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AbstratWe study theoretially the e�ets of pulse interations mediated by thegain and absorber dynamis in a passively mode-loked laser ontaining a slowsaturable absorber, and operating in a regime with several pulses oexistingin the avity.1 IntrodutionPassive mode loking provides a very e�etive tehnique for generating short laserpulses with high quality and fast repetition rate. The basi mehanism for pulseampli�ation is the opening of a short temporal window of net gain due to thedynami interplay of a gain medium and a saturable absorber inside the laser av-ity. This mehanism is well understood sine the analyses by New [1℄ and Haus [2℄from simple models, whih ould be handled analytially. In the simplest situa-tions, a single light pulse travels round the laser avity and hits the output mirrorperiodially, resulting in pulse emissions at intervals equal to the round-trip timein the avity. Operation with multiple oexisting pulses has also been reported,most frequently in the form of bound states of lose-paked pulses resulting fromtheir oherent interation [3, 4℄, or as pulse trains with a separation muh largerthan the pulse width. In the latter ase, the spaings between suessive pulsesare often irregular [4, 5, 6, 7℄. However, an equally-spaed on�guration has oa-sionally been observed in soliton lasers [8, 9, 10, 11℄, as well as in semiondutorlasers oupled to an external avity [12℄ (and is in any ase easily fored by us-ing ative modulation [8, 9, 13, 14, 15℄). The existene of regular, widely-spaed,passively mode-loked multiple-pulse regimes is predited by simple mathematialmodels, but the understanding of their onditions of observability is more halleng-ing. Nevertheless, the question is relevant to the prodution of pulse trains withhigher repetition rates, or by means of longer avities, for optial ommuniationsystems.As soon as multiple pulses oexist in the avity, they an interat. The purpose ofthis work is to explore theoretially the onsequenes of pulse interations via thegain and loss dynamis on the stability of regimes of operation with multiple, wellseparated, evenly spaed pulses. To this end, we onsider a model for passive modeloking that is almost as simple as the lassial models by New [1℄ and Haus [2℄,exept that it is free from the usual approximations of small gain per avity roundtrip and weak saturation. This is a neessary feature for our purposes, beause stablemultiple-pulse operation tends to appear only beyond a ertain level of pumping1



above lasing threshold [4℄. We thus need a model that remains valid for high pulseintensities, whih potentially requires a high gain per avity round trip and induesstrong gain and absorber depletions. Otherwise, for the sake of simpliity, we keepthe desription of the physis inside the laser as elementary as possible.The paper is organized as follows. In Se. 2, we introdue the model and mentionthe main simpli�ations involved. Se. 3 presents bifuration diagrams omputedby diret numerial integration of the model and points out a number of di�erenesin the stability properties of single-pulse and multiple-pulse regimes. In Se. 4, wedisuss one partiular instability of a two-pulse on�guration that manifests itself asa sudden jump towards the single-pulse solution as the gain pumping is graduallydereased towards the lasing threshold. We give evidene that the jump and theassoiated transient osillatory dynamis result from pulse interations mediated bythe gain and absorber dynamis. In Se. 5, we proeed to an asymptoti analysis ofthe model based on the identi�ation of several well-separated time sales. This pro-vides some neessary bakground for the two next setions, where we determine howthe pulse interations depend on their separation distane. In Se. 6, we onsiderthe ase where the laser operates lose to threshold, and do a loal analysis in theviinity of some relevant odimension-2 point. We �nd that, aording to our model,two-pulse solutions emerge unstable at the lasing threshold, and thus must stabilizethrough a seondary bifuration loated outside the domain of validity of the loalanalysis. In Se. 7, by means of a global analysis, we �nd the bifuration and identifyit as the ause for the abrupt jump to single-pulse solutions mentioned above. At theritial point, the branh of equally-spaed two-pulse solutions onnets to an un-stable limit yle reated by the interplay of a fast pulse energy relaxation dynamisand a slow pulse displaement dynamis resulting from the pulse interations. Basedon this mehanism, we explain a saling law that exists between the period of thetransient osillations during the jump and the pulse width. Conlusions are given inSe. 8 and ontrasted to [16℄, where a stabilization of multiple-pulse on�gurationsdue to pulse interations in a passively mode-loked laser with a Kerr nonlinearityis predited using a theory valid near the lasing threshold.2 ModelOur model for passive mode-loking was derived in [17℄ using a lumped elementapproah. We onsider an optial avity ontaining a gain medium, a passive sat-urable absorber, and a thin spetral �ltering element whose purpose is to limit thefrequeny bandwidth of the laser radiation. We assume a ring avity geometry, withone of the ounter-propagating waves suppressed so that the lasing is unidiretional.With the additional assumption of a Lorentzian pro�le for the spetral �lter, themodel is given by the following system of delay-di�erential equations for the eletri�eld amplitude A at the entrane of the absorber medium, saturable gain g, and the
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saturable absorption level q as funtions of time t: 1 + �1 ddt!A = p� exp�12 [g (t� T )� q (t� T )℄�A (t� T ) ; (1)dgdt = g (G0 � g)� exp (�q) [exp(g)� 1℄A2; (2)dqdt = q (Q0 � q)� s [1� exp(�q)℄A2: (3)The two ontrol parameters are the unsaturated gain G0 and absorber level Q0.The other model parameters are the avity's attenuation fator per round-trip �, theold-avity round-trip time T , the spetral �lter width  (whih limits the minimumwidth of the pulses), the gain and absorber reovery rates g and q, and the ratio s ofthe saturation energies of the gain and absorber media. Eqs. (1){(3) are equivalentto the model derived in [17℄ with g0 � gG0, q0 � qQ0, a � qEgA, and theamplitude-phase oupling onstants �g and �q set to zero.The model (1){(3) neglets spatial e�ets assoiated with linear avity design, aswell as any phase dynamis (sine in the absene of � fators the solutions of the�eld equation (1) have a �xed phase). The present analysis an be extended to thefull model derived in [17℄, whih provides an aurate desription of a semiondutorlaser (as it holds under onditions of strong saturation and aounts for amplitude-phase oupling).3 Bifuration diagramsDepending on the parameter values Eqs. (1){(3) an exhibit various dynamialregimes, inluding haoti behavior. However, most important from the prati-al viewpoint are the regimes haraterized by periodi trains of regularly spaedmode-loked pulses. As illustrated shematially in Fig. 1, mode-loking regimes
Figure 1: Regular pulse train solutions of Eq. (1){(3): a) fundamental regime, witha pulse being emitted after every avity round-trip; b) 2nd harmoni, with twie thefundamental repetition rate; ) 3rd harmoni, with tripled repetition rate.an have di�erent repetition rates, whih are proportional to the number of pulsesemitted within the avity round-trip time. The fundamental mode-loking regime isharaterized by the emission of a single pulse per avity round trip, while harmonimode-loking regimes orrespond to pulse repetition rates equal to integer multiples3



of the fundamental repetition rate. Inside eah of the emission patterns shown inFig. 1, all pulses are idential and equidistant.The domains of existene of di�erent mode-loking regimes an overlap in parameterspae. Fig. 2 shows two typial bifuration diagrams for the ase of slow absorberwhere the relaxation time of the absorber is muh longer than the duration of apulse. They have been obtained by slowly sweeping the value of the unsaturatedgain parameter G0 bak and forth so as to explore the whole domains of stability ofseveral branhes of pulsed emission regimes. For all solutions with non-stationaryeletri �eld envelope, only the maxima of the light intensity time dependene areshown. The branh of CW regime, whih is unstable for the most part, is labeled Sin Fig. 2.In Fig. 2a, three branhes of pulsed regimes an be distinguished, orresponding

Figure 2: Maxima of the laser intensity A2 as a funtion of the unsaturated gainG0, omputed by diret numerial integration of Eqs. (1){(3). The solution branheslabeled 1, 2, and 3 orrespond to regular pulse trains with the fundamental repetitionrate and its 2nd and 3rd harmonis, respetively. The S branh orresponds to CWemission. Fixed parameter values are Q0 = 4, � = 0:1,  = 100, g = 0:025,q = 1:875, s = 25, and a) T = 1, b) T = 0:5 (dimensionless units).to the periodi pulse trains with one, two, and three emitted pulses per avityround-trip. These regimes are similar to those illustrated by Fig. 1. As the ontrolparameter is swept bak and forth, the various branhes of periodi pulse trains su�ervarious kinds of transitions and instabilities. The single-pulse emission domain islimited to the right by a gradual shrinking of the pulse peak intensity to the CWlevel, indiating the ollapse of the pulsed regime onto the unstable steady state.This event is quikly followed by a transition to the two-pulse branh, whih itselfeventually undergoes a similar ollapse. In addition, two instabilities leading to non-uniform pulse trains an be observed in Fig. 2a. One of them lies on the three-pulsebranh around G0 ' 350. The other lies at G0 ' 90 and an be identi�ed as aQ-swithing instability, as we have found the envelope of the resulting osillatorypulse train to be modulated at the Q-swithing frequeny. The diagram also features4



yet another kind of instability that manifests itself as an abrupt jump away fromthe destabilized state. Two suh events an be observed, one at G0 ' 190 andthe other at G0 ' 240. Remarkably enough, these jumps only our on the two-and three-pulse branhes (and form the left boundaries of their stability domains).They all lead to the fundamental-mode branh, whih in ontrast su�ers no similarinstability. This suggests a signi�ant di�erene between the physial mehanismsruling the stability of the fundamental mode and its harmonis.In Fig. 2b, all parameter values are the same as in Fig. 2a exept that the round-trip time T is twie as small. This diagram shows a similar (although simpler)organization. It ontains only two branhes of uniform pulse trains. Again, thesingle-pulse branh is bounded to the left by a Q-swithing instability (at G0 ' 130),whereas the two-pulse branh features an abrupt jump to the fundamental mode-loking regime (at G0 ' 300). One an see that the single-pulse branh in Fig. 2bfollows very losely the two-pulse branh in Fig. 2a. This naturally follows fromthe laser avity in Fig. 2a being twie as long as that in Fig. 2b, so that theyan share the same mode of emission as both the fundamental mode of the shorteravity and the seond harmoni of the longer avity. Note, however, that unlike thefundamental mode-loking regime in Fig. 2b the two-pulse regime shown in Fig. 2adoes su�er a jump instability. This gives further evidene that there are qualitativelydi�erent dynamis at play determining the stability of the fundamental mode andits harmonis.4 Jump instabilitiesThese jump instabilities deserve a loser look. Fig. 3 shows the suessive intensity
Figure 3: Intensity maxima as a funtion of time, during the transition from thetwo-pulse branh to the single-pulse branh that ours in Fig. 2a at G0 ' 190.Suessive maxima are represented alternately as thik and small dots.maxima as a funtion of time, during a short time window spanning the durationof the jump from the two-pulse branh to the single-pulse branh in Fig. 2a. Thesuessive maxima are represented as an alternation of small dots and thik dots,allowing the independent traking of the evolutions of the two pulses in the avity.The pattern starts out symmetri in the two pulses. Then a symmetry breakingours, leading to the growth and saturation of one of the pulses, and to the shrinking5



and vanishing of the other. The transient evolution exhibits ampli�ed osillationswhere the two pulse amplitudes osillate in anti-phase, whih is a lear indiationof some interation mehanism between them, leading to a periodi exhange ofenergy. The two pulses are too far apart to interat oherently via their exponentiallydeaying tails; nevertheless they an still interat inoherently via the gain and lossdynamis. Suh interations, being a olletive phenomenon, obviously need theoexistene of at least two pulses in the avity to take plae, and thus annot ourwithin the fundamental single-pulse emission regime. Having observed no jumpinstability on the fundamental branh in Fig. 2, we an already foresee that pulseinterations are an essential part of the mehanism ausing the jumps from thebranhes of higher harmonis.The transient osillations in Fig. 3 have a rather well de�ned period. We have foundit to be typially longer than the Q-swithing period, and have observed that ittends to double as the spetral �lter is made four times as wide, whih suggests asquare-root saling law between the osillation frequeny and the pulse width. Thelimited information provided by the numerial data displayed in Fig. 3 alone doesnot enable us to understand the exat nature of the mehanism leading to theseampli�ed osillations, or to explain the square-root saling law. The main purposeof the analysis that follows is to shed some light on these matters.5 AnalysisThe dynamis revealed by Fig. 3 features at least three distint time sales of im-portane, namely: (i) the pulse width, typially on the order of magnitude of theinverse of the �lter width ; (ii) the gain and absorber reovery times; and (iii)the duration of the jump, whih extends over many round-trips. By reformulatingour model equations in the limit of very narrow pulses (i.e., T large) and a slowabsorber, we shall be able to �nd lear relations between the di�erent time sales.5.1 Fast time sale: pulse ampli�ationIn this subsetion, our goal is to obtain a system of equations that determines theshape of eah emitted pulse on the O (�1) time sale and hene we de�ne� � t: (4)Let us now introdue an index m ounting the suessive instants tm where one ofthe pulses hits the output mirror. Let us further de�ne:Am (t) � � 12A (t+ tm) ; gm (t) � g (t + tm) ; qm (t) � q (t+ tm) : (5)If M is the number of pulses oexisting in the avity, then the pulse that hits theoutput mirror at t = tm hits it again after one round-trip at t = tm+M , and tm+M�tm6



represents the orresponding round-trip time. We assume thattm � tm�M � T + �1Æm; (6)where the onstants �1Æm desribe possible small deviations of the round-trip timesfrom their old-avity value T . These deviations are to be determined later on inthe analysis.Substituting the relations (5){(6) in the model equations (1){(3) and negleting theterms of order O(�1) in the Eqs. (2){(3), we arrive at the system 1 + dd� !Am+M (� � Æm+M) = p� exp �12 (gm � qm)�Am; (7)dgmd� = � exp (�qm) [exp(gm)� 1℄A2m; (8)dqmd� = �s [1� exp(�qm)℄A2m: (9)Comparing Eqs. (2){(3) and Eqs. (8){(9), one notes that we have negleted thelinear terms of the former equations, whih after resaling have beome of orderO(�1). It reets the fat that during the pulse emission the linear terms of Eqs.(2){(3) are dominated by the nonlinear ones, beause the latter are proportional tothe pulse intensity A2.The solutions Am of Eq. (7) desribe, for eah m, the shape of the pulse that hitsthe output mirror for the m-th time, on a time sale � omparable to the spetral�lter width. In the limit  ! 1, the time � ranges over the interval (�1;1).The onstants Æm in Eq. (7), whih are so far unspei�ed, provide some freedomto impose onstraints on the pulse shapes. A desirable requirement is that Eq. (7)admits loalized, �nite-energy solutions, a ondition that an be expressed as:Z +1�1 d�A2m <1: (10)It turns out that this onstraint is enough to determine the onstants Æm, at least inpriniple. (In pratie, their expliit omputation is not a trivial problem withoutfurther simplifying assumptions of the kinds introdued in Setions 6 and 7.)The system (7){(9) is a set of delay-di�erential equations in � and a set of reurrenerelations in m. As a reurrene system, it is not omplete. It determines thetransformation of the pulse shapes after eah round-trip, that is, it gives Am+M asa funtion of Am. However, it does not relate the gain and absorber state variablesgm and qm between the passings of suessive pulses, that is, for distint values ofm. The missing relations are obtained in the next subsetion.5.2 Intermediate time sale: gain and absorber reoveryBetween pulse passings, the eletri �eld vanishes inside the gain and absorbermedia, whih then reover exponentially aording to Eqs. (2){(3). More pre-isely, during this stage we neglet the nonlinear terms in Eqs. (2){(3) by setting7



A = 0, whih makes the equations linear. The limit values g�m � gm (� ! �1) andq�m � qm (� ! �1) of gm and qm obtained from (7){(9) represent their states rightbefore (for the \�" sign) and right after (for the \+" sign) the m-th passing of apulse. The exponential reovery of the gain and absorber media is expressed byg�m �G0 = �g+m�1 �G0� exp [�g (tm � tm�1)℄ ; (11)q�m �Q0 = �q+m�1 �Q0� exp [�q (tm � tm�1)℄ : (12)The reovery relations (11){(12) provide boundary onditions for the gain and ab-sorber depletion equations (8){(9) and relate the gain and absorber states betweensuessive pulse passings.In the limit of large , the original model equations (1){(3) are singular, but we havedesingularized them by separating the fast time sale � for the pulse shapes from thelonger time sale for the pulse separations tm� tm�1, and by using Eqs. (10){(12) asonditions on the solutions of Eqs. (7){(9) over an in�nite interval of � . Given the�rstM pulse emission instants t1, t2, . . . , tM as initial data, Eqs. (7){(12) determinethe omplete solution pro�le during the �rst round-trip. They also supply the round-trip time deviations Æm, from whih the next M emission instants are obtained viaEq. (6). The solution pro�le an then be omputed for subsequent round-trips byiteration of this proedure. Eqs. (6){(12) together thus form a well-posed problem.5.3 Slow time sale: pulse driftIt is possible to take advantage of the smallness of the parameter �1 that appearsexpliitly in Eq. (6) to emphasize the existene of a time sale muh longer than theround-trip time in the system (6){(12).The �rst M pulse emission instants t1, t2, . . . , tM all our within the time window[0; T ℄, and onstitute the neessary initial data for the problem (6){(12). All thesubsequent emissions are aused by the yli reappearane of the M initial pulsesin the solution after eah round-trip in the avity. Therefore, tm+nM for 0 � m �Mand n > 1 an be thought of as the instant where the m-th pulse hits the outputmirror in the avity and is emitted for the (n + 1)-th time. Eq. (6) implies thatsuessive emissions of the same pulse are separated by time intervals very lose tothe old-avity round-trip time T . We an then divide the time axis into a sequeneof time intervals of duration T and onsider the quantitiestnm � tm+nM � nT; (13)whih, for given m and n, represent the instant of the (n + 1)-th emission of them-th pulse, measured relatively to the beginning of the (n+ 1)-th time window. Interms of those, Eq. (6) now readstnm � tn�1m = �1Ænm; (14)8



where we have de�ned Ænm � Æm+nM : (15)Eq. (14) indiates that, in the limit  !1, the relative emission instants tnm for agiven pulse are shifted by a very small O (�1) amount from one time window to thenext. We an interpret this as a very slow drift of the pulse positions, as n inreases,relatively to the parameterized time window [nT; (n + 1)T ℄. This suggests lookingfor solutions of the system (6){(12) where the other variables also vary little duringa round-trip, and follow adiabatially these slow pulse displaements. We an writethis ondition ompatly as Zm � Zm�M = O ��1� ; (16)where Zm represents the state vetor fAm; gm; qm; Æmg.Adapting to our problem the spirit of a lassial multiple sale analysis, where severalopies of the time variable are introdued to desribe the di�erent sales, we nowtreat the round-trip index n as a slow time variable. We introdue the dimensionlessvariable N � (T )�1 n (17)and treat it as ontinuous rather than disrete, sine it inreases only by a smallamount eah time n is inremented by one. In this way, we get as a limit of Eq. (6)the dynamial equation dtm(N)dN = TÆm (N) (18)for the drift of the pulse positions. Consistently with our assumption that theevolution of Zm follows the pulse drift adiabatially, all quantities in the state vetorZm now must also be taken to depend on N , namely: Zm = Zm (N).Finally, we may lose the in�nite systems (7){(9) and (11),(12) by dropping theO (�1) small orretions in Eqs. (6) and (16). This gives the following periodiityonditions in m:tm (N)� tm�M (N) = T; Zm (N) = Zm�M (N) ; (19)whih imply that only a �nite number of variables in the system (7){(12) are inde-pendent.Together, Eqs. (7){(12) and (18){(19) onstitute a well-posed problem that de-termines the relative pulse positions tm (N) from their initial values tm (0), andheneforth we will refer to them olletively as the drift equations. They an be in-terpreted as a lassial slow-fast system. The singular parameter  is not ontainedexpliitly in them, and serves only to separate the di�erent time sales. Aordingto Eq. (17), a unit inrease in N orresponds to a number of round-trips on theorder of T , or a time sale on the order of T 2. The relative pulse positions tmvary as funtions of slow variable N aording to Eq. (18), and an thus be viewedas parameters of a slow motion manifold. For a given hoie of the initial emissioninstants tm (0), the equations (7){(12) together with (19) an be used to reover9



the omplete initial solution pro�le in the time window [0; T ℄. This means that thefast dynamis are assumed to be already at equilibrium in this manifold of pulsesolutions.The time intervals tm(N)�tm�1(N) between onseutive pulse emission instants arediretly related to the separation distanes between the pulses travelling in the avityat time t = T 2N . Therefore, the drift rates dtmdN determined by Eq. (18) essentiallymeasure the group veloities of the pulses. The drift equations thus desribe theinuene of the pulses on eah other's veloities. In the two next setions, we makeuse of them to study the interations between pairs of pulses and how they dependon the pulse separation.6 Pulse interations near thresholdThe resolution of the drift equations is not a trivial problem, in partiular beauseone of them, Eq. (7), is a delay-di�erential equation and another, Eq. (10), is anintegral onstraint on its solutions. In this setion, we make the extra assumptionthat the system is lose to the lasing threshold. It turns out that both diÆultiesvanish in this ase.At the lasing threshold, the gain and absorber remain ompletely unsaturated, andthe gain exatly ompensates the ombined losses from the avity and from theabsorber so that the oeÆient of Am in the right-hand side of Eq. (7) is unity. Thisgives the threshold ondition:p� exp �12 (G0 �Q0)� = 1; (20)whih de�nes a line in the plane (G0; Q0). In a lose viinity of the threshold,the energy in one pulse is very small and the gain and absorber remain almostunsaturated during the whole pulse ampli�ation proess. From Eqs. (8) and (9),the depletions �gm and �qm of the gain and absorber during the passing of a pulseare given by �gm = � exp (�Q0) [exp(G0)� 1℄ pm +O �p2m� ; (21)�qm = �s [1� exp(�Q0)℄ pm +O �p2m� ; (22)where pm = Z ��1 d�A2m (23)represents the aumulated pulse energy up to time � . Aording to Eqs. (21)-(22),the net gain inrease �gm��qm during the pulse emission is approximately a linearfuntion of pm, unless the oeÆients of the linear terms in the expansions (21)-(22)are equal, in whih ase �gm��qm is dominated by the quadrati term in pm. Thisondition reads: exp (�Q0) [exp(G0)� 1℄ = s [1� exp(�Q0)℄ : (24)10



Eqs. (20) and (24) together de�ne a odimension-2 point in parameter spae, whihwe denote �G(0)0 ; Q(0)0 �. The viinity of this partiular point of the threshold line iswhere the relevant dynamis happens. Indeed, for the pulse ampli�ation to remainlimited to a �nite time window, as required for stable mode loking, the evolutionof the net gain annot be monotonous and thus must be at least quadrati in pm.The perturbative analysis in the viinity of the odimension-2 point is straightfor-ward. We introdue a formal order parameter " measuring the distane to this pointby rewriting the ontrol parameters as G0 = G(0)0 + "G(1)0 and Q0 = Q(0)0 + "Q(1)0 ;where "G(1)0 and "Q(1)0 desribe small deviations of G0 and Q0 from their referenevalues. We also introdue a saled time variable � = "�1� (1) and the power seriesexpansions Zm = Z(0)m + "Z(1)m + "2Z(2)m + : : :, with A(0)m = 0 so as to aount for thesmallness of the pulse amplitude near threshold. We arry out these substitutionsin Eqs. (7){(12) and (19), expand in powers of ", and equate separately all the on-tributions of the same order in ", obtaining a hierarhy of systems of equations. Weskip the alulation details and do not write the solutions expliitly, but point outthat the leading-order expressions for the pulse shapes, A(1)m , are given by hyperboliseants: A(1)m = Amaxm seh �w�1m � (1)� ; (25)where the amplitude maxima Amaxm and the width parameters wm get determined inthe ourse of the analysis.A good amount of information on the dynamis in the viinity of the odimension-2point an be obtained from the solutions to the perturbative problem. Fig. 4 shows,

Figure 4: Loal bakground stability map in the viinity of the odimension-2 pointde�ned by Eqs. (20) and (24). Parameter values other than G0 and Q0 are as inFig. 2a. The solid line is the lasing threshold, and the lines labelled T and L arerespetively the trailing-edge instability threshold and the leading-edge instabilitythreshold for the fundamental mode-loked regime (dashed lines) and its seondharmoni (dotted lines).in a two-parameter spae, the lasing threshold line and the bakground instabilitythreshold lines for the fundamental mode-loking regime and its seond harmoni.Bakground stability means that the net gain lies below threshold everywhere out-side of the strit temporal window orresponding to the pulse emission, and is a11



requirement for stable mode-loked operation, espeially in presene of noise [17℄.The bakground stability domains for the fundamental and seond-harmoni mode-loked regimes are a pair of narrow, partly overlapping setors of the (G0; Q0) planethat originate at the odimension-2 point. They are eah bounded by a trailing edgeinstability line (T) and a leading edge instability line (L), where the bakground ismarginally stable at the trailing or leading edge of the pulse, respetively. This is inagreement with Fig. 3 in [17℄, where a di�erent approah is used to study the model(1){(3), showing the validity of the present approah.Bakground stability alone does not guarantee a stable mode-loked operation. Ifseveral mode-loked pulses oexist inside the laser avity, their interations an beresponsible for an instability. This is illustrated by Fig. 5 , whih shows, for a
Figure 5: Relative pulse veloity (arbitrary units) as a funtion of the pulse sep-aration (in units of the old-avity round-trip) for a mode-loked regime with twopulses oexisting in the laser avity. The omputation is loal to the odimension-2point de�ned by Eqs. (20) and (24). Parameter values are G0 = 35, Q0 = 1, and allothers as in Fig. 4.two-pulse regime, how the relative pulse drift veloity ddN (t2 � t1) depends on thepulse separation t2 � t1. The dot in the diagram orresponds to the on�gurationwhere the two pulses are separated by half the avity length, leading to the emissionof a regularly spaed pulse train at twie the fundamental repetition rate. Thison�guration is an equilibrium, beause it lies on the line where the relative pulseveloity vanishes. This is a natural onsequene of the symmetry of the roles playedby the two pulses. The slope of the veloity urve in the viinity of this equilibriumdetermines its stability with respet to small pulse displaements. Fig. 5 shows asituation where the regular pulse train is an unstable equilibrium. Indeed, if thetwo pulses are brought a little loser to eah other, then the sign of the relativeveloity indiates that they will get even loser over time. This reates an e�etiveattration between the two pulses, whih keeps getting stronger as the separationdistane dereases. Ultimately, this leads to a ollision of the pulses.It turns out that the situation depited in Fig. 5 is general to our model in theviinity of the odimension-2 point. More preisely, our omputations show that, inthe physially relevant ase where the absorber relaxes faster than the gain medium(q > g) the only possible equilibrium separation is t2� t1 = T=2, and this equilib-rium is always unstable. This result, being loal, does not ontradit the possibilityof a stable two-pulse on�guration suÆiently far away from the odimension-212



point. Nevertheless, it means that the two-pulse solution annot be stable arbitrar-ily lose to the threshold line, even though it ould have a stable bakground. Itmust always emerge unstable at the threshold, and must undergo some bifurationbefore beoming observable. This bifuration lies outside of the domain of validityof the loal approah, and its identi�ation is the purpose of a global analysis thatis arried out in the next setion.7 Pulse interations away from thresholdAway from the odimension-2 point, the analysis of Se. 6 breaks down, so thatEq. (25) does not hold rigorously anymore. Nevertheless, we assume that the pulseshape remains reasonably well approximated by a hyperboli seant, and write:Am ' Amaxm seh (w�1m �). Although no asymptoti argument exists to support thisassumption, it has proven to give good results in pratie. The solution parametersAmaxm and wm need to be estimated from the pulse shape equation (7), along with theround-trip time deviations Æm. To this end, we derive three independent integralrelations from Eq. (7). The following hoie, although arbitrary, is as good asanything else:Z 1�1 d�L (�)2 = Z 1�1 d�R (�)2 ; Z 1�1 d�L (�) = Z 1�1 d�R (�) ;Z 1�1 d� �L (�) = Z 1�1 d� �R (�) ; (26)where L (�) and R (�) represent respetively the left-hand side and the right-handside of Eq. (7). Substituting the hyperboli seant ansatz Am = Amaxm seh (w�1m �)into Eqs. (26) gives, for all m, three onditions relating impliitly the pulse parame-ters Amaxm , wm, and Æm to some integral funtions of the gain and absorber depletionpro�les gm (�) and qm (�), whih appear in Eqs. (26) through R (�). By replaingthe delay-di�erential equation (7) for the pulse shape with these three onditions,we transform the system (7){(12), (19) into a set of ordinary di�erential equationsfor gm and qm with boundary and integral onditions. These equations form a sim-pler problem, and although they annot be expliitly solved analytially, they anbe studied using the ontinuation software AUTO [18℄.This approah has been used to onstrut Fig. 6, whih shows a two-parameterbifuration diagram of the fundamental mode-loked regime and its seond harmoniin the plane (G0; Q0). This diagram is a global version of Fig. 4. In the viinity of theodimension-2 point, both �gures agree well. Away from the lasing threshold, Fig. 6shows a slight urvature of the bakground stability threshold urves (T and L) andfeatures some additional bifuration urves. It is instrutive to ompare Fig. 6 withone of the two numerial bifuration diagrams disussed in the beginning of thispaper.In Fig. 2a, the stability domain of the fundamental mode-loked regime is boundedto the left by a Q-swithing instability, and to the right by a point where the pulse13



Figure 6: Global stability map for the fundamental mode-loked regime and itsseond harmoni, whose bifurations are represented as dashed lines and dottedlines, respetively. The parameter values are as in Fig. 4. The solid line is the lasingthreshold. The other urves are labeled as follows: T = trailing-edge instabilitythreshold, L = leading-edge instability threshold, F = fold (limit point) bifuration,J = jump instability.peak intensity shrinks to the CW value. On one hand, the value of G0 at the onsetof the Q-swithing instability in Fig. 2a mathes well the value of G0 at the trailing-edge instability for Q0 = 4 in Fig. 6, and indeed the proximity of these two ritialvalues is a known fat [19℄. On the other hand, the rightmost stability boundary inFig. 2a an be naturally identi�ed to one of the F urves in Fig. 6, whih representlimit points where the pulse amplitude goes to zero. The numerial agreement isless good in this ase, but the disrepany is easily explained from the fat that thehyperboli seant ansatz for the pulse shape is only an approximation, and beomesless realisti as the laser operates away from the lasing threshold. Note, �nally, thatthe leading-edge instability urves (L) in Fig. 6 do not orrespond to any remarkableevent in Fig. 2a. This means that stable mode-loked pulses an subsist even in thepresene of an unstable bakground. This phenomenon, whih has been reportedearlier in [20, 21℄, an our if the relative group veloities of the pulses and of thelow-intensity bakground are suh as to sweep utuations towards the pulse beforethey get a hane to grow and alter the light wave pattern. The introdution of aweak level of noise in our model equations (1){(3) is suÆient to oppose this e�etand reveal the leading-edge instabilities in numerial simulations [17℄.In addition to the bifurations and instabilities mentioned so far, Fig. 6 featuresa urve labeled J, whih AUTO identi�es as a symmetry breaking of the seondharmoni, i.e., a bifuration to a solution that onsists of two pulses with distintshape harateristis. This symmetry breaking obviously needs the oexistene ofseveral pulses to take plae, and so it annot manifest itself in the fundamentalmode-loked regime. It an be identi�ed as the ause of the jump that forms theleftmost boundary of the stability domain of the seond harmoni branh in Fig. 2a.The exat nature of this bifuration is best eluidated by studying how the pulseveloities depend on the pulse separation on either side of the ritial point.14



Fig. 7 ontains three diagrams that show, for the two-pulse regime, how the rela-

Figure 7: Relative pulse veloity (arbitrary units) as a funtion of the pulse separa-tion (in units of the old-avity round-trip) for a mode-loked regime with two pulsesoexisting in the laser avity. Parameter values are as in Fig. 6, with a) G0 = 194:8,b) G0 = 214:8, ) G0 = 234:8.tive pulse drift veloity ddN (t2 � t1) depends on the pulse separation t2� t1 in threedi�erent situations. Figs. 7a, 7b, and 7 orrespond to values of G0 that lie respe-tively slightly below, just at, and slightly above the symmetry breaking point. Thesediagrams are similar to Fig. 5, exept that they are omputed using the global ap-proah desribed at the beginning of this setion. Again, the blak dot represents anequilibrium that orresponds to the symmetri two-pulse on�guration, and whosestability is indiated by the slope of the veloity urves at this point. Fig. 7 revealsthat the symmetri two-pulse on�guration is stable only to the right of the sym-metry breaking point, in agreement with Se. 6's onlusion that it annot be stablearbitrarily lose to the lasing threshold.Note also the harateristi \S" shape of the veloity urve in Fig. 7. Beause therelative veloity ddN (t2 � t1) represents the rate of hange of the pulse separationas a funtion of the slowest time sale, this S urve an be thought of as a slowmanifold similar to the one that is the main building blok of the van der Polosillator [22℄. Fig. 7 thus suggests the existene of a limit yle (as indiatedby the dashed arrows) that results from the interplay between a fast pulse energyrelaxation dynamis and a slow pulse drift dynamis. The symmetry breaking pointorresponds to a Hopf bifuration from the symmetri two-pulse solution to thislimit yle. Fig. 7 also reveals that the bifuration is subritial, so the limit ylemust be unstable, and annot be observed diretly. We an show, however, that avan der Pol senario is onsistent with the onset of transient osillations during the15



jump from the two-pulse branh to the single-pulse branh, whih we observed inFig 3.The normal form for a van der Pol limit yle emerging from a subritial Hopfbifuration an be written as_u = �v; _v = v3 � �v � u; (27)where � is the bifuration parameter, and the small onstant � de�nes the timesale on the slow manifold. For � > 0, Eqs. (27) are equivalent to the van derPol equations as de�ned in Chap. 4 of [22℄ up to a resaling and a reversal of time.Phase plane representations of the slow manifold are given in Fig. 8 for three di�erent
Figure 8: Slow manifold of the van der Pol equations (27) for "! 0 and a) � = �1,b) � = 0, ) � = 1.values of �. Attempting a rigorous derivation of the normal form (27) from the driftequations would involve exeedingly tedious alulations. However, its validity asa desription of the dynamis near the symmetry breaking point is suggested �rstby the strong similarity between Figs. 7 and Figs. 8, and also beause the normalform (27) allows us to explain the saling law between the transient osillationfrequeny during the jump and the spetral �lter width, whih we mentioned at theend of Se. 4. SuÆiently lose to the bifuration (i.e., for j�j � �), the eigenvalues� that determine the stability of the steady state of Eqs. (27) are given by� = �ip�� �2 +O ��2� : (28)For � < 0, these eigenvalues give rise to ampli�ed osillations with a frequeny thatsales as the square root of the rate of evolution � along the slow manifold. Now,remember from Eq. (17) that in our mode-loking problem, the slow time saleis proportional to the spetral �lter width , and thus Eq. (28) predits that thetransient osillation period P and the �lter width  are related by P � p, whihis onsistent with observations from numerial simulations.8 ConlusionsWe have studied the e�ets of pulse interations mediated by the gain and absorberdynamis in passively mode-loked lasing regimes with several oexisting, regularly16



spaed pulses in the laser avity. We foused on the ase of a slow absorber, andfound that pulse interations an be responsible for a partiular kind of instabilityharaterized by osillations in the pulse energies and separation distanes with afrequeny that sales as the square root of the pulse width. We have identi�ed theinstability as a subritial Hopf bifuration to an unstable van der Pol limit yle,thereby explaining the frequeny saling law. Due to this mehanism, stable mode-loked regimes with several oexisting pulses annot exist arbitrarily lose to thelasing threshold in our model, in ontrast to the fundamental single-pulse regime.Our �ndings must be ontrasted with [16℄, where the gain dynamis in a passivelymode-loked soliton laser is found to indue an e�etive repulsion fore between ad-jaent solitons, whih atually ontributes to stabilize multiple-pulse regimes, ratherthan ausing an instability. The reason for the disagreement is that our model andthat of [16℄ inlude di�erent physial mehanisms: pulse shaping is provided by aslow saturable absorber in our ase, and by a Kerr nonlinearity in [16℄. Moreover,the latter also aounts for group-veloity dispersion. The ontrast between the be-haviors of the two models suggests that the onsequenes of pulse interations anbe highly dependent on the implementation details of the partiular laser systemonsidered. In the future, this motivates further studies of pulse interations inextended versions of the model (1){(3) inluding additional physial e�ets.AknowledgementsThe authors thank K. Shneider and D. Turaev for useful disussions. M. Nizette'sresearh is funded by the Belgian National Fund for Sienti� Researh and theBelgian Interuniversity Attration Pole programme. D. Rahinskii was partiallysupported by the Russian Siene Support Foundation and grants 03-01-00258, 04-01-0033 of the Russian Foundation for Basi Researh. A. Vladimirov's researh isfunded by the Terabit Optis Berlin projet.Referenes[1℄ G. New, Pulse evolution in mode-loked quasi-ontinuous lasers, IEEE J. Quant.Eletron. 10, 115{124, 1974.[2℄ H. Haus, Theory of mode loking with a slow saturable absorber, IEEE J. Quant.Eletron. 11, 736{746, 1975).[3℄ F. Salin, P. Grangier, G. Rogier, and A. Brun, Experimental observation ofnonsymmetrial N = 2 solitons in a femtoseond laser, Phys. Rev. lett. 60,569{572, 1988.[4℄ M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev,and J. M. Soto-Crespo, Multipulse operation of a Ti:sapphire laser mode loked17
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