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A Wavelet Algorithlll for the Solution of the 
Double Layer Potential Equation over Polyg-
onal Boundaries 

ANDREAS RATHSFELD 
lnstitut fur Angewandte Analysis und Stochastik, Mohrenstr. 39, D-10117 Berlin, 
GERMANY 

Abstract. 
In this paper we consider a piecewise linear collocation method for the solution of 
the double layer potential equation corresponding to Laplace's equation over polygo-
nal domains. We give a wavelet algorithm for the computation of the corresponding 
stiffness matrix and for the solution of the arising matrix equation with no more than 
O(N · [log N] 8 ) arithmetic operations. The error of the resulting approximate solution 
is of order O(N-2 ·[log N] 6 ). Finally, we give some remarks on the generalization of the 
algorithm to the piecewise cubic collocation and present numerical tests. 

Key words. potential equation, collocation, wavelet algorithm 
AMS(MOS) subject classification. 45110, 65R20 

0 INTRODUCTION 

The most popular numerical methods for the approximate solution of boundary value 
problems for elliptic partial differential equations are finite difference or finite element 
methods. However, there is a well-known alternative, the so-called boundary element 
method. Following this scheme, one reduces the boundary value problem for the differ-
ential equation over a given domain to a certain integral equation over the boundary of 
the domain. Substituting the solution of this integral equation into an integral repre-
sentation formula yields the solution of the original partial differential equation.. The 
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advantages of this method in comparison to finite element or finite difference schemes 
consist in the facts that the approximate solution fulfills the partial differential equation 
exactly1 and that the discretization of the boundary is often simpler than that of the 
domain2 • Another advantage should be the reduction of the dimension of the problem. 
In fact, if the partial differential equation is to be solved over a d dimensional domain, 
then the boundary integral equation is defined over a d - 1 dimensional boundary man-
ifold. Consequently, the linear systems of equations which arise after the discretization 
step are much smaller in the case of the boundary element method. Unfortunately, the 
boundary element approach leads to linear systems with dense matrices whereas the ma-
trix of the finite element systems are sparse and admit very fast and efficient methods 
for the solution of the corresponding matrix equation. In other words, the boundary 
element algorithm is only efficient if one is able to solve the arising linear system by a 
comparable f~st method. One should be able to solve the N x N matrix equation with 
no more than O(N · [log(N)]µ) arithmetic operation, where µ is a certain non-negative 
constant. 

The first examples of such a fast algorithm are due to Rokhlin, Hackbusch, and 
Nowak [48, 32] ( cf. also [30, 52]) and are based pn certain Taylor or Laurent series 
expansions for the entries of the matrix which are far away from the main diagonal. A 
second algorithm is built upon the multiscale structure of the discrete operators and 
is due to Brandt and Lubrecht (10]. A further method using different levels of Fourier 
series expansions for the approximate solution together with simple parametrices for the 
boundary integral operator has been developed by Amosov [4] ( cf. also [7, 51]). For 
boundary integral operators with oscillatory kernels, fast algorithms have been proposed 
by Rokhlin and Canning [49, 12]. The present paper is devoted to the wavelet approach 
which goes back to Beylkin, Coifman, and Rokhlin [8] (cf. also [2, 1, 33, 20, 21, 19, 
22, 41; 24, 23]). The main idea of this method consists in choosing wavelet bases in 
the spaces of. trial and test functions. Since the wavelet functions have small supports 
and are orthogonal to polynomials of small degree, a lot of the entries in the stiffness 
matrix corresponding to the wavelet bases are very small and can be neglected. The 
resulting matrix is sparse and the matrix equation can be solved quickly by a suitable 
iterative method. Let us remark, however, that in general .the problem of computing 
the matrix corresponding to the wavelet bases has not been solved yet. If analytic 
formulas are available, then there is no problem ( cf. [41 ]). However, a naive application 
of simple quadrature rules would lead to a slow algorithm with O(Nl+E.) operations, 
where E is a positive number depending on the approximation order and the momentum 
condition of the wavelets. In particular, if the degree of the momentum condition of 
the wavelets from the space of test functionals is equal to the order of approximation 
of the exact solution by functions from the trial space, then E = 1 and we would arrive 
at an O(N2

) algorithm. Only for the special case of integral operators with smooth 
kernels, efficient algorithms including one-point quadrature rules for scaling functions 
with vanishing "shifted" moments or other special quadratures have been indicated by 
Beylkin, Coifman, and Rokhlin [8] ( cf. also [24]). These quadratures ( cf. Sect.4.3 and 
Appendix B of [8]) are not sufficient if the integral operator is a pseudo-differential 
operator or an operator of Calderon-Zygmund type and if the desired quadrature error 
is of the same size as the error of approximation by trial functions. 

10f course, the boundary conditions hold only approximately. 
2 In particular, the discretization of the boundary is easier if the domain is unbounded. 
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Now let us consider the double layer potential equation Ax = y over the boundary 
r of a bounded and simply connected polygon n ~ IR2

, where Ax:= [I+ 2W]x with 

2Wx(P) 

k(P, Q) 

.- 2[1/2 - dn(P)]x(P) +fr k(P, Q)x( Q)dqI', P E r 
1 nq · (P - Q) .-
7r IP - Ql2 

(0.1) 

(0.2) 

Here dn ( P) denotes the normalized interior angle of n at the boundary point P and 
nq is the exterior unit normal of the boundary r := an at Q. Note that this second 
kind integral equation is e.g. the boundary integral equation of the Dirichlet problem for 
Laplace's equation inn ( cf. e.g. [38]). The kernel k(P, Q) vanishes for P and Q located 
on the same side of r. It is a smooth function of P and Q if the distance between P 
and Q does not tend to zero. However, k(P, Q) is of order O(IP - Qj-1 ) if P and Q 
tend to a corner point but remain on different sides of r. In other words, the integral 
operator 2W with kernel k(P, Q) has a strong singularity at the corner points of r. The 
equation Ax = y is a second kind integral equation with non-compact integral operator 
2W. Nevertheless, the theorems of e.g. (19, 24] apply to the numerical solution of Ax = y 
since the kernel k(P, Q) satisfies estimates of Calderon-Zygmund type. Following this 
line, we get a wavelet method over uniform partitions of the boundary. The compression 
strategy dep~nds on the level of the wavelets and on their location. The convergence is 
estimated in L2 or in Sobolev spaces. Due to the singular behaviour of the solution x, 
however, the speed of convergence is slow. 

In the present paper, we shall solve Ax= y by a fully discretized collocation method 
with smoothest piecewise linear (or cubic) splines as trial f~nctions. These trial func-
tions will be defined using an exponential parametrization of the curve r. Thus the trial 
functions are given over a uniform grid on the parameter domain which corresponds to a 
grid with geometric mesh grading near the corner points over r. The mesh grading near 

. corners guarantees an almost optimal asymptotic L00
- error estimate for the collocation 

solution. The uniformness of the mesh in the parameter domain allows to introduce 
simple bases of wavelet functions. As trial functions, we shall consider biorthogonal 
wavelets in the sense of [16], where the scaling function is the linear (or cubic) B-spline 
and the dual scaling function is an exponentially decaying function. We choose the dual 
scaling function such that our wavelets have two (or four) vanishing moments and that, 
beside this momentum condition, the supports of our wavelets are minimal. Remark that 
small supports of the wavelet functions result in better constants for the estimates of the 
compression and for the estimates of the number of necessary arithmetic operations. In 
general, it is an open question which type of wavelets is the most convenient one. For 
wavelets with larger supports, the bounds for the norms of the corresponding wavelet 
transforms rriay be smaller. These bounds play a role in the convergence analysis ( cf. 
Sects.3 and 4). For the space of test functionals, i.e., for the space spanned by the Dirac-5 
distributions, we shall introduce the basis of [33, 10]. In other words, the wavelet test 
functionals are linear combinations of three (or five) Dirac-5 functionals. This represen-
tation is of great importance for the computation of the stiffness matrix ( cf. Sect.1.4). 
Using these trial and test wavelets, we consider the standard form of the stiffness ma-
trix. We shall give an easy a priori compression scheme for this matrix, i.e., we shall 
give a strategy for the neglect of entries depending only on the wavelet level such that 
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the additional error caused by this neglect has the same order as the discretization error 
of the spline collocation without wavelets. The compressed matrix will contain no more 
than 0( N[log N]) non-zero entries. Consequently, the matrix equation can be solved in 
O(N[log N]) operations by a suitable iteration. We recommend to take GMRES for this 
purpose ( cf. [50, 35] and Sect.1.4). Finally, we shall give a fast algorithm to compute 
the compressed stiffness matrix with no more than O(N[log N] 8 ) operations. It will turn 
out that the step size of the quadrature rules applied for the computation of the entries 
can be chosen to be larger if the level of the test functional is high. Indeed, for this case, 
the entries are small and a larger relative quadrature error leads still to small absolute 
errors3 . 

The plan of the paper is as follows. In Sects.1.1 and 1.2 we shall present a fully dis-
crete collocation scheme with piecewise linear trial functions resulting in a linear system 
of N equations. For this collocation, we define a fast wavelet algorithm in Sects.1.3 and 
1.4 which requires no more than O(N[log N) 8 ) arithmetic operations and a storage capac-
ity of O(N[log N]) numbers. A similar algorithm for piecewise cubic splines is described 
in Sect.1.5. In Sect.2 we present some numerical tests to confirm the effectiveness of 
the algorithm. We shall prove in Sect.3 that our discretized and compressed collocation 
is stable. Finally, the convergence rate 0( N- 2 [log N] 6 ) for the piecewise linear wavelet 
algorithm will be shown in Sect.4. 

We remark that our method is not optimal. It has been chosen in such a manner 
that it admits a generalization for the case of two-dimensional polyhedral boundaries. 
A first step in this direction has been done in [4 7], where the stability of a tensor spline 
collocation has been proved. For an improvement of the one-dimensional method in-
cluding better meshes\ superconvergence, extrapolation, multi-grid techniques, p- and 
h-p-methods we refer to [39, 3, 13, 37, 26, 44, 29, 53, 6, 34, 27, 40, 25, 43]. 

1 DESCRIPTION OF THE ALGORITHM 

1.1 The collocation method 

For our collocation method, we have to introduce the sets of trial functions and colloca-
tion points.· To prepare this, we define a parametrization of the polygonal boundary r. 
Clearly, r is the union of straight line segments. We divide each straight line segment 
into two equal parts and get r = u_f=1ri, where ri =Pi Qi, the point pi is a corner point 
of r, and Qi the midpoint of a side of r. For each ri, we introduce the parametrization -<Pi: [-oo,O]--)- ri by <Pi(s) :=pi+ es PiQi, i.e., <Pi is the composition of the linear 
parametrization [O, 1] --)- r i and the exponential mapping s ~ es. 

Now let us choose a mesh parameter ( > 0, let N stand for the number of collocation 
points over each r i (j = 1, ... , K) and define the mesh size by h := (log N / N. Starting 
from the "uniform" partition {tk, k = 1, ... , N} with tk := -(k - l)h, k = 1, ... , N -
1, tN := -co, we get a graded mesh of collocation points {P(i,k), j = 1, ... , K, k = 
1, ... , N} over r, where P(j,k) :== <Pi(tk) (cf. Figure 1 and compare the meshes of class 

3 0f course the rigorous estimates have to be shown for the global quadrature and not for each entry 
of the stiffness matrix. 

4Remark that better meshes means better orders of convergence. However, the compression algo-
rithms may be more complicated. 
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M in Sect.5.16 of [43]). Note that this mesh is geometrically graded towards the corner 
points pi == Pj,N, i.e., 

l~I 
Pj,N-5 

t <Pj 

iN tN-1 iN-2 iN-3 ... is t4 t3 t2 t1 
1--

-co -(N-2)h -(N-3)h -(N-4)h ... -4h -3h -2h -h 0 

Figure 1: Grid points on (-co, O] and r. 

(1.1) 
The grading factor e-\ however, tends to one for N --4 co. The mesh size supj,k IP(j,k)-
P(j,k-l) I is of order 0(1 - e-h) = 0( h) and the subinterval adjacent to the corner pi = 
Pj,N is of length 0( e-h[N-2]) == O(N-C). 

For the definition of trial functions, we first introduce a piecewise linear spline basis 
over the mesh { -( k - 1) h, k == 1, ... N - 1}. Let c.p stand for the linear B-spline 

{ 

1 + t if - 1 < t < 0 
c.p:JR~JR,c.p(t):== 1-t if O<t~l 

0 else. 
(1.2) 

We define 'Pk : [-co, O] ~ IR by 'Pk(s) :== c.p(s/h + k - 1), k == 1, ... , N - 1 and set 
'PN(s) :== 1- Ef=J.1 c.pk(s), i.e., 'PN(s) :== c.p(s/h+N -1) ifs~ -(N -l)h and 'PN(s) :== 1 
if s < -(N - l)h. Using our parametrization we introduce the final basis functions 
'P(j,k) : I'1· ~ IR, J. = 1, ... , K, k = 1, ... , N by 

. (<P ( )) ·- { 'Pk( s) if j == m 'P(J,k) m s .- 0 else 
' 

m==l, ... ,K. (1.3) 

Let us note that the 'P(j,k) span the whole space of parameterized linear splines over 
the intervals [<Pj(-(N - l)h),<Pj(O)]. Over [<Pj{-co),<Pj(-(N- l)h)] the span contains 
only the constant functions. However, the last subinterval is of size 0( N-C) and, if 
( ~ 2, then any smooth function can be approximated by a function from the span of 
'P(j,k) with order 0( h2 ). In order to simplify the notation, we introduce the index set 
I :== {(j, k) : j == 1, ... , K, k == 1, ... , N} and denote its elements by i, K, i.e., for 
i, K E I we set L == (Ji, ki), K == (jK., k1t)· 

Now the collocation method for the numerical solution of Ax== y consists in ·seeking 
an approximate solution XN == EiEI ei'Pi with real coefficients eL satisfying 
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(1.4) 
Note that each end point pi, Qi of the straight line segment r i appears twice in the 
set of collocation points. We shall distinguish these points formally and, for a func-
tion f piecewise continuous over r and continuous over each r i, we set f (P(j,k)) = 
limrj3Q-P(j,k) !( Q). With respect to the coefficients e,, the collocation equations (1.4) 
form a linear system of equation. We denote its matrix ((Acp")(PK))1t,,,EI by AN 
( a1t,,,)1t,,,EI. This matrix is called stiffness matrix of the collocation. 

1.2 The discretized collocation 

Method (1.4) represents only a semi-discretization since the computation of the entries 
a1t,L of the stiffness matrix AN requires an integration. In our discretized collocation 
method we shall replace this integration by simple quadrature rules. Thus let us intro-
duce quadrature rules and start with rules over [-oo, 0]. Taking into account that the 
trial functions <pk, k = 1, ... , N are constant over [-oo, -h(N - 1)], we take the rule 

]_°
00 

J( e')e' ds 
e-(N-l)h 0 r f(x)dx + J f(es)esds Jo -(N-l)h 

Qi(!; 0, e-(N-i)h) + Q2(!; -"-(N - l)h, 0) 
N 

-. L f ( O).)W>.. 
>.=1 

(1.5) 

Here Q2(!; -(N - l)h, 0) denotes the composite trapezoidal rule corresponding to the 
partition {-kh : k = 0, ... , N - 1} of [-(N - l)h, 0] and applied to the function 
[-( N - 1 )h, O] 3 s r-t f( es)es. The symbol Qi(!; 0, e-(N-i)h) stands for the compos-
ite trapezoidal rule corresponding to the partition { -ke-(N-i)h /i. : k = 0, ... , i.} of 
[O, e-(N-l)h] and applied to the function [O, e-(N-i)h] 3 x r-t f ( x ). For the discretized 
collocation without wavelet algorithm, the number i. is an a priori fixed positive integer 
which is independent of. h and N. For the wavelet algorithm, we shall choose i. := lev3 

if N = 7 · 2zev + 1. Using the parametrization q?j, we arrive at the quadrature rule 

K JO --~ _
00 

f(<I>;(s))e'dsl P;Q; I 

~ L J(Qµ)wµ, (1.6) 
µ.El 

J .- {µ = (j µ' Aµ) : j µ = 1, ... ' K, Xµ = 1, ... ' N}' 
--+ 

Qµ .-

Before we apply this rule to the computation of the entries alt,,,, let us introduce a 
similar rule with coarser mesh size. Clearly, Q2(f; -(N - l)h, 0) is the trapezoidal rule 
over a partition with mesh size h. Therefore, we call (1.6) together with this Q2(!; -(N -
l)h,O) the rule (1.6) with mesh size h. Now suppose N = 7 · 2Zev + 1, l::; lev, and 
take hqu := 2z ·h. Then we replace Q2 (!; -(N - l)h, 0) by the composite trape~oidal 
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rule applied to the function [-(N - l)h, O] 3 s ~ f(es)e 8 over the partition Part of 
[-(N - l)h, O], where Part is the union of {-khqu, k = 0, ... , 2-z · (N - 1)} with5 

Um=0, ... ,!-1 { - k(h · 2m) : k = 0, 1, 2, 3} LJ (1.7) 

Um=O, ... ,l-1 { - k( h · 2m) : k = 2-m · ( N - 1) - 3, ... 1 2-m · ( N - 1)} 

This results in a new quadrature rule (1.6) which we call (1.6) with mesh size hqu· 
Preparing the application of our quadrature rule to the integral in aK,L> we perform 

a step which is called singularity subtraction or regularization or modified quadrature 
method. Using Wl = 1/2 (cf. [38]), we write 

(Acp1,)(PK) = cpL(PK) + cpL(PKJ +fr k(PK, Q)[cpL(Q) - cpL(PKJ]dqI'. (1.8) 

Here Ki := K if PK is not a corner point. If PK. is a corner point with {PK} = I'j.-; n rj, 
then Ki := (j, N). I.e., for corner points PK, K1 is just the index of I different from K 

such that PK = PK1 • Applying (1.6) with mesh size ·h to (1.8) yields 

cp"( PK) + [1 - ~K]cpL( PK',1 ) + L k( PK, Qµ.)wµ.cp1,( Q µ.), (1.9) 
µ.El 

~K .- L k(PK, Qµ.)ww 
µ.El 

Thus the discretized collocation is nothing else than the method (1.4 ), where the matrix 
(aK,L)K,LEl of the system of equations is replaced by A~:= (a~,JK,LEI· In order to motivate 
the singularity subtraction let us mention that the replacement of aK,L by a~,L corresponds 
to the approximation 

(AxN )(PK) XN(PK) + XN(PK,) +fr k(PK, Q)[xN( Q) - XN(PK, )]dqr (1.10) 

~ XN(PK) + XN(PK1 ) + L k(PK, Qµ.)[xN(Qµ.) - XN(PKJ]ww 
µ.El 

No singularity subtraction results in 

(AxN )(PK) XN(P;<) + 2[~ - dn(PK,)]xN(PK, )+fr k(PK, Q)xN( Q)dqr (1.11) 
1 

~ XN(PK) + 2[- - do(PK1 )]xN(PK1 ) + L k(PK,Qµ.)xN(Qµ.)ww 2 µ.El 

Since the kernel function k has a certain strong singularity at the corner points, the 
quadratures for fr k(PK., Q)xN( Q)dqI' do not converge uniformly with respect to K. The 

5The partition Part is chosen such that the quadrature rule is exact for all trial wavelet func-
tions which remain after the compression step (cf. the set JA(FK-) in Sect.1.4). The uniform partition 
{-khqu, k = 0, ... , 2-1 • (N - 1)} guarantees the exactness of the quadrature to the integrals of the 
wavelets <f>(f.,l.,k.) with level li. less or equal to lev-l. The node points from (1.7) guarantee the exactness 
of the quadrature for the integrals of the boundary wavelets <Pu.,1.,1) and <P(j.,l.,N,~)· 
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expression k(Plt, Q)[xN(Q) - XN(P1t1 )] has a milder singularity as k(Plt, Q)xN(Q) if XN 
is smooth. Consequently, the quadratures of fr k(PK., Q)[xN( Q) - xN(PK.1 )]dqr converge 
uniformly. In other words, the discretized collocation method without subtraction tech-
nique is not convergent in L00 whereas the discretized collocation method with subtrac-
tion technique converges with the same order as the collocation method. 

1.3 The wavelet bases 

Let us start with the wavelet bases over the half axis [-oo, O] and with the basis in 
the space of test functionals. We consider a fixed N of the form N = 7 · 2zev + 1 and 
the corresponding h := (log N/N. Over the real axis IR we have a hierarchy of grids 
{ -kh2lev-l, k E ~}, l = 0, ... , lev and the corresponding partition {-kh, k E ~} = 
{-kh2zev, k E ~} U Uz=t, ... ,lev{-(2k + l)h2zev-l, k E ~}. Analogously, for the grid 
points {tk, k = 1, ... , N}, we get the partition Uz=o, ... ,lev{ti, k = 1, ... , N'{}, where 

t~ .- -(k - l)h2lev, k = 1, ... , N'{ - 1, t°tv.x := -oo, N'{ := 8 
0 

tl 
k -(2k-l)h2lev-z, k=l, ... ,Nt, l=l, ... ,lev, Nt:=7-2z-1 . 

(1.12) 

For l = 0, we· set~~:= 5to, k = 1, ... , N'[, i.e.,~~(!):= f(t~). For l > 0, we choose ~i 
k 

to be the linear combination 

(1.13) 

of three Dirac-5 functionals, where ti,1 and ti,2 are the two grid points of the coarser 
levels Um=O, ... ,l-1 { tJ:, k = 0, ... , N~} nearest to ti. In other words, 

z ·- { -h2lev-(l-l)(k - 1) if k < N'{ z ·- { -h2lev-(l-l)k if k < N'{ 
tk,l .- -h2lev-(l-l)(k - 2) if k == N'{, tk, 2 .- -h2lev-(l-l)(k - 1) if k = N'{. 

(1.14) 
The coefficients ai,j are chosen such that the wavelet functional ~i vanishes at all linear 
functions, i.e., we define 

l . - { 1I2 if k < N'{ 
ak,l .- -1/2 if k - NT 

- l ' 

z ·- { 1/2 if k < N'{ 
ak,2 .- 3/2 if k = N'{. (1.15) 

It is not hard to see that span{~i : k = 1, ... , N'{, l = 0, ... , lev} = span{5t1e, k = 
1, ... , N}. This wavelet basis is a special case of the wavelets in [33]. 

Now we turn to the wavelet basis for the space of trial functions. Let us start with 
the real axis. Analogously to [55, 16] we introduce 

1 
2 

( 2 ) . 7/J(s):=2~ . (-1)1cp(s-j+l) 
J=O J 

(1.16) 

and obtain that span{cp(s - k), k E ~}is the direct sum of span{cp(s/2 - k), k E ~} 
and span{7f;(s - (2k - 1)), k E ~}. Hence a wavelet basis over IR can be given by 
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-fZ(s) .- cp(s/(h2lev) - k), k E 7L, ( 1.17) 
,,Pi(s) .- 'lj;(s/(h2lev-l) - (2k - 1)), k E 7L, l = 1, ... , lev. 

Note that all ,,Pi with l > 0 are orthogonal to linear functions, i.e., they have two vanishing 
moments. In the class of all wavelet bases with this orthogonality property our wavelets 
have minimal support. 

Similarly to the wavelets over the interval ( cf. [5, 15, 17]), the wavelet basis of the 
trial space will consists of interior wavelets and boundary wavelets. The interior wavelets 
are just those wavelets on the real axis the support of which is contained in (-(N-l)h, 0). 
The boundary wavelets are certain modifications of those wavelets defined on the axis 
which do not vanish at 0 or at -(N - l)h. We shall choose them in such a way that the 
transformation from .the basis of scaling functions { <(Jk, k = 1, ... , N} into the new basis 
of wavelets is bounded. We do not care about the momentum condition for boundary 
wavelets. To introduce the basis we observe that all piecewise linear functions over 
(-co, O] can be extended to an even function of the space span{Gk(s) := cp(s/h - k) + 
cp(s/h + k), k = 0, 1, ... } over IR by reflection. Taking the wavelet basis {e~(s) := 
cp(s/(h2lev)---: k) + cp(s/(h2lev) + k), k = 0, 1, ... } U {E>i(s) := ,,Pi(s) + ,,Pi_k(s), k = 
1, 2, ... , l = 1, ... , lev} of this spline space and restricting it to the half axis [-co, O], 
we arrive at a wavelet basis on [-co, O] with bounded wavelet transform. Together with 
a corresponding modification over [-co, -( N - 1 )h], we get the following definition ( cf. 
Figures 2 and 3 for the supports of the functions): 

1--

-co 

'lj;~( s) 

'l/J~A(s) 
0 

'l/Ji ( s) 
'l/Ji( s) 

-(N-l)h -h 0 

Figure 2: Supports of the functions 'Pk over [-co, O]. 

cp(s/(h2lev) + k - 1), k = 1, ... , Nt - 1, Nt := 8, (1.18) 

{ 
cp(s/(h2lev) + Nt - 1) if s ~ -h(N - 1) 

. - 1 if s < -h( N - 1) , 
'lj;(s/(h2lev-l) - 1) + 'lj;(s/(h2lev-l) + 1), 

.- 'lj;(s/(h21ev-l) + (2k - 1)), k = 2, ... , NzA - 1, N/ := 7 · 2t-l, 

{ 

'lj;(s/(h2lev-l) + (2NzA - 1))+ if s ~ -h(N - 1) 
.- 'lj;(s/(h2lev-l) + (2NzA + 1)) 

1 if s < - h( N - 1) , 
l = 1, ... , lev. 
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t--

-oo 

,,/,2. 
'f"k· 

'1/;1. k• 

'lj;o. k• 

-(N-l)h -h 0 

Figure 3: Supports of the functions '1/;1 over [-oo,O]. 

Clearly, the '1/;k with k = 2, ... , N1A - 1, l = 1, ... , lev are interior wavelets and '1/;f as 
well as '1/;kA are boundary wavelets. 

L 

After the introduction of the wavelet bases over [-oo, O], we get the final wavelet 
bases over the curve r using our parametrizations. We define the index sets JA := { L = 
(j,,, l,,, k,,) : j,, = 1, ... , K, l,, = 0, ... , lev, k,, = 1, ... , N/} and JT := {x:: = (jK., lK., kK.) : 
jK. = 1, ... , K, lK. = 0, ... , lev, kK. = 1, ... , NF}6 . For i E JA, we define the wavelet 
function cp,, by 

(1.19) 

Obviously, span{ cp,,, LE I} = span{ cp,,, i E JA}. To define the basis in the space of test 
functionals, we take x:; E JT and set 

(1.20) 

For simplicity of notation, let us look at the functionals PK. as if they were Dirac-5 
distributions at a point PK. and write f(PK.) instead of f>K.(f). 

Using the just defined wavelet bases, we arrive at a transformed stiffness matrix 
BN := (Acj;,,(P1t))1tEJT,,,EJA. It turns out that the entry Acf;,,(PK.) is small and negligible 
if the levels l,_, lK. of the wavelets are large and if cj;,, is not a boundary wavelet. Thus 
we replace BN by the compressed matrix B'N := (b~,,,)K.EJT,,,EJA, where b~,,, := Acf;L(PK.) 
if cf;L -:/- 0 over supp f>K. or if cp,, is a boundary wavelet or if lL ::::; lev - lK. and b~,L := 0 
else. 7 This compressed matrix is a small perturbation of BN and contains no more than 
O(N[log N]) ( cf. Sect.1.4) non-vanishing entries. The matrix equation with matrix B'N 
can be solved with at most 0( N[log N]) arithmetic operations. 

1.4 The wavelet algorithm 

Our next concern is to give an algorithm for the computation of a discretized version of 
the matrix B'N. To this end let us proceed analogously to Sect.1.2. By definition each 

6 Note that JA = JT for the case of linear splines. 
7For a compression with a larger number of neglected entries we refer to Remark 4.4. 
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functional P,,.,. is the linear combination of at most three Dirac-8 functionals, i.e., there 
" 3 exist a 1 , a2, a3 E 1R and P,,.,,i, P,,.,,2, P,,.,,3 Er such that f(P,,.,) = L:i=l aif(P,,.,,i)· Hence, 

we get 

3 

(AxN )(1\) =~a; { XN(PK,;) + XN(P:,,) +fr k(PK,i) Q)[xN( Q) - XN(P:,,)Jdqr}' 

(1.21) 
where P:,i := P,,.,,i if P,,.,,i is not a corner point of r. If P,,.,,i is a corner point and xN(P,,.,,i) 
is the limit of XN from the side rjM: of r, then p:,i stands for the same corner point P,,.,,i 
but XN(P:,J is the limit from the side r \ rjM:· Following the compression strategy of the 
matrix B!v, we replace XN == 2:1,E[A e/,<P/, by x'N = L1,EJA(PM:) e/,<P/,, where JA(P,,.,) is the set 
of all L E I A such that </;/,( P,,.,,i) =f. 0, i == 1, 2, 3 or that </;/, is a boundary wavelet or that 
l/, :::; lev - l,,.,. Since x'N(P,,.,,i) = XN(P,,.,,i), we get 

(AxN)(P.:) ~ta; { xN(PK,i) + xN(P:,;) +fr k(PK,i> Q)[xN(Q) - x]v(P:,;)]dqr}. 
i=l 

(1.22) 
Let us choose hqu == min( h · 2lM:, h · 2lev-levo) with levo := 7(log lev /log 2] and apply (1.6) 
with mesh size hqu to (1.22). We obtain 

(AxN)(PK) ta; {xN(P,,.,,i) + [1- ~,,.,,i]xN(P:,J + L k(P,,.,,i,Qµ)x'}v(Qµ)wµ}. 
i=l µ.EJ 

3 

XN(P,,.,) + L ai[l - ~,,.,,i]xN(P:,i) + L k(P,,.,, Qµ)x'N(Qµ.)wµ, (1.23) 
i=l µEl 

~,,.,,i .- L k(P,,.,,i, Qµ)ww 
µEJ 

For the approximate value b~,1, of the entry b~,1, of B/.r, this leads to 

1 
·- { </;1,(P,,.,) + Lf=1 a![l - ~,,.,,i]</;1,(P:,i)+ if LE JA(P,,.,) 

b,,.,,1, .- 2:µ.EJ k(P,,.,, Qµ.)</Yt(Qµ)wµ 
0 else . 

(1.24) 

We arrive at the following algorithm for the computation of the transformed, com-
pressed, and discretized stiffness matrix B~ := ( b~,J,,.,EJT,1,eJA; 

For all "'E JT do: 
A , 

• Set b~,1, == 0, ~,,.,,i = 0 for any L E I and i = 1, 2, 3. 

• Compute the ai, P,,.,,i and P:,i with i = 1, 2, 3 for the test functional P,,.,. 
• Set hqu = min( h · 2zM:, h · 2Zev-levo) and compute the nodes Q µ. and the weights Wµ 

of the quadrature rule (1.6) with mesh width hqu· 

• For allµ E J do: 
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- Compute the values of the kernel function k(PK.,i, Qµ), i == 1, 2, 3. 

- Add k(PK.,i,Qµ)wµ to L:K.,i, i = 1,2,3. 

- Determine the index set JA(µ) of all LE JA(PK.) such that cf>L(Qµ) i- 0. 

- For any LE JA(µ), add k(PK.,i, Qµ)wµ<f;L(Qµ) to b~,L· 

• Determine the index set JA(K) of all L E JA such that cf>L(PK.,i) i- 0 or <f;L(P:,J i-
0, i == 1, 2, 3. 

• For any LE JA(K), add ai</JL(PK.,i) to b~,L' i = 1, 2, 3. 

•For any LE JA(K), add ai[l-L:K.,i]cPL(P:,-i) to b~,L' i = 1,2,3. 

Let us count the number of arithmetic operations of this algorithm. We observe 
( cf. Figure 3) that the number of wavelet functions not vanishing at a fixed point of 
r is less or equal to 2 lev. Hence the index sets JA(µ) and JA( K) contain no more 
than 0( lev) indices. The number of arithmetic operations for the computation of the 
K-th row of EN- is less than 0( lev) times the numbe~ of quadrature nodes, i.e., less than 
O(lev·[lev3 +2lev-ll(]) = O(lev·2lev-ll() if lK. < lev-lev0 and O(lev·[lev3+2levo]) == O(lev8 ) 

else. For the computation of the whole matrix we need a number of operations of order 

(1.25) 

O(N(log N] 8
). 

Let us count the number of non-zero entries in BN-. The number in one row is just the 
cardinality of JA(PK.)· There exist no more than O(lev) indices L such that <f;L(PK.,i) i 0 
or <f;L(P:,J i- 0, i == 1, 2, 3 or that <Pi is a boundary wavelet. The number of indices L with 
lL ~ lev - lK. is 0(2lev-ll( ). Hence the K-th row of BN- contains at most 0(2lev-ll( + lev) 
entries different from 0. Consequently, the number of non-zero entries of the whole 
matrix BN- is less than 

(
kv ) 0 1~0 2

1
" [2'••-1

• + lev] = O(lev · 21
••) = O(N[log N]). (1.26) 

In other words the storage of the matrix BN- requires a storage capacity of 0( N[log N]) 
numbers. Th~ computation of EN- requires O(N(log N] 8 ) operations and the multiplica-
tion of BN- by a vector O(N[log N]). 

Now the algorithm for the computation of the approximate solution XN of equation 
Ax == y via discretized collocation and wavelet transform looks as follows. We determine 
the right-hand side YN :== (y(PK.))K.ef of the collocation system (1.4) and solve ANXN == YN 
by an iterative method (e.g. by GMRES)'. The main part of this process is the matrix 
multiplication of the iteration vectors ZN by AN. This multiplication will be realized in 
three steps. All the three steps require no more than O(N[log N] 8 ) operations. Thus, if 
we choose the initial vector for our iteration to be the solution of a collocation over a 
coarser grid, then we need only a finite number of iteration steps to solve the collocation 
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system up to the discretization error. The whole algorithm for the computation of XN 

requires no more than O(N[log N] 8 ) operations and a storage capacity of O(N[log N]) 
numbers. 

Now let us describe the three steps of the multiplication of AN by ZN. The vector ZN 
is given by its coefficients et. corresponding to the B-spline representation ZN = :Et.El et.'Pt.· 
In the first st~p we apply the wavelet transform, i.e., we compute the coefficients 'T/1. of the 
representation ZN = :Et.Ef A 'T/t.<f>t.· This step can be realized with the aid of a pyramid type 
scheme and is well known to require no more than O(N) operations (cf. e.g. [18, 14]). 
In the second step we multiply (TJt.)t.EfA by B'N to obtain a good approximation of ANZN 
expressed in the form (ANzN(PK.))K.EJT. It remains to apply the inverse wavelet transform 
which computes, for the function f = ANZN, the vector (f(PK.))K.El from (f(PK.))K.EJT· 
This third step can also be realized with the aid of a fast pyramid type scheme. 

1.5 Piecewise cubic collocation 

The algorithm with piecewise cubic spline functions in the trial space looks quite similar 
to the piecewise linear collocation. Analogously to the notation from Sects.1.1-1.4, we 
introduce the collocation points by 

N .- 7 · 2lev + 1, h :=(log N/N, 
t1 .- 0, t2 := -h/2, tk := -(k - 2)h, k = 3, ... 'N - 1, tN := -oo, 
pt. .- P(j,,k,) := q,j,(tkJ, LE J. 

( 1.27) 

By cp we now denote the cubic B-spline such that suppcp = [-2, 2], that cp is continuously 
differentiable~ that the integral of cp is one, and that the restriction cp I [k,k+l], k = 
-2, -1, 0, 1 is a cubic polynomial. We set 'Pk(s) := cp(s/h + k - 2), k = 1, ... , N - 1 
and 'PN(s) := 1 - :Ef=J.1 'Pk(s). Thus the basis functions in our cubic trial space over r 
are given by 

LE J. (1.28) 

Using this notation, the cubic collocation method is the method (1.4). For the dis-
cretization of the cubic spline collocation we use the quadrature (1.5),(1.6), where now 
Q1(f; 0, e-(N-l)h) and Q2(f; -(N - l)h, 0) denote the composite Simpson rule over the 
same partitions8 as in Sect.1.2. The quadrature rule (1.6) with mesh size hqu = h·2l is the 
rule, where Q 2(f; -( N -1)h,0) is Simpson's rule applied to [-( N -1 )h, O] 3 s ~ f ( e5 )e5 

over the partition Part of [-(N - l)h, O] with 

Part .- { - kh0u : k = 0, ... , T 1(N - 1)} LJ (1.29) 

LJ { - k(h2m) : k = 0, ... , 2[coo + co1lev] + 3} LJ 
m=O, ... ,l-1 

LJ { - k(h2m): k = 2-m(N -1)- 7, ... , rm(N - 1) }· 
m=O, ... ,l-1 

8 I.e., we take the points of the partitions in Sect.1.2 and the midpoints of each subinterval as quadra-
ture nodes. 
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Here co0 and co1 denote suitable non-negative constants. Using t~e quadrature rules 
with minimal mesh size h, we get the corresponding discretized collocation by (1.9). 

In order to define our wavelet algorithm let us introduce the wavelet test and trial 
functions. We introduce the partition {tk, k = 1, ... , N} = Ut=o, ... ,lev{ti, k = 1, ... , Nt} 
by 

t~ ·- 0, t~ := -h/2, tZ := -(k - 2)h2lev' k = 3, ... 'NJ - 2, t~l-1 := tN-1, 

tl 
k 

t0 
·- oo Ng'.- - ' 

-(2k - l)h2lev-l, k == 1, ... , Nt, l == 1, ... , lev. (1.30) 

The numbers Nt are chosen such that t~l-2 > t~l-l = tN-1 2:: -(N'[ - 3)h2lev and 
t~T > tN-1 2:: -(2Nt + l)h2lev-l, l == 1, ... ,lev is satisfied. For l = 0, we set 19~ := 

! 

5to, k = 1, ... , N'[, and, for l > 0, 
k 

(1.31) 

where tip J == 1, ... , 4 are the four grid points of the coarser levels Um=0, ... ,1-1 { tJ:1 : k = 
1, ... , Nm} nearest to ti. In other words, 

l ( k - 3) if - h2lev-(l-1) ( k + 1) < iN-1 ~ -h2lev-(l-1) k 

-h2zev-(Z-1). (k- 4) if - h2lev-(l-l)k < iN-1 (l 32). 
. - ( k - 1) if k == 1 . 

(k - 2) else , 

t~,1 

tl ·- il _ h2lev-(l-1) tl ·- il _ 2h2lev-(l-1) tl ·- tl _ 3h2lev-(l-l) k,2 .- k,1 ' k,3 .- k,1 ' k,4 .- k,1 ' 

T.he coefficients ai,j are chosen such that 19i vanishes at all cubic polynomials, i.e., we 
define 

l -5/16 if - h2lev-(l-1) k < tN-1 

l 1/16 if - h2lev-(l-1)(k + 1) < iN-1 ~ -h2lev-(l-1)k 
(1.33) ak,1 .- 5/16 if k=l 

-1/16 else , 

l 21/16 if - h2lev-(l-1) k < iN-1 

l -5/16 if - h2lev-(l-1) ( k + 1) < iN-1 ~ -h2lev-(l-1) k 
ak,2 15/16 if k = 1 

9/16 else , 

l 35/16 if - h2lev-(l-1) k < iN-1 

l 15/16 if - h2lev-(l-1) ( k + 1) < iN-1 ~ -h2lev-(l-1) k 
ak,3 .- -5/16 if k = 1 

9/16 else , 
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l 5 /16 if - h2lev-(l-1) ( k + 1) < iN-1 ~ -h2lev-(l-1) k l -35/16 if - h2lev-(l-l) k < iN-1 

ak,4 .- 1/16 if k = 1 
-1/16 else . 

Let us turn to the trial functions. Analogously to (1.16) and (1.18) we introduce 

and set 

?/;~ 
?/;~ 

?j;~(s) 

?/;~A(s) 
0 

?/Ji ( s) 
'lj;~ ( s) 
?/Ji(s) 

?/;~A-1 ( S) 
l 

?/Jiev ( S) 
?J;;ev ( S) 
?J;;ev ( S) 
?/Jkev ( S) 

?/; 'fr1:t ( s ) 
!e'IJ 

1 4 ·(4) '1/J(s):=s~~)-1)1 
. cp(s-j) 

J=O J 
(1.34) 

.- cp(s/(hie11
)), (1.35) 

.-

.-

.-

.-

.-

.-

-

cp(s/(h2lev) + 1) + cp(s/(h2lev) - 1), 
cp(s/(h2lev) + k - 1), k = 3, ... , Nt - 1, Nt := 7, 

{ ~~~A;o~ cp(s/(h2lev) + k - 1) if s ~ -(N - l)h 
1 if s < -( N - 1) h 

'1/J(s/(hiev-l) + 3) + 'lj;(s/(h21ev-l) + 1), 
'lj;(s/(h2lev-l) + 5) + '1j;(s/(h2lev-l) - 1), 
?j;(s/(h21ev-l) + (2k + 1)), k = 3, ... , N/ - 2, N1A := 7 · 21- 1 , 

! 'lj;(s/(h21ev-l) + (2N/ - l))+ if S ~ -(N - l)h 
'lj;(s/(h2lev-l) + (2NzA + 5))+ 
~cp(s/(h2lev-l) - 2NzA) 

1I8 if s < -( N - 1) h 

'lj;(s/(h2lev-l) + (2NzA + 3))+ ! .,P(s/(h21••-l) + (2N/ + 1))+ if s ::'.: -(N - l)h 

.- ~cp( S /( h2lev-l) - 2N/) 
7 /8 if s < -(N - l)h 

l = 1, .. . ,lev - 1 
.- cp(s/h -1), 

'lj;(s/h + 3) + 'lj;(s/h + 1), 
.- ?j;(s/h + 5) + 'lj;(s/h - 1), 
.- ?j;(s/h + (2k - 1)), k = 4, ... , Nz~v - 2, Nz~v := 7 · 2lev-l + 1, 

! 'lj;(s/h + (2N1~11 - 3))+ if s ~ -(N - l)h 
'ljJ ( s / h + ( 2N1~11 + 3)) + 

.- lcp(s/h - 2N1~11 - 2) 
1/8 if s < -(N - l)h 

l ?/;(s/h + (2N1~11 - 1))+ if s ~ -(N - i)h 
·- '1/J(s/h + (2Nz~v + 1))+ 
.- ~cp(s/ h - 2Nz~v - 2) 

7 /8 if s < -(N - l)h. 

Now we define </>Land Pit by (1.19) and (1.20), respectively. Analogously to the beginning 
of Sect.1.4 we get f(Ptt) = ~~=l aif(Ptt,i) with appropriate ai and Ptt,i· For a fixed"' E I, 
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the set JA(P1t) of indices for which the entry (Acp,,)(F1t) of BN is not neglected in the 
compression step is now introduced as follows. An index L = (j,,, k,,, l,,) E JA belongs to 
JA(P1t) if l,, ::; lev - lit or if cp,,(P1t,i) =f. 0 with i = 1, ... , 5 or if ef;,, is a boundary wavelet 
or if k,, ::; co0 + co1 lev. Using this new set I A( Pit), the wavelet algorithm with cubic trial 
functions is the same as that presented in Sect.1.4. It leads to a compressed stiffness 
matrix with a number of non-zero entries less than a constant times N times a power of 
log N. The number of necessary arithmetic operations in the algorithm is also less than 
a constant times N times a power of log N. 

Let us remark that, for our choice of wavelets in the trial space, the compression 
XN := l:,_EJA(fal':.) e,_cp,_ of a smooth cubic spline XN = l:,_E[A e,,cp,_ is not smooth in the 
neighbourhood of the points Qi = P(j,o) if co1 = co0 = 0. In fact, the introduction of '1f;iev 
instead of a basis function cp( s / ( h2lev) - 1) on level zero ensures the boundedness of the 
wavelet transform but leads to non-smoothness in the neighbourhoods of the midpoints 
Qi = P(j,o) of the sides of r. In order to compensate this effect we have introduced the 
constants co0 , co1 • 

2 NUMERICAL TESTS 

For a numerical example, we take the equilateral triangle f2 = LABC with corner 
points A := (-1/2, 0), B := (1/2, 0), and C := (0, .J3/2). We consider the harmonic 
function U(P) := U(sp; tp) :=log j(sp - 0.1)2 + (tp - e - 0.2)2 and get 

U(P) = ~ { k(P, Q)x( Q)dqI', P En, 
2 lr (2.1) 

where x is the solution of Ax = y := 2Ulr· In accordance with Sect.1.1 we divide the 
boundary r i;nto K = 6 equal parts and determine an approximate solution9 XN of x by 
the algorithm of Sect.1.5. We compute, for P1 = (0.1, 0.2), the approximation 

1 
UN(P1) = 2 L k(P1, Qµ)xN(Qµ)wµ 

µEJ . 
(2.2) 

of U(P1) = 1. By DEN we denote the error IUN(P1)-U(P1)1 and by SEN' the supremum 
norm error10 llxN - XN'llLoo r-.J llx - XN'llLoo, where N := 7·2lev+1 and N' := 7 · 2lev-l + l. 
Furthermore, we determine the approximate value rN := [log SEN - log SEN1]/[log hN -
loghN'] with hN := (logN/N and hN' := (logN'/N' for the order r of the error 
SEN r-.J h1. In Table 1 ( cf. also Figure 4) we present the corresponding numerical results. 
These results show that, for a good approximate solution UN of the Dirichlet problem 
away from the boundary r := an, a small mesh parameter ( is sufficient. We observe 
a convergence rate DEN r-.J hjy if ( = 1. The error DEN is larger for ( > 1. However, 
we conjecture that the results for larger ( can be improved if a better quadrature rule is 
applied in (2.2). Since we are interested in an approximation of U over the whole of f2 
and since this error can be estimated by the supremum norm, we are mainly interested 
in SEN and not in DEN. We compute DEN only to demonstrate the closeness of XN to 

9 Note that, if N is the number of collocation points over each part rj, j = 1, ... , 6, then the number 
of equations in .the collocation system (1.4) is Nu:= 6N. 

10 An approximate value of this supre·mum is computed by a maximum over a large number of points 
of r. . 
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I ( I lev I Nu I SEN 
1 0 49 0.089 0.000027 

1 90 0.058 0.99 0.0000050 
2 174 0.036 0.96 0.00000098 
3 342 0.023 0.83 0.00000015 
4 678 0.015 0.80 0.000000017 
5 1350 0.0094 0.78 0.0000000015 
6 2694 0.0065 0.62 0.00000000016 
7 5283 0.0042 0.76 0.0000000000069 
8 10758 0.0027 0.75 0.00000000000063 

2 0 49 0.035 0.000075 
1 90 0.014 2.02 0.000010 
2 174 0.0058 1.85 0.0000048 
3 342 0.0024 1.66 0.00000097 
4 678 0.00099 1.59 0.0000014 
5 1350 0.00041 1.55 0.00000060 
6 2694 0.00018 1.40. 0.00000046 
7 5283 0.000080 1.36 0.00000060 
8 10758 0.000033 1.48 0.000000021 
9 21510 0.000015 1.22 0. 000000028 

10 43014 0.000000034 
3 0 49 0.013 0.00023 

1 90 0.0035 3.08 0.000074 
2 174 0.00088 2.77 0.0000060 
3 342 0.00023 2.47 0.0000013 
4 678 0.000063 2.35 0.00000063 
5 1350 0.000017 2.32 0.00000012 
6 2694 0.0000048 2.15 0.000000071 
7 5283 0.0000014 2.08 0.000000011 
8 10758 0.00000058 1.48 0.0000000027 
9 21510 0.00000018 1.87 0. 00000000071 

10 43014 0. 000000000049 
4 0 49 0.005 0.000055 

1 90 0.00082 4.09 0.000010 
2 174 0.00013 3.71 0.0000010 
3 342 0.000022 3.20 0.00000056 
4 678 0.0000040 3.26 0.0000026 
5 1350 0.00000077 2.88 0.000000035 
6 2694 0.00000052 0.69 0.00000020 

Table 1: Approximation properties of the algorithm. 

x. For the supremum error, we remark that the function x has an asymptotic behaviour 
of x(s, 0) - x(-1/2, 0) ,...., (s + 1/2)315 ifs --+ -1/2 (cf. Sect.4 and [38]). Hence, we 
expect IN ,...., min( 4, (3/5) ( cf. Corollary 4.2 and Remark 4.3). Table 1 seems to confirm 
this asymptotic rate. 

Now let us consider the compression properties. The compression rate CR is the 
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l.E - 02 

1.E - 03 

SEN l.E - 04 

l.E - 05 

l.E - 06 

!=1 ~ 
= 2-+-
== 3 -e-
== 4 """*-

1. E - 0 7 ~_.__....__.__..__.__._._.......____.____.___._..........._._..........._____,_____..___........._._............___.__,_~~ 

l.E + 01 l.E + 02 1.E + 03 
N 

1.E + 04 

Figure 4: Orders of convergence 

I Zev I Nu I CR 7Wl TI 
0 49 1.00 0.26 0.16 
1 90 0.93 1.05 0.63 
2 174 0.62 3.18 2.20 
3 342 0.43 9.71 8.88 
4 678 0.25 23.87 34.06 
5 1350 0.16 56.06 136.15 
6 2694 0.086 141.06 548.58 
7 5382 0.048 320.4 7 2191.87 
8 10758 0.027 775.11 
9 21510 0.015 1721.56 

10 43014 0.0079 3775.10 

l.E + 05 

Table 2: Compression rates and computing time for ( == 2, p == 0.375, and 
COo = 0 == C01 

quotient of the number of non-zero entries of B~ per number of all entries Nu2
• The 

compression algorithm of Sects.1.4 and 1.5 has been established to obtain a compression 
error of order O(h4 (log h-1 ]µ), where µ denotes a certain non-negative constant. Since 
the approximation error without compression is of order O(hmin(4 ,C3/ 5)(log h-1 ]µ),a better 
compression is possible. Thus we introduce a parameter p with 1 ~ p > 0 and define 
JA(PK.) to be the set of all i E JA such that l, ~ p · lev - lK. or that <f;,(PK.,i) =I 0 with 
i = 1, ... , 5 or that </;, is a boundary wavelet or that k, ~ co0 + co1 lev. Analogously to 
the estimates of Sect.4, we get a compression error of O(h4P[logh- 1 ]µ). Consequently, 
we can choose p == 0.375 for ( = 2 and p = 0.6 for ( = 3. Moreover, in our numerical 
examples we choose lev0 = 0. This leads to smaller powers of log N in the estimates. 
Though the stability proof fails for lev0 = 0, we have not observed any instability. In the 
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I Zev l Nu I CR 7Wl 
0 49 1.00 0.26 0.18 
1 90 0.93 1.11 0.57 
2 174 0.79 4.25 2.15 
3 342 0.48 12.43 8.29 
4 678 0.34 34.86 32.73 
5 1350 0.21 93.57 130.59 
6 2694 0.13 265.35 524.06 
7 5382 0.073 655. 73 2111.37 
8 10758 0.044 1585.44 
9 21510 0.025 3809.31 

10 43014 0.015 10544.19 

Table 3: Compression rates and computing time for ( 
COo == 2, C01 == 0.5 

3, p 0.6, and 

Tables 2 and 3 ( cf. also Figures 5 and 6) we present the compression rates, the time 1W 
in CPU seconds for the computation of the compressed matrix BN, and the time T for 
the computation of the corresponding matrix A~ ( cf. Sect.1.2). Note that the most time 
consuming part of the computation is that for the computation of the stiffness matrix. 
It turns out that the computation time T grows by factor four if the dimension Nu of the 
linear system is doubled. The time 1W grows by a factor between 2.5 and 3. For ( == 2, 
the wavelet algorithm is faster if the number of levels lev is greater or equal to four. 
Since our computer has a main memory of 512 MB, we had to restrict our computations 
without wavelets to at most seven levels. The compression algorithm allows us to go up 
to ten levels. For ( == 1 and the small errors DEN presented in Table 1, the compression 
parameters of the wavelet algorithm should be chosen as in Table 3 and the resulting 
computing tiine is similar. Finally, let us mention that we have tested also a boundary 
curve, where one straight line segment of the triangle is replaced by a sine shaped arc. 
The obtained results have turned out to be quite similar. 

All the computations have been performed on a DEC 3000 AXP 500 workstation. 

3 STABILITY OF THE METHOD 

Let us consider the operator equation Ax == y in the space C(r) of all bounded and 
piecewise continuous functions over r which are continuous on each straight line segment 
r j. Clearly, there is a constant11 c such that, for any sequence { e1.hEI of real numbers, 

(3.1) 

Hence, we have to consider the approximate operators AN and AN in the space £( l00 (I)) 
of bounded linear operators over the space l00 (1) of bounded sequences {eJ1.El· From 
the boundedness of A E £(C(r)) it is not hard to see that AN is uniformly bounded 

11 Here and i:r:i the following we denote by C a non-negative constant which varies from instance to 
instance. 
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Figure 6: Time for the computation of the matrix in CPU-seconds, ( = 2 

with respect to N. Now the sequence {AN} and the corresponding collocation method 
(1.4) is called stable if AN E £(l 00 (J)) is invertible for N large e,nough and if (AN t 1 

is uniformly bounded with respect to N. It is well known that the derivation of the 
stability is the main part in the proof of optimal convergence rates for the collocation. 
THEOREM 3.1 The piecewise linear collocation method (1.4) is stable. Moreover, the 
discretized collocation ( cf. ( 1. 9)) is stable if only the quadrature parameter i. ( cf. the 
definition of Q1(f; 0, e-(N-l)h) in Sect.1.2) is large enough. 
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PROOF: There exist several methods for proving Theorem 3.1 ( cf. e.g. [11, 39, 13, 3, 45, 
26, 37, 46, 43]). Therefore, we shall give only some ideas and references without going 
into details. In any case, we sketch a proof which can be applied also for piecewise cubic 
trial functions. 
It is a well-known fact that localization techniques apply to the stability theory of nu-
merical methods for operators of local type ( cf. [36, 54, 42, 43]). This allows us to 
restrict our consideration to the simpler case of a curve r equal to the boundary of a 
plane sector. It is not hard to show that in this special case the matrix AN takes the 
form 

( 
1 KN.) _ ( 1/V2, 1/V2, ) ( I+ KN 0 ) ( 1/V2, 1/V2, ) 

KN 1 - 1/V2, -1/V2, 0 1 - KN l/V2, -1/V2, . (3·2) 
Consequently, it remains to prove the stability of I± KN. Following [4 7], it is not hard 
to see that KN is a Toeplitz operator the symbol of which is. differentiable and satisfies 
i!symbolNll ::; q < l. Hence, {AN} is stable. 
Moreover, following part a) of the proof to Theorem 4.2 in [4 7] one e9-sily gets stability 
for the discretized method. I 

REMARK 3.2 Theorem 3.1 holds also for the piecewise cubic collocation. 

Our next concern is to prove stability also for the approximate operator correspond-
ing to the wavelet algorithm of Sect.1.4. This operator is the one used in the multiplica-
tion step of the iteration process, i.e., AN- = Tr'f:.BNTr~, where BN is the transformed, 
compressed, and discretized stiffness matrix ( cf. Sect.1.4), Tr'f:. is the wavelet trans-
form in the space of test functionals, and Tr~ stands for the wavelet transform in the 
trial space. In other words, Tr~ maps the vector { e'"he1 of coefficients of the function 
ZN = EL.El et'Pt into the vector of coefficients of the same function Zn with respect to the 
wavelet basis { c,b'"heIA. For any continuous function f over r, the transform Tr'f:. maps 
the vector {f(PK)}KefT into {f(PK)}KEI· Clearly, in view of (3.1) we have to consider AN-
in the space L( l00 (I)). Let us start our investigations showing the boundedness of the 
wavelet transforms. 

Obviously, the transform Tr'J: is bounded if the transform TJ; over the interval 
[-oo, O] mapping {'i9i(J)h=1, ... ,Nt,l=O, ... ,lev to {f(tk)h=1, ... ,N has this property. Before we 
consider TJ; let us introduce the corresponding mapping over the whole axis JR. We set 
l~ := -(k - l)h2lev, k E 7Z and ii := -(2k - l)h2lev-l, k E 7Z, l = 1, ... , lev. Further 
we introduce the wavelet functionals J~(f) := J(t~) and Ji(!) := f(ii) - ~[f(ii, 1 ) + 
J( ii,2 )] with l = 1, ... , lev, k E 7Z and li,1 := -h2lev-(l-l)(k - 1 ), ii,2 := -h2lev-(l-l) k. 
By TT we denote the transform TT : {Ji(f)}z=o, ... ,lev, kEZ ~ {f(-(k - l)h)hez· This 
mapping has just the pyramid form,. i.e., setting 77l := { 77khez' ez := { eihez with 
77k := Ji(!) and ei := f(-(k - l)h2lev-l), we get TT : {e0 ' 771, .. ., 77l} ~ elev and the 
two-scale relation (refinement equation) 

tl - { e~+i if k = 2s + 1 
':.k - l [tl-1 tl-1] i'f k 2 2 776+1 + ':.6+1 + ':.6+2 = s + . (3.3) 

Thus ezev can be calculated following the scheme 
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(3.4) 
771 772 77l 

LEMMA 3.3 The wavelet transform TT : [l00 ]lev ~ l00 is bounded by 2(lev + 1). 
PROOF: Identifying e and 'TJl with their symbols e(t) :== l:kE7Zeitk-l, 'TJl(t) .-
l:kE7Z 77itk-l, Equ. (3.3) implies 

Hence, 
lev-1 

ezev(t) :z= gz(t)t2l77zev-l(t21+1) + 9lev(t)eo(t2le11), 
l=O 

go(t) .- 1, gz(t) :== 9z-1(t 2 )g(t). 

(3.5) 

(3.6) 

(3.7) 

Since gz( t )t2
i == 2:~~;+1 .:\;ti, we observe that, for ?- fixed coefficient eiev, to eiev there 

contribute at most two coefficients of each 77lev-z, l = 1, ... , lev and two of e0 • Thus 

lev 
l~ie11 I::; 2sup j.:\;evl sup l~~I + 2:Z:::sup l.:\;ev-ll sup ITJil· 

j kE7Z l=l j kE7Z 
(3.8) 

It remams to check the boundedness of supj l.:\}j. Since the .:\}, j E ZZ are the 
Fourier coefficients of the function gz, we get j.:\;I ::; f0

1 lgz(ei2?rs)lds. Consequently, 
we only have to show that f0

1 lgz( ei27rs) Ids == f0
1 gz( ei27rs)ds = 1. We prove this by 

1 . 1 ·2 induction. Clearly, fo g0 ( e"27rs)ds = 1. Let us suppose fo gz-1 ( e" ?rs)ds = 1. The 
symmetry 9z-1(e27rs) == 9z-1(e27r(l-s)) implies that 9z-1(e27rs) = L:~o Cj cos(27rjs) and 
gz_ 1 (e 27r2s) = .L:~o Cj cos(27r2js). Thus gz_1 (e27r2s) is orthogonal to cos(27rs) and we con-
clude 

l 91-1 ( e•2.-2')9( e2.-')ds 

fo1 
91-l ( e'2"2')ds + fo1 

91-I ( e'2 .. 
2
') cos(2?rS )ds 

fo2 
91-1 ( e'2 .. ')dt/2 = fo1 

91-1 ( e'2.-t)dt = 1. 

In other words, supj,i l.:\;I ::; 1 and the proof is finished. 

(3.9) 

I 

Now let l00 (n) stand for the space IRn supplied with the supremum norm and con-
sider T'f: : l00 (N'[) EB l00 (N[) EB ... EB l 00 (Nz~11 ) ~ l00 (N). 
LEMMA 3.4 The wavelet transform T'f: is bounded by C · lev, where the constant C is 
independent of l ev and N. 
PROOF: Together with TT the restriction T'J. of TT to l00 (N'[) ffi l00 (N[) ffi ... ffi 
l00 (N1~11 ) ~ l00 (N) is bounded by C · lev2• The difference between T'J. and T'f: is that 
the restricted version 

tl l 1 tl-1 ':.2NT == 'TJNT + -2':.2NT 
1 l l-1 

(3.10) 

of relation (3:3) is replaced by (cf. (1.13)) 
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l l 3 l-1 1 l-1 { TJi.rx + ~e~NT - ~e~NT -1 if l = 1 
e2Nt=TJNt+-2e2NT --2e2NT -1= T/l 1 +~tl-f _1_tl~2 1"£ l>2 

Z-l Z-l NT 2 '-:.2NT 2 '-:.2NT - . 
l l-1 l-2 

(3.11) 

If the ent~ies (T'£.)k,(l,j) of T'J. are defined by eiev = Lj(T'£.)k,(O,j)t} + 
"L 1 ~z~lev Lj(T'J.)k,(l,j)T/; and the entries of T'J. similarly, then (T'£.)k,(l,j) is equal to the 
entry (T'£.)k,(l,j) if j < Nt, l > 0 or if j < NJ -1, l = 0. Indeed, the new relation (3.11) 
affects only the entries (T'£.)k,(l,Nt) and (TJ)k,(o,NJ-l)· There. are two ways to pass from 
T/~T to eiev via (3.3) and (3.11), respectively. If tNT ~ tk ~ t~T , then one can go from 

l r r-1 

T/~T to e;NT using relation (3.11) and from that to eLev by (3.3) or one goes from T/Nl T 
l r l 

to e;N~ using (3.11) and from that to eLev by (3.3). Let a and b denote the factor by 
r-1 

which T/~T is multiplied during the application of (3.11) On the way from T/~T to e;NT and 
l z r 

e;N}_
1

, respectively. Then we get (T'J.)k,(l,Nt) = a(T'J.)k,(r,N;) + b(T'J.)k,(r-i,N;_
1
). Next 

we shall prove that a and b are bounded. If this is done, then the previous proof implies 
l(TJ)k,(l,i)I ~ C SUPr,s l(T'J.)k,(r,s)I ~ C. Arguing analogously to the previous proof, we 
also observe that, for each k and l, there are at most two values j with (T'J.)k,(l,j) -=f. 0. 
Thus 

lev Nt 
llTill =sup L L l(Ti)k,(l,i)I ~ C lev. 

k l=O j=l 
(3.12) 

Let us estimate a and b. If we proceed from e~T to e;NT using (3.11), we can choose 
l r 

between a step over two levels with factor -1/2 and a step over one .level with factor 
3/2. Summing up all products of these possible factors during the way from level l tor, 
we get a. We observe that a = ai depends only on the difference j = r - l and that 

(3.13) 

Hence, the values a = ai = 2 - 2-i are bounded by 2, and b = aj-l is bounded, too. I 

Now let us consider the wavelet transform Tr'ffr. 
LEMMA 3.5 The wavelet transform Tr'ffr is bounded by a constant independent of lev 
and N. 
PROOF: Recall the definition of the wavelets in Sect.1.3 ( cf.(1.18)). Analogously, to 
the wavelets in the test space, it suffices to consider the wavelet transform mapping 

{ekH'=l to {TJih=o, ... ,lev, k=l, ... ,NlA, where Ef=l ek'Pk = L~~o E~tl TJi't/Ji. These wavelets are 
an adaption of the wavelets over the real axis to the interval [-oo, O]. However, to any 
function ZN = L:f=l ek'Pk over [-oo, O] there corresponds a unique extension ZN over the 
real axis obtained by the reflections 

ZN := 

ZN(s - 2(N - l)h) 
ZN(-s) 
ZN(s) 
ZN(-2(N - l)h - s) 

if (N-l)h~s~2(N-l)h 
if 0 ~ s ~ ( N - 1 )h 
if - ( N - 1 )h ~ s ~ .0 
if -2(N-l)h~s~-(N-l)h 
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The coefficients of ZN with respect to the bases {'Pk} and { 'lj;i} coincide with those of 
ZN with respect to the corresponding bases over the real axis ( cf. (1.17)). Therefore, 
it is enough to prove the boundedness of the wavelet transform over the real axis. The 
corresponding wavelets over the axis are biorthogonal wavelets in the sense of [16]. The 
dual wavelets, however, have exponential decay instead of finite support. More precisely, 
setting h(z) = J2z- 1(z + 1)2 /4 and h(z) = J2[4z-1(z + 1)2]/[z-2(z + 1)4 + z-2(z -1)4 ] 

and following the definitions of [16), we get biorthogonal wavelet bases. Indeed, it is not 
hard to prove that the assumptions of [16], Prop.4.9 are satisfied with L = 2 and k = 1. 
Moreover, one can show that the dual scaling function 4> decays exponentially and is 
continuous. The wavelet function in this setting is 

(3.15) 
nELZ 

where h(z) LnELZ hnzn and <I> is our hat function cp from (1.2). However, h(z) = 
g(z)J2z- 1 (z + 1)2 /4 with g(z) = 8/[z-2 + 6 + z2] such that g(z) # 0 for lzl = 1 and 
g( -z) = g( z) = LnELZ 92nz2n. Therefore, the span of translates of the wavelet 'lj;c is equal 
to the span of translates of the wavelet 'lj; from (1.16). We get the same multiresolution 
analysis for 'lj;c and for 'lj;. The wavelet coefficients of the wavelet basis defined with 'lj;c 
can be obtained from those defined with 'lj; by a simple discrete convolution on each level 
and vice versa. Since 'lj; is a linear combination of the translates of 'lj;c, we conclude that 
there also exists a dual wavelet 'lj;d for our 'lj;. This 'lj;d is continuous, decays exponentially 
and defines a dual basis ?/Jf,k( s) := 'lj;d( s /( h2lev-l) - (2k - 1) )/( h2lev-l ), k E ?Z, l == 
1, ... , lev with ( ?/Jfi,k1 , ~i) = Dt,z1 Dk,k1 • For ZN = E 11i?/Ji and its extension ZN == E 11i~i 
( cf. (3.14)), we conclude 

l11il = l(zN, ?/Jt,k)I ::; 117/Jf.kllLl llzNllL 00 ' 

supz,kl77kl ::; C llzNllL00 • (3.16) 

Using this, ZN = I:11i?/Ji == L:: ek'Pk, and (3.1), we arrive at the boundedness of the 
wavelet transform Tr"ffr. I 

THEOREM· 3.6 The approximate operator Al{ of the wavelet algorithm from Sect.1.4 is 
stable. More precisely, AN is a small perturbation of AN and there holds: 

i) II AN - Tr'{;B]vTr"ffr II ~ C · h2 
• lev4

, 

ii) llAN- - Tr'{;B]vTr"ffrll ~ C /lev. 

PROOF: Cl~arly, the stability of AN and llAN - AN-II ~ 0 for N ~ oo imply the 
stability of Al{. Thus the stability of Al{ follows from Theorem 3.1 and the assertions i) 
and ii). Let us prove i). 
We have to estimate the kernel function k(P, Q) for P E supp PK. and Q E supp </J,,, where 
ef;,, is not a boundary wavelet. Suppose without loss of generality, 

(3.17) 
If jK. = j,, and v = w, then nQ · (P - Q) = 0 and k(P, Q) vanishes. For v # w, we get 
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This kernel function is smooth. Moreover, it is easy to see that any derivative of this 
function with respect to t or s can be estimated by a constant. Using the representation 

" 3 . f(PK.) = Li=l ad(PK.,i) and the notation PK.,i = ~J1t(t11:,i), we conclude 

3 0 

( A,P,)( 1\) = ~a; L,, k( q,i• (t",;), q,i• ( s)) ID<I>1• ( s) l..P~. ( s )ds. (3.19) 

Let Tay 1 stand for the Taylor series expansion up to linear terms of k(~ilt(t), ~i'(s)) 
I D~j, ( s) I with respect to t at the point t = tK.,l · Furthermore, let Tay2 stand for the 
Taylor series expansion up to linear terms of k( ~i:.t( t), ~i'( s ))ID~i'( s )l-Tay1 with respect 
to s at the midpoints =Si. of the support of cPt· Then we set Tay = Tay1 + Tay2 and get 

lk(<I>i"(t), q,i•(s))ID<I>i•(s)I - Tayl::; Git - t",11 2 ls - s,1 2
• (3.20) 

In view of th.e momentum conditions of our wavelets, we know that PK. vanishes at the 
linear function Tay1 if lK. > 0 and that ?/Jk', is orthogonal to Tay2 if l" > 0 and if ?/Jk', is not 
a boundary wavelet. Thus let us suppose l11: > 0, lL > 0 and that ef>t is not a boundary 
wavelet. From (3.20) we conclude 

( A,p,)( 1\) ~a,[,, { k( q,i· (t",,), q,i·( s) )ID<I>i· ( s )I - Tay }..P~. ( s )ds, 

l(Aef>i.)( PK.) I < G( diam supp?Ji:)2
( diam supp?/Jk'J2 j l<PL( Q)ldrQ (3.21) 

< G ( h2lev-llt )2 ( h2lev-l, )2 J I cPL ( Q) I drQ. 

Since L E I A \ I A( PK.) implies lK. + l" > lev, we arrive at 

L l(Aef>L)(FK.)I ::; Ch422 lev sup L l</>i.(Q)I (3.22) 
1.EIA\JA(P1t) Qer 1.EJA 

~ Ch4 [h- 1 log h-1 ]2 lev ~ Gh2lev3 • 

Thus llBN - B.Nll.cczco(JA),zco(JT)) ::; Gh2lev3
• By Lemmas 3.4 and 3.3 as well as by AN= 

Tr'frBNTr"fi, we get assertion i). 
Let us turn to the discretization error on the left-hand side of ii). We have to estimate 
the entries G11:,L of G = B.N - Bk-, where 

(3.23) 

3 3 - L CY.i L k(PK.,i, Qµ)[</>i.(Qµ) - cP1.(P11:,i)]wµ =: L ai{Tei + Te~ef>L(P11:,i)}, 
i=l µEl i=l 

Te~ 
l 
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Te: := £ k(PK.,i, Q)dQr - L k(PK.,i, Qµ)ww 
µEJ 

The quadrature error Tel is the sum of the quadrature error taken over the subintervals 
adjacent to the corners and of that taken over the rest. Since the kernel ( cf.(3.18)) is 
smooth over the rest, we get the usual 0( h~u) estimate for the trapezoidal rule. For the 
error over the subintervals adjacent to the corner points, we obtain the estimate ( cf. the 
definition of Q 1(!; 0, e-(N-l)h)) 

f. . 18Qk(PK.,i, Q)ldQI' · (7:71). subinterval 2 * 
(3.24) 

Here aQ is the derivative in the tangential direction tQ ( ltQ I 1) of r and m is the 
length of the subinterval. Without loss of generality, we may suppose that the PK.,i and 
the subinterval are placed on two different sides of r adjacent to the corner point R. 
Hence, 

8 {~n·(P-Q)} Q 27r· IP-Ql2 8 {~n·(P-R)} 
Q 27r IP - Ql2 

n · (P - R) 
7rlP - Ql4 ~Q. (Q - P),(3.25) 

l8Qk(PK.,i, Q)I < 2 ik(PK.,i, Q)I 
IPK.,i - QI . 

(3.26) 

Since PK.,i is a collocation point, we get IPK.,i - QI 2:: c-1 . m and (3.24) can be estimated 
by C J lk(PK.i, Q)JdQI' /i. :::; C /i •. Collecting terms, we arrive at 

!Tef I ::0: C { h~u + L } . (3.27) 

The estimation of the quadrature error Te; over the subintervals adjacent to the cor-
ner points is analogous to that of Te~ since the trial functions are constant over these 
subintervals. Thus let us suppose that supp </;,, does not contain a corner and apply the 
substitutions (3.17). We get 

Tet = j k(PK.,i, <I>i'(s))ID<I>i'(s)l~i',(s)ds - L k(P1t,i, <I>i'(s>.))ID<I>i'(s>.)l~i',(s>.)w>., 
>. 

(3.28) 
where W>. := e-s;xW>. ( cf. Sect.1.2). Now observe that our quadrature rule is exact at 
functions froi_n the trial space. Hence, if we choose an s' E supp ~k,, we arrive at 

Tet = j [k(PK.,i, <I>i'(s))JD<I>i'(s)I - k(PK.,i, <I>i'(s'))ID<I>i'{s')I] ~i',(s)ds - (3.29) 

L [k(P1t,i, <I>i'(s>.))JD<I>i'(s)I - k(P1t,i, <I>i'(s')JD<I>i'(s')I] ~~,(s>.)W>.. 
,\ 

Taking into account the properties of the kernel k( <I>iK ( t), <I>i' ( s)) J D<I>i' ( s) J, it is not hard 
to derive 

(3.30) 

Taking into account that diam supp ~k, ,...., h2lev-l, and that h2lev ,...., lev, we get the bound 
C · lev- 3 J Jcp,,(Q)JdQI' for JTe;I if l,, 2:: 4(1oglev/log2]. On the other hand, the usual first 
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order estimate for the quadrature together with the smoothness of the kernel implies 

ITe~I :::; Ghqu SUPQl8Q<PL(Q)I r dQI',:::; Ghqu(h21ev-lLt1 r dQI'. (3.31) 
1.mppc/JL 1.mppc/JL 

Together with hqu :::; h2lev-levo and levo = 7[log lev /log 2] we conclude !Tel I :::; 
G · lev-3 fsuw<PL dQI' if lL :::; 4[log lev /log 2]. Hence, for any lL, we get the bound 
G · lev-3 f.mppc/JL dQI'. 
From Equs. (3.23), (3.27), and the last estimation we conclude 

L 101t,LI 
LEJA(P,..) 

< C { h~ + i~} t Ji,6,(PK,;)J + C { il. + lev-3
} t Lpp.p, dqI',(3.32) 

< C { h~u + i~} lev + C Ll. + lev-3
} lev, 

{ 2 1 -3} < G hqu + i. + lev lev. 

In view of hqu :::; h2lev-levo, i. = lev3 , and levo = 7[log lev /log 2], we conclude 

L IOK,LI:::; G {lev 2r 21evo + lev-3
} lev:::; G/lev2

• 

1-EJA(i',..) 

Hence, JJBN- - BNll :::; G /lev 2 and Lemmas 3.4 and 3.3 lead to assertion ii). 

(3.33) 

I 

REMARK 3.7 We conjecture that Theorem 3.6 holds also for the piecewise cubic wavelet 
algorithm of Sect.1. 5. Of course, the second order convergence is to be replaced by fourth 
order convergence and the exponents of the logarithm change. The proof should be anal-
ogous to that presented above. The only open problem is to prove analogues of Lemmas 
3.4 and 3.5. We have not tried to show the boundedness of the transforms corresponding 
to the boundary modification of the wavelets. 

4 ASYMPTOTIC RATES OF CONVERGENCE 

Let x denote the solution of Ax = (I+ 2W)x = y and suppose the right-hand side 
y is continuous on r and infinitely differentiable on each closed side of r. Then the 
function x is infinitely differentiable at any point of r which is not a corner point. If R 
is a corner, then the asymptotics of x(P) for P ~ R takes the form x(P) - x(R) ,...., 
IP - RIKR' where "'R := 7r I max.( a, 27r - Ci.) and Ci. is the interior angle of the polygon r 
at R ( cf. [38, 28]). In particular, x belongs to the Holder dass over r with exponent 
"'r := min{"'R, R corner of I'} and the functions (-oo, O] 3 s ~ x(1'i(s)), j = 1, ... , K 
are smooth. 
THEOREM 4.1 Let x denote the exact solution of the double layer potential equation 
Ax = y and suppose XN is the approximate solution obtained by the algorithm of Sect.1.4, 
i.e., XN = LiEl eLcpl is obtained by solving AN-{e,,he1 = {y(P11:)}1tEl iteratively. Note that 
XN = L1.EJA 171-4'1. with the solution {TJiherA from the equation BN{TJ,,herA = {y(J\)}1tEJT. 
If the right-hand side y is continuous on r and infinitely differentiable on each closed 
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side of r, then there holds 

!Ix - xNllLoo :::; C max (lev N-C1tr, lev 4h2
) , ( 4.1) 

where C is independent of N and h. 
COROLLARY 4.2 The estimate (4.1) expressed in terms of the step size h or in terms 
of the degree of freedom N takes the form 

( 4.2) 

where µi = -(K.r + 1, µ2 = 1 for (K.r < 2 and µi = 4, µ2 = 6 for (K.r 2:: 2. 
PROOF: Let LN denote the interpolation projection LN f := L:,Er f(P,)r.p,. Then we can 
identify the function ZN of the trial space im LN with the sequence {zN(P,)}1.El E Z

00 (J) 
of its coefficients. Using llLNll = 1 and the stability of A}l = Tr'frB~Tr-fJ. E £( im LN) 
( cf. Theorem' 3.6), we get 

x - XN x - LNX + (AN-t 1AN-LNX - (AN-t 1 LNy, 
llx - XNll :::; Jlx - LNxlJ + ll(AN-t1 llJIAN-LNx - LNAxll 

< C llx - LNxll + C llAN-LNx - LNALNxll. (4.3) 

The operator LNAlimLN is nothing else than the collocation operator AN of Sect.1.1. 
Hence, we obtain 

!Ix - xNll :::; C llx - LNxll + C llTr%BNTr~ - ANll llxll + 
JJ7rirJl II [BN - B~]7r~LNxll. ( 4.4) 

Using the smoothness of x and the special choice of the grids ( cf. Sect .1.1), it is not hard 
to obtain 

( 4.5) 

The term llTr'frBN-Tr-fJ.-ANll has been estimated in Theorem 3.6,i) and l!Tr'frll in Lemma 
3.4. Hence, it remains to consider 

0 bviously, we have 

(4.7) 
i=l 

Tei:= j k(P1t,i, Q)[xN(Q) - xN(P1t,i)]dQI' - L k(P1t,i, Qµ)[xN(Qµ) - xN(P1t,i)]wµ, 
µ 

where xjy is the compression 2:1.EIA(f>~) T/1.<P1. of LNx = 2:1.EIA T/i<f>,. 
Let us first estimate the quadrature error ( 4. 7) over a subinterval r a adjacent to the 
corner points. Without loss of generality we may suppose that Pit is not a corner point 
and that Pit and r a belong to two different sides of r having the corner point R in 
common. For Q E r a, the value xf.r( Q) is equal to LNx( Q) and to the value of x at the 
corner point R. Moreover, x/..r(Px:,i) = LNx(Ptt,i) = x(P1t,i)· Consequently, we get 
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lx;v(Q) - x;.,(P1t,i)I 

1 fr. k(PK,i> Q)[xN(Q)- xN(PK,i)]dqr1 < 
lx(R) - x(P1t,i)I ::; IR - P1t,il1tr. ( 4.8) 

C fr IP1t,i - Ql-1dQr IR - P1t,il1tr ( 4.9) ra . 
< CIR - p .,1tr-l fr d r 1t,i Q ra 
< CIR_ p ·l1tr-1 N-C < N-C1tr. 

1t,i -

The quadratures over r a can be estimated similarly. 
Now let us turn to the quadrature error over the union of all subintervals which are not 
adjacent to corner points. We write 

Te'+ Te", (4.10) 

Te' j [t a;k(PK,i, Q)l xN(Q)dqr - ~ [t a;k(PK,i, Q,.)] xN(Q,.)w,., 

Te" .= j [t a;xN(PK,;)k(PK,i, Q)l dQr - L [t a;xN(PK,;)k(PK,i, Q,.)] ww 
i=l µEJ i=l 

Without loss of generality we suppose that Pit is not a corner point and that the domain 
of integration and Pit belong to two different sides of r adjacent to a corner point R. Let 
the domain of integration be part of ri. Using the substitutions (3.17), the quadrature 
error of Te' can be estimated by 

Since the second derivative of this piecewise linear function is zero12 , we get 

a: { [t a;k(PK,i> <I>i( s)) ID<Pj ( s )1] xN( <I>i( s))} = 

~ ( ~ ) a;-1 [t a;k( PK,i> q,i ( s)) ID<I>i ( s )1] a; [xN( q,i ( s))] . 

( 4.11) 

( 4.12) 

Now we take into account the smoothness of the kernel function ( cf. the proof of Theorem 
3.6) and apply the estimate ( cf. Sect.1.3) 

t a;J(PK,,)j - jI(<I>i·(t~:ll - ~ {J(<I>i·(tLll + J(<I>i·(t~:.2 )) }j 
< C sup 1a;(Joq>iK](t)llti:,1 -ti:.2 l2 , 

tlK <t<tlK 
/cK 1 l - - lc~,2 

< C sup ja; [! o q;iK](t)j [diamsuppi9i:J 2 

tE.,~ppt9~ 
(4.13) 

12N ote that the points of discontinuity of the first derivative of the piecewise linear functions are node 
points of the trapezoidal rule. 
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to get 

j la~ { [t, a;k(PK,;, q;i(s))ID<l'>i(s)I] xN(<l'>i(s)) }Ids:::; 
C[diamsuppiJ~:] 2 {sup l[xN- o <I>i](s)! +sup l8s[xN- o <I>i](s)!}. (4.14) 

Similarly we can estimate Te" by 

h~u · j la~ [~ a;xN(PK,;)k(PK,i, q;i(s))ID<l'>i(s)l] Ids= 

h~u · j la~ [~a;x(PK,;)k(PK,;, q;i(s))ID<l'>i(s)l] Ids:::; 

(4.15) 

C · h~u {sup l[x o <I>i](s)I +sup l8s[x o <I>i](s)I +sup 1a;[x o <I>i](s)I} · [diamsuppiJ~:] 2 

:::; C · h~u[diamsuppi1~:] 2 • 

Now it remains to estimate sup l[xj.,,o <I>i](s)I and sup l8s[xj.;o <I>i](s)I. Since the estimate 
of sup lx}ro<I>il is similar to that of sup l8s[xj.;o<I>i](s)I, we shall concentrate on the latter. 
From 

as [i:rJi'1/J(s/(h2lev-l)- k)] == LrJif(h2lev-l)'1/J'(s/(h2lev-l)- k) (4.16) 
l,k l,k 

and from the boundedness of supp'lj; == supp'lj;' (cf. (1.16)), it is easy to see that 

sup l8s[xN- o <I>i](s)I :::; C · lev sup1.EIA(P~) j'fJj(hiev-l,)j (4.17) 

:::; C · lev SUP1.El jrJ1./ ( h2lev-l,) I · 
In order to estimate rh/(h2lev-l, ), we introduce the extension ZN of [-(N - l)h, O] 3 s ~ 
LNx( <I>i( s )) by 

L N x ( <I>i ( s - 2 ( N - 1) h)) if ( N - 1) h :::; s :::; 2 ( N - 1) h 
LNx(<I>i(-s)) if 0:::; s:::; (N - l)h 
LNx( <I>i ( s)) if - ( N - 1 )h :::; s :::; 0 

(4.18) 

LNx(<I>i(-2(N - l)h - s)) if - 2(N - l)h:::; s:::; -(N - l)h 

Note that, since the wavelets over [-oo, O] are defined with the help of reflection, the 
wavelet coefficient of LNx corresponding to { 'lj;i} is the same as that of ZN corresponding 
to the wavelet basis defined by (1.17) over the real axis. The wavelet coefficients of ZN 
can be computed via the biorthogonal wavelet functions '1/Jt,l ( cf. the proof of Lemma 
3.5) such that 

lev 
ZN == L L ( 'lj;~k' ZN )~i- ( 4.19) 

l=O kE7Z 
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Now fix l with 0 < l ~ lev. Surely, ZN has a bounded derivative. Consequently, there 
exists a piecewise linear function z1 in span { ,(/;r:, 0 ~ m < l, k E ~} such that 
llzN - z11!£co ~ C(h21ev-l+i ). Since '1f;f,k is orthogonal to z1, we get 

l ("''d - ) ("''d - -1 ) 77k = 't'l,k, ZN = lf'l,k' ZN - ZN ' 
l77il ~ 11'1f;~kllL 1 llzN - z111L00 ~ C h2lev-l. ( 4.20) 

If l = 0, then 177~1 = ( '1f;g,k, ZN) ~ C ~ C(h2lev). 
Collecting th~ estimates ( 4.10)-( 4.20), we conclude that the quadrature error 
IBNTr~LNx(PK.) - BJ.:Tr~LNx(PK.)I taken over all the subintervals of r which are not 
adjacent to a corner can be estimated by 

Ch~u[diamsupp'l9~:] 2 • lev ~ C(h21~) 2 (h2lev-l~) 2 • lev 
< C · lev (h2 2lev) 2 ~ C · lev 3h2 • ( 4.21) 

From this estimate, Lemma 3.4, Theorem 3.6, and the inequalities ( 4.4)-( 4.6), and ( 4.9) 
we obtain 

llx - XNll ~ C { max(h2 , N~C1tr) + h2 lev4 + lev[N-C1tr + lev 3 h2 ]} 

which proves ( 4.1 ). 

( 4.22) 

I 

REMARK 4.3 If the conjecture of Remark 3. 7 is true, then a result analogous to Theorem 
4 .1 can be proved for the piecewise cubic collocation together with the wavelet algorithm 
of Sect.1. 5. Clearly, the exponent two in (4 .1) is to be replaced by four since this exponent 
corresponds to the polynomial degree of the trial functions and to the convergence order 
of the quadrature rule. 
REMARK 4.4 Let us note that a better compression than that of Sect.1.4 is possible. 
Indeed, define I A( PK.) to be the set of all L E I A such that cP1.( P1t,i) =/= 0, i = 1, 2, 3 or 
that cPi. is a boundary wavelet or that l" ~ [lev - lK.]/2. In this case the bound of Theorem 
3.6,i) takes the form C · h · lev 5 • However, arguing analogously to (4.20), one can prove 
that 1771.I ~ C · ( h2lev-l~ )2 for LNX = 2:1.EJA 771.cPi.. Using this, it is not hard to get {cf. 
{3.21)) 

ll[TriB.NTr~ -AN]LNxll < !!Trill· sup I: l(A<P1.)(F1t)771.I 
K-EfT LEfA\IA(P~) 

( 4.23) 

< C · h2 lev 5
• 

Hence, we arrive at a convergence estimate of llx - xNll :::; C · h2lev 5 for this kind of 
compression if ( ~r > 2. 
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