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Abstra
tWe study theoreti
ally the e�e
ts of pulse intera
tions mediated by thegain and absorber dynami
s in a passively mode-lo
ked laser 
ontaining a slowsaturable absorber, and operating in a regime with several pulses 
oexistingin the 
avity.1 Introdu
tionPassive mode lo
king provides a very e�e
tive te
hnique for generating short laserpulses with high quality and fast repetition rate. The basi
 me
hanism for pulseampli�
ation is the opening of a short temporal window of net gain due to thedynami
 interplay of a gain medium and a saturable absorber inside the laser 
av-ity. This me
hanism is well understood sin
e the analyses by New [1℄ and Haus [2℄from simple models, whi
h 
ould be handled analyti
ally. In the simplest situa-tions, a single light pulse travels round the laser 
avity and hits the output mirrorperiodi
ally, resulting in pulse emissions at intervals equal to the round-trip timein the 
avity. Operation with multiple 
oexisting pulses has also been reported,most frequently in the form of bound states of 
lose-pa
ked pulses resulting fromtheir 
oherent intera
tion [3, 4℄, or as pulse trains with a separation mu
h largerthan the pulse width. In the latter 
ase, the spa
ings between su

essive pulsesare often irregular [4, 5, 6, 7℄. However, an equally-spa
ed 
on�guration has o

a-sionally been observed in soliton lasers [8, 9, 10, 11℄, as well as in semi
ondu
torlasers 
oupled to an external 
avity [12℄ (and is in any 
ase easily for
ed by us-ing a
tive modulation [8, 9, 13, 14, 15℄). The existen
e of regular, widely-spa
ed,passively mode-lo
ked multiple-pulse regimes is predi
ted by simple mathemati
almodels, but the understanding of their 
onditions of observability is more 
halleng-ing. Nevertheless, the question is relevant to the produ
tion of pulse trains withhigher repetition rates, or by means of longer 
avities, for opti
al 
ommuni
ationsystems.As soon as multiple pulses 
oexist in the 
avity, they 
an intera
t. The purpose ofthis work is to explore theoreti
ally the 
onsequen
es of pulse intera
tions via thegain and loss dynami
s on the stability of regimes of operation with multiple, wellseparated, evenly spa
ed pulses. To this end, we 
onsider a model for passive modelo
king that is almost as simple as the 
lassi
al models by New [1℄ and Haus [2℄,ex
ept that it is free from the usual approximations of small gain per 
avity roundtrip and weak saturation. This is a ne
essary feature for our purposes, be
ause stablemultiple-pulse operation tends to appear only beyond a 
ertain level of pumping1



above lasing threshold [4℄. We thus need a model that remains valid for high pulseintensities, whi
h potentially requires a high gain per 
avity round trip and indu
esstrong gain and absorber depletions. Otherwise, for the sake of simpli
ity, we keepthe des
ription of the physi
s inside the laser as elementary as possible.The paper is organized as follows. In Se
. 2, we introdu
e the model and mentionthe main simpli�
ations involved. Se
. 3 presents bifur
ation diagrams 
omputedby dire
t numeri
al integration of the model and points out a number of di�eren
esin the stability properties of single-pulse and multiple-pulse regimes. In Se
. 4, wedis
uss one parti
ular instability of a two-pulse 
on�guration that manifests itself asa sudden jump towards the single-pulse solution as the gain pumping is graduallyde
reased towards the lasing threshold. We give eviden
e that the jump and theasso
iated transient os
illatory dynami
s result from pulse intera
tions mediated bythe gain and absorber dynami
s. In Se
. 5, we pro
eed to an asymptoti
 analysis ofthe model based on the identi�
ation of several well-separated time s
ales. This pro-vides some ne
essary ba
kground for the two next se
tions, where we determine howthe pulse intera
tions depend on their separation distan
e. In Se
. 6, we 
onsiderthe 
ase where the laser operates 
lose to threshold, and do a lo
al analysis in thevi
inity of some relevant 
odimension-2 point. We �nd that, a

ording to our model,two-pulse solutions emerge unstable at the lasing threshold, and thus must stabilizethrough a se
ondary bifur
ation lo
ated outside the domain of validity of the lo
alanalysis. In Se
. 7, by means of a global analysis, we �nd the bifur
ation and identifyit as the 
ause for the abrupt jump to single-pulse solutions mentioned above. At the
riti
al point, the bran
h of equally-spa
ed two-pulse solutions 
onne
ts to an un-stable limit 
y
le 
reated by the interplay of a fast pulse energy relaxation dynami
sand a slow pulse displa
ement dynami
s resulting from the pulse intera
tions. Basedon this me
hanism, we explain a s
aling law that exists between the period of thetransient os
illations during the jump and the pulse width. Con
lusions are given inSe
. 8 and 
ontrasted to [16℄, where a stabilization of multiple-pulse 
on�gurationsdue to pulse intera
tions in a passively mode-lo
ked laser with a Kerr nonlinearityis predi
ted using a theory valid near the lasing threshold.2 ModelOur model for passive mode-lo
king was derived in [17℄ using a lumped elementapproa
h. We 
onsider an opti
al 
avity 
ontaining a gain medium, a passive sat-urable absorber, and a thin spe
tral �ltering element whose purpose is to limit thefrequen
y bandwidth of the laser radiation. We assume a ring 
avity geometry, withone of the 
ounter-propagating waves suppressed so that the lasing is unidire
tional.With the additional assumption of a Lorentzian pro�le for the spe
tral �lter, themodel is given by the following system of delay-di�erential equations for the ele
tri
�eld amplitude A at the entran
e of the absorber medium, saturable gain g, and the
2



saturable absorption level q as fun
tions of time t: 1 + 
�1 ddt!A = p� exp�12 [g (t� T )� q (t� T )℄�A (t� T ) ; (1)dgdt = 
g (G0 � g)� exp (�q) [exp(g)� 1℄A2; (2)dqdt = 
q (Q0 � q)� s [1� exp(�q)℄A2: (3)The two 
ontrol parameters are the unsaturated gain G0 and absorber level Q0.The other model parameters are the 
avity's attenuation fa
tor per round-trip �, the
old-
avity round-trip time T , the spe
tral �lter width 
 (whi
h limits the minimumwidth of the pulses), the gain and absorber re
overy rates 
g and 
q, and the ratio s ofthe saturation energies of the gain and absorber media. Eqs. (1){(3) are equivalentto the model derived in [17℄ with g0 � 
gG0, q0 � 
qQ0, a � qEgA, and theamplitude-phase 
oupling 
onstants �g and �q set to zero.The model (1){(3) negle
ts spatial e�e
ts asso
iated with linear 
avity design, aswell as any phase dynami
s (sin
e in the absen
e of � fa
tors the solutions of the�eld equation (1) have a �xed phase). The present analysis 
an be extended to thefull model derived in [17℄, whi
h provides an a

urate des
ription of a semi
ondu
torlaser (as it holds under 
onditions of strong saturation and a

ounts for amplitude-phase 
oupling).3 Bifur
ation diagramsDepending on the parameter values Eqs. (1){(3) 
an exhibit various dynami
alregimes, in
luding 
haoti
 behavior. However, most important from the pra
ti-
al viewpoint are the regimes 
hara
terized by periodi
 trains of regularly spa
edmode-lo
ked pulses. As illustrated s
hemati
ally in Fig. 1, mode-lo
king regimes
Figure 1: Regular pulse train solutions of Eq. (1){(3): a) fundamental regime, witha pulse being emitted after every 
avity round-trip; b) 2nd harmoni
, with twi
e thefundamental repetition rate; 
) 3rd harmoni
, with tripled repetition rate.
an have di�erent repetition rates, whi
h are proportional to the number of pulsesemitted within the 
avity round-trip time. The fundamental mode-lo
king regime is
hara
terized by the emission of a single pulse per 
avity round trip, while harmoni
mode-lo
king regimes 
orrespond to pulse repetition rates equal to integer multiples3



of the fundamental repetition rate. Inside ea
h of the emission patterns shown inFig. 1, all pulses are identi
al and equidistant.The domains of existen
e of di�erent mode-lo
king regimes 
an overlap in parameterspa
e. Fig. 2 shows two typi
al bifur
ation diagrams for the 
ase of slow absorberwhere the relaxation time of the absorber is mu
h longer than the duration of apulse. They have been obtained by slowly sweeping the value of the unsaturatedgain parameter G0 ba
k and forth so as to explore the whole domains of stability ofseveral bran
hes of pulsed emission regimes. For all solutions with non-stationaryele
tri
 �eld envelope, only the maxima of the light intensity time dependen
e areshown. The bran
h of CW regime, whi
h is unstable for the most part, is labeled Sin Fig. 2.In Fig. 2a, three bran
hes of pulsed regimes 
an be distinguished, 
orresponding

Figure 2: Maxima of the laser intensity A2 as a fun
tion of the unsaturated gainG0, 
omputed by dire
t numeri
al integration of Eqs. (1){(3). The solution bran
heslabeled 1, 2, and 3 
orrespond to regular pulse trains with the fundamental repetitionrate and its 2nd and 3rd harmoni
s, respe
tively. The S bran
h 
orresponds to CWemission. Fixed parameter values are Q0 = 4, � = 0:1, 
 = 100, 
g = 0:025,
q = 1:875, s = 25, and a) T = 1, b) T = 0:5 (dimensionless units).to the periodi
 pulse trains with one, two, and three emitted pulses per 
avityround-trip. These regimes are similar to those illustrated by Fig. 1. As the 
ontrolparameter is swept ba
k and forth, the various bran
hes of periodi
 pulse trains su�ervarious kinds of transitions and instabilities. The single-pulse emission domain islimited to the right by a gradual shrinking of the pulse peak intensity to the CWlevel, indi
ating the 
ollapse of the pulsed regime onto the unstable steady state.This event is qui
kly followed by a transition to the two-pulse bran
h, whi
h itselfeventually undergoes a similar 
ollapse. In addition, two instabilities leading to non-uniform pulse trains 
an be observed in Fig. 2a. One of them lies on the three-pulsebran
h around G0 ' 350. The other lies at G0 ' 90 and 
an be identi�ed as aQ-swit
hing instability, as we have found the envelope of the resulting os
illatorypulse train to be modulated at the Q-swit
hing frequen
y. The diagram also features4



yet another kind of instability that manifests itself as an abrupt jump away fromthe destabilized state. Two su
h events 
an be observed, one at G0 ' 190 andthe other at G0 ' 240. Remarkably enough, these jumps only o

ur on the two-and three-pulse bran
hes (and form the left boundaries of their stability domains).They all lead to the fundamental-mode bran
h, whi
h in 
ontrast su�ers no similarinstability. This suggests a signi�
ant di�eren
e between the physi
al me
hanismsruling the stability of the fundamental mode and its harmoni
s.In Fig. 2b, all parameter values are the same as in Fig. 2a ex
ept that the round-trip time T is twi
e as small. This diagram shows a similar (although simpler)organization. It 
ontains only two bran
hes of uniform pulse trains. Again, thesingle-pulse bran
h is bounded to the left by a Q-swit
hing instability (at G0 ' 130),whereas the two-pulse bran
h features an abrupt jump to the fundamental mode-lo
king regime (at G0 ' 300). One 
an see that the single-pulse bran
h in Fig. 2bfollows very 
losely the two-pulse bran
h in Fig. 2a. This naturally follows fromthe laser 
avity in Fig. 2a being twi
e as long as that in Fig. 2b, so that they
an share the same mode of emission as both the fundamental mode of the shorter
avity and the se
ond harmoni
 of the longer 
avity. Note, however, that unlike thefundamental mode-lo
king regime in Fig. 2b the two-pulse regime shown in Fig. 2adoes su�er a jump instability. This gives further eviden
e that there are qualitativelydi�erent dynami
s at play determining the stability of the fundamental mode andits harmoni
s.4 Jump instabilitiesThese jump instabilities deserve a 
loser look. Fig. 3 shows the su

essive intensity
Figure 3: Intensity maxima as a fun
tion of time, during the transition from thetwo-pulse bran
h to the single-pulse bran
h that o

urs in Fig. 2a at G0 ' 190.Su

essive maxima are represented alternately as thi
k and small dots.maxima as a fun
tion of time, during a short time window spanning the durationof the jump from the two-pulse bran
h to the single-pulse bran
h in Fig. 2a. Thesu

essive maxima are represented as an alternation of small dots and thi
k dots,allowing the independent tra
king of the evolutions of the two pulses in the 
avity.The pattern starts out symmetri
 in the two pulses. Then a symmetry breakingo

urs, leading to the growth and saturation of one of the pulses, and to the shrinking5



and vanishing of the other. The transient evolution exhibits ampli�ed os
illationswhere the two pulse amplitudes os
illate in anti-phase, whi
h is a 
lear indi
ationof some intera
tion me
hanism between them, leading to a periodi
 ex
hange ofenergy. The two pulses are too far apart to intera
t 
oherently via their exponentiallyde
aying tails; nevertheless they 
an still intera
t in
oherently via the gain and lossdynami
s. Su
h intera
tions, being a 
olle
tive phenomenon, obviously need the
oexisten
e of at least two pulses in the 
avity to take pla
e, and thus 
annot o

urwithin the fundamental single-pulse emission regime. Having observed no jumpinstability on the fundamental bran
h in Fig. 2, we 
an already foresee that pulseintera
tions are an essential part of the me
hanism 
ausing the jumps from thebran
hes of higher harmoni
s.The transient os
illations in Fig. 3 have a rather well de�ned period. We have foundit to be typi
ally longer than the Q-swit
hing period, and have observed that ittends to double as the spe
tral �lter is made four times as wide, whi
h suggests asquare-root s
aling law between the os
illation frequen
y and the pulse width. Thelimited information provided by the numeri
al data displayed in Fig. 3 alone doesnot enable us to understand the exa
t nature of the me
hanism leading to theseampli�ed os
illations, or to explain the square-root s
aling law. The main purposeof the analysis that follows is to shed some light on these matters.5 AnalysisThe dynami
s revealed by Fig. 3 features at least three distin
t time s
ales of im-portan
e, namely: (i) the pulse width, typi
ally on the order of magnitude of theinverse of the �lter width 
; (ii) the gain and absorber re
overy times; and (iii)the duration of the jump, whi
h extends over many round-trips. By reformulatingour model equations in the limit of very narrow pulses (i.e., 
T large) and a slowabsorber, we shall be able to �nd 
lear relations between the di�erent time s
ales.5.1 Fast time s
ale: pulse ampli�
ationIn this subse
tion, our goal is to obtain a system of equations that determines theshape of ea
h emitted pulse on the O (
�1) time s
ale and hen
e we de�ne� � 
t: (4)Let us now introdu
e an index m 
ounting the su

essive instants tm where one ofthe pulses hits the output mirror. Let us further de�ne:Am (t) � 
� 12A (t+ tm) ; gm (t) � g (t + tm) ; qm (t) � q (t+ tm) : (5)If M is the number of pulses 
oexisting in the 
avity, then the pulse that hits theoutput mirror at t = tm hits it again after one round-trip at t = tm+M , and tm+M�tm6



represents the 
orresponding round-trip time. We assume thattm � tm�M � T + 
�1Æm; (6)where the 
onstants 
�1Æm des
ribe possible small deviations of the round-trip timesfrom their 
old-
avity value T . These deviations are to be determined later on inthe analysis.Substituting the relations (5){(6) in the model equations (1){(3) and negle
ting theterms of order O(
�1) in the Eqs. (2){(3), we arrive at the system 1 + dd� !Am+M (� � Æm+M) = p� exp �12 (gm � qm)�Am; (7)dgmd� = � exp (�qm) [exp(gm)� 1℄A2m; (8)dqmd� = �s [1� exp(�qm)℄A2m: (9)Comparing Eqs. (2){(3) and Eqs. (8){(9), one notes that we have negle
ted thelinear terms of the former equations, whi
h after res
aling have be
ome of orderO(
�1). It re
e
ts the fa
t that during the pulse emission the linear terms of Eqs.(2){(3) are dominated by the nonlinear ones, be
ause the latter are proportional tothe pulse intensity A2.The solutions Am of Eq. (7) des
ribe, for ea
h m, the shape of the pulse that hitsthe output mirror for the m-th time, on a time s
ale � 
omparable to the spe
tral�lter width. In the limit 
 ! 1, the time � ranges over the interval (�1;1).The 
onstants Æm in Eq. (7), whi
h are so far unspe
i�ed, provide some freedomto impose 
onstraints on the pulse shapes. A desirable requirement is that Eq. (7)admits lo
alized, �nite-energy solutions, a 
ondition that 
an be expressed as:Z +1�1 d�A2m <1: (10)It turns out that this 
onstraint is enough to determine the 
onstants Æm, at least inprin
iple. (In pra
ti
e, their expli
it 
omputation is not a trivial problem withoutfurther simplifying assumptions of the kinds introdu
ed in Se
tions 6 and 7.)The system (7){(9) is a set of delay-di�erential equations in � and a set of re
urren
erelations in m. As a re
urren
e system, it is not 
omplete. It determines thetransformation of the pulse shapes after ea
h round-trip, that is, it gives Am+M asa fun
tion of Am. However, it does not relate the gain and absorber state variablesgm and qm between the passings of su

essive pulses, that is, for distin
t values ofm. The missing relations are obtained in the next subse
tion.5.2 Intermediate time s
ale: gain and absorber re
overyBetween pulse passings, the ele
tri
 �eld vanishes inside the gain and absorbermedia, whi
h then re
over exponentially a

ording to Eqs. (2){(3). More pre-
isely, during this stage we negle
t the nonlinear terms in Eqs. (2){(3) by setting7



A = 0, whi
h makes the equations linear. The limit values g�m � gm (� ! �1) andq�m � qm (� ! �1) of gm and qm obtained from (7){(9) represent their states rightbefore (for the \�" sign) and right after (for the \+" sign) the m-th passing of apulse. The exponential re
overy of the gain and absorber media is expressed byg�m �G0 = �g+m�1 �G0� exp [�
g (tm � tm�1)℄ ; (11)q�m �Q0 = �q+m�1 �Q0� exp [�
q (tm � tm�1)℄ : (12)The re
overy relations (11){(12) provide boundary 
onditions for the gain and ab-sorber depletion equations (8){(9) and relate the gain and absorber states betweensu

essive pulse passings.In the limit of large 
, the original model equations (1){(3) are singular, but we havedesingularized them by separating the fast time s
ale � for the pulse shapes from thelonger time s
ale for the pulse separations tm� tm�1, and by using Eqs. (10){(12) as
onditions on the solutions of Eqs. (7){(9) over an in�nite interval of � . Given the�rstM pulse emission instants t1, t2, . . . , tM as initial data, Eqs. (7){(12) determinethe 
omplete solution pro�le during the �rst round-trip. They also supply the round-trip time deviations Æm, from whi
h the next M emission instants are obtained viaEq. (6). The solution pro�le 
an then be 
omputed for subsequent round-trips byiteration of this pro
edure. Eqs. (6){(12) together thus form a well-posed problem.5.3 Slow time s
ale: pulse driftIt is possible to take advantage of the smallness of the parameter 
�1 that appearsexpli
itly in Eq. (6) to emphasize the existen
e of a time s
ale mu
h longer than theround-trip time in the system (6){(12).The �rst M pulse emission instants t1, t2, . . . , tM all o

ur within the time window[0; T ℄, and 
onstitute the ne
essary initial data for the problem (6){(12). All thesubsequent emissions are 
aused by the 
y
li
 reappearan
e of the M initial pulsesin the solution after ea
h round-trip in the 
avity. Therefore, tm+nM for 0 � m �Mand n > 1 
an be thought of as the instant where the m-th pulse hits the outputmirror in the 
avity and is emitted for the (n + 1)-th time. Eq. (6) implies thatsu

essive emissions of the same pulse are separated by time intervals very 
lose tothe 
old-
avity round-trip time T . We 
an then divide the time axis into a sequen
eof time intervals of duration T and 
onsider the quantitiestnm � tm+nM � nT; (13)whi
h, for given m and n, represent the instant of the (n + 1)-th emission of them-th pulse, measured relatively to the beginning of the (n+ 1)-th time window. Interms of those, Eq. (6) now readstnm � tn�1m = 
�1Ænm; (14)8



where we have de�ned Ænm � Æm+nM : (15)Eq. (14) indi
ates that, in the limit 
 !1, the relative emission instants tnm for agiven pulse are shifted by a very small O (
�1) amount from one time window to thenext. We 
an interpret this as a very slow drift of the pulse positions, as n in
reases,relatively to the parameterized time window [nT; (n + 1)T ℄. This suggests lookingfor solutions of the system (6){(12) where the other variables also vary little duringa round-trip, and follow adiabati
ally these slow pulse displa
ements. We 
an writethis 
ondition 
ompa
tly as Zm � Zm�M = O �
�1� ; (16)where Zm represents the state ve
tor fAm; gm; qm; Æmg.Adapting to our problem the spirit of a 
lassi
al multiple s
ale analysis, where several
opies of the time variable are introdu
ed to des
ribe the di�erent s
ales, we nowtreat the round-trip index n as a slow time variable. We introdu
e the dimensionlessvariable N � (
T )�1 n (17)and treat it as 
ontinuous rather than dis
rete, sin
e it in
reases only by a smallamount ea
h time n is in
remented by one. In this way, we get as a limit of Eq. (6)the dynami
al equation dtm(N)dN = TÆm (N) (18)for the drift of the pulse positions. Consistently with our assumption that theevolution of Zm follows the pulse drift adiabati
ally, all quantities in the state ve
torZm now must also be taken to depend on N , namely: Zm = Zm (N).Finally, we may 
lose the in�nite systems (7){(9) and (11),(12) by dropping theO (
�1) small 
orre
tions in Eqs. (6) and (16). This gives the following periodi
ity
onditions in m:tm (N)� tm�M (N) = T; Zm (N) = Zm�M (N) ; (19)whi
h imply that only a �nite number of variables in the system (7){(12) are inde-pendent.Together, Eqs. (7){(12) and (18){(19) 
onstitute a well-posed problem that de-termines the relative pulse positions tm (N) from their initial values tm (0), andhen
eforth we will refer to them 
olle
tively as the drift equations. They 
an be in-terpreted as a 
lassi
al slow-fast system. The singular parameter 
 is not 
ontainedexpli
itly in them, and serves only to separate the di�erent time s
ales. A

ordingto Eq. (17), a unit in
rease in N 
orresponds to a number of round-trips on theorder of 
T , or a time s
ale on the order of 
T 2. The relative pulse positions tmvary as fun
tions of slow variable N a

ording to Eq. (18), and 
an thus be viewedas parameters of a slow motion manifold. For a given 
hoi
e of the initial emissioninstants tm (0), the equations (7){(12) together with (19) 
an be used to re
over9



the 
omplete initial solution pro�le in the time window [0; T ℄. This means that thefast dynami
s are assumed to be already at equilibrium in this manifold of pulsesolutions.The time intervals tm(N)�tm�1(N) between 
onse
utive pulse emission instants aredire
tly related to the separation distan
es between the pulses travelling in the 
avityat time t = 
T 2N . Therefore, the drift rates dtmdN determined by Eq. (18) essentiallymeasure the group velo
ities of the pulses. The drift equations thus des
ribe thein
uen
e of the pulses on ea
h other's velo
ities. In the two next se
tions, we makeuse of them to study the intera
tions between pairs of pulses and how they dependon the pulse separation.6 Pulse intera
tions near thresholdThe resolution of the drift equations is not a trivial problem, in parti
ular be
auseone of them, Eq. (7), is a delay-di�erential equation and another, Eq. (10), is anintegral 
onstraint on its solutions. In this se
tion, we make the extra assumptionthat the system is 
lose to the lasing threshold. It turns out that both diÆ
ultiesvanish in this 
ase.At the lasing threshold, the gain and absorber remain 
ompletely unsaturated, andthe gain exa
tly 
ompensates the 
ombined losses from the 
avity and from theabsorber so that the 
oeÆ
ient of Am in the right-hand side of Eq. (7) is unity. Thisgives the threshold 
ondition:p� exp �12 (G0 �Q0)� = 1; (20)whi
h de�nes a line in the plane (G0; Q0). In a 
lose vi
inity of the threshold,the energy in one pulse is very small and the gain and absorber remain almostunsaturated during the whole pulse ampli�
ation pro
ess. From Eqs. (8) and (9),the depletions �gm and �qm of the gain and absorber during the passing of a pulseare given by �gm = � exp (�Q0) [exp(G0)� 1℄ pm +O �p2m� ; (21)�qm = �s [1� exp(�Q0)℄ pm +O �p2m� ; (22)where pm = Z ��1 d�A2m (23)represents the a

umulated pulse energy up to time � . A

ording to Eqs. (21)-(22),the net gain in
rease �gm��qm during the pulse emission is approximately a linearfun
tion of pm, unless the 
oeÆ
ients of the linear terms in the expansions (21)-(22)are equal, in whi
h 
ase �gm��qm is dominated by the quadrati
 term in pm. This
ondition reads: exp (�Q0) [exp(G0)� 1℄ = s [1� exp(�Q0)℄ : (24)10



Eqs. (20) and (24) together de�ne a 
odimension-2 point in parameter spa
e, whi
hwe denote �G(0)0 ; Q(0)0 �. The vi
inity of this parti
ular point of the threshold line iswhere the relevant dynami
s happens. Indeed, for the pulse ampli�
ation to remainlimited to a �nite time window, as required for stable mode lo
king, the evolutionof the net gain 
annot be monotonous and thus must be at least quadrati
 in pm.The perturbative analysis in the vi
inity of the 
odimension-2 point is straightfor-ward. We introdu
e a formal order parameter " measuring the distan
e to this pointby rewriting the 
ontrol parameters as G0 = G(0)0 + "G(1)0 and Q0 = Q(0)0 + "Q(1)0 ;where "G(1)0 and "Q(1)0 des
ribe small deviations of G0 and Q0 from their referen
evalues. We also introdu
e a s
aled time variable � = "�1� (1) and the power seriesexpansions Zm = Z(0)m + "Z(1)m + "2Z(2)m + : : :, with A(0)m = 0 so as to a

ount for thesmallness of the pulse amplitude near threshold. We 
arry out these substitutionsin Eqs. (7){(12) and (19), expand in powers of ", and equate separately all the 
on-tributions of the same order in ", obtaining a hierar
hy of systems of equations. Weskip the 
al
ulation details and do not write the solutions expli
itly, but point outthat the leading-order expressions for the pulse shapes, A(1)m , are given by hyperboli
se
ants: A(1)m = Amaxm se
h �w�1m � (1)� ; (25)where the amplitude maxima Amaxm and the width parameters wm get determined inthe 
ourse of the analysis.A good amount of information on the dynami
s in the vi
inity of the 
odimension-2point 
an be obtained from the solutions to the perturbative problem. Fig. 4 shows,

Figure 4: Lo
al ba
kground stability map in the vi
inity of the 
odimension-2 pointde�ned by Eqs. (20) and (24). Parameter values other than G0 and Q0 are as inFig. 2a. The solid line is the lasing threshold, and the lines labelled T and L arerespe
tively the trailing-edge instability threshold and the leading-edge instabilitythreshold for the fundamental mode-lo
ked regime (dashed lines) and its se
ondharmoni
 (dotted lines).in a two-parameter spa
e, the lasing threshold line and the ba
kground instabilitythreshold lines for the fundamental mode-lo
king regime and its se
ond harmoni
.Ba
kground stability means that the net gain lies below threshold everywhere out-side of the stri
t temporal window 
orresponding to the pulse emission, and is a11



requirement for stable mode-lo
ked operation, espe
ially in presen
e of noise [17℄.The ba
kground stability domains for the fundamental and se
ond-harmoni
 mode-lo
ked regimes are a pair of narrow, partly overlapping se
tors of the (G0; Q0) planethat originate at the 
odimension-2 point. They are ea
h bounded by a trailing edgeinstability line (T) and a leading edge instability line (L), where the ba
kground ismarginally stable at the trailing or leading edge of the pulse, respe
tively. This is inagreement with Fig. 3 in [17℄, where a di�erent approa
h is used to study the model(1){(3), showing the validity of the present approa
h.Ba
kground stability alone does not guarantee a stable mode-lo
ked operation. Ifseveral mode-lo
ked pulses 
oexist inside the laser 
avity, their intera
tions 
an beresponsible for an instability. This is illustrated by Fig. 5 , whi
h shows, for a
Figure 5: Relative pulse velo
ity (arbitrary units) as a fun
tion of the pulse sep-aration (in units of the 
old-
avity round-trip) for a mode-lo
ked regime with twopulses 
oexisting in the laser 
avity. The 
omputation is lo
al to the 
odimension-2point de�ned by Eqs. (20) and (24). Parameter values are G0 = 35, Q0 = 1, and allothers as in Fig. 4.two-pulse regime, how the relative pulse drift velo
ity ddN (t2 � t1) depends on thepulse separation t2 � t1. The dot in the diagram 
orresponds to the 
on�gurationwhere the two pulses are separated by half the 
avity length, leading to the emissionof a regularly spa
ed pulse train at twi
e the fundamental repetition rate. This
on�guration is an equilibrium, be
ause it lies on the line where the relative pulsevelo
ity vanishes. This is a natural 
onsequen
e of the symmetry of the roles playedby the two pulses. The slope of the velo
ity 
urve in the vi
inity of this equilibriumdetermines its stability with respe
t to small pulse displa
ements. Fig. 5 shows asituation where the regular pulse train is an unstable equilibrium. Indeed, if thetwo pulses are brought a little 
loser to ea
h other, then the sign of the relativevelo
ity indi
ates that they will get even 
loser over time. This 
reates an e�e
tiveattra
tion between the two pulses, whi
h keeps getting stronger as the separationdistan
e de
reases. Ultimately, this leads to a 
ollision of the pulses.It turns out that the situation depi
ted in Fig. 5 is general to our model in thevi
inity of the 
odimension-2 point. More pre
isely, our 
omputations show that, inthe physi
ally relevant 
ase where the absorber relaxes faster than the gain medium(
q > 
g) the only possible equilibrium separation is t2� t1 = T=2, and this equilib-rium is always unstable. This result, being lo
al, does not 
ontradi
t the possibilityof a stable two-pulse 
on�guration suÆ
iently far away from the 
odimension-212



point. Nevertheless, it means that the two-pulse solution 
annot be stable arbitrar-ily 
lose to the threshold line, even though it 
ould have a stable ba
kground. Itmust always emerge unstable at the threshold, and must undergo some bifur
ationbefore be
oming observable. This bifur
ation lies outside of the domain of validityof the lo
al approa
h, and its identi�
ation is the purpose of a global analysis thatis 
arried out in the next se
tion.7 Pulse intera
tions away from thresholdAway from the 
odimension-2 point, the analysis of Se
. 6 breaks down, so thatEq. (25) does not hold rigorously anymore. Nevertheless, we assume that the pulseshape remains reasonably well approximated by a hyperboli
 se
ant, and write:Am ' Amaxm se
h (w�1m �). Although no asymptoti
 argument exists to support thisassumption, it has proven to give good results in pra
ti
e. The solution parametersAmaxm and wm need to be estimated from the pulse shape equation (7), along with theround-trip time deviations Æm. To this end, we derive three independent integralrelations from Eq. (7). The following 
hoi
e, although arbitrary, is as good asanything else:Z 1�1 d�L (�)2 = Z 1�1 d�R (�)2 ; Z 1�1 d�L (�) = Z 1�1 d�R (�) ;Z 1�1 d� �L (�) = Z 1�1 d� �R (�) ; (26)where L (�) and R (�) represent respe
tively the left-hand side and the right-handside of Eq. (7). Substituting the hyperboli
 se
ant ansatz Am = Amaxm se
h (w�1m �)into Eqs. (26) gives, for all m, three 
onditions relating impli
itly the pulse parame-ters Amaxm , wm, and Æm to some integral fun
tions of the gain and absorber depletionpro�les gm (�) and qm (�), whi
h appear in Eqs. (26) through R (�). By repla
ingthe delay-di�erential equation (7) for the pulse shape with these three 
onditions,we transform the system (7){(12), (19) into a set of ordinary di�erential equationsfor gm and qm with boundary and integral 
onditions. These equations form a sim-pler problem, and although they 
annot be expli
itly solved analyti
ally, they 
anbe studied using the 
ontinuation software AUTO [18℄.This approa
h has been used to 
onstru
t Fig. 6, whi
h shows a two-parameterbifur
ation diagram of the fundamental mode-lo
ked regime and its se
ond harmoni
in the plane (G0; Q0). This diagram is a global version of Fig. 4. In the vi
inity of the
odimension-2 point, both �gures agree well. Away from the lasing threshold, Fig. 6shows a slight 
urvature of the ba
kground stability threshold 
urves (T and L) andfeatures some additional bifur
ation 
urves. It is instru
tive to 
ompare Fig. 6 withone of the two numeri
al bifur
ation diagrams dis
ussed in the beginning of thispaper.In Fig. 2a, the stability domain of the fundamental mode-lo
ked regime is boundedto the left by a Q-swit
hing instability, and to the right by a point where the pulse13



Figure 6: Global stability map for the fundamental mode-lo
ked regime and itsse
ond harmoni
, whose bifur
ations are represented as dashed lines and dottedlines, respe
tively. The parameter values are as in Fig. 4. The solid line is the lasingthreshold. The other 
urves are labeled as follows: T = trailing-edge instabilitythreshold, L = leading-edge instability threshold, F = fold (limit point) bifur
ation,J = jump instability.peak intensity shrinks to the CW value. On one hand, the value of G0 at the onsetof the Q-swit
hing instability in Fig. 2a mat
hes well the value of G0 at the trailing-edge instability for Q0 = 4 in Fig. 6, and indeed the proximity of these two 
riti
alvalues is a known fa
t [19℄. On the other hand, the rightmost stability boundary inFig. 2a 
an be naturally identi�ed to one of the F 
urves in Fig. 6, whi
h representlimit points where the pulse amplitude goes to zero. The numeri
al agreement isless good in this 
ase, but the dis
repan
y is easily explained from the fa
t that thehyperboli
 se
ant ansatz for the pulse shape is only an approximation, and be
omesless realisti
 as the laser operates away from the lasing threshold. Note, �nally, thatthe leading-edge instability 
urves (L) in Fig. 6 do not 
orrespond to any remarkableevent in Fig. 2a. This means that stable mode-lo
ked pulses 
an subsist even in thepresen
e of an unstable ba
kground. This phenomenon, whi
h has been reportedearlier in [20, 21℄, 
an o

ur if the relative group velo
ities of the pulses and of thelow-intensity ba
kground are su
h as to sweep 
u
tuations towards the pulse beforethey get a 
han
e to grow and alter the light wave pattern. The introdu
tion of aweak level of noise in our model equations (1){(3) is suÆ
ient to oppose this e�e
tand reveal the leading-edge instabilities in numeri
al simulations [17℄.In addition to the bifur
ations and instabilities mentioned so far, Fig. 6 featuresa 
urve labeled J, whi
h AUTO identi�es as a symmetry breaking of the se
ondharmoni
, i.e., a bifur
ation to a solution that 
onsists of two pulses with distin
tshape 
hara
teristi
s. This symmetry breaking obviously needs the 
oexisten
e ofseveral pulses to take pla
e, and so it 
annot manifest itself in the fundamentalmode-lo
ked regime. It 
an be identi�ed as the 
ause of the jump that forms theleftmost boundary of the stability domain of the se
ond harmoni
 bran
h in Fig. 2a.The exa
t nature of this bifur
ation is best elu
idated by studying how the pulsevelo
ities depend on the pulse separation on either side of the 
riti
al point.14



Fig. 7 
ontains three diagrams that show, for the two-pulse regime, how the rela-

Figure 7: Relative pulse velo
ity (arbitrary units) as a fun
tion of the pulse separa-tion (in units of the 
old-
avity round-trip) for a mode-lo
ked regime with two pulses
oexisting in the laser 
avity. Parameter values are as in Fig. 6, with a) G0 = 194:8,b) G0 = 214:8, 
) G0 = 234:8.tive pulse drift velo
ity ddN (t2 � t1) depends on the pulse separation t2� t1 in threedi�erent situations. Figs. 7a, 7b, and 7
 
orrespond to values of G0 that lie respe
-tively slightly below, just at, and slightly above the symmetry breaking point. Thesediagrams are similar to Fig. 5, ex
ept that they are 
omputed using the global ap-proa
h des
ribed at the beginning of this se
tion. Again, the bla
k dot represents anequilibrium that 
orresponds to the symmetri
 two-pulse 
on�guration, and whosestability is indi
ated by the slope of the velo
ity 
urves at this point. Fig. 7 revealsthat the symmetri
 two-pulse 
on�guration is stable only to the right of the sym-metry breaking point, in agreement with Se
. 6's 
on
lusion that it 
annot be stablearbitrarily 
lose to the lasing threshold.Note also the 
hara
teristi
 \S" shape of the velo
ity 
urve in Fig. 7
. Be
ause therelative velo
ity ddN (t2 � t1) represents the rate of 
hange of the pulse separationas a fun
tion of the slowest time s
ale, this S 
urve 
an be thought of as a slowmanifold similar to the one that is the main building blo
k of the van der Polos
illator [22℄. Fig. 7
 thus suggests the existen
e of a limit 
y
le (as indi
atedby the dashed arrows) that results from the interplay between a fast pulse energyrelaxation dynami
s and a slow pulse drift dynami
s. The symmetry breaking point
orresponds to a Hopf bifur
ation from the symmetri
 two-pulse solution to thislimit 
y
le. Fig. 7 also reveals that the bifur
ation is sub
riti
al, so the limit 
y
lemust be unstable, and 
annot be observed dire
tly. We 
an show, however, that avan der Pol s
enario is 
onsistent with the onset of transient os
illations during the15



jump from the two-pulse bran
h to the single-pulse bran
h, whi
h we observed inFig 3.The normal form for a van der Pol limit 
y
le emerging from a sub
riti
al Hopfbifur
ation 
an be written as_u = �v; _v = v3 � �v � u; (27)where � is the bifur
ation parameter, and the small 
onstant � de�nes the times
ale on the slow manifold. For � > 0, Eqs. (27) are equivalent to the van derPol equations as de�ned in Chap. 4 of [22℄ up to a res
aling and a reversal of time.Phase plane representations of the slow manifold are given in Fig. 8 for three di�erent
Figure 8: Slow manifold of the van der Pol equations (27) for "! 0 and a) � = �1,b) � = 0, 
) � = 1.values of �. Attempting a rigorous derivation of the normal form (27) from the driftequations would involve ex
eedingly tedious 
al
ulations. However, its validity asa des
ription of the dynami
s near the symmetry breaking point is suggested �rstby the strong similarity between Figs. 7 and Figs. 8, and also be
ause the normalform (27) allows us to explain the s
aling law between the transient os
illationfrequen
y during the jump and the spe
tral �lter width, whi
h we mentioned at theend of Se
. 4. SuÆ
iently 
lose to the bifur
ation (i.e., for j�j � �), the eigenvalues� that determine the stability of the steady state of Eqs. (27) are given by� = �ip�� �2 +O ��2� : (28)For � < 0, these eigenvalues give rise to ampli�ed os
illations with a frequen
y thats
ales as the square root of the rate of evolution � along the slow manifold. Now,remember from Eq. (17) that in our mode-lo
king problem, the slow time s
aleis proportional to the spe
tral �lter width 
, and thus Eq. (28) predi
ts that thetransient os
illation period P and the �lter width 
 are related by P � p
, whi
his 
onsistent with observations from numeri
al simulations.8 Con
lusionsWe have studied the e�e
ts of pulse intera
tions mediated by the gain and absorberdynami
s in passively mode-lo
ked lasing regimes with several 
oexisting, regularly16



spa
ed pulses in the laser 
avity. We fo
used on the 
ase of a slow absorber, andfound that pulse intera
tions 
an be responsible for a parti
ular kind of instability
hara
terized by os
illations in the pulse energies and separation distan
es with afrequen
y that s
ales as the square root of the pulse width. We have identi�ed theinstability as a sub
riti
al Hopf bifur
ation to an unstable van der Pol limit 
y
le,thereby explaining the frequen
y s
aling law. Due to this me
hanism, stable mode-lo
ked regimes with several 
oexisting pulses 
annot exist arbitrarily 
lose to thelasing threshold in our model, in 
ontrast to the fundamental single-pulse regime.Our �ndings must be 
ontrasted with [16℄, where the gain dynami
s in a passivelymode-lo
ked soliton laser is found to indu
e an e�e
tive repulsion for
e between ad-ja
ent solitons, whi
h a
tually 
ontributes to stabilize multiple-pulse regimes, ratherthan 
ausing an instability. The reason for the disagreement is that our model andthat of [16℄ in
lude di�erent physi
al me
hanisms: pulse shaping is provided by aslow saturable absorber in our 
ase, and by a Kerr nonlinearity in [16℄. Moreover,the latter also a

ounts for group-velo
ity dispersion. The 
ontrast between the be-haviors of the two models suggests that the 
onsequen
es of pulse intera
tions 
anbe highly dependent on the implementation details of the parti
ular laser system
onsidered. In the future, this motivates further studies of pulse intera
tions inextended versions of the model (1){(3) in
luding additional physi
al e�e
ts.A
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