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Abstract. Let `(n, x) be the local time of a random walk on Z
2.

We prove a strong law of large numbers for the quantity Ln(α) =
∑

x∈Z2 `(n, x)α for all α ≥ 0. We use this result to describe the
distribution of the local time of a typical point in the range of the
random walk.

1. Introduction. Let Xi, i ∈ N, be a sequence of i.i.d. random vectors
on some probability space (Ω, P), which have values in Z

2, mean 0, and
a finite non-singular covariance matrix Σ. We write

S0 := 0, Sn :=

n
∑

i=1

Xi, n ≥ 1, (1)

for a Z
2-valued random walk. Let `(n, x) be its local time,

`(n, x) :=
n

∑

i=0

1l{Si = x}, x ∈ Z
2. (2)

We will always assume that the characteristic function of Xi,

χ(k) := E exp
(

i〈k, X1〉
)

, k ∈ J := [−π, π)2, (3)

satisfies χ(k) = 1 ⇔ k = 0. Here 〈·, ·〉 stays for the standard scalar
product in R

2.
In this paper we prove the following strong law of large numbers for

random variables

Ln(α) :=
∑

x∈Z2

`(n, x)α, α ≥ 0, n ∈ N. (4)

Theorem 1. For all α ≥ 0, P-a.s.,

lim
n→∞

Ln(α)

n(log n)α−1
=

Γ(α + 1)

(2π
√

detΣ)α−1
. (5)

Remark. This result is trivial for α = 1 and well known for α = 0. In
the second case, Ln(0) =

∑

x 1l{`(n, x) ≥ 1} =: R(n) is the size of the
range of the random walk. For the simple random walk it was proved
in [DE51] that the range satisfies

lim
n→∞

log n

n
R(n) = π, P-a.s. (6)

For a non-simple walk with a covariance matrix Σ the right hand side
of (6) must be multiplied by 2

√
detΣ.
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There are at least two reasons why the quantity Ln(α) is worth to
study. First, if α is an integer, then Ln(α) is related to the number of α-
fold self-intersections of the random walk (see also (11) below). This is
of much importance, mainly with α = 2 or α = 0, for the so-called self-
interacting random walk, see e.g. [BS95]. In this paper, however, we do
not require α being integer. Ln(α) can be then considered as a possible
candidate for a definition of the number of α-fold self-intersections for
all real positive α.

The second related subject, which was the original motivation for
studying Ln(α), is so-called random walk in random scenery and with
it closely connected problem of aging in trap models. We describe this
problem briefly. Let τx, x ∈ Z

2, be a collection of i.i.d. random variables
independent of Xi. Define

Zn :=

n
∑

i=0

τSi. (7)

This process (called usually random walk in random scenery) was first
time considered for one-dimensional random walks in [KS79]. Two-
dimensional walks were studied in [Bol89], where the random scenery
τx was required to have mean zero and a finite variance σ2. It was
proved there that the process Zbntc/

√
n log n converges to the standard

Brownian motion with a variance depending on σ and Σ.
In [BČM05] we needed to control the behaviour of Zn for a scenery

τx in the domain of attraction of a non-negative, α-stable, α ∈ (0, 1),
law. The interest in this kind of scenery originated in the study of
aging in so called Bouchaud’s trap model. This model was proposed
by [Bou92] in physics literature to explain basic mechanisms that can be
responsible for peculiar dynamical properties (like aging) of complex
disordered systems. The α-stable sceneries with small α correspond
to the low temperature regime in these systems that is particularly
interesting. In the simplest case, Bouchaud’s trap model is a Markov
process X (t) on Z

2 (or some other graph) which is defined as a random
time change of the random walk, X (t) := SZ−1(t) (here Z−1 denotes the
right-continuous inverse of Zn). To show aging behaviour in this model
entails, e.g., to prove that the probability of the event X (θt) = X (t),
θ > 0, converges to some non-trivial value as t → ∞ . Since X (t) is a
time change of the random walk, the first step in proving such a claim
should be logically the behaviour of the time-change process Zn.

What is the connection of Zn with Ln(α)? Consider for simplicity
τx to be α-stable with E exp(−λτx) = exp(−cλα). Then the Laplace
transformation of Zn can be rewritten as

Eτ,Xe−λZn = EX exp
(

− cλα
∑

x

`(n, x)α
)

= EXe−cλαLn(α). (8)
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Here the first expectation is over both τx and Xi. When we started
to investigate aging on Z

2, we did not find any useful result about
Ln(α) in the literature. Therefore in [BČM05] we used methods which
do not rely on formula (8) to show that for α-stable τx, the process

Zbntc/
√

n(log n)α−1 converges to an α-stable subordinator for a.e. ran-
dom environment. Going back, this result together with (8) allows to
deduce a weak law of large numbers for Ln(α), α ∈ (0, 1). It is however
not possible without a major effort to use the techniques of [BČM05]
to show a strong law. This consequently induces complications when
one tries to extend the convergence to α > 1. That is why different
methods are used here.

To close the introduction it should be remarked that even knowing
the behaviour of Ln(α), the proof of aging would be not completely
straightforward. The methods used in [BČM05] describe more precisely
the process X (t) and not only the time change Zn.

The proof of Theorem 1 for α ∈ N is relatively standard, as will be
seen later. The main question is how to extend it to all α ≥ 0. This
extension is made possible by the following theorem that describes the
distribution of the local time of a “typical” point in the range of the
random walk.

Theorem 2. Given X := {X1, X2, . . . } let Yn be a point chosen uni-

formly in the range of the random walk up to time n, that is

P[Yn = x|X] = R(n)−11l{`(n, x) ≥ 1}. (9)

Then for P-a.e. X, the normalised random variable `(n, Yn) is asymp-

totically exponentially distributed, namely

P

[

2π
√

detΣ
`(n, Yn)

log n
≥ u

∣

∣

∣
X

]

n→∞−−−→ e−u. (10)

Remark. This result is, to a certain extent, related to the fact that the
distribution of the normalised local time of the origin, (log n)−1`(n, 0),
converges to the exponential distribution with mean π, which was
proved for the simple random walk in [ET60]. A possible interpretation
of Theorem 2 is then: “The origin becomes asymptotically typical.”

The following strategy will be used in the proofs. We first prove
Theorem 1 for α ∈ N. This will allow us to show Theorem 2 and then
extend Theorem 1 to α ≥ 0.

2. Proofs of the theorems. We first prove Theorem 1 for α ∈ N. We
compute the expected value, ELn(α), and bound from above the vari-
ance, VarLn(α), using relatively standard techniques (see e.g. [Bol89]
which we follow closely). We then use these estimates to prove a strong
law of large numbers along sufficiently fast increasing sequences, and
finally we fill the gaps in these sequences.
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Expected value. For α ∈ N the random variable Ln(α) can be written
as

Ln(α) =
∑

x∈Z2

(

n
∑

i=0

1l{Si = x}
)α

=
n

∑

k1,...,kα=0

1l{Sk1
= · · · = Skα}. (11)

Therefore,

ELn(α) =

n
∑

k1,...,kα=0

P[Sk1
= · · · = Skα]

=
α

∑

β=1

C(α, β)
∑

0≤k1<···<kβ≤n

P[Sk1
= · · · = Skβ

], (12)

where C(α, β) are combinatorial factors depending only on α and on
β, which is the number of different values in sequence k1, . . . , kα. In
particular C(α, α) = α! = Γ(α + 1). Values of all others C(α, β) are
irrelevant, as we will see. Using the Markov property we get

aβ(n) :=
∑

0≤k1<···<kβ≤n

P[Sk1
= · · · = Skβ

] =
∑

m∈Mn

β−1
∏

i=1

P[Smi = 0], (13)

where

Mn =
{

m = (m0, . . . , mβ) ∈ N
β+1
0 , m1, . . . , mβ−1 ≥ 1,

∑

mi = n
}

.
(14)

We set ρβ(λ) =
∑∞

n=0 λnaβ(n) and use the fact that

P(Sj = x) = (2π)−2

∫

J

χ(k)j exp(−i〈k, x〉) dk. (15)

An easy computation yields

ρβ(λ) = (1 − λ)−2
(

∫

J

dk

(2π)2

λχ(k)

1 − λχ(k)

)β−1

. (16)

As in [Bol89], for two positive functions fδ(λ) and gδ(λ), δ > 0, λ ∈
(0, 1), which diverge for λ → 1 we write

fδ(λ) ∼
δ→0

gδ(λ) (17)

if

lim
δ→0

lim inf
λ→1

fδ(λ)/gδ(λ) = lim
δ→0

lim sup
λ→1

fδ(λ)/gδ(λ) = 1. (18)

Let Uδ ⊂ J , k ∈ Uδ ⇔ 〈k, Σk〉 ≤ δ. It is easy to see that
∫

J\Uδ

dk

(2π)2

λχ(k)

1 − λχ(k)
≤ const. δ−1 for all λ ≤ 1. (19)
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To treat the integral over Uδ, we observe first that the characteristic
function of Xi, χ(k), has the following expansion around 0:

χ(k) = 1 − 1
2
〈k, Σk〉 + R(k), where |R(k)| = o(|k|2) for k → 0.

(20)
Using this expansion it can be shown that

∫

Uδ

dk

(2π)2

λχ(k)

1 − λχ(k)
∼

δ→0

(

2π
√

detΣ
)−1

log
1

1 − λ
. (21)

Inserting this back into (16) it follows from the Tauberian theorem for
sequences (see [Fel71], Theorem XIII 5.5), and the fact that aβ(n) are
monotone that

aβ(n) = n
( log n

2π
√

detΣ

)β−1

(1 + o(1)), as n → ∞. (22)

In particular aα(n) � aβ(n) for all β < α. Therefore, using also (12),
for all α ∈ N

ELn(α) =
Γ(α + 1)

(2π
√

detΣ)α−1
n(log n)α−1(1 + o(1)), as n → ∞. (23)

Variance. The computation of the variance is similar but relatively
complicated. We will show that

VarLn(α) = O
(

n2(log n)2α−4
)

. (24)

We first rewrite VarLn(α) in spirit of (11),

VarLn(α) =
∑

k1,...,kα

∑

l1,...,lα

P[Sk1
= · · · = Skα , Sl1 = · · · = Slα]

− P[Sk1
= · · · = Skα]P[Sl1 = · · · = Slα]

=
α

∑

β,γ=1

C(α, β, γ)
∑

0≤k1<···<kβ≤n
0≤l1<···<lγ≤n

P[Sk1
= · · · = Skβ

, Sl1 = · · · = Slγ ]

− P[Sk1
= · · · = Skβ

]P[Sl1 = · · · = Slγ ]

=:

α
∑

β,γ=1

C(α, β, γ)aβ,γ(n).

(25)

Here again the precise values of the combinatorial factors C(α, β, γ)
are irrelevant.

We want to compute aβ,γ(n) using the same methods as for the
expectation. To this end we need several definitions. Given two ordered
sequences k1, . . . , kβ and l1, . . . , lγ we define a sequence of pairs

(ji, κi), i ∈ {1, . . . , β + γ}, (26)
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which satisfies ji ∈ {0, . . . , n}, κi ∈ {0, 1}, ji ≤ ji+i for all i ≤ β +γ−1
and

{ji : κi = 0} = {k1, . . . , kβ}, {ji : κi = 1} = {l1, . . . , lγ}. (27)

To role out possible ties we require: if ji = ji+1, then κi < κi+1. We
then set m0 = j1, mβ+γ = n − jβ+γ , and

εi = κi+1 − κi, mi = ji+1 − ji, for i = 1, . . . , β + γ − 1. (28)

Let E(β, γ) ⊂ {−1, 0, 1}β+γ−1 be the set of all possible sequences ε =
{εi, i = 1, . . . , β + γ− 1} that can be produced using this construction.
This set is obviously finite. Let further Mβ,γ(ε, n) be the set of all m =
(m0, . . . , mβ+γ) such that mi ∈ N0,

∑

mi = n, and m is compatible
with ε. To be compatible with ε imposes mi ≥ 1 for some i’s, for
which it depends on ε. Since we are looking for an upper bound we
will generally ignore these restrictions.

We can now compute aβ,γ(n). Observe first that if there is only one
εi 6= 0, then kβ ≤ l1 or lγ ≤ k1, and by Markov property the positive
and negative term of aβ,γ(n) in definition (25) exactly cancel each other.
Therefore we can consider only ε ∈ E ′(β, γ) := {ε :

∑ |εi| ≥ 2}. For
these ε we first completely ignore the negative term. Therefore, again
by Markov property,

aβ,γ(n) ≤
∑

ε∈E′(β,γ)

∑

m∈Mβ,γ (ε,n)

∑

z∈Z2

β+γ−1
∏

i=1

P[Smi = εiz] =:
∑

ε∈E′

a(ε, n).

(29)
Taking ρε(λ) =

∑∞
n=0 a(ε, n)λn and setting Mβ,γ(ε) =

⋃

n Mβ,γ(ε, n)
we get

ρε(λ) =
∑

m∈Mβ,γ (ε)

∑

z∈Z2

λm0+mβ+γ

β+γ−1
∏

j=1

∫

J

dkj

(2π)2
(λχ(kj))

mje−i〈kj ,zεj 〉.

(30)
The summation over z in

∑

z exp(−i
∑

j〈kj , zεj〉) forces that
∑

j εjkj =
0. Since more than one of the εi are different from 0 for ε ∈ E ′, it
follows that one of ki, say k1 for simplicity, can be written as k1 =
∑β+γ−1

i=1 ε̃iki =: f(k) for some ε̃i ∈ {−1, 0, 1} which depend on ε.
Therefore,

ρε(λ) ≤ const.(1 − λ)−2

∫

Jβ+γ−2

β+γ−1
∏

i=2

dki

1 − λχ(ki)

1

1 − λχ(f(k))
. (31)

Let δ > 0 and let Uδ = {〈ki, Σki〉 ≤ δ, i = 2, . . . , β + γ − 1}. The
integral over Uδ can be rewritten using again the expansion (20) and
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several easy substitutions as

∫

Uδ

β+γ−1
∏

i=2

dki

1 − λχ(ki)

1

1 − λχ(f(k))

∼
δ→0

const.(1 − λ)−1

∫

Bβ+γ−2

δ/
√

1−λ

β+γ−1
∏

i=2

dki

1 + k2
i

1

1 + (f(k))2
,

(32)

where Br is the ball in R
2 with radius r centered at the origin. Integrat-

ing over all ki that are not contained in f(k), that means over all ki such
that εi = 0, say there is ωε of them, we get a factor (log 1/(1 − λ))ωε .
The integral over the remaining ki’s stays bounded as λ → 1. There-
fore, the last expression is

∼
δ→0

const.(1 − λ)−1(log 1/(1 − λ))ωε , (33)

It can be seen easily that the integral over the set Jβ+γ−2 \Uδ diverges
at most as fast as the integral over Uδ. The equations (31) and (33)
yield

ρε(λ) ∼
δ→0

const.(1 − λ)−3
(

log 1/(1 − λ)
)ωε

. (34)

The Tauberian theorem then implies that a(ε, n) = O(n2(log n)ωε).
If ωε ≤ 2α−4, this bound would be strong enough to imply (24). This

is however not always the case. There is one exception: β = γ = α
and εi 6= 0 only for two values of i, call them u, v. In this case
ωε = 2α − 3. So that we cannot ignore the negative term in (25), and
the computation must be refined. For simplicity we assume that u < v
and εu = 1, then εv = −1. Using again the Markov property we get
for the contribution of this ε

∑

m∈Mα,α(ε,n)

∑

z∈Z2

P[Smu = z]P[Smv = −z]
2α−1
∏

i=1
i/∈{u,v}

P[Smi = 0]

− P[Smu+···+mv = 0]
2α−1
∏

i=1
i/∈{u,v}

P[Smi = 0] =: bu,v(n). (35)

Setting ρu,v(λ) =
∑∞

n=0 λnbu,v(n), after a standard computation we get

ρu,v(λ) = const.(1 − λ)−2
(

log
1

1 − λ

)u−2+2α−v

{
∫

1

1 − λχ(−ku)

v−1
∏

i=u

dki

1 − λχ(ki)

−
∫

dku

(1 − λχ(ku))2

v−1
∏

i=u+1

dki

1 − λχ(ki)χ(ku)

}

.

(36)
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Here, the logarithmic factor on the first line comes from those terms
in (35) where i < u or i > v. On the second line the summation
over z gave kv = −ku. Narrowing the domain of integration to a
δ-neighbourhood of the origin (which gives as always a leading diver-
gence), using again (20) and some obvious substitutions, we get that
the difference in the braces is of the order of

(1 − λ)−1

∫

Bv−u
δ/

√
1−λ

1

1 + k2
u

v−1
∏

j=u

dkj

1 + k2
j

[

1 −
v−1
∏

i=u−1

1 + k2
i

1 + k2
i + k2

u

]

. (37)

The difference in the brackets can be telescoped as 1− abc = (1− a)+
a(1− b) + ab(1− c), giving a sum of several integrals. All of them can
be shown to be at most O((log 1/(1 − λ))v−u−2). That is the power
smaller by one than if the difference in the brackets was replaced by
one. This is exactly what we needed. The usual reasoning then gives
that bu,v(n) = O(n2(log n)2α−4) and since there is only finitely many
u’s and v’s the proof of (24) is finished.

Strong law of large numbers for α ∈ N. The result for α = 1 is trivial,
therefore we consider α ≥ 2. Let nk = exp kθ, 1/2 < θ < 1. Then by
Chebyshev inequality

∞
∑

k=0

P
[(

Lnk
(α) − ELnk

(α)
)

≥ εELnk
(α)

]

≤ C(ε)
∞

∑

k=0

(log nk)
2 < ∞.

(38)
Therefore Lnk

(α)/ELnk
(α) → 1 a.s. as k → ∞. Let now nk ≤ n <

nk+1. Then

Lnk
(α) − ELnk+1

(α) ≤ Ln(α) − ELn(α) ≤ Lnk+1
(α) − ELnk

(α). (39)

The absolute value of the two extremal terms is a.s. for all n large
enough bounded by

εLnk+1
(α) + ELnk+1

(α) − ELnk
(α) ≤ 3εELn(α). (40)

This finishes the proof of Theorem 1 for α ∈ N.

Proof of Theorem 2. We want to show that the distribution of

Zn := 2π
√

detΣ
`(n, Yn)

log n
(41)

converges a.s to the exponential distribution. We compute integer mo-
ments of Zn.

E[Zα
n |X] = (2π

√
detΣ)αR(n)−1

∑

x∈Z2

`(n, x)α

(log n)α

=
(2π

√
detΣ)α−1

∑

x `(n, x)α

n(log n)α−1

2πn(log n)−1
√

detΣ

R(n)
. (42)

By Theorem 1 and (6) the last expression converges a.s. to Γ(α + 1).
Since the α-th moment of the exponential distribution with mean one
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is Γ(1+α), and this distribution is determined by its integer moments,
Theorem 2 is proved.

Proof of Theorem 1 for α ≥ 0. This proof is now trivial. It is sufficient
to read (42) from right to left and use the fact that by Theorem 2 and
by the convergence of integer moments for all integers larger than α,

lim
n→∞

E[Zα
n |X] = Γ(α + 1) (43)

a.s. for all α ≥ 0. ˜
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