markets. The following
boom of financial derivatives accelerated the turbulence of the markets. The subsequent
scale of losses astonished the world and pushed the development of sound risk management
systems. One of the most challenging tasks in analyzing financial markets is to measure
and manage risks properly. Financial risks have many sources and are typically mapped
into a stochastic framework:

Rt = σtεt, (1)

where Rt denotes the loss or the (log) negative return of financial instrument, i.e. log(St−1)−
log(St) with St the price of the financial instrument, σt is the time dependent volatility and
εt is the white noise. Based on the distribution of the risk factor Rt, various kinds of risk
measures such as Value at Risk (VaR), expected shortfall and lower partial moments can
be calculated. Among them, VaR has become the standard measure of market risk since
J.P. Morgan launched RiskMetrics with the distributional assumption of normality in 1994,
making the analysis of VaR simple and standard, Jorion (2001).

The importance of VaR was reinforced after it was used by central banks to govern
and supervise the capital adequacy of banks in the Group of Ten (G10) countries in 1995.
For a given financial instrument, VaR indicates the possible loss at a certain risk level
over a certain time horizon. Andersen, Bollerslev, Christoffersen and Diebold (2005) have
pointed out, losses will converge to normality under temporal aggregation. This observation
suggests that the principle of the RiskMetrics method is valid as longer time horizon such
as two weeks or one month is considered. One the other hand, financial institutions are
expected to report and control their daily VaRs as well and the daily VaR deviates from
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the normal assumption. In this paper, we concentrate to propose a risk management model
to improve the calculation of daily VaR. Based on (1), daily VaR at a risk level p is defined
mathematically:

V aRp,t = F−1
t (p) = σtqεt(p), (2)

where F−1
t is the quantile function of Rt at time t, which equals the product of the volatility

and the p-th quantile of the stochastic term εt, Franke, Härdle and Hafner (2004). It is
clear that the accuracy of VaR and other risk measures heavily depends on the distributional
assumption of the stochastic term and the volatility estimation. This observation motivates
us to choose:

a. a heavy tailed distribution family to mimic the empirical distribution of risk factors
and

b. an adaptive methodology to estimate and forecast volatility locally.

In literature, for reasons of stochastic and numerical simplicity, it is often assumed that
the involved risk factors are normally distributed e.g. in the RiskMetrics framework. How-
ever this assumption contradicts the empirical fact observed in the market - daily financial
time series are heavy tailed distributed. As more extreme risks happened in the market,
VaRs with higher risk quantiles such as 99% quantile draw more attention of risk analysts
and the difference of these VaRs with individual distributional assumption is evident. Al-
though, with the normality assumption, the VaR at 95% confidence level is almost identical
to that with a more realistic leptokurtic distribution, see Jaschke and Jiang (2002).

Figure 1 illustrates this empirical fact on the basis of the daily foreign exchange (FX)
rates of the German Mark to the US Dollar (DEM/USD) from 1979-12-01 to 1994-04-
01. Here we use the daily devolatilized returns, i.e. εt = Rt/σ̂t, to fit the previously
assumed stochastic distribution. Compared to Rt, the devolatilized returns eliminate the
influence of volatility clustering and are more stationary. The technique used to estimate
the volatility σt will be discussed later. The nonparametrically estimated kernel density and
log density are regarded as benchmarks, where the Quartic kernel function and Silverman’s
rule of thumb are applied to select the bandwidth h, Härdle, Müller, Sperlich and Werwatz
(2004). In the figure, the estimated normal (log) densities (dotted line) obviously deviate
from these benchmarks, which will lead to inaccurate VaR calculations. Due to the weak
ability of normal distribution to capture the empirical distributional feature of financial
risk factors, various heavy tailed distribution families such as the hyperbolic, Student-t
distributions and the Lévy process have been introduced in finance by Eberlein and Keller
(1995), Embrechts, McNeil and Straumann (1999) and Barndorff-Nielsen and Shephard
(2001). Among them, the Generalized Hyperbolic (GH) distribution family has attracted
the attention of researchers. With five parameters, it can match the distributional behavior
of real data in a flexible way. Eberlein, Kallsen and Kristen (2003) have proposed a model
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with the GH distribution that gives more accurate VaR values than the model with the
normal distribution.

Estimated density (nonparametric)
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Figure 1: Graphical comparison of the density (left) and the log-density (right) of the daily
DEM/USD devolatilized returns from 1979-12-01 to 1994-04-01 (3719 observations). The
kernel density estimate is represented by a solid line and the normal density as a dotted line
with h ≈ 0.54. Data source: DEM/USD daily rates from 1979-12-01 to 1994-04-01 available
at the FEDC (sfb649.wiwi.hu-berlin.de/fedc).

GHADAfx.xpl

In addition to the stochastic distributional assumption, the role of volatility models is
of great significance in the VaR calculation as well. The most frequently used estimations
are the ARCH (Engle, 1995), GARCH (Bollerslev, 1995) and stochastic volatility models
(Harvey, Ruiz and Shephard, 1995). Although these models reflect the volatility clustering
of financial time series, they are not uniformly applicable in risk management due to their
theoretical drawbacks. The volatility process in these models is assumed to follow a time
constant closed form, which is questionable especially in long time periods. To illustrate
his problem, we estimated volatilities of the DEM/USD data by the GARCH(1,1) model:
σ2

t = ω + α1ε
2
t−1 + β1σ

2
t−1. The estimated parameters vary from each other as the time

span increases from two years (1992-04-01 to 1994-04-01) to fourteen years (1979-12-01 to
1994-04-01), see Table 1. It is therefore plausible to use more flexible estimation methods
by providing a data-driven “local” model, which can avoid this potential misspecification
problem as much as possible. We follow the local constant model proposed by Mercurio
and Spokoiny (2004) for its good performance. The philosophy of the local constant model,
volatility changes little over a short interval, is numerically tractable and economic mean-
ingful. Moreover, compared to most adaptive estimation methods such as the rectangular
moving average, the local constant model can react very fast once a sudden jump happens.
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Time period ω̂ α̂1 β̂1

1979-12-01 to 1994-04-01 1.65e-06(3.90e-07) 0.07(0.01) 0.89(0.01)
1992-04-01 to 1994-04-01 1.09e-06(8.14e-07) 0.04(0.02) 0.93(0.03)

Table 1: Estimated parameters of the GARCH(1,1) process: σ2
t = ω + α1ε

2
t + β1σ

2
t−1

based on different time periods. The standard deviations are in parentheses. Data
source: DEM/USD daily rates from 1979-12-01 to 1994-04-01 available at the FEDC
(sfb649.wiwi.hu-berlin.de/fedc).

An inconvenient assumption in Mercurio and Spokoiny (2004) is however that the stochastic
term is normally distributed.

Motivated by the above two research lines, we estimate the local volatility adaptively
and model the risk factors with heavy tails by the GH distribution. Here we name this new
VaR technique as the Generalized Hyperbolic Adaptive Volatility (GHADA) technique.
The devolatilized return density plot in Figure 1 is in fact calculated with the GHADA
technique. In addition, we check the validation of the GHADA technique by comparing
with some other risk management models:

• volatility estimation with the GARCH(1,1) model and distributional fit with the nor-
mal (NGARCH), Student-t (tGARCH) or GH (GHGARCH) distribution,

• Local constant volatility estimation and distributional fit with the normal (NADA)
or Student-t (tADA) distribution.

The paper is organized as follows: in Section 2, we will introduce the details of the
GHADA technique. The validation of the GHADA model is illustrated through Monte
Carlo simulation in Section 3. In Section 4, VaR calculations will be presented based on
the DEM/USD and a German bank portfolio data. According to backtesting results, the
GHADA technique provides more accurate forecasts than the models with assumptions of
the normal and t distributions. Furthermore, the GHADA technique performs better than
the models with GARCH(1,1) volatility processes in extreme events. Finally, we will briefly
conclude our study in Section 5. All the figures may be recalculated and reproduced using
the indicated links to the XploRe Quantlet Server.

2 GHADA TECHNIQUE AND OTHER VARIATIONS

In risk management modelling, a major task is to estimate the future loss distribution
accurately. As illustrated in (2), a realistic distributional assumption of the stochastic term
εt and an accurate volatility estimation play important roles in the modelling. In this

4
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section, we describe two pillars of the proposed GHADA technique: the GH distribution
and the local constant volatility estimation.

2.1 GHADA Technique

2.1.1 Generalized Hyperbolic Distribution

The GH distribution introduced by Barndorff-Nielsen (1977) is a heavy tailed distribution
that can well replicate the empirical distribution of financial risk factors. The density of
the GH distribution for x ∈ IR is:

fGH(x;λ, α, β, δ, µ) =
(ι/δ)λ

√
2πKλ(δι)

Kλ−1/2

{
α
√

δ2 + (x− µ)2
}

{√
δ2 + (x− µ)2/α

}1/2−λ
· eβ(x−µ) (3)

under the conditions:

δ ≥ 0, |β| < α if λ > 0

δ > 0, |β| < α if λ = 0

δ > 0, |β| ≤ α if λ < 0

where λ, α, β, δ and µ ∈ IR are the GH parameters with ι2 = α2 − β2. The density’s
location and scale are mainly controlled by µ and δ respectively:

E[X] = µ +
δ2β

δι

Kλ+1(δι)
Kλ(δι)

Var[X] = δ2
{

Kλ+1(δι)
διKλ(δι)

+ (
β

ι
)2[

Kλ+2(δι)
Kλ(δι)

− {Kλ+1(δι)
Kλ(δι)

}2]
}

,

whereas β and α play roles in the skewness and kurtosis of the distribution. For more details
of the parameters’ domains, we refer to Bibby and Sørensen (2001). Kλ(·) is the modified
Bessel function of the third kind with index λ, Barndorff-Nielsen and Blæsild (1981):

Kλ(x) =
1
2

∫ ∞

0
yλ−1exp{−x

2
(y + y−1)} dy

Furthermore, the GH distribution has a tail behavior:

fGH(x;λ, α, β, δ, µ = 0) ∼ xλ−1e(∓α+β)x as x → ±∞, (4)

where a(x) ∼ b(x) as x →∞ means that both a(x)/b(x) and b(x)/a(x) are bounded as x →
∞. Recall that the negative return, Rt = log(St−1)− log(St), is regarded as a risk factor in
risk management, indicating that the right tail of losses with large values is more important.
The left tail, on the other hand, concerns the values of profits that are less interesting in
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risk management. Compared to three popular heavy tailed distributions, the Student-t,
Laplace and Cauchy distributions, the exponentially decaying speed of the GH distribution
is faster and better matches the empirical tail behavior of real data. Comparisons of the
four heavy tailed and normal distributions, and especially their tail behaviors, are displayed
in Figure 2.

In order to retain the comparability of these distributions, we normalized the variables
to have means equal to 0 and variances equal to 1. Here we used one important subclass
of the GH distribution: the normal-inverse Gaussian (NIG) distribution with λ = −1

2 ,
which is introduced more precisely in the following text. In the left panel, the complete

Distribution comparison

-5 0 5

X

0
0.

1
0.

2
0.

3
0.

4
0.

5

Y

NIG
Laplace
Normal

t(5)
Cauchy

Tail comparison

-5 -4.5 -4

X

0
5

10
15

Y
*E

-3

Cauchy

Laplace

t(5)

NIG

Normal

Figure 2: Graphical comparison of the tail-behavior of five standardized distributions: NIG
distribution (solid line), standard normal distribution (dashed line), Student-t distribution
with 5 degrees of freedom (triangles), Laplace distribution (circles) and Cauchy distribution
(dotted line).

GHADAtail.xpl

shapes of these distributions are shown. Among them, the Cauchy distribution has the
lowest peak and the fattest tails; briefly to say, it has the flattest distribution. The NIG
distribution decays second fastest in the tails but with the highest peak, which is similar to
the distributional shape of real data, see e.g. Figure 1.

The moment generating function of the GH distribution is:

mf (z) = eµz · ιλ

ιλz
· Kλ(διz)

Kλ(δι)
, |β + z| < α, ι2z = α2 − (β + z)2 (5)

indicating that mf is differentiable infinitely many times near 0. As a result, every moment
of a GH variable exists. In Section 2.1.2, this feature as well as the tail behavior (4) of
the GH distribution will help to extend the local constant volatility methodology from the
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normal distribution to the GH distribution, see Appendix.

Given the distributional form of the GH distribution in (3), maximum likelihood (ML)
estimation can be applied straightforwardly. Such a direct estimation based on the GH dis-
tribution is however rarely applied since it is computationally cumbersome and numerically
unstable due to the estimation of λ in the modified Bessel function. Instead, subclasses
of the GH distribution such as the hyperbolic (HYP) and normal-inverse Gaussian (NIG)
distributions are frequently used. These subclasses fix the value of λ to avoid the numerical
problem. Eberlein and Keller (1995), Barndorff-Nielsen (1997) have shown that these sub-
classes are rich enough to model financial time series in an efficient way. In addition, the
popularity of the subclasses is also motivated by the observation that the four parameters
(µ, δ, β, α)> can simultaneously control the four moment functions of the distribution, i.e.
the trend, scale, asymmetry and likeliness of extreme events. In our study we concentrate
on the two subclasses of the GH distribution: HYP with λ = 1 and NIG distribution with
λ = −1/2. In the following simulation and empirical studies, one can see that each subclass
performs better than the other depending on the case. The corresponding density functions
are given as:

• Hyperbolic (HYP) distribution: λ = 1,

fHY P (x;α, β, δ, µ) =
ι

2αδK1(δι)
e{−α

√
δ2+(x−µ)2+β(x−µ)}, (6)

where x, µ ∈ IR, 0 ≤ δ and |β| < α,

• Normal-inverse Gaussian (NIG) distribution: λ = −1/2,

fNIG(x;α, β, δ, µ) =
αδ

π

K1

{
α
√

δ2 + (x− µ)2
}

√
δ2 + (x− µ)2

e{δι+β(x−µ)}. (7)

where x, µ ∈ IR, δ > 0 and |β| ≤ α.

In order to estimate the unknown parameters (α, β, δ, µ)>, ML and numerical optimiza-
tion methods such as the Powell method (Press, Teukolsky, Vetterling and Flannery, 1992)
are used. For an independently and identically distributed (i.i.d.) HYP respectively NIG
distributed variable X, the log-likelihood functions are:

LHY P = T log ι− T log 2− T log α− T log δ − T log K1(δι) (8)

+
T∑

t=1

{−α
√

δ2 + (xt − µ)2 + β(xt − µ)}

LNIG = T log α + T log δ − T log π + Tδι (9)

+
T∑

t=1

[
log K1

{
α
√

δ2 + (xt − µ)2
}
− 1

2
log{δ2 + (xt − µ)2}+ β(xt − µ)

]
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Figure 3 shows the estimated HYP and NIG densities with the corresponding ML esti-
mators of the DEM/USD devolatilized returns. The estimated densities graphically coincide
with the kernel and log densities of the financial risk factor.

Estimated density - Local constant
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Figure 3: The kernel estimated density (left) and log density (right) of the devolatilized
return of FX rates (circles) (h ≈ 0.55). The HYP (solid line) parameters are α̂ = 1.744,
β̂ = −0.017, δ̂ = 0.782, µ̂ = 0.012, and the NIG (triangles) parameters are α̂ = 1.340,
β̂ = −0.015, δ̂ = 1.337, µ̂ = 0.010.

GHADAfx.xpl

2.1.2 Adaptive Volatility Estimation

Now we describe the adaptive estimation procedure for the volatility coefficients when risk
factors follow the subclasses of GH distributions. Originally the concept of adaptive volatil-
ity estimation was proposed by Mercurio and Spokoiny (2004): There exists an interval of
local homogeneity of the volatility process σt, which means that for τ fixed there exists a
time interval I = [τ−m, τ) such that σt varies little over I. Once an interval of homogeneity
I is specified, the volatility at time τ is simply estimated by averaging the squared returns
over the time interval I:

σ̂2
τ =

1
|I|
∑
t∈I

R2
t , (10)

where |I| denotes the cardinality of I.

The squared returns R2
t are always nonnegative and have a skewed distribution with the

stochastic errors εt. Therefore, the problem of estimating σt is transformed into an additive
regression problem by a power transformation:

|Rt|γ = Cγσγ
t + Dγσγ

t ζγ,t

= θt + sγθtζγ,t

(11)
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with γ the power transformation parameter. In the following Lemma 1, one can see that
γ is a constant bounded in [0, 1]. Furthermore, ζγ,t = (|εt|γ − Cγ)/Dγ , Cγ = E(|εt|γ |Ft−1),
D2

γ = E[(|εt|γ − Cγ)2|Ft−1] and sγ = Dγ/Cγ . This equation (11) can be considered as a
regression model to estimate θt with heteroscedastic additive errors sγθtζγ,t. Since εt are
assumed to be i.i.d., Cγ , Dγ and sγ are merely nonstochastic constants. For example, when
εt are N(0, 1) distributed, one may easily compute the exact values of Cγ , Dγ and hence
sγ . However, the calculations of these constants are not necessary in order to specify an
interval of homogeneity, as illustrated in the following.

Note that σt has one-to-one correspondence with θt. Therefore, if I is an interval of
homogeneity, then θt is nearly constant for t ∈ I and can be estimated by:

θ̂I =
1
|I|
∑
t∈I

|Rt|γ . (12)

By (11), we have

θ̂I =
1
|I|
∑
t∈I

θt +
sγ

|I|
∑
t∈I

θtζγ,t.

The conditional expectation and variance of θ̂I are as follows:

E[θ̂I |Fτ−1] = E
1
|I|
∑
t∈I

θt,

v2
I = Var [θ̂I |Fτ−1] =

s2
γ

|I|2
E(
∑
t∈I

θtζγ,t)2 =
s2
γ

|I|2
E
∑
t∈I

θ2
t ,

when I is an interval of homogeneity, vI can be estimated by:

v̂I = sγ θ̂I |I|−1/2.

For testing whether an interval I is of homogeneity, Mercurio and Spokoiny (2004) sug-
gested to investigate the homogeneity of θt in I instead of σt. They proposed a homogeneity
test on θt based on Martingale deviation probability bound, see section 3 in Mercurio and
Spokoiny (2004), but with εt ∼ N(0, 1). Hence we made a theoretical justification before
we adopt their procedure for determining the interval of homogeneity with εt from the GH
distribution. Details are given in Appendix. We precisely address this issue in Theorem 1
below. The proof is given in Mercurio and Spokoiny (2004).

THEOREM 1 If the volatility coefficient σt satisfies the condition b ≤ σ2
t ≤ bB with some

positive constants b and B, then it holds that:

P
{
|θ̂I − θτ | > ∆I(1 + ηsγ |I|−1/2) + ηv̂I

}

9



≤ 4
√

eη(1 + log B) exp

{
− η2

2aγ(1 + ηsγ |I|−1/2)2

}

where ∆I is the squared bias defined as ∆2
I = |I|−1∑

t∈I(θt − θτ )2.

This theorem indicates that, if I is a time homogeneous interval, the squared bias ∆I

is negligible and the estimation error |θ̂I − θτ | is small relative to ηv̂I for τ ∈ I with a high
probability. Moreover it holds that for any subinterval J of a homogeneity interval I∣∣∣ θ̂I\J − θ̂J

∣∣∣ ≤ η
(
v̂J + v̂I\J

)
= η′

(
θ̂J |J |−1/2 + θ̂I\J |I\J |−1/2

)
(13)

with high probability when η′ = ηsγ is large enough. Therefore, if there exists a subinterval
J ⊂ I which makes

∣∣∣ θ̂I\J − θ̂J

∣∣∣ have significantly large positive value, the homogeneity of
the interval I should be denied.

There are still two parameters to be specified: γ in the power transformation and the
thresholding parameter η′ in (13). According to Lemma 1, the parameter γ should be
bounded in [0, 1]. In our study, we chose γ = 0.5 like Mercurio and Spokoiny (2004). In
fact the choice of γ does not affect much during the procedure for estimating the interval of
homogeneity. On the contrary, the thresholding parameter η′ is crucial in the homogeneity
test. We pursue a selection procedure, similar to the choice of smoothing amount in non-
parametric estimations. Take t0 such that there are enough past observations to estimate
θ̂(t0,η′) properly. Then select η′ that gives minimal forecast error:

η′ = argmin
τ−1∑
t=t0

{
|Rt|γ − θ̂(t,η′)

}2
(14)

where θ̂(t,η′) is the estimate (12) of θt from observations R1, . . . , Rt−1 with the thresholding
parameter η′. Note that such a selection is distributional free and avoids the calculation of
these constants based on the GH distribution in (11).

Now we are ready to describe the precise procedure for estimating the interval of ho-
mogeneity with a constant η′. We start with an initial small interval I = [τ −m0, τ) that
satisfies the homogeneity and suitably choose a step-increasing parameter m0 and an inte-
ger k(≥ 1). The choice of the step-increasing parameter will influence the sensitivity of the
estimation to a change point. A smaller value increases the sensitivity but slows down the
estimation speed, which will be illustrated in the simulation study later. For convenience
m0 is suggested to be a multiple of 5.

Step 1 Increase k to k+1, and enlarge the interval I to [τ −m, τ) with m = k×m0.

10



Step 2 Reject I if there exists J(`) = [τ − 2m
3 + `, τ), ` = 1, 2, · · · , m

3 such that∣∣∣ θ̂I\J(`) − θ̂J(`)

∣∣∣ > η′
(
θ̂J(`)|J(`)|−1/2 + θ̂I\J(`)|I\J(`)|−1/2

)
(15)

Step 3 If I is rejected, set I = [τ −m0, τ) as the interval of homogeneity and stop.
If I is not rejected, then set m0 = m and go to Step 1.

2.2 Some Risk Management Models

The research on VaR models has been ignited and prompted by the rule of Basel Com-
mittee on Banking Supervision in 1995: financial institutions may use their internal VaR
models to calculate VaRs. Recall that VaR is formulated as: VaRp,t = F−1

t (p) = σtqεt(p)
with the notations defined before. In Table 2, eight models are listed according to two fac-
tors: the estimation of volatility and the distributional assumption of stochastic term. The
GARCH(1,1) and local constant models are implemented with four distributional assump-
tions: the HYP, NIG, standard normal and t with degrees of freedom (df) distributions.
Among these models, the tGARCH combining the GARCH(1,1) technique and the Student-
t distribution, to the best of our knowledge, is the most frequently used model in practice.
Compared to all other models mentioned here, the GHADA (HYPADA and NIGADA)
models are expected to perform superiorly due to their desirable statistical characteristics
discussed before. In the simulation and empirical studies, we will compare the accuracy of
these various combinations and check the expectation.

Model Volatility Estimation Distributional Assumption

HYPGARCH GARCH(1,1) HYP(α, β, δ, µ)
NIGGARCH GARCH(1,1) NIG(α, β, δ, µ)
NGARCH GARCH(1,1) N(0, 1)
tGARCH GARCH(1,1) t(df)
HYPADA Local Constant HYP(α, β, δ, µ)
NIGADA Local Constant NIG(α, β, δ, µ)
NADA Local Constant N(0, 1)
tADA Local Constant t(df)

Table 2: Risk management models based on the heteroscedastic model: Rt = σtεt.

3 MONTE CARLO SIMULATION

As discussed before, a good risk management modelling relies on two factors: estimating the
volatility and fitting the distribution of risk factors. The previous distribution estimation

11



based on the DEM/USD data together with the comparison to the nonparametric density
estimation in Section 2.1.1, provide evidence that with four parameters, the HYP and NIG
distributions can represent the empirical distribution of the stochastic term very well. In this
section, we illustrate the reliability of the local constant volatility model with four different
distributional assumptions. Two simple volatility processes with jumps and a GARCH(1,1)
process are considered here:

σ1,t =


|0.02t− 5|/100 , 1 ≤ t ≤ 300

|0.02t− 20|/100 , 300 < t ≤ 600

|0.12t− 30|/100 , 600 < t ≤ 1000

(16)

σ2,t =


0.01 , 1 ≤ t ≤ 400

0.03 , 400 < t ≤ 750

0.015 , 750 < t ≤ 1000

(17)

σ3,t = 1.65e− 06 + 0.07ε2
t−1 + 0.89σ2

t−1 (18)

where the parameters of the GARCH(1,1) process (18) are the estimates of the DEM/USD
negative returns, see Table 1.

In each scenario, we generate n = 1000 observations with the HYP(2, 0, 1, 0), NIG(2, 0, 1, 0),
N(0, 1) and t(6) distributions. The risk factors are generated based on the heteroscedastic
model:

Rij,t = σitεjt, i = 1, 2, 3 and j = HYP,NIG,N, t.

In the local constant (LC) model, the first 200 observations of Rij,t are considered as a
training set. The transformation parameter γ is fixed at 0.5 and a global η′ that minimizes
the mean of forecast error for t ∈ [201, 1000] is selected to perform the homogeneity test.
Last but not least, two values of the step-increasing parameter m0 in the homogeneous
interval are used since the value of m0 will influence the detecting speed of the LC model as
a jump appears: the recommended value m0 = 5 and a more sensitive value m0 = 2. Note
that a smaller value of m0 in general can find jumps faster than a larger one. All scenarios
are repeated M = 200 times.

Three examples of the estimated volatility series of σ1t (top), σ2t (middle) and σ3t (bot-
tom) with the HYP or NIG distributional assumption are displayed in Figure 4, where the
LC (solid line) and GARCH(1,1) estimations (dotted line) are compared with the generated
volatilities (circles). In the first two estimations, the LC and GARCH(1,1) models display
comparable results, whereas the GARCH(1,1) setup performs better in the estimation of
σ3t.

The quality of these two volatility estimation techniques is further measured by two
ratios, the ratio of mean absolute error (RMAE) and the ratio of mean squared error
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Figure 4: The estimated volatility processes on the basis of the three simulated exam-
ples (circles) with the HYP variables for σ1t, the NIG for σ2t and the NIG for σ3t. The
power transformation parameter is γ = 0.5, m0 = 5 and the starting point t0 = 201. The
GARCH(1,1) process is displayed as a dotted line whereas the local constant is a solid line.

GHADAsim.xpl

(RMSE):

RMAE =
∑1000

t=201 |σ̂LC
it − σit|∑1000

t=201 |σ̂GARCH
it − σit|

,

RMSE =
∑1000

t=201(σ̂
LC
it − σit)2∑1000

t=201(σ̂GARCH
it − σit)2

, i = 1, 2, 3

If the value of RMAE or RMSE is smaller than 1, it means that the LC model has a smaller
estimation error on average than the GARCH and vice versa. Based on 200 repetitions,
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the mean, standard deviation (sd), maximum and minimum of the two criteria are reported
in Table 3. In the simulation of σ1t, the LC model with m0 = 5 gives more accurate
volatility estimations on average than the GARCH(1,1) technique. Concerning σ2t, the
GARCH model performs better than the LC when the stochastic terms are HYP and NIG
distributed, but has lower accuracy when εt are normal and t distributed. As supposed,
the GARCH model can match the generated GARCH process σ3t better. Based on the
simulation results, the LC model is comparable to the GARCH(1,1) technique. However,
the assumption of the GARCH technique, i.e. the estimation form is time constant, is in
dispute as the nonstationary volatility processes σ1t and σ2t are given. In this sense, the
LC model is considered better since it not only represents the empirical characteristics of
volatility movements, but also provides a reasonable theory for the estimation.

RMAE RMSE
σ1tεt mean sd max min mean sd max min
HYP 0.77 1.05 1.04 0.06 0.78 1.23 1.08 0.00
NIG 0.87 1.00 1.04 0.06 0.83 1.15 1.07 0.00

N 0.76 1.18 1.04 0.05 0.87 1.22 1.09 0.00
t 0.93 1.28 1.06 0.05 0.95 1.14 1.11 0.00

σ2tεt mean sd max min mean sd max min
HYP 1.31 0.76 1.27 1.42 1.47 0.89 1.39 1.73
NIG 1.25 0.70 1.24 1.29 1.44 0.85 1.43 1.55

N 0.61 0.57 0.61 0.62 0.50 0.00 0.33 0.50
t 0.69 0.78 0.70 0.69 0.51 0.88 0.60 0.50

σ3tεt mean sd max min mean sd max min
HYP 1.21 1.07 1.16 1.51 1.31 1.20 1.29 1.89
NIG 1.07 1.03 1.12 1.53 1.11 1.15 1.24 2.25

N 1.32 1.19 1.21 1.25 1.58 1.31 1.40 1.40
t 1.22 1.39 1.23 1.50 1.49 1.67 1.38 2.12

Table 3: Descriptive statistics of the RMAE and RMSE with respect to volatility es-
timations. Two volatility models: local constant (LC) (γ = 0.5 and m0 = 5) and
GARCH(1,1) models are applied to estimate three volatility processes based on 4 variables:
HYP(2, 0, 1, 0), NIG(2, 0, 1, 0), N(0, 1) and t(6).

Moreover, the sensitivity of the LC and GARCH(1,1) models to jumps in volatility is
compared. We introduce a percentage rule to study the sensitivity of the two volatility
estimation techniques. The detection speed of the estimated volatility to a sudden jump is
measured at a 40%, 50% or 60% level of the jump size. The 40% rule, for example, refers to
the number of time steps to reach 40% of the jump size as it happens. Table 4 gives some
examples of the detection steps. The GARCH(1,1) process has a naturally fast reaction to
jumps in a short interval since it is actually an exponential smoothing process. In general,
the LC model needs more time to detect a jump than the GARCH, but the difference is very
small. Sometimes the LC model reacts even faster than the GARCH(1,1) by adjusting the
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σ1,t=300 σ1,t=600

Model m0 40% rule 50% rule 60% rule 40% rule 50% rule 60% rule
HYPADA 2 3.72(1.7) 4.66(2.9) 6.10(4.7) 5.01(3.2) 6.81(4.7) 8.82(6.5)
HYPADA 5 4.47(2.2) 5.85(3.3) 7.87(4.8) 5.52(3.0) 7.28(3.9) 9.66(5.6)
HYPGARCH 3.63(2.3) 5.17(3.5) 7.27(5.3) 3.42(2.6) 5.28(3.8) 7.69(5.5)
NIGADA 2 4.35(2.5) 5.64(4.3) 8.88( 8.3) 5.81(3.6) 8.09(6.2) 13.22(13.4)
NIGADA 5 5.92(2.9) 7.94(4.5) 14.69(20.5) 9.25(4.2) 11.98(7.2) 17.89(13.1)
NIGGARCH 4.73(3.3) 6.74(4.9) 10.90( 8.1) 4.19(2.9) 6.95(5.2) 10.76( 9.7)
NADA 2 3.05(1.6) 3.62(1.9) 4.23(2.4) 3.77(2.1) 5.00(2.7) 6.14(3.5)
NADA 5 4.29(1.8) 5.17(2.0) 6.19(2.4) 7.24(3.6) 9.49(4.1) 11.19(5.4)
NGARCH 2.56(1.7) 3.27(2.2) 4.27(2.9) 2.27(1.5) 3.11(2.0) 4.00(2.5)
tADA 2 2.86(1.4) 3.43(1.8) 3.82(2.0) 1.97(1.9) 3.76(2.5) 4.83(2.9)
tADA 5 3.78(1.7) 4.50(1.9) 5.14(2.2) 1.39(2.1) 6.69(3.8) 8.61(3.9)
tGARCH 2.42(1.6) 3.03(2.1) 3.76(2.5) 1.64(1.4) 2.47(2.0) 3.25(2.4)

σ2,t=400 σ2,t=750

Model m0 40% rule 50% rule 60% rule 40% rule 50% rule 60% rule
HYPADA 2 5.24(3.7) 7.58(4.9) 10.79(7.5) 48.51(33.5) 28.81(19.2) 19.22(12.6)
HYPADA 5 6.90(3.9) 9.44(5.2) 12.74(9.5) 60.67(45.5) 30.60(21.8) 20.20(13.8)
HYPGARCH 4.09(3.0) 7.65(5.0) 12.27(9.2) 73.28(35.4) 30.96(11.4) 17.10(7.7)
NIGADA 2 6.84(4.3) 10.09(6.9) 15.70(12.9) 29.77(21.7) 18.84(13.6) 9.92(8.4)
NIGADA 5 8.93(4.6) 12.04(6.7) 18.03(13.5) 39.27(30.1) 22.56(13.8) 13.38(9.0)
NIGGARCH 6.63(4.4) 12.71(7.8) 20.49(12.4) 39.49(18.1) 18.17(8.9) 7.94(6.1)

Table 4: Mean of the detection step for several sudden jumps based on the LC model with
m0 = 2 and m0 = 5 and the GARCH(1,1) model. The standard deviations of the detection
steps are in parenthesis. Two jumps w.r.t. σ1t at t = 300 and t = 600 and two jumps w.r.t.
σ2t at t = 400 and t = 750 are considered.

value of m0. For example, concerning the jump of σ1t at t = 300, the HYPADA needs 4.66
steps on average to detect the 50% jump sizes and 6.10 steps to detect 60% jump sizes while
the GARCH(1,1) requires 5.17 and 7.27 steps, respectively. In addition, the deviations of
these two detections based on the LC method with values of 2.9 and 1.7, are smaller than
those of the GARCH technique. On the meanwhile, we find that the detection speed is slow
for a deceased jump. For σ2t, a downward jump from 5% to 1% happens at t = 750. The
LC model with m0 = 2 needs 19.22 steps on average to detect the 60% jump sizes. This
number is three times more than that of detection steps for an increased jump with 40%
sizes at t = 400. This phenomenon results from a low test power in the homogeneity test
(13), where the squared conditional variance vI depends on θt and a larger value of θt will
lead to a low test power.
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4 EMPIRICAL STUDY

4.1 Data Set

Two data sets, the DEM/USD exchange rate and a German bank portfolio, are used in the
empirical analysis. They are available at FEDC (sfb649.wiwi.hu-berlin.de/fedc).

The loss of the exchange rate is calculated daily from 1979-12-01 to 1994-04-01. There
are 3719 observations. The bank portfolio data reports the market value of the portfolio
held by a German bank (anonymous due to the privacy protection law in Germany). There
are 5603 daily observations.

The mean, standard deviation, skewness, kurtosis and the first two autocorrelations ρ1

and ρ2 of these two data sets are listed in Table 5. All time series are centered around 0 and
have leptokurtic distributions as indicated by their kurtoses. Two processes of devolatilized
returns εLC

t = Rt/σ̂LC
t and εGARCH

t = Rt/σ̂GARCH
t are analyzed according to the two

volatility estimation techniques. As discussed before, the devolatilized returns εLC
t and

εGARCH
t , compared to the loss series Rt, are expected to be more stationary. Note that

these devolatilized returns still have the heavy tailed distributional property even after
eliminating the influence of the time varying volatility.

Data mean sd skewness kurtosis ρ1 ρ2

exchange rate: t ∈ [501, 3719]

Rt 8.30e-05 7.00e-03 0.07 4.94 0.02 0.01
εLC
t 5.24e-03 0.99 0.01 4.03 0.03 0.02

εGARCH
t 7.13e-03 0.99 0.04 4.38 0.03 0.02

bank portfolio: t ∈ [501, 5602]

Rt -9.51e-05 1.59e-02 0.28 8.08 -0.04 -0.03
εLC
t 1.13e-02 0.96 -0.08 5.18 -0.04 -0.02

εGARCH
t -1.31e-02 0.99 0.08 7.38 -0.03 -0.02

Table 5: Descriptive statistics for the daily devolatilized residuals of the exchange rate data
and bank portfolio data.

The time plots of the daily losses, the local constant and GARCH(1,1) volatilities of the
two data sets are displayed in Figure 5. The plots of volatility estimations show the volatility
clustering, which reflects the movement pattern of risks graphically. For example, the local
constant volatility displays a jump at t = 3044 when a large loss is observed in the time plot
of the exchange rate series. In the German bank portfolio data, the simultaneous movements
of loss and volatility are more evident. High risk, i.e. large value of volatility, is observed
over the turbulent period as t ∈ (3000, 4000) and small volatility appears in comparably
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quiet periods. The GARCH(1,1) technique gives comparable estimations. Compared to the

Daily lossess of the DEM/USD rat from 1981/12/01 to 1994/04/01
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Figure 5: The time series of the daily losses, the local constant volatility (solid line) and
the GARCH(1,1) volatility (dashed line) w.r.t. the DEM/USD rate (top) and the German
bank portfolio (bottom). The parameters in the local constant models are t0 = 501, m0 = 5
and η′ = 1.06 in the DEM/USD data and η′ = 1.23 for the German bank portfolio data.

GHADAfx.xpl GHADAkupfer.xpl

German bank portfolio, the loss series of the DEM/USD displays a more regular fluctuation,
since exchange rate market is liquid. In the German bank data, long quiet periods are
observed with two extremely turbulent periods, which suggests that large homogeneous
intervals will be specified on average in the German bank data. Boxplots in Figure 6
provide evidence of this suppose. The means of homogeneous intervals w.r.t. the two data
sets are 51.37 (DEM/USD) and 76.42 (German bank), and further, many outliers with large
value of interval length (circles or stars with 1.5 or 3 times box length distance from the
upper level) are observed in the German bank data.
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Figure 6: Boxplots of the homogeneous interval length w.r.t. the DEM/USD exchange rates
(left) and the German bank portfolio data (right).
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Given the estimated volatilities, the devolatilized returns are calculated and used to es-
timate the distributional parameters of four different assumptions: the HYP, NIG, standard
normal and t with 6 degrees of freedom distributions. The HYP and NIG distributional
parameters w.r.t. the local constant and GARCH(1,1) volatilities are listed in Table 6.
The density estimations with the four assumptions are compared graphically. Once again,
the nonparametric kernel densities estimation implemented in Section 1 are used as bench-
marks. Considering the influence of volatility estimation techniques on the devolatilized
returns, the probability densities w.r.t. the local constant (top) and GARCH(1,1) (bottom)
techniques are graphed individually. Based on the DEM/USD data, the HYP (solid line)
and NIG (triangle) models can better describe the distributions of the devolatilized returns
εLC
t and εGARCH

t than the normal (dashed line) and t(6) (dotted line), see Figure 7. The
normal density underestimates the right tail of the devolatilized returns whereas the t(6)
displays a heavier right tail than the benchmark. This misspecification is enlarged in the
log-density comparison (right) in Figure 7. Additionally, the devolatilized returns εLC

t with
assumptions of the HYP and NIG distributions match the shape of benchmark better than
εGARCH
t . Based on the GARCH(1,1) process, all the density estimations deviate from these

benchmarks. This weak performance of the GARCH devolatilization is more obvious in
the German bank data, see Figure 8. The benchmarks with the GARCH devolatilization is
weakly matched by all the four distributional assumptions. It is possible that the German
bank portfolio data is less liquid and therefore weaklier stationary than the exchange rate
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Model exchange rate: t ∈ [501, 3719] bank portfolio: t ∈ [501, 5602]

α β δ µ α β δ µ

HYPADA 1.74 0.01 0.78 -0.01 1.44 0.01 0.00 0.00
NIGADA 1.34 0.01 1.33 -0.00 0.99 -0.01 0.94 0.02
HYPGARCH 1.65 0.02 0.63 -0.02 1.41 -0.01 0.00 0.00
NIGGARCH 1.20 0.02 1.21 -0.01 0.87 0.00 0.88 -0.02

Table 6: Distributional parameters of the devolatilized residuals w.r.t. the local constant
(LC) volatility and the GARCH(1,1) volatility of the DEM/USD data and the German
bank portfolio data.

GHADAfx.xpl GHADAkupfer.xpl

data, where the local constant model is more suitable, at least theoretically, to capture the
movement of the volatility process.

A latent problem of density estimation is whether the distribution of stochastic term
is really stationary. A small experiment indicates that the distributional parameters, like
volatility, could be time-variant as well. Figure 9 shows the HYP-quantile forecasts based on
500 historical devolatilized returns of the exchange rate for each point in time. It provides
evidence that quantiles vary as time passes, especially for extreme probability levels such
as p = 0.995. The same phenomenon holds for the NIG distribution, which is omitted
here. If the sample size is small, we could not stick to the assumption that the innovations
are identically distributed, although it assumes that the historical observations are i.i.d.
as well. Instead, one should update the distributional parameters daily. For example, on
may estimate the local distribution based on previous 500 data points. However as sample
size increases to infinity, the distribution will converge to the unconditional distribution
asymptotically. Given the two data sets with large sample size, we assume that all the
observations have an identical distribution.

4.2 VaR

In this section, we focus on the model selection from the proposals in Table 2. Above all, the
selected model should be theoretically reasonable and practically tractable to implement.
Based on this criterion, we prefer the GHADA model due to its desirable properties discussed
before. Furthermore, another important criterion of model selection is to compare the
accuracy of VaR forecasts. The VaR at the probability level p is forecasted as:

˜VaRp,t+1 = σ̃t+1q̂εt(p). (19)
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Figure 7: The estimated densities (top left) based on the HYP (solid line), NIG (triangle),
standard normal (dashed line) and t(6) (dotted line) compare with the nonparametric kernel
density (circles) in the left panel. The local constant model is applied to devolatilize Rt of
the DEM/USD data on the top and the GARCH(1,1) on the bottom. The corresponding
log densities are displayed in the right panel. The distributional parameters are listed in
Table 6.

GHADAfx.xpl

The quantile qεt(p) is computed according to the distributional estimation. The volatility
in the future is unavailable, but empirical studies find volatility time series appear to have
a unit root, see Poon and Granger (2003). Therefore, the estimated volatility σ̂t today is
naturally used as the forecast of tomorrow.

Observation exceeding the forecasted VaR is called exceedance. A validate VaR model
should neither underestimate nor overestimate the market risk. To evaluate the validation
of VaR calculation, backtesting presented in Christoffersen (1998) is implemented. The
empirical risk level, the ratio of exceedances in the time interval under consideration, is
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Figure 8: The estimated densities (top left) based on the HYP (solid line), NIG (triangle),
standard normal (dashed line) and t(6) (dotted line) compare with the nonparametric kernel
density (circles) in the left panel. The local constant model is applied to devolatilize Rt of
the German bank data on the top and the GARCH(1,1) on the bottom. The corresponding
log densities are displayed in the right panel. The distributional parameters are listed in
Table 6.
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compared to the expected risk level p:

N/T = T−1
T∑

t=1

1t, (20)

where 1t denotes the indicator of exceedances at time point t. If the empirical risk level is
larger than p, it indicates an overestimation of the selected model. In this case, additional
capital requirements than necessary need to be located in central bank and prospective
business opportunities are lost. On the contrary, if the empirical risk level is much smaller
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Figure 9: Quantiles estimated based on the past 500 devolatilized returns of the exchange
rate. From the top the evolving HYP quantiles for p = 0.995, p = 0.99, p = 0.975, p = 0.95,
p = 0.90, p = 0.10, p = 0.05, p = 0.025, p = 0.01, p = 0.005.

than p, a punishment due to risk underestimation will occur. The null hypothesis of the
backtesting is formulated as:

H0 : E[N ] = Tp (21)

Under H0, N is a Binomial random variable with parameters T and p, the likelihood ratio
test statistic can be derived as:

LR = −2 log {(1− p)T−NpN}+ 2 log {(1−N/T )T−N (N/T )N}, (22)

which is asymptotically χ2(1) distributed with critical values 3.84 (95%) and 6.63 (99%),
Jorion (2001).

Table 7 summarizes the backtesting results of eight different models of the two data. As
illustrated in Figure 7, the HYP and NIG distributional assumptions reflect the empirical
distribution of the DEM/USD stochastic term better than the normal and t distributions,
therefore models based on these two distributions should give more accurate VaRs. The
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backtesting provides evidence for it, see Table 7. In general, the normal distribution un-
derestimates while the t(6) overestimates the risk. Moreover given the DEM/USD data,
there is no large difference between models with the HYP and NIG distributions and the
two volatility estimation techniques. Concerning the German bank data, the HYP model
gives more accurate VaR forecasts than the NIG, and further the local constant technique
performs better than the GARCH(1,1) setup.

Exemplary time plots of the forecasted VaR are displayed in Figure 10 and Figure 11.
The exceedances are represented by crosses marked for the HYPADA, NIGADA, NADA
and tADA.

LC-p=0.995-fx

5 10 15 20 25 30 35

X*E2
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Figure 10: Time plot of the VaR forecasts for the DEM/USD data at p = 0.995. The
returns are displayed as dots whereas the exceedances are marked as crosses w.r.t. the
HYPADA (solid line), the NIGADA (triangles), the NADA (dashed line) and the tADA
(dotted line) from the top down.

GHADAfxvar.xpl

5 CONCLUSION

In this paper, we have proposed a risk management (GHADA) model based on the adaptive
volatility estimation and the GH distribution. Compared to some other proposed risk
management models in Table 2, the GHADA technique gives more accurate VaR forecasts
in real data analysis. Some interesting points are summarized:

• Above all, the two subclasses, HYP and NIG, of the GH distribution can better
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DEM/USD data German bank data

p = 0.95 N/T LR1 p-value p = 0.95 N/T LR1 p-value

HYPADA 0.9443 2.05 0.15 HYPADA 0.9515 -NAN -NAN
NIGADA 0.9443 2.05 0.15 NIGADA 0.9482 -NAN -NAN
NADA 0.9475 0.41 0.51 NADA 0.9547 -NAN -NAN
tADA 0.9711 *35.37 0.00 tADA 0.9680 -NAN -NAN
HYPGARCH 0.9521 0.32 0.57 HYPGARCH 0.9512 -NAN -NAN
NIGGARCH 0.9503 0.00 0.93 NIGGARCH 0.9486 -NAN -NAN
NGARCH 0.9521 0.32 0.57 NGARCH 0.9535 -NAN -NAN
tGARCH 0.9692 *28.92 0.00 tGARCH 0.9696 +INF 0.00

p = 0.975 N/T LR1 p-value p = 0.975 N/T LR1 p-value

HYPADA 0.9742 0.08 0.77 HYPADA 0.9737 0.32 0.56
NIGADA 0.9732 0.38 0.53 NIGADA 0.9698 5.28 0.02
NADA 0.9714 1.61 0.20 NADA 0.9682 -NAN -NAN
tADA 0.9888 *31.65 0.00 tADA 0.9843 *20.91 0.00
HYPGARCH 0.9754 0.02 0.86 HYPGARCH 0.9772 1.10 0.29
NIGGARCH 0.9745 0.02 0.86 NIGGARCH 0.9764 0.46 0.49
NGARCH 0.9708 2.21 0.13 NGARCH 0.9706 3.83 0.05
tGARCH 0.9844 *13.65 0.00 tGARCH 0.9856 *28.22 0.00

p = 0.99 N/T LR1 p-value p = 0.99 N/T LR1 p-value

HYPADA 0.9897 0.02 0.88 HYPADA 0.9894 0.17 0.67
NIGADA 0.9897 0.02 0.88 NIGADA 0.9884 1.20 0.27
NADA 0.9854 6.02 0.01 NADA 0.9811 *31.81 0.00
tADA 0.9972 *23.60 0.00 tADA 0.9941 *10.26 0.00
HYPGARCH 0.9906 0.15 0.69 HYPGARCH 0.9909 0.51 0.47
NIGGARCH 0.9906 0.15 0.69 NIGGARCH 0.9919 2.13 0.14
NGARCH 0.9822 *15.71 0.00 NGARCH 0.9835 *18.02 0.00
tGARCH 0.9956 *13.17 0.00 tGARCH 0.9954 *19.54 0.00

p = 0.995 N/T LR1 p-value p = 0.995 N/T LR1 p-value

HYPADA 0.9950 0.00 0.98 HYPADA 0.9945 0.23 0.62
NIGADA 0.9950 0.00 0.98 NIGADA 0.9939 1.11 0.29
NADA 0.9897 *13.66 0.00 NADA 0.9880 *35.62 0.00
tADA 0.9990 *16.16 0.00 tADA 0.9968 4.11 0.04
HYPGARCH 0.9950 0.00 0.98 HYPGARCH 0.9960 1.29 0.25
NIGGARCH 0.9950 0.00 0.98 NIGGARCH 0.9962 1.83 0.17
NGARCH 0.9891 *16.68 0.00 NGARCH 0.9892 *25.70 0.00
tGARCH 0.9987 *13.09 0.00 tGARCH 0.9972 6.24 0.01

Table 7: Backtesting results for the DEM/USD data and the German bank potfolio data.
* indicates that the model is rejected at 99% confidence level.
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Figure 11: Time plot of the VaR forecasts for the German bank portfolio data at p = 0.99.
The returns are displayed as dots whereas the exceedances are marked as crosses w.r.t. the
HYPADA (solid line), the NIGADA (triangles), the NADA (dashed line) and the tADA
(dotted line) from the top down.
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describe the distributional features of the risk factors than the normal and t distri-
butions. Both distributions well match the empirical density, especially the right tail
behavior of losses, that in turn leads to precise quantile estimations at extreme risk
levels. However we don’t have enough evidence to say that one subclass is better than
the other, although in the simulation study as well as the empirical study based on
German bank portfolio, the HYP performs better. We consider that the performance
of these two subclasses relies on the data set considered. A subjective suggestion is
however that the HYP is more suitable for less liquid portfolio.

• The local constant technique gives at least comparable volatility estimation as the
GARCH(1,1). The simulation study shows that sometimes the former provides more
accurate volatility estimation on average. Furthermore, the difference between the
detection speeds of two techniques is trivial. We want to emphasize here that al-
though the GARCH(1,1) performs well in the simulation study, it is weakened by its
theoretical assumption, i.e. the volatility estimation follows a time constant closed
form. This influence is illustrated in the German bank portfolio analysis where even
the HYP and NIG weakly represent the empirical density of the devolatilized return
based on the GARCH(1,1) technique. On the contrary, the devolatilized return based
on the local constant technique displays a nice fit without problem.

• The proposed approach can be easily applied to calculate and forecast other risk
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measures such as expected shortfall.

In financial markets, it is more interesting and challenging to measure the risk levels
of multiple time series. Härdle, Herwartz and Spokoiny (2003) have proposed an idea
of the adaptive volatility estimation method for multiple time series. Prause (1999) has
discussed the estimation of the high dimensional GH distribution. Both studies are however
computationally cumbersome and infeasible as the dimension of data set increases. Instead,
we expect to apply a different research thought, independent component analysis (ICA) to
convert the high dimensional problem to univariate study via a linear transformation, see
Hyvärinen, Karhunen and Oja (2001). The whole procedure can be formulated as:

Rt = b>t Xt

= b>t WYt

= b>t Wdiag(σy1,t, · · · , σyd,t)εt

where Rt denotes the portfolio loss with d-dimensional individual instruments that have
losses Xt ∈ IRd. The weights of the portfolio is expresses as bt. After the linear transfor-
mation with the matrix W , one obtains (approximately) independent components Yt. For
each IC, the GHADA technique helps to specify the volatility and marginal distribution.
Since the components are independent, then joint density is simply the product of these
marginals. A detailed study on this approach is available at Chen, Härdle and Spokoiny
(2005).

6 APPENDIX

For a GH distributed random variable, we have the following lemma:

LEMMA 1 For every 0 ≤ γ ≤ 1 there exists a constant aγ > 0 such that

log E[euζγ ] ≤ aγu2

2
,

where ζγ = (|ε|γ − Cγ)/Dγ with ε from a GH distribution.

Proof of Lemma 1.

Proof:
Firstly we show that the moment generating function E[euζγ ] exists for all u ∈ IR.
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Suppose that L(x) = GH(λ, α, β, δ, µ) with the density function f for the transformed
variable y

def= |x|γ , we have

P (y ≤ z) = P (−z
1
γ ≤ x ≤ z

1
γ ) =

∫ z
1
γ

−∞
f(x)dx−

∫ −z
1
γ

−∞
f(x)dx, z > 0

Then the density of y ∈ (0,∞) is:

g(z) =
d

dz
P (y ≤ z) = γ−1{f(z

1
γ )z

1
γ
−1 + f(−z

1
γ )z

1
γ
−1}

= γ−1z
1
γ
−1{f(z

1
γ ) + f(−z

1
γ )}, z > 0.

Since fGH(x;λ, α, β, δ, µ = 0) ∼ xλ−1e−(α−β)x as x → ±∞, it follows

g(z) ∼ z
1
γ
−1

γ
{z

λ−1
γ e(β−α)z

1
γ + z

λ−1
γ e−(β+α)z

1
γ }

=
z

λ
γ
−1

γ
{e(β−α)z

1
γ + e−(β−α)z

1
γ }, z −→∞

For γ < 1, it holds that
∫∞
0 euzg(z)dz < ∞ ∀u ∈ IR, since

limz→∞(β − α)z
1
γ + uz → −∞ ∀u ∈ IR

limz→∞ − (β + α)z
1
γ + uz → −∞ ∀u ∈ IR

Since the integration depends only on the exponential part, it holds also that∫ ∞

0
zneuzg(z)dz =

∫ ∞

0

∂n

∂un
(euz)g(z)dz =

∂n

∂un
E[euy] < ∞,

then it can be shown that the moment generating function and log(E[euy]) are smooth. It
holds for every t > 0,

E[euy] = E[eu|x|γ ] = E[eu|x|γ1(|x| ≤ t)] + E[eu|x|γ1(|x| > t)]

≤ eutγ + E[e|x|utγ−1
I(|x| > t)], (23)

Without loss of generality, we assume µ = 0. Further

fGH(x;λ, α, β, δ, µ = 0) ∼ xλ−1e−(α−β)x as x →∞,

and
∫∞
y xλ−1e−xdx ∼ yλ−1e−y as y→∞, Press et al. (1992).

For an arbitrary but fixed u ∈ IR+ and t0 > 1 so that utγ−1 < α − β, it holds for all
t ≥ t0

f(t) ≤ C1t
λ−1e(β−α)t
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∫ ∞

(α−β−utγ−1)t
xλ−1e−xdx ≤ C2[(α− β − utγ−1)t]λ−1e−(α−β−utγ−1)t

where C1, C2 > 1.

Consequently for t ≥ t0,

E[eu|t|γ−1x1(|x| > t)] =
∫ ∞

t
eutγ−1xf(x)dx ≤ C1

∫ ∞

t
eutγ−1xxλ−1e−(α−β)xdx

= C1

∫ ∞

t
xλ−1e−(α−β−utγ−1)xdx

= C1(α− β − utγ−1)−λ
∫ ∞

(α−β−utγ−1)t
xλ−1e−xdx

≤ C1C2t
λ−1e−(α−β−utγ−1)t(α− β − utγ−1t)−1 (24)

If u is so large that t
def= (α−β

2 )
1

γ−1 uc ≥ t0 with 1
1−γ ≤ c, then (24) holds true since

utγ−1 = (α−β
2 )uuc(γ−1) ≤ α−β

2 < α− β.

Given t = (α−β
2 u)

1
1−γ , we get

E[eutγ−1x1(|x| > t)] ≤ 2C1C2

α− β
(
α− β

2
u)

λ−1
1−γ e−

α−β
2

(α−β
2

u)
1

1−γ
.

From which we get

log(E[eutγ−1
1(x > t)]) ≤ C3 +

λ− 1
1− γ

log(u)− (
α− β

2
)

2−γ
1−γ u

1
1−γ

Further log(E[eutγ−1
1(x > t)])u−

1
1−γ is also bounded for u → ∞. Analogously we can

show the bounding of log(E[eutγ−1
1(x < −t)])u−

1
1−γ . Therefore for γ < 1 the whole term

E[eu|x|γ1(|x| > t)]u−
1

1−γ is bounded as u →∞.

Given t = (α−β
2 u)

1
1−γ , we have

eutγ = e(α−β
2

)
γ

1−γ u
1

1−γ

u
− 1

1−γ log(eutγ ) = (
α− β

2
)

γ
1−γ = constant

Thus u
− 1

1−γ log(E[eu|x|γ ]) ≤ u
− 1

1−γ [log(eutγ ) + log{E[eutγ−1|x|1(|x| > t)]}] is bounded for
u →∞, i.e. for a sufficient large u0 there exist a constant Cu > 0 such that

E[eu|x|γ ] ≤ Cuu
1

1−γ , u ≥ u0.

2
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Proof of the Martingale property of θt Consider a predictable process pt (such as
the volatility σt or the local parameter θt) w.r.t. the information set Ft−1:

Υt = exp

(
t∑

s=1

psζs − (aγ/2)
t∑

s=1

p2
s

)

Υtis a supermartingale, since

E(Υt|Ft−1)−Υt−1 = E(Υt|Ft−1)− E(Υt−1|Ft−1)

= E[exp

(
t∑

s=1

psζs − (aγ/2)
t∑

s=1

p2
s

)

− exp

(
t−1∑
s=1

psζs − (aγ/2)
t−1∑
s=1

p2
s

)
|Ft−1]

= E[exp

(
t−1∑
s=1

psζs − (aγ/2)
t−1∑
s=1

p2
s

)
{exp(ptζt − aγ/2p2

t )− 1}|Ft−1]

=
exp(p1ζ1)

exp(aγ/2p1)︸ ︷︷ ︸
≤1,Lemma1

· · · exp(pt−1ζt−1)
exp(aγ/2pt−1)︸ ︷︷ ︸

≤1

·E[
exp(ptζt)

exp(aγ/2pt)︸ ︷︷ ︸
≤1

−1|Ft−1]

≤ 0

i.e. E(Υt|Ft−1) ≤ Υt−1. By this lemma, we obtain a generalized version of Theorem 3.1
in Mercurio and Spokoiny (2004) to the case when ε are from a GH distribution. The
statistical properties of θ̂I are given in Theorem 1.
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