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Abstract

A new technique, combining the global energy and entropy balance equations
with the local stability theory for dynamical systems, is used for proving that
every solution to a non-smooth temperature-driven phase separation model with
conserved energy converges pointwise in space to an equilibrium as time tends to
infinity. Three main features are observed: the limit temperature is uniform in
space, there exists a partition of the physical body into at most three constant
limit phases, and the phase separation process has a hysteresis-like character.

Introduction

This paper deals with the asymptotic behavior of solutions for a phase separation
model which involves the subdifferential of an indicator function. Before precisely
stating our mathematical results and giving their proof, let us briefly recall some
related results in the literature.

Given a nonlinear evolution equation, once we establish the global existence and
uniqueness of a solution, a central issue is to study its asymptotic behavior for large
times. As pointed out in [25], this study can be divided into two categories. The
first category includes the investigations of a single orbit starting from a given ini-
tial datum. In particular, a relevant question is whether the solution converges to an
equilibrium as time goes to infinity. The second category of problems is related to all
orbits starting from any bounded set of initial data, with the intention to see, for in-
stance, whether this family of orbits will eventually converge to an invariant compact
set, which is usually called a global attractor. In the context of classical phase-field
equations, which were first studied by Caginalp [7], we refer to [9], [1], [24] for results
in the first category, and to [3], [4], and [5] for the second category. For other types of
phase-field models, we mention, e. g., [20], [2], [10], [12], [21], [23] for the first category,
and, e.g., [8], [19], [13] for the second category.

In this paper, we stay within the first category, and prove that for any given initial
datum, the solution converges to an equilibrium as time tends to infinity. Our problem
is new in several respects. First, it involves the subdifferential of an indicator function.
It turns out that the usual Lojasiewicz-Simon approach suitable for analytic nonlin-
earities thus seems difficult to apply here, also because the limit asymptotic state may
be discontinuous. Secondly, in our problem the temperature satisfies the Neumann
boundary condition, hence the steady temperature is not uniquely determined as in
the Dirichlet boundary condition case (cf.a similar situation in [20], [24], [23]). In
other words, we have to prove convergence simultaneously for both the temperature
and the order parameter.

In order to overcome the corresponding mathematical difficulties due to these new
features, we propose a new technique, combining the first and the second principle
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of thermodynamics with a local phase dynamics argument, to describe the pointwise
convergence of the order parameter trajectories towards the natural singular values,
with an a priori unknown temperature equilibrium. As a model example, we consider
the following phase-field system for the state variables 6 (the absolute temperature)
and x (an order parameter characterizing the physical phase — see the comments after

Fig.1 below).

O(evl + A(x)) — kA = 0, (1.1)
B0+ 200 + o) 3 5.9, (1.2)
Ax) = Lx+ox(1—x), Ax) = AN(x) = L+a—2ax (1.3)

for (z,t) € 2% (0,00), where @ C RY with N > 1, representing the physical body, is
an open bounded domain with Lipschitzian boundary, Ijo) is the indicator function
of the interval [0,1] (that is, Ijoqj(x) = 0 if x € [0,1], Ijoq(x) = +o0 if x ¢ [0,1]),
and Oljp;) is its (maximal monotone) subdifferential. The specific heat ¢y, heat
conductivity x, latent heat L, phase relaxation coefficient p, mean phase transition
temperature 6., and undercooling/overheating parameter o < L are assumed to be
positive constants. We will see that the exact shape (1.3) of A enables us to simplify
some formulas in Section 4. The argument however remains valid if A is any strictly
concave increasing function in C%([0,1]).

We couple the above system with the homogeneous Neumann boundary condition

00
e 0 on 0% x (0, c0) (1.4)
and initial conditions
0(z,0) = 6°(z), x(z,0) = x°(=), (1.5)

with given functions

00 c W2(Q)NL®(Q), infess{f°(z);zcQ} >0, } 16)
x° € L*(Q), x%(z) € [0,1] a.e.
The free energy density F' corresponding to (1.1)—-(1.3) is of the form
F(6,x) = evb(1—logh) +AG) + Tou(x) — 5 X (v.7)

9
= cyf(1—logh) + Ly (1 — 0_> + ax(1 —x) + fp(x)

c

hence it is of double obstacle type with respect to x as in [22, Sect. VIL.3] with two
local minima at ¥ =0 and x = 1 in the temperature range

PRI . (1.8)
L =4 L ‘
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Figure 1: The “phase component” of the free energy at different temperatures.

Beyond this interval, only one local minimum persists, namely x = 1 for high tem-
peratures, and x = 0 for low temperatures. The values of x outside [0,1] are not
accessible due to the term Ipq)(x) in the free energy. Figure 1 shows the shape of
F(6,x) for different values of 8, not accounting for the purely caloric component
cv8(1 —log §), which only produces vertical shifts in the diagram.

The order parameter x can thus be interpreted as a characterization of the phase: the
body € is in high temperature phase at point z and time ¢ if x(z,t) =1, and in low
temperature phase if x(z,t) = 0, while the intermediate values of x correspond to a
mixture of both. Intuitively, the mixtures can be expected to be unstable because of
the concave character of the free energy in the open interval (0,1).

Similarly to the general scheme in [6], we associate with the free energy density F
given by (1.7) the densities of internal energy U and entropy S in the form

U,x) = evd+Ax)+ lon(x), (1.9)
L
S0,x) = cvlogﬂ—l—e—x. (1.10)
Using the identity
BT y(x(t)) = €(t)ix(t) = 0 a.e., (1.11)

which holds for every absolutely continuous function y and every measurable selection
£(t) € 01 1)(x(t)), we may interpret Eq. (1.1) as the energy balance

U +divg = 0 (1.12)

with Fourier heat flux q = —kV§. Eq. (1.2) describes the phase relaxation dynamics
similarly as in [22, Sect. V.1]. Using (1.11), we easily check that every solution of
(1.1)—(1.6) with the properties stated in Theorem 2.1 below (6 > 0, in particular)

satisfies the entropy balance equation

k|VE?
62’

8,5 + div % = %(atx)z + (1.13)



where the entropy production term on the right-hand side is non-negative in agreement
with the Second principle of thermodynamics.

The main result of this paper is Theorem 2.2 below on the convergence of (6, x)
towards an equilibrium (6, Xoo) as t — 0o. In particular, if 6, is within the interval
given by (1.8), the range of o consists of three points at most: the two pure phases
x =0 and x = 1, and possibly one intermediate phase.

We obtain the convergence result from the energy conservation principle in cases where
phase transition can only take place in the mixture (Steps (i)—(iii) of the proof).
Otherwise, in order to get a possible mass exchange between the pure phases under
control, we take also the entropy balance into account (Steps (iv)—(viii)).

In Section 2 we state the main result. Section 3 is devoted to a uniform estimate
of the difference between the local temperature and the mean temperature using a
semigroup argument, and the convergence of the solution towards an equilibrium is
proved in Section 4.

2 Main result

The exact values of the physical constants in (1.1)—(1.3) are not relevant for the qual-
itative behaviour of the solution. We therefore assume that

cv=k=L=p=6.=1, 0<a<l, (2.1)
Q| =1, where |- | denotes the Lebesgue measure in RY . (2.2)

In other words, system (1.1)—(1.3) now reads

0,0+ A(x)) — A = 0, (2.3)
Orx + A(x) +0lon(x) 2> 0, (2.4)
Alx) = x+oex(l—x), Ax) = 1+a—2ax. (2.5)

This is a special case of the system
0:(0 + Fr[w]) — A8 = 0, (2.6)
w(6) 0w + filw] + 8fslw] = 0 2.7

with hysteresis operators fi, fa, F1, which was investigated in [16]. Indeed, (2.3)-(2.5)
can be transformed into (2.6)-(2.7) by introducing an auxiliary function

w(z,t) = /()(H(m,T)—)\(X(m,T))dT. (2.8)

Then the inclusion

Orx + 61[0,1](X) > Gw, x(0)= XO (2.9)

4



S

0 w

Figure 2: A diagram of the stop x = s[x%,w] with x° = 0.

defines the so-called stop operator x = s[x°, w| (see Figure 2), and we obtain (2.6)-
(2.7) with Fyfu] = A(slx®,w]), filuw] = Molsw]), folw] = —1, pu(8) = 1, see [15
for details.

The main result in [16] was Theorem 2.1, which reads (with respect to the present
notation) as follows.

Theorem 2.1. Let Q C RY be an open bounded domain with Lipschitzian boundary,
and let 6°,x° satisfying (1.6) be given. Then system (2.8)-(2.5), (1.4)-(1.5) admits
a unique global solution (6,x) € [L°(2 x (0,00))]? such that Oyx € L=(Q2 x (0,00)),
0:0,A0 € L*(Q2 x (0,00)), 8(z,t) > 0,x(z,t) € [0,1] a.e. in Q X (0,00), and the

function

Ve = [ (1987 + o) (2, 0) do (2.10)
Q
has the property
/ V(t)dt < oo, Var V> < oo, limsupess V(s)=0. (2.11)
0 [0700) t—oo s>t

Note that V(t) may be discontinuous. This makes the proof of the convergence of V(t)
towards zero technically complicated, and special dissipation properties of hysteresis
operators have to be taken into account.

The total energy £(t) and entropy S(¢) are given by the respective formulas
&0 = [ (0+060)(@0)do (2.12)
Q
S(t) = / (log 0+ x) (z,t)dz . (2.13)
Q

Integrating (2.3) and (1.13) over Q and using the boundary condition (1.4) we obtain
Et) = £(0) = & (2.14)
S(t) > 0 ae. (2.15)

We further have logd < 6, x < A(x) for all admissible arguments, hence S(¢) is a
bounded non-decreasing function, and there exists So, < & such that

S(t) /S as t— o00. (2.16)



The above balance principles for £(¢) and S(t) will play a crucial role in Section 4 in
the proof of the following main result of this paper.

Theorem 2.2. In addition to the hypotheses of Theorem 2.1, assume that Q C RY is
of class C* if N > 4. Then there ezist a constant 8., > 0 and a function Xo € L>(Q)
such that the solution to (2.83)-(2.5), (1.4)-(1.5) has the properties

t1i>r£10 ilelg 10(z,t) — 0| = O, (2.17)

t1i>r£10 x(z,t) = Xo(z) a.e., (2.18)

o € MXoo()) + 0I01)(Xeo(2)) @ (2.19)
000 A

Figure 3: A diagram of the equilibrium set (2.19).

In other words, condition (2.19) means that xo(z) = 1 a.e. if 0 > 1 + a, and
Xoo(z) =0 a.e. if o <1—a. For 1 —a <60, <1+ a (see Figure 3), the domain
) is decomposed into = Ao U By U Co , With Xoo(z) =0 for z € As, Xeolz) =1
for z € Cw, and xeol(z) = (1 + @ — 0x)/(2a) for z € By . In fact, we will see in the
proof, in particular in Lemma 4.1 below, that the intermediate value of x between
0 and 1 is unstable with respect to small perturbations and is actually unlikely to
persist for ¢ — 0o except for some particular cases, like for instance:

o 9%(z) = § = const., § € A\(x°(z)) + 8lp1(x°(z)) a.e. Then the solution re-
mains constant in time 6(z,t) = 6°(z), x(z,t) = x°(z) independently of the
distribution of x°(z) (time-independent solutions).

o 0°(z) =8 = const., x°(z) = x = const. If & is such that

l4a < & < 2-—a, (2.20)

then the function I'(x) = & — A(x) — A(x) has only one null point xo in (0,1),
I'(0) > 0, I'(1) < 0, hence the solution x*(t) of the differential equation

X)) =T(x"(¥), x*(0)=x, (2.21)

stays in (0,1) for all ¢t > 0, limiseo X*(¢) = X0, and x(z,t) = x*(¢), 0(z,t) =
E — A(x*(t)) is a solution to (2.3)-(2.5), (1.4)—(1.5) which entirely lies in the

unstable region (space-independent solutions).
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The two above examples seem to be quite isolated, and we make the following conjec-
ture.

Conjecture. For a generic set of initial data (for example a set of second Baire’s
category like in [14, Remark 5.3]), the Lebesgue measure of the set By, is zero.

3 Space variation of the temperature

We define for ¢ > 0 the mean temperature

fa(t) = /QH(m,t)da:. (3.1)

Note that we use Hypothesis (2.2) here and in the sequel. The function fq is positive,
bounded, and from (2.10), (2.12), (2.14), and Hélder’s inequality it follows that

ba(®)] = | [ Axle, ) dix(et) da| < (1) V), (3.2)
Q
hence, by Theorem 2.1,
/ 0a(t)|?dt < oo, lim supess |fqa(s)] = 0. (3.3)
0 t—oc0 s>t

This is not enough to conclude that fq(¢) converges to a limit as t — oo, and we need
further estimates. We stay in the framework of the usual spaces LP(Q), LP(Q; RY)
with 1 < p < o0, and denote by |- |, the standard norm in both these spaces. We
also introduce the closed subspaces L5(€Q) of L?(Q) consisting of zero mean functions

IE(Q) = {v € IP(Q); /Qv(ac)dac = 0} . (3.4)

We define in Q x (0, 00) auxiliary functions
v(z,t) = 60(z,t) —falt), (3.5)
flz,t) = —0(A(x(z,1)) + 0alt)), (3.6)

6°(y (3.7)

S
(e}
PammnY
)
o
Il
:o\

Then v is the solution of the problem

dv—Av = f(z,t) in Qx (0,00), (3.8)

g—z = 0 on 89 x (0,00), (3.9)
/v(az,t)dac = 0 for a.e.t>0), (3.10)
’ v(z,0) = %(z) in Q. (3.11)



For the reader’s convenience, we recall the following estimate for linear parabolic
equations as a special case of the general theory explained in [17]. In all what follows,
we denote by Ci,C,,... positive constants independent of ¢.

Proposition 3.1. Let r > p > 2 be given such that 1/r > 1/p — 1/N, and assume
that Q is of class C* if p > 2. Let v be the solution to (3.8)—(8.11) with some
f € L>®(0,00; L§(Q)). Then there ezists C > 0 independent of ¢ such that

Vu(t)], < C for t>1.

Proof. Consider the semigroup T,(t) in LE(Q) for 1 < p < oo generated by the
Laplace operator with the homogeneous Neumann boundary conditions. The operator
A is sectorial for p = 2 by [17, Proposition 2.1.11] and for p > 2 by [17, Proposition
3.1.3], hence T,(¢) is analytic. The solution v is given by the Duhamel formula

v(t) = Tp(t)vo + /Ot Tp(t —s) f(s)ds. (3.12)

By [17, Propositions 2.1.1, 2.2.15], there exist positive constants C; and p such that
for every ¢ € LE(f2) and t > 0 we have

A0, < e, (3.13)
VTG < L eei,. (3.14)

Vi

Set n = N(1/p — 1/r) € (0,1). By the Gagliardo-Nirenberg inequality (see [18],
[11]), there exists Cy > 0 such that every function w € W?2P(Q) N L5(Q) satisfying
homogeneous Neumann boundary conditions on 0f) fulfils the following inequality:

Vwl|, < O, (|Vw|:,_" |Aw|z + |Vw|p) ) (3.15)
From (3.13)—(3.15) we thus obtain for all £ € LE(Q2) and ¢ > 0 that
VI(t)€l < Ca(t™m” 4272 em ], (3.16)

Using (3.12)—(3.16) we conclude for ¢ > 1 (the argument works for ¢ N\, 0+ only if v
has the corresponding regularity!) that

Vo) < [VTHE)vols + / VTt — 5) f(s)], ds (3.17)
< G (|vo|p ¥ / (6 — 5) 4002 4 (1 — 5)712) a9 | £(5)], ds)

t
< Cs (1+/(3_(1+")/2—|—s_1/2) e—95d3> < Cs,
0

and the proof is complete. [ |



Corollary 3.2. Under the hypotheses of Theorem 2.2, we have

lim sup |0(z,t) — ba(t)] = 0.

t—o0 zeQ

Proof. By Theorem 2.1, the function f given by (3.6) belongs to L*(Q x (0,00)) N
L*(2 x (0,00)). For N<3 weput p=2, ¢g=4, r=5, for N >4 we fix arbitrary
p € (N/2,N) and r > ¢ > N such that 1/r > 1/p —1/N. For ¢t > 1 we have by
Proposition 3.1 that |VO(¢)|, < C7. Using the interpolation inequality

-2
V), < [VOERIVOET with v="—, (3.18)
lr‘_

and Theorem 2.1, which guarantees that |V(t)|s — 0 as ¢ — oo, we obtain that
lim; 400 |[VO(t)lg = 0. The assertion follows from the continuous embedding of W*4(Q2)
into C(Q) and the fact that the function 6(-,t) — 0q(t) has zero mean value on Q. ®

Remark 3.3. In the case p = 2, we can prove the inequalities (3.13)—(3.14) directly by
considering e. g. the Fourier expansions into the orthonormal system of eigenfunctions
of the operator —A in L2(Q) with the Neumann boundary conditions.

4 Convergence

In this section, we prove that fqg(¢) converges to a limit 6 as ¢ — oo and show that
this implies the pointwise convergence of x(z,t) as well. We treat Eq. (2.4) for each
z € () as a one-dimensional dynamical system of the form

X(t) + A(x(t)) + 0lpx(x(t)) > 0(t), }

X(0) = ° € [0,1] S

with a given function 8§ € L*(0,00), and derive the following crucial estimate.

Lemma 4.1. Let 0,x satisfy Eq. (4.1), and let there exist € > 0 and to > 0 such
that

6(t) > Ax(to))+e for a.e. t€ (to,to—l— é) ) (4.2)

Then there exists t; € [to,to + 1] such that x(t) < 1 for t € [to,t1), x(¢t) =1 for
t € [t1,t0 + ¢]. Simalarly, if

0(t) < Ax(to)) —¢ for a.e. te€ (to,to—l— é) ) (4.3)

then there exists t; € [to,to + %] such that x(t) > 0 for t € [to,t1), x(¢t) = 0 for
t € [ti,to+ 1]



Proof. 1t can easily be shown that Eq. (4.1) has a unique absolutely continuous
solution x (see e.g. [15]). Rewriting the identity (1.11) in the form

x()(x(t) + A(x(2)) — 6(t)) = 0 a.e. (4.4)
and using the fact that both A(x(¢)) and 6(t) are bounded, we see that x belongs to
Whee(0, 00).

Assume first that (4.2) holds, and that there exists ¢; € [to, to—l—%) such that x(t;) =1.
The function A is decreasing, hence for a.e. ¢ € (¢1,%0 + %) we have
0(t) — M1) = 8(t) — Ax(t)) > €.
In particular,
0(t) — A1) € Olp(l),
hence the constant function x(t) =1 is the unique solution of (4.1) in [t1,%0 + 1].
If x(t) <1 in [to,to + ¢), we define y(t¢) as the solution of the equation

9(t) = (Ax(to)) — Aw(¥)))" +6(t) = Ax(t0)),  w(to) = x(to), (4.5)

where (-) denotes the positive part. By hypothesis, we have y(t) > ¢ in (to, %0+ %),
hence y is increasing in (to,to + %) and y(to + %) > 1. Set ty = sup{t € (to,to +
1); y(t) <1}. As X is decreasing, we obtain y(t) = —A(y(¢)) + 6(t) in (%o, t2), hence
y(t) = x(t) in [to,?2]. We have in particular y(t2) = x(t2) =1 and ¢, = o+ .

The case (4.3) is analogous. We replace (4.5) by

y(t) = —(AMx(to)) = Aw(2)))™ +0(t) — Ax(%)),  y(to) = x(to) - (4.6)

and argue as above. [

The rest of the paper is devoted to a local analysis of a fixed solution to (2.3)-(2.5),
(1.4)-(1.5) with properties as in Theorem 2.1. We will assume that x° is defined for
all z € Q, so that x(z,t) is also defined for all z € 0 as the pointwise solution to
(2.4).

Lemma 4.2. Let 0q be asin (3.1), and for t > 0 set
Alt) = {z€Q; x(z,t) =0},
B(t) = {z€9Q;0<x(z,t) <1}, (4.7)
C(t) = {z€Q;x(z,t)=1}.

If
liminf Og(t) > 1—«a, (4.8)

t—oc0

then there ezists t > 0 such that for t1 >ty > t we have C(t1) D C(to). Moreover,
putting Coo = U,5; C(t), we have

limsup Oq(t) — AM(x(z,t)) < 0 VzeQ\C(Cu. (4.9)

t—oc0
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Similarly, +f
limsup Oq(t) < 1+ «a, (4.10)
t—oc0
then there ezists t > 0 such that for t; > to > t we have A(t1) D A(to). Moreover,
putting Ae = U,z A(t), we have

liminf Oq(¢) — A(x(z,t)) > 0 VzeQ\ A . (4.11)

t—oc0

Proof. We assume first that (4.8) holds, fix € > 0 sufficiently small, and find £>0
such that for (almost all) ¢ > ¢ we have

HQ(t) Z 1—0£—|-28,
6a(t)] < €%/2, (4.12)

t)]
|0(z,t) — Oa(t)] < €/2 forall z € Q.

Let to > % and z € C(to) be arbitrary. We have for ¢ > ¢, that

0(z,t) — Mx(z,to)) = 8(z,t) — A1) > 1 — a + 2 — |8(z,t) — fa(t)] — (1 — a) > ¢,

hence, by Lemma 4.1, x(z,t) = 1 for all ¢ € [to, 2o+ 2]. We can continue by induction
and obtain C(t;) D C(to) for all t; > ¢o.

Let now z € Q\ C be fixed, and consider the difference
B(z,t) := 8a(t) — Mx(z,t)) for t>1. (4.13)

Assume for contradiction that there exists 6 > 0 and a sequence t, — oo such
that B(z,t,) > 26 for all n. We find ng sufficiently large such that |00(t)| < 62/2,
|0(z,t) — 0a(t)| < 6/2 for (almost all) ¢ > t,,, and obtain from Lemma 4.1 that
x(z,tn, + %) = 1 in contradiction with the choice of z € Q\ Cw, and (4.9) follows.
The case (4.10) is similar. [

Remark 4.3. We see from the above Lemma that x can switch from 1 to 0 only if
the value of 8 is below 1 — a, and from 0 to 1 only if 8 is above 1 4+ a. The phase
separation process thus exhibits a hysteresis-like behavior.

We conclude the proof with a case distinction in eight consecutive steps. Steps (i)—(iii)
deal with the situation where no mass exchange between the pure phases x = 0 and
x = 1 takes place after a finite time, and the convergence towards the equilibrium then
follows from the energy balance (2.14) alone. Mass exchange can only occur when the
temperature oscillates around the critical values 1+ a, and in the corresponding Steps
(iv)—(viii) we also use the entropy balance (2.16) to prove the stabilization result.

Step (i) Assume that there ezists a sequence t, — oo such that
0 = limp 00 0a(tn) > 1+ .

11



In view of (3.3) and Corollary 3.2, we may assume, passing possibly to a subsequence,
that

fata) — 6] < %,
6a(t)] < s for a.e. t > t,, (4.14)
0(z,t) — ba(t)] < 5= in Q X (tn,00).

We fix ng such that fq(t,) > 1 —I—a—l—% for n > ng. For z € Q and t € [tn,tn + n
we then have

B(z,t) — Ax(z, 1)) > 0(z,t) — 0a(t) + ba(t) — fa(tn) + fa(tn) — A(0)

S 1 (t t)1—|—2>1
- 2n "om?2 ' pm T o’

hence, by Lemma 4.1, we have x(z,t, +n) = 1 for all z € Q and n > ng. Using
(2.14) we obtain that

Eo=E(tn+n)=0a(tn+n)+1 Vn > ng, (4.15)
where |0g(t, +n) — 8] < 3/(2n) by (4.14). Letting n — oo thus yields that
Eo=0+1. (4.16)

On the other hand, for all ¢ > 0 we have & = £(t) < Hg(t) + 1, hence 6q(t) > g for
all t > 0. In particular, we have x(z,t) =1 and Oq(t) = § =: 0 for all z € Q and
t > tn, + no. In this case, we see that stabilization of x and of the mean temperature
occurs in finite time, and 6(z,¢) converges to 0, exponentially as solution of the
linear homogeneous heat equation.

Step (ii) Assume that there ezists a sequence t, — oo such that
0 = limp 00 0a(tn) <1 —a.

We argue in the same way as in Step (i). Note only that we obtain x(z,¢) = 0 for all
z € Q and all ¢ sufficiently large, hence & = 0 as a counterpart of (4.16). Since the
initial energy is positive, we necessarily have 6, > 0.

Step (iii) Assume that 1 — a < liminf; o 0a(t) < limsup,_,o, 0a(t) <1+ a.

Let 6 € (1 —a,1+a) be any element of the w-limit set of fq(t), and let ¢, /" oo be
such that 8q(t,) — 6. With the notation of Lemma 4.2 we have for all n that

o = Hn(tn)—l—/B(t )A(X(az,tn))dm—l—|C(tn)|. (4.17)

Set
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For z € By, we have by Lemma 4.2 that

lim 14+ a—2ax(z,t,) —ba(t,) = 0, (4.18)
n—oo
hence .
lim x(z,t,) = —(1+a- 9). (4.19)
Using the formula
A 1(1+ f)) = 1((1+ )2 — 6%) (4.20)
2c “ - da “ ’ '

we obtain, after passing to the limit in (4.17), that

E = 0+ %((1 +a)? — %) + |Col - (4.21)
The values of &, |Bwl,|Co| are independent of the choice of the sequence ¢, / .
Hence, (4.21) is an equation for § which admits at most two solutions. Since the w-
limit set of fq(t) is connected, we necessarily have lim; o 0q(t) = o, where 8, is a
solution of (4.21). We then have limi o x(z,t) = 0 for z € Ay, limiseo x(,t) =1
for z € O, limyyoo x(2, 1) = i(l +a—0y) for z € By .

Step (iv) Assume that there ezists a sequence t, / 0o such that
limy o0 Oa(tn) = 1+ .

Passing to a subsequence, if necessary, we may assume that (cf. (4.14))

Oa(ts) — (1 + )| < .
6a(t)] < 5 for a.e. t > ty, (4.22)
0(z,t) — ba(t)] < 5 in Q X (tn, o),
and define the sets
A, = {:IJ €Q; X(:Il,tn) < az_n

C, = {mEQ;X(az,tn)Zl—\/%—l}.

For z € B,UC, and t € [t,,t, + n] we have

2 2 2
0(e,8) ~ A(x(@:ta)) > 1+a— 2~ Ax(o,t)) = 2ax(z,ta) — > > 2,
n n n
and from Lemma 4.1 we obtain
x(z,th+n) =1 Vee B,UC,. (4.24)

13



We now compare the internal energies at times ¢ = ¢, and ¢ = ¢, + n. We have

Eo = E(ta) = ba(tn) + / Alx(z,t)) dz (4.25)
< Ba(ta) + [Ad A (j—n) T |Ba| A (1 - %ﬁ) +ICl,

and from (4.24) it follows that

& = Etn+n) = Hg(tn—l—n)—l—/ Ax(z,tn +n)) dz (4.26)

An,UBrUCH

hence
Bal (1A (1= —2)) < JAuA(2) 4+ 0a(t) — a(tatn) < A2+
" Vn - " an fi\tn altn TH) = an on
(4.27)
Using the inequalities
Ax) <(Q+a)x, 1-Alx)>(1—-a)(l-x), (4.28)
we obtain from (4.27) that
1—«a 1 /214+a) 1
B, < — (AT, ) 4.2
e < o () (429)

hence limy, oo |Bn| = 0. Letting n — oo in (4.25), we see that the limit ¢* :=
lim,, 0 |Cr| exists and satisfies the identity

E = 14+a+c. (4.30)

Using the fact that 6(z,¢,) converge uniformly to 1 + a as n — oo, we also obtain

So = lim S(t,) = lim log@(a:,tn)daz—l—/ x(z,tn)dz  (4.31)

n—oo n—oo [q A UBLUC,,

= log(l+ a)+c".

Step (v) Assume that there ezists a sequence t. /" oo such that
limy e Oa(tl) =1 — a.

As in Step (iv), we assume that

ba(t,) — (1) < 1,
6a(t)] < 55 for a.e. t > t! (4.32)
6(z,t) = ba(t)] < 35 in § x (¢, 00),
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and define the sets
4, = {seix(et)< &},
B, = {se9; L <xmu)<1-2}, (433)

C, = {z€Q;x(z,ty)>1-2}.

For z € A, U B], and t € [t ,t! + n| we have

B(z,t) — Ax(e, ) < 1—a+ = —Ax(a, 1) = 2a(x(a,th) — 1)+ = < —,
n n n
and Lemma 4.1 yields
x(z,t,+n) = 0 Voee AL UB,. (4.34)
We continue as in Step (iv) and obtain
fo = E(t) = talt)+ [ Ax(et))da (4:35)
Al uBlucC!
> Gat) 4 1BUA (=) +iona (- 2
- " " V/n " an /)’
and from (4.34) it follows that
& = E@L+n) < Ot +n)+ / Alx(z,t. +n))dz (4.36)
ArUBLUC!

< ba(t, +n)+|Cl,
hence, by virtue of (4.35)-(4.36) and the inequality A(x) > x, we obtain that

1 2 2 1
TR 1B < L IC alty m) —alt) < ko (437)

an  2n’
hence lim, o |B,| = 0. Letting n — oo in (4.35), we see that the limit ¢, :=
lim, 00 |C}| exists and satisfies the identities

& = l—a+ec., (4.38)
Seo = lim 8(t)) = lim [ logf(z,t,)dz + / x(z,t.)dz  (4.39)
n—o0 n—oo fo AL uBlucCh

= log(l —a)+cs.

Note that the situation in Steps (iv) and (v) is different from Step (iii) in the sense
that there is a priori no inclusion between the sets Cp, and Cp, or between C, and
C,, for n; < ny; only their Lebesgue measures converge.

Step (vi) Assume that limsup, o 0a(t) =1+ o, liminf; ;o 0a(t) =1 — a.
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The hypotheses of both Step (iv) and Step (v) are fulfilled, hence there exist ¢, >
c* > 0 such that

& = 1l—a+ce = 14+a+c*, (4.40)
So = log(l—a)+c = log(l+a)+c*. (4.41)

We have used the fact that, due to (2.16), the limit value S, of the entropy is
independent of how t converges to infinity. From (4.40)-(4.41) we obtain the equation
log(1+ a) —log(1l — &) = 2 which only holds if & = 0, so that this case never occurs.

Step (vii) Assume that limsup,_ . 0a(t) =1+ a, liminf; o 0a(t) =0 > 1 — .

With the notation of Lemma 4.2 put
Do = Q\Cw. (4.42)

Let t, be as in (4.22). We have lim, ,o X(2,tn) = 1 for € Cy by definition, and
limy o0 X(2,tn) = 0 for z € Dy by (4.9). From (4.30)-(4.31) it follows that

o = l+a+|Cx|, Sew = log(l+ a)+ |Cul. (4.43)

We now consider any f e 0,1+ a], and find a sequence t! oo such that

Oa(t) -0 < %,
6a(t)] < o fora.e. t >/, (4.49)
0ot~ ba(t) < £ m0x (), |
C\C(tn)] < &
for all n € N. As in previous steps, we define the sets
4 = {oe D x(a,t) < &,
B! = {azEDoo;ﬁgx(m,tﬁ)<i(l—l—a—é—%)}, (4.45)

o = {azeDm;X(m,tﬁ)Zi(l—l-a—é—%)}.

For z € A” U B” we have § + 3/n < Ax(z,t0)), hence 0(z,t) — AMx(z,tl)) < —1/n
for ¢t € [tI,t! + n]. From Lemma 4.1 we conclude that

x(z,th+n) = 0 Vze Al UB/. (4.46)

For z € C]] and 7 € [t!,t! + n| set

n!'n

Sn(z,7) = 0 — Ax(z,7)), (4.47)



and assume that §,(z,7) > 4/n for some (z,7) € C! x [t!,t! + n]. Then 6(z,t) —

AMx(z,7)) > 1/n for t € [7,7 + n], and Lemma 4.1 yields that x(z,7+n) =1 in
contradiction with the hypothesis CJ/ C Do, . We thus have é,(z,7) < 4/n, that is,

x(z,7) < Zi (1 ta—f+ f) V(z, 7)€ C" x [ +n].  (4.48)
mn

a

We now compare again the energies and entropies at times ¢! and t” +n. By (4.46)-

(4.48) we have

fo = £(t) = ba(t)+ [ Az, ) do (4.49)
AYuBNUCHUC
> Oq(th)+ |Bh| A L +|CHIA L 1+a—é—§ + O]
E = E{l4+n) < Oa(thl +n)+ / Alx(z,t +n))dz (4.50)
AUB!UC!UC o

1 ~ 4
< Hg(tﬁ—l—n)—l—|C,'1'|A<— <1+a—6+—>> + [Col -
2 n
As in Step (v), we conclude that lim, o |B)| =0, lim, e |Cl] =: ¢4, and
4 1 i A, G 2 52
& = 0—|—c*A(2a (1—|—a—0)) +Coo| = 6+ ((1—|—a) ny ) +[Col. (4.51)
We further have

S(th) = /Qlog 0(z,t)) dz + /A x(z,t) dz , (4.52)

TUBHUCHUC

which for n — oo yields
A Cx A
Seo :10g0—|—%(1—|—a—0)—|—|000|. (4.53)
We now combine (4.43) with (4.51) and (4.53), and obtain

lta—0 = ;—;((1+a)2—é2)

. . (4.54)
log(1 4+ a) —logd = 2“—;(1—|—a—0).
We either have ¢, = 0 and ézl—l—a, or ¢, > 0 and
A l1+a—40
log(1+a) —logh — 2-12"Y (4.55)
14+a+86

The unique solution of Eq. (4.55) is again § =1+ o, hence lim;_,o0 ba(t) =1+ a.

Step (viii) Assume that liminf; ;o 0a(t) =1 — o, limsup,_, Oa(t) = <1+a.
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Referring to Lemma 4.2, put
Goo = O\ A (4.56)

For t! as in (4.32), we have lim, o Xx(z,t) = 0 for z € A, by definition of A,
and lim, 0 x(z,t),) =1 for € G« by (4.11). Formulas (4.38)-(4.39) then yield

Eo = 1—a+|Gel, Se = log(l—a)+|Gul. (4.57)

We continue as in Step (vii) choosing any b € [l — @,f] and a suitable sequence
tw' /' oo with properties analogous to (4.44), and define the sets

A = {o€Guix(et) <& (1+a-6+2)},
BY = {0€Gui & (1+a—0+2) <x(ot) <1- L}, (4.58)
cl = {mEGm;X(m,tﬁ')Zl—ﬁ}.

By Lemma 4.1, we have again x(z,t” +n) =1 forall z € B/ UC!, and

o) > - (1 ta—f- é) V(z,7) € A" x [ " 1 n]. (4.59)

2c0 n

The energy balance now reads

& = et = balt) + | Alx(a, ) da (4.60)

AMUBIIUCH UA g

1 ~ 3 1
0 t’” AIIIA . 1 _0 e BIIIA 1__
) +14210 (5 (1+a=842) ) imria (1- )
O+ 14w\ A

IN

& = E{V+n) = Hg(tﬁ'—l—n)—l—/ Alx(z,t) +n))dz (4.61)

AIUBIIUCHU Ao
1 ~ 4

>ttt n) + 14710 (o (1+a— 8- 1) ) 182+ e,
a n

hence |B!| — 0 as n — oo. Selecting a subsequence, if necessary, we obtain |AY| —
a**, |C] — ¢, a** + ¢ = |G|, and

& = lim Oa(t)) + / Alx(z, ") dz (4.62)
n—roo AMUBIUCH U A
A a’** 2 H2 * ok
= 0+ ((1+a)—0)+c ,
a
Seo = lim [ logb(z,t.)dz + / x(z, 1) dz (4.63)
n—e Ja AUBIUCH UA o
a a** a
= logf + (1—|—a—0)—|—c**.
2c
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Combining (4.62)—-(4.63) with (4.57), we have

1—a—l—a**—é = ‘z; ((1—|—a)2—92)

. . . (4.64)
log(l —a)+a* —logd = 5 (1—|—a—0),
that is,
l—a—6 = ‘Z:((l—a)z—ﬂz)
R . R (4.65)
log(l —a) —logf = % (1—a—0),

and we argue as in Step (vii) to conclude that § =1 — «.

This enables us to finish the proof of Theorem 2.2. From Steps (i)—(viii) it follows that
there exists 0., > 0 with the desired properties. The pointwise convergence of x(z, 1)
as t — oo has already been proved in the cases where 6, # 1+ a. For 6, =1+«
we go back to Step (vii) with § =1+, and from (4.42), (4.46), and (4.48) we obtain
that x(z,t) = 1 for © € C and x(z,t) = 0 for z € Dy,. The case oo =1 — o is
similar.
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