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ABsTRACT. In this paper we prove a conditional limit theorem for a critical Galton—
Watson branching process {Z,,; n > 0} with offspring generating function s+(1—s)L((1—
5)71), where L(z) is slowly varying. In contrast to a well-known theorem of Slack (1968,
1972) we use a functional normalization, which gives an exponential limit. We give also
an alternative proof of Sze’s (1976) result on the asymptotic behavior of the nonextinction
probability

1. INTRODUCTION, STATEMENT OF RESULTS, AND DISCUSSION

Let Z = {Z,;n > 0} be a critical Galton — Watson process initiated by a single particle.The
main purpose of this note is to study processes with an offspring generating function f(s)
satisfying the condition

f(s)=s+(1—s)L((1 —s)™!) for some slowly varying L(z). (1.1)
Note that L(z) — 0 as x — ooby the assumed criticality of our process.

Evidently, EZ!*® = ocofor every 6 > 0, provided that (1.1) holds. For critical branching
processes with this property there areonly a few papers. Zubkov [12] proved limit theo-
rems for the distance to thecommon nearest ancestor under some additional restrictions
on the function L(z). In Sze’s paper [11] the asymptotic behaviorof the nonextinction
probability @,, := P(Z,, > 0) was studied. Bondarenko and Topchii [2| obtained lower and
upper bounds for theexpectation of the maximum M,, := maxy<, Z} under the condition
EZ; log?(1 + Z1) < oo for some (> 0.

We begin with the following general result on critical Galton —Watson processes which was
proven by Slack [9, 10].

Theorem 1 (Slack). For a critical Galton — Watson process the following four assertions
are equivalent.

(a) The sequence of distributions F,(x) := P(QnZ, < x|Z, > 0) converges weakly to
some nondegenerate limit;

(b) f(s)=s+ (1 —s)"L((1 - s)"1) for some a > 0;

(¢) There exists a slowly varying function L*(z) such that Q, = n~/*L*(n) for some
a > 0;

(d) Laplace transform of the limit of the sequence Fy, is A\ — 1 — X1 + X))~V for
some o > 0.

Therefore, the sequence F,(z) cannot have a nondegenerate limit if representation (1.1)
holds. In other words, the normalization with the nonextinction probability doesn’t work
in the present case, and we need to find an alternative way to normalize the branching
process Z,.

For a general offspring generating function f(s) we set
H(x) :z:c(f(l—:cil)—lﬂ—x*l), x>1 (1.2)

and

=y s Y oodx
V(y) -:/0 75) = :/1 THE) Y > 1. (1.3)
Note that H(x) = L(x) if (1.1) holds.

The following conditional limit theorem is our main result.

Theorem 2. Assume that f(s) satisfies (1.1). Then for all x > 0,
lim P (H(Q," )V (Zy) < x‘Zn >0)=1-¢. (1.4)

n



Nonextinction probabilities are in a sense natural norming constants for critical branching
processes, sincealways

E{Q.Z,|Z, >0} = 1.
But under condition (1.1) the expectation overnormalizes Z,,:

Corollary 1. Under the assumptions of Theorem 2,
lim P(QnZ, <z|Z,>0)=1 (1.5)
n—oo

for every x > 0.

It is well-known that for supercritical Galton—Watson processes the normalization with
the expectation leads to a nondegenerate limit if and only if EZ; log Z; < oco. Further, if
EZ log Z; = oo, then one can find a sequence ¢, > 0 such that ¢,Z, converges almost
surely. Consequently, in this irregular case, a linear normalization is possible. In contrast
to the supercritical case, it follows from (1.4) that there is no linear normalization for Z,
satisfying (1.1).

Apparently Darling [4] was first who used the functional normalization for proving limit
theorems. In [4] he studied the limit behavior of a sum of independent identically dis-
tributed random variables with slowly varying right tails. Concerning branching processes,
this type of normalization was used usually if the expectation of the number of the off-
springs is infinite. The first contribution to this area was made also by Darling [5]. He has
shown that under some additional assumptions on f(s) there exists v € (0,1) such that

the sequence P(fy” log(1+ Z,) < x) converges to a proper distribution function ¥(x).

Hadson and Seneta [7] give sufficient conditions for the weak convergence of 4" L(Z,,) for
some slowly varying function L(z) and some 7 € (0,1). Barbour and Schuh [1] proved that
for every Galton - Watson process with infinite mean there exists a norming function U (x)
such that e ™"U(Z,) converges almost surely to some nondegenerate random variable.

The functional normalization V' (z) in Theorem 2 is individual: For processes with different
offspring generating functions we have different normalizations. In order to compare the
limiting behavior of Z,, for different functions L(x) in (1.1), we must reduce individual
normalizations to a common one. Below we give some examples of the reduction to the
logarithmic normalizing function. In each example we have a limit theorem of the following
form: There exist a centering sequence A,, and a norming sequence B,, such that

log Z,, — A,
B, <z

where F'(z) is a distribution function.

lim P(

n—oo

Zy > o) = F(2), (1.6)

Example 1. Assume that
L(z) = 87 (log' P z) exp{—log” z}(1 + o(1)) as z — oo, (1.7)

where 8 € (0,1). Then, recalling that H(x) = L(x) under assumption (1.1) and using
definition (1.3) of V(x), we have

Vo) = | =2 = expllog yh(1 -+ o(1)) as y — . (1)

Because of continuity of the limiting distribution in (1.4), we may replace H and V by
their asymptotic equivalents given in (1.7) and (1.8) respectively. Thus,

lim P(ﬁ_l(logl_ﬁ Q.Y exp{log® Z,, —log” Q;; '} < x‘Zn > O> =1—-¢"
n—oo
underassumption (1.7). Substituting 2 = 3~'e¥ and taking logarithm, we get

Y
lim P(log[3 Zp — log” Q' +(1—p3)loglog@, ! < y‘Zn > 0) =1- exp(—%).

n—0o0



Therefore,
Y
lim P(loan < (bn—l—y)l/ﬁ‘Zn >0) =1—exp<—%), (1.9)
where
by :=log? Q' — (1 - B)loglog Q; . (1.10)
Noting that

(b + )% =87 4+ BB 0 4 0(1)) a5 oo,

and taking into account the continuity of the right-hand side in (1.9), we conclude that

JL%P(%# < % Zn > 0) —1- exp(—%). (1.11)

The next equalities follow from definition (1.10) of b,

b/ =log @, — (571 —1)(log" P Q, ") loglog @, + o(log' ? @, 1),
b/ = 1og' P Q71 (1 4 0(1)) as n — oo.

Substituting these expressions for bi/? and by?~" into (1.11) and dropping the o(1)-term
under the P-symbol, we observe that (1.6) holds with F(z) := 1 — exp(—e®/f3) and

An=log Q' — (871 = (log' 7 Q) loglog @', By :=log' 7 Q..

Noting that log Z,, — A, = log Z, —log Q,;' — B,(87! — 1)loglog @, !, we get from (1.6)
the relation

log Z, —log Q' ~ — (571 —1)loglog @, * (1.12)
on the set {Z,, > 0}.

In the next two examples the process log Z,, converges without centering, i.e. A4, =0 in
(1.6).

Example 2. If L(z) ~ log*ﬁ x as x — oo for some (3 > 0, then
V(y) = (B+1)""log’ (1 + o(1)).

As we have already mentioned, we may insert the asymptotic equivalents of H and V into
(1.4). We thus have

. logﬁ+1 Zn,
lim P( 7 AT
which is equivalent to

<z

Zn>0>:1—e*x,

1)

Roughly speaking, here log Z,, grows as logﬁ/ (B+1) Q;;*. This is slower than for the process
from the previous example, since there log Z,, ~ log Q! by (1.12).

lim P(log Zp < xlogﬁ/(ﬁ“) Qfll‘Zn > O) =1- exp(—

n—oo

(1.13)

Example 3. Let logyz := logz and, for all £ > 1, define recursively log 1z =
log(log ) z). Suppose that L(x) ~ (log) x)~! for some k > 3.For this choice of L(x),

logy dx
Vv :/ = (lo log . 1+o0(1)) as y — oo.
(y) I (logy)log(,_1yy(1 +o(1)) as y

Hence, by Theorem 2,
lim P(log Z,10g(;,_1) Zn < zlog) @y, Z, > 0) =1 —e". (1.14)

n—oo

Taking logarithm, we obtain

nh_)n;o P(log ) Zn + log ) Zn < 10g(41) Q. +logx|Z, >0)=1—e"



Since Z, — oo on the set {Z, > 0}, and log1)@;,' — o0 as n — oo, we infer that for
every € > 0,

lo Z,
lim P(‘g(;)"fl—l‘ >e|Z,>0) =0,
n—oo \llog(yy1) @n
Therefore,for every k > 3,
log._1) Z
lim P(‘g(k—l):—l‘ >e|Zy > 0) =0,
n—oo \lloggp_1) @n

This allows to replace log ) Zy, in (1.14) by logay_1) Q1. As a result, we get

log ) @y "

lim P(logZ <z —
" log 1y Qn'

n—0o0

Zy > 0) —1_e (1.15)
This example shows that the process log Z,, can grow witn an arbitrarily small speed.
Next we turn again to the situation which is described in Theorem 1. Assume that f(s) =

s+ (1—s)L((1—3s)71), where a € (0,1] and L(x) is a slowly varying function. Thenby
definitions (1.2) and (1.3),

H(z) =2 “L(x) (1.16)
and
Yy e «
Viy) = /1 xlfL(x) - ag(y) (1+0(1)) as y — oco. (1.17)

Since V(y) increases,
P(QnZ, < x|Zy > 0) =PV (Z,) <V (2Q,")|Z, > 0).

Multiplying both parts by H(Q;!) and taking into account (1.16) and(1.17), we arrive at
the identity

P(QnZ, < 2|Z, >0) =P(H(Q, YW (Z,) < a 'a“ +¢,(2)|Z, > 0),

n

where e,(x) — 0 as n — oo. Combining this equality with Theorem 1, we conclude
thatthe sequence of distributions P(H(Q;l)V(Zn) < x|Z, > O) converges weakly to
some nondegenerate limit. Thus, we can combine Theorems 1 and 2 in the following result:

If

f(s)=s+ (1 —s)"TL((1-s)"h (1.18)
for some 0 < a < 1 and some slowly varying L(x), then
lim P(H(Q;l)V(Zn) < 2|7y > 0) = F@)(g), (1.19)

where F(®)(z)is a distribution function.

The rest of this paper is organized as follows. Section 2 is devoted to the proof of Theorem 2.
Section 3 contains an alternative proof of Sze’s result on the asymptotic behavior of the
nonextinction probability and some remarks related to this.

2. PROOF OF THE MAIN RESULT

In this section we prove Theorem 2 and Corollary 1.



2.1. Auxiliary results. An essential step in our method is to connect the weak con-
vergence of the functional normalized sequence V(Z,) with the convergence of Laplace
transforms of ~Z,,.

Lemma 1. Let V(x) be a continuous, increasing, slowly varying function. The inverse
function of V(x) we denote by G(z). If there exist a continuous function p(z) and a
sequence ay > 0 such that for all x > 0,

. Z, -
then for all x > 0,
lim P(a;IV(Zn) < x|Zy > 0) = p(x). (2.2)

Proof. One can easily verify that for all z,¢ > 0 and an arbitrary sequence {a,} the
following estimates hold:

E{exp (_%:x))

Zn>0} < P(Zn<G(an(:c+5))‘Zn>0>

G(an(z +¢))
+exp< G(anx) )’
Zn,
_ > _
E{exp( G(anx)) T > 0} > P(Zn < Glan(z 5))‘Zn > o) X
Glan(z —¢))
exp( G(anx) )
Since V (y) is increasing and slowly varying, then by Theorem 1.11 of [8],
- Glx)
1 = 2.
o0 G(cx) 0 (23)
for every constant ¢ > 1. Thus,for any given £ > 0 and all > 0,
Z
l%lrri)%ng(Zn < G(ap(r —¢€))|Zn > 0) < li;nﬂs;;p E{exp(—wzx)) Iy > 0},
Z
linnlioréfE{exp(—G(a:x)) T > o} < hrxisogpp(zn < Glan(z + 5))‘Zn > o),

or, equivalently,

limian(a;1V(Zn) <xr—¢

n—oo

Z
Ly > 0) < limsu E{ex (—771)

T > 0}, (2.4)

lim inf B{exp - G(inx))

If (2.1) holds, then (2.4) and (2.5) imply

Iy > 0} < limsupP(a#V(Zn) <x+e

n—0o0

T > 0). (2.5)

lim inf P (a;IV(Zn) <z

Zn>0) <z +e)

n—oo
and
limsupP(a;IV(Zn) < x|Zp > 0) > p(x —e).
n—oo
Letting ¢ — 0 and taking into account the continuity of ¢(z), we get (2.2). O

Remark 1. This proof of Lemmal is in the spirit of Lemmal from [7], but essentially
simpler.



Lemma 2. Let the sequence {yi; k > 0} be recursively defined by

Yr+1 = Yk — Ykl(yx), vo € (0, 1],
where [(y) is a monotone incresing function, I(y) < 1 for all y, and limy o (y) = 0. Then

lim 2541 — 1. (2.6)
k—oo Yk
Furthermore, if
— l
k—oo Ykl — Yk koo Ykl(Yg)

then there exists a constant C > 0 such that for alln >0 and j > 1,
n+j—1

Yn dy
Jj< / —— <j+C L(yg)- (2.8)
o 1) 7T 2
Corollary 2. If (n+ j) — oo, then
Yn d
j_lt/ﬁ Y — 1.
yn+j yl(y)
Proof. Since y, decreases, the limit y* := lim,_~ Yy, exists, and y* is theroot of the

equation y = y(1 — I(y)). But under the condition I(y) < 1 the latter equation has the
unique solution y = 0. Thus, y* = 0, i.e. the sequence y,, converges to zero.Therefore,

le—l(yn)ﬂlasneoo,
Yn
i.e. (2.6) is proved.
Obviously,
Yk Z Ykl _
Yl (k)
This, together with the monotonicity of yl(y), yields

n+j—1 Y — yn g
= Z k : Ykt _ / dy
= yl(yr) yuis YY)
finishing the proof of the lower bound in (2.8).
Using again the monotonicity of yl(y), we get

Yk — Yk+1 /y" dy
S —— —.
= Yerl(Wken) Sy, vl(Y)

n+j—1

On the other hand,

n+j—1 n+j—1 n+j—1 2
Yk — Yh+1 Yk — Ykt Z yrl* (k)
D - - <

—, 2.10
= yenllyke) = url(yr) = Y1l (Yre1) (210)

since by the monotonicity of /(y),

Yk — Y+l Yk — Ykl 1 (yk — Ykt1)?
— <
Yk+1l (Y1) yrl(yr) Yks1)  YkYks1
Uel2(yk) (ke — Yi1)? _ vl (yk)
Ukl (1) (url(yr))? Yk+1l(Yrs1)
By (2.7), there exists a finite constant C' such that

Yil®(yk)

< Cl .
Ykt 1! (Yrr1) (we)



Applying this bound to the right-hand side in (2.10),

n+j—1 n+j—1 n+j—1

Yk — Yk+1 Yk — Yk+1
< —+C (yx)-
= yrerl(yes) = ukl(ue) 2 )

k=n

Using (2.9), we see that the first sum at the right-hand side equals j. This proves the
upper boundin (2.8). O

Set

N R
W (z) ._/x ) 0<z<l, (2.11)

where [(y) is from Lemma 2.

Lemma 3. Let l(y) and {yi} be defined as in Lemma 2. Assume also that I(y) slowly
varies at zero. Let the sequence b, be decreasing and satisfying the condition

W(by,) = apxz(l+0(1)) as n — oo, (2.12)
where x € (0,00), an := 1/l(y,), and put k, = min{k : yx < b, }. Then

lim J0tkn _ -2 (2.13)

n—oo  Yp

Proof. First of all, we note that b,, converges to zero as n — oo. Indeed, since y,, converges
to zero and lim, . l(y) = 0, the sequence a,, tends to infinity. According to condition
(2.12), b, — 0 as n — oo. Hence, k, goes to infinity.

Note also that (2.7) holds for every slowly varying function [(z). Consequently, Lemma
2 holds under the conditions of Lemma 3. Recalling that k, — oo and using Corollary 2
with n =0 and j = k,, we have

W (yk,,) ~ kn as n — oo. (2.14)
Using the definition of k,, and the monotonicity of b,, gives
Moreover, by (2.8),

0<Wlg,) = W)= [ s < Cilyn,) = of1) as n — o
ve, YY)
Hence,
W (yg, ) ~ W(by) as n — oc. (2.15)
Combining (2.14), (2.15), and (2.12), we have finally
kn ~ W(yg, ) ~ W(by) ~ apz as n — oo. (2.16)

Since I(y) increases,

/yn dy 1 Yn
> log .
On the other hand, by Lemma, 2,

Yn
/ _dy ~ k, as n — oo.
Yn+4kn yl(y)

As a result, we have

l(yn) Yn+kn < kn(l * 0(1)).



Taking into account (2.16) and recalling that a,, = 1/I(y,), we obtain, for every € € (0,1)
and all large n, the inequality
Yn

x> (1—¢)log

whenever
Yn < e:v/(lfs)ynijn.
Since [(z) is slowly varying, it follows from the previous inequality that

I(y)
[(yn)
uniformly for y € [yn, Yn+k, |- This, together with Lemma 2, gives
Yn dy 1 Yn
ki, ~ ~ log as n — oo.

On the other hand, it follows from (2.16) that k,, ~ a,z. Hence, recalling that a,, = 1/I(yy,),
we get

—lasn— o0

lim log
n—oo Yn+kn,

This completes the proof. O

=xT.

2.2. Proof of Theorem 2. The function V(z), defined in (1.3), satifies the conditions
of Lemma 1. Thus, to prove the theorem it suffices to show that (2.1) holds with a, =

[H(1/Q,)] " and p(x) =1 - .

For a critical Galton—Watson process the sequence @),, satisfies the recursion equation

Qri1=1—f(1-Qk) = Qr(1 - H(1/Qy)), (2.17)

i.e. the sequence{Qy} coincides with {y;} defined in Lemma 2 for I(x) := H(1/z). Fur-
thermore,one can easily verify that the function (f(s) — s)/(1 — s)is decreasing. Recall-
ing definition (1.2) of H(z), we see that [(z) is also decreasing. By assumption (1.1),
H(x) = L(x) varies slowly at infinity. Therefore, [(x) varies slowly at zero. We note finally
that I(z) < I(1) = po < 1 for € [0,1]. Summarizing, we conclude that I(z) = H(1/x)
satisfies all conditions of Lemma 2.

Let .
Sp = Sp(x) = exp{—G(i}.

anT)

Evidently, s, increases and (1 — s,)~ ! ~ G(a,z) as n — oo. Hence,

1
V<1_8n>~anx as n — oo. (2.18)

Noting that V(1/z) = W (x)for all = € [0,1], we can rewrite (2.18) in the following form:
W(l —sy,) ~ a,x as n — 0.

Consequently, all conditions of Lemma 3 are fulfilled with I(z) = H(1/x), y, = @, and
b, =1 — s,. Therefore,

lim Dthn _ o (2.19)
where
kp = min{k : Qr < 1 —s,}. (2.20)
From this definition of k, it follows that fx, _1(0) < s, < fk,(0). Thus,
Satkn—1 < fa(sn) < frsk, (0). (2.21)



Using the inequality

1
1O = [ Py > 0D - 50)

we get

F 5001 = £5(0)) < 1= f41(0) <1 f5(0) (2:22)
for every critical Galton—Watson process. Since lim; . f'(f;(0)) = 1, we conclude from
(2.22) that (1 — fj-1(0)) ~ (1 — f;(0)) as j — oo. Combining this with (2.21) yields

1 — fu(sn) ~ Qnik, as n — oo. (2.23)
From this relation and (2.19) we find that

Jim Bfesp(— o)

Thus, the theorem is proved.

Remark 2. The reduction of (1— f,,(s5)) to (1— fn1,(0)) with a proper k,,, which realized
in the proof of Theorem 2, was proposed in [9]; see also [3]. If the asymptotic behavior of
the nonextinction probability @, is known, we can derive immediately thecorresponding
limit theorem (see Theorems 1 and 2 in [3]). Assume, for example,that Q, ~ n~"/% as
n — oo for some « € (0, 1]. Letting s, = 1 — z@Q,, and recalling definition (2.20) of k,, we
see that k, ~ n/x® as n — oo. Therefore, by (2.23),

L= fu(sn) ~ Qnik, ~ (14 w_a)_l/O‘Qn as n — 00.
Finally,
lim E{sfn‘Zn >0 =1—(1+ x—a)—l/a’
n—oo
i.e. we have (a) and (d) of Theorem 1.

In contrast to paper [3], our way to prove a limit theorem for Z, doesn’t require any
information on @,,. Instead of this we consider the ratio Q4+, /Q@n, which is in the spirit
of [9].

Remark 3. An asymptotic expression for 1 — f,,(s) can be found under the additional
condition

L(z) = o(log™' ). (2.24)
By Theorem 1 of [11], this condition is sufficient for the validity of relation

1 — fu(s) ~ [G(n + V(1 - s)_l))} o as n — oo.

In particular,

Qn ~ [G(n)] ! as n — oo. (2.25)
Using the method described in Remark 2, we can derive our Theorem 2 from (2.25). Note
that assumption (2.24) is superfluous.

2.3. Proof of Corollary 1. Obviously,

P(QuZy < 1|Zy > 0) = P(H(Q;l)wzn) < HQ7YW Q)| Z, > o). (2.26)
It follows from definition (1.3) of V' (z) that for arbitrary ¢ € (0, 1),
Y dx loge™!
%4 2/ = 1+o0(1)) as y — oo. 2.27

It means that H(y)V (y) — oo as y — oo. Since H(x)(= L(x)) is slowly varying,
L(Qu )V (2Q ") ~ L(2Q )V (2Q5") as n — oo. (2.28)



Combining (2.27) and (2.28), we conclude that L(Q; 1)V (zQ,') — oo as n — oo. This
relation, together with (2.26) and (1.4), proves the corollary.

3. ON THE NONEXTINCTION PROBABILITY

In Subsection 3.1 we give sufficient conditions when the sequence y;, defined in Lemma 2,
is asymptotically, as j — oo, equivalent to W~1(j), see Lemma 4 below. An application
of this result to the sequence @, gives us the asymptotic behavior of @),,. In Subsection
3.2 we discuss the influence of the function L(x) of (1.1) on the nonextinction probability.

3.1. On the inversion problem for the function W(z). Let {y;} be the sequence
defined in Lemma 2. It follows from (2.11) and Corollary 2 with n = 0 that

Wiy;) =Jj+¢; (3.1)
and 1; = o(j) as j — oo. Hence,
y; =W+ ).
Fix a > 0 and let [(z) = 2® in (2.11). Then W (z) = a~ (2~ — 1), and, consequently,
Wz +o(z)) ~ W (z) as z — oc. (3.2)

In particular, y; ~ W™1(j) as j — oo. But if W(z) is defined by a slowly varying I(z),
then (3.2) is not true in general. However, if [(z) goes to zero sufficiently fast, then
WG 4+ 9j) ~ WL(j), as the next lemma shows.

Lemma 4. Assume that (2.7) holds and [(z) = o(log™' x). Then, as j — oo,
yi = W51 +o(1)).

Proof. Putting n = 0 in (2.8) and taking into account the definition (2.11) of W (x), we

have
j—1

J<W(y) <i+C> Uy (3.3)
k=0
It follows from the left inequality and monotonicity of W (z) that y; < W~1(j). Since I(z)
increases, this bound implies

j—1 j—1
D lye) < D UWTH(K)).
k=0 k=0

Noting that [(W~1(z)) decreases, one has, for every k > 1, the bound

k
LW~ (k)) g/ (W (z))dx
k—1
Therefore,
Jj—1 j
Zl(W‘l(k))g/ (WY (x))dz.
k=1 0
Substituting x = W(y) in the last integral and taking into account the equality
1
!
_— 4
We) = - s, (3.4

one can easily verify that

j W=1(j) W=1(j)
/ W @) de = / W )y = — / "ty = —1og W),
0 1 1

10



Thus,
j—1

D> W (k) < —log W ().
k=1
Substituting this bound into (3.3), we get, for some C' < oo, the inequality
j<Wi(y;) <j—ClogW(n),
or, equivalently,
Wi — Clog W (n)) <y; < W(j). (3.5)
To show that these bounds for y; are asymptotically equivalent, we consider the difference
logW=(j) —logW~(j — ClogW 1 (n)).
Evidently, this difference does not exceed

C sup (log W1 (z) logW~1(n) < . (3.6)
z€[n,n—Clog W—1(n)]

Applying (3.4), we get
_ WY () 1 N
log W1 () = ¢ = = (W ().
( Og ) (.’IJ) W_l(x) W_l(x)W/(W_l(.’I])) ( (.T,'))
Since (W ~1(x)) is decreasing, the left-hand side of (3.6) equals

—Cl(WHn))log W 1(n).

It means that
lim logW~1(j) —logW~1(j — ClogW~1(n)) =0

Jj—o0
if I(x) = o(log™'x) as x — 0. The statement of lemma follows from (3.5) and the last
relation. U

Now we use Lemma 4 to determine the asymptotic behavior of the nonextinction proba-
bility of Z,.
By (2.17),
Qn+1 = Qn - QnH(l/Qn)
As we showed in the proof of Theorem 2, the function /(z) := H(1/x) satisfies the condi-

tions of Lemma 2. Thus, in order to apply Lemma 4 to the sequence @), we need only to
check condition (2.7) with H(1/x). Since

Qn — Qn+1 = fn-i—l(o) - fn(o) - f(fn(o)) - f(fn—l(o))

and f’(s) increases,

fl(fnfl(o))(anl - Qn) < Qn - Qn+1 < (anl - Qn)
It follows from these bounds that
. Qn - QnJrl /
lim ——— = (1) =1,
n—oo Qn—l - Qn f ( )
i.e. (2.7) holds. Hence,
Qn ~ W (n) as n — oo,

provided that H(1/z) = o(log™' z) as z — 0. This result was obtained in [11] (see Theorem
1 and Corollary 2 there) by using another method.

We conclude this subsection with an example, which shows that the condition I(z) =
o(log™! z) is close to being necessary for the validity of the statement of Lemma 4.
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Example 4. Assume that [(x) = log~® 27! for some « € (0,1]. In this case,
—a 1 -1
Yn+1 = yn<1 — log _) for Yo <€ .
Yn
Taking logarithm at both sides, we arrive at the equality

1 1
=log — — log(l —log™“ —)
Yn+1 Yn Yn

log

Using Taylor expansion for log(1l — x), we get

Hence,

1 1 1 \7at1
Zlog=20-1 = O(log’g’a 1_)]

1 1 1
log® !t —— — Jog®*+! — [1 Flog@ !l = 4 ;
n

Yn+1 Yn Yn 2 Yn

1 1 1 1
=log®™ — 4+ (a+1)+ %L) log7* — + O(log*%‘ —)

Yn Yn Yn

Letting z,, := log®" ! y1, we have

1
Top1 = 2p + (@ +1) + %x;a/(aﬁ-l) 4 O(a=20/041)y,
Hence,
n—1
Oé—i—l —Oc a+1 —2a/ (a1
—xo—l—(a—i—ln—i—z 1 /(+)+O< 7 /(+)> 3.7)
Jj=0 =0

Clearly, z, = (o + 1)n + o(n) as n — oo. Therefore,
x;a/(a+1) _ (a+ ) a/(a+1) 7a/(a+1)(1 +0(1)) asj - 0.

Summing over j € [0,n), we get

n—1

1 _a/(a
Z %xj /latl) - c(a)n @D (1 4 0(1)) as n — oo,
j=0

where ¢(a) = 27 (a + 1)~*/(@t1)  Substituting this equality into (3.7), we have
Zn = (a4 1D)n + c(a)n (1 +0(1)) as n — oc.
Going back to y,,
yn = exp{ —[(a + 1)n]/ @D — ¢ (a)n1=/0Fe) (1 1 o(1))} as n — oo, (3.8)

where ¢ (a) = 27 (o + 1) 2/ (+1),
On the other hand, W(z) = (o + 1)~Llog®™ 2~ 1 if I(z) = log~® 2~ 1. Thus,

W(n) = exp{—[(a + 1)n]"/ @D 1 (3.9)

Comparing (3.8) and (3.9), we see that v, and W~!(n) are not asymptotically equivalent,
for all « € (0, 1].
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3.2. On the connection between the asymptotics of L(z) and of Q,. To use (2.25)
we need to determine the asymptotic behavior of G(x) = V~!(z). But this is not easy,
because of the slow variation of V(z). We will demonstrate it with the following example.
Assume, that

V(z) = alog? z + blog? Pz + o(log? ' z), (3.10)
where a and b are positive, § > 1 and 3 € (0,1]. To find the asymptotic behavior of the
function G(x), we consider the equation

az? + 02978 4 g(2) =z, (3.11)

where g(z) = o(2~1). It is easily seen, that z = (z/a)/?(1 + o(1)) as © — oco. Letting
2= (z/a)"?(1 + 6(z)) in (3.11), we have
2

2(1+05(x) + O(6*(2))) + b(x/a) PP (1 + (0 — B)3(x) + O(8°(x))) + o(z' /%) = .
Therefore,as x — oo,
5(a) =~ /a) /(1 4 0(1)
and
2= (/a)"? — (/)11 o(1)).
This means that under (3.10),

G(z) = exp{(x/a)l/e — C%(x/a)(lfﬁ)/e(l + 0(1))} as T — 00. (3.12)

Therefore, in order to find the asymptotics of G(z), it is not enough to know only themain
term of the asymptotics of V(z). Consequently, if Z(®), i = 1,2, are Galton-Watson
processes satisfying (1.1) with slowly varying functions L® and L) (z) ~ L®(z), then it
may happen that Qg) and Qg) are not asymptotically equivalent.
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