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ABSTRACT. In the present paper we consider the minimization of gradient tracking
functionals defined on a compact and fixed subdomain of the domain of interest. The
underlying state is assumed to satisfy a Poisson equation with Dirichlet boundary con-
ditions. We prove that, in contrast to other type of objectives, defined on the whole
domain, the shape Hessian is not strictly H/2-coercive at the optimal domain which
implies ill-posedness of the shape problem under consideration.

Shape functional and gradient require only knowledge of the cauchy data of the state
and its adjoint on the boundaries of the domain and the subdomain. These data can
be computed in terms of boundary integral equations when reformulating the underly-
ing differential equations as transmission problems. Thanks to fast boundary element
techniques, we derive an efficient and accurate computation of the ingredients for opti-
mization. Consequently, difficulties in the solution are related to the ill-posedness of the
problem under consideration.

INTRODUCTION

Shape optimization is quite indispensable for designing and constructing industrial com-
ponents. Many problems that arise in application, particularly in structural mechanics
and in the optimal control of distributed parameter systems, can be formulated as the
minimization of functionals defined over a class of admissible domains, see [17, 26, 29],
and the references therein. Especially, the following situations are of interest. Namely,
engineers aim in designing the shape of the domain {2 € R™ of definition for the underlying
boundary value problem such that the state or its gradient achieves prescribed values in
a fixed subregion B C (). Mathematically speaking, this leads to an objective of the type

J(Qu) = /Bj(x,u(x), Vu(x)) dx — inf

with the particular choices j;(u) = (u —uq)? or ja(u) = ||Vu — Vuyl|?, where uq is a given
function. Principal studies for the solution of such problems can be found very often in
literature, we refer e.g. to [26, 22] for a model problem in fluid flow and [15, 18, 20, 25] for
optimization problems in magnetostatics. However, not much effort is spent on analyzing
the nature of these problem type in more detail, for example by investigating the stability
of stationary domains.

While analyzing the L?( B)-tracking type objective j; in the foregoing paper [11], the aim
of the present paper is to incorporate gradient values, i.e., investigating the prototype 7.
We use a boundary variational approach in combination with boundary integral represen-
tations to analyze the shape gradient and the shape Hessian. As an important result we
prove the compactness of the shape Hessian for stationary domains. Since tracking type
functionals allow a reinterpretation as inverse problems as well, see [1] for example, this
refers to the ill-posedness of the underlying identification problem. We emphasize that
these results remain valid even for arbitrary objectives of the type j(X, Vu(x)). Despite
of a considerable progress in accuracy and efliciency of numerical methods, an oscillating



behaviour of numerical solutions was observed for these class of problems. We are con-
vinced that the lack of coercivity for compactly supported objectives is the main reason
for the unsatisfactory behaviour of numerical algorithms.

Our numerical method adapts techniques from previous papers, see e.g. [9, 10], where we
developed efficient algorithms for several elliptic shape optimization problems. Even in
the case of compact gradient tracking functionals, all ingredients of the state equation
that are required for the shape functional and its gradient, can be computed by boundary
integral equations. Using a fast boundary element methods to solve the boundary integral
equations, we gain a efficient and accurate method to compute the shape functional and its
gradient. In particular, the use of boundary element methods requires only a discretization
of the free boundary. To our opinion this is very advantageous since on the one hand,
modern boundary element methods reduce the complexity compared to finite element
methods, on the other hand, strong deformations of the domains are realizable without
remeshing.

The authors like to point out that, in view of the above considerations, future research
on appropriate regularization techniques is highly appreciated for the present class of
problems. Here, appropriate means to find a compromise between regularizing in the
spaces of natural coercivity of the underlying shape Hessian while providing numerical
feasibility.

The paper is organized as follows. In Section 1 we introduce the second order shape calcu-
lus and analyze the problem under consideration. In particular, we prove that the Hessian
of the shape functional is compact, which implies ill-posedness of the shape optimization
problem. According to [12], we cannot expect convergence of a Ritz-Galerkin solution to
the optimal domain since local strict convexity is missing. In Section 2 we consider the
efficient solution of the state and its adjoint. We reformulate the underlying boundary
value problems as boundary integral equations which are solved numerically by boundary
element methods. We state error estimates concerning the proposed discretization. In
Section 3, we carry out numerical tests which confirm that we succeeded in finding a fast
method to solve the considered class of shape optimization problems. However, the results
also indicate the ill-posedness of the optimization problem under consideration.

In the following, in order to avoid the repeated use of generic but unspecified constants, by
C < D we mean that C can be bounded by a multiple of D, independently of parameters
which C' and D may depend on. Obviously, C 2> D is defined as D < C, and C ~ D as
C<Dand C2D.

1. ANALYZING THE SHAPE OPTIMIZATION PROBLEM

1.1. Compact Gradient Tracking. Let 2 € R™ n = 2,3, be a simply connected
domain with boundary I' := 09 and assume a compact set B C €, see also Figure 1.1.

The boundary of B will be denoted by ¥ := 0B. We shall consider the following shape



FIGURE 1.1. The domain 2, the compact set B, and the boundaries I' and .

optimization problem
1
(1.1) J(Q) = 5/ |Vu(x) — Vug(x)[|?dx — inf,
B

where the state u satisfies the boundary value problem

—Au=f in Q,

u=g on I’

(1.2)

and uq is a given function. We suppose uq € C**(B), f € C%*D), and g € C?*(D)
for some a € (0,1), where D D 2 denotes the hold all. Notice that, since B CC  is
assumed for all admissible domains (2, the function ug4 can be extended to uy € C%(D)
such that Uy = 0 holds in a tubular neighbourhood Us(I') for some § > 0.

Following [7, 8] and denoting the outer normal at I' (X) by nr (ngz), the directional
derivative with respect to a sufficiently smooth domain or boundary perturbation field V
reads as

(1.3) VI(Q)[V] = /F(V,nﬂa(gir;waa—ridax.

Herein, the function p indicates the adjoint state. For x on 3, let the notation

[F1(x) := lim f(y) = lim f(y),

ves yea\B
8
Lng} (x) == lim (Vf(y),nz(x)) — lim (V/(y),ns(x)),
E J—
yeB ven\B



denote the jump of the Dirichlet and Neumann data of a function f at the boundary X.
Then, p satisfies following transmission problem

—Ap = f+ Auyg in B,
B Op | O(u—uq)
(14) [p] - 07 |:6n2:| - 6112 on 27
Ap=0 in Q\ B,
p= 0 on ]__‘

Of course, this is equivalent to (see Pironneau [26], for example)

—Ap = diV(XB . {Vu(x) — Vud(x)}) in Q,
p=0 on I,

where xas is the characteristic function of a set M, i.e. xar = 1 on M and xpr = 0 on
R™\ M. Nevertheless, formulation (1.4) is more appropriate for a numerical solution via

BEM.

1.2. Shape Calculus. In order to analyze the problem under consideration we have to
look at the shape Hessian. Therefore, we require a second order shape calculus which
we shall first focus on. The subsequent shape calculus, based on boundary variations,
has been developed in [7, 8]. For a general overview on shape calculus, mainly based on
the perturbation of identity (Murat and Simon) and the speed method (Sokolowski and
Zolesio), we refer the reader for example to Murat and Simon [24, 28], Pironneau [26],
Sokolowski and Zolesio [29], Delfour and Zolesio [6], and the references therein.

We introduce the following notation. The unit sphere in R™ will be denoted by
S:={xeR": |x]| =1}

Here and in the sequel, X indicates always a point on the unit sphere. In particular, for
a point x € R™ the notion X has to be understood as X := x/||x||.

We have to assume Q € C** for some fixed o € (0,1) for the second order boundary
perturbation calculus, in contrast to 8 € C? for the first order calculus. For sake of
simplicity, we suppose the domain € to be star-shaped. Then, we can identify it with a
function, that describes its boundary in accordance with I' = {r(X) - X : X € S}, where
r € C**(S) is a positive function with r > § > 0. We consider functions dr € C**(S)
as standard variation for perturbed domains {2, and boundaries I',, respectively, defined
via 7¢(X) = r(X) + edr(X). The main advantage of the present approach is a complete
embedding of the shape problem into a Banach space setting. That is, both, the shapes

and their increments, can be viewed as elements of C%*(S).

In accordance with the previous subsection, we find for our particular setting the identities

V(x) = dr(X) - X and
(1.5) (V,nr)doy = dr(X)(X,nr)doy = dr(X)r(X)" 'dox



for all x € I". Consequently, the shape gradient (1.3) becomes in spherical coordinates

Op 0(g—u)

do.
6111" 6111-‘ 7

(1.6) VJ(Q)[dr] = /Sdrr"_l

The shape Hessian defines a continuous bilinear form on H'/?(T') x H*/?(T'), namely

VzJ(Q)[drhdrz] = /drldrg{(n— 1)71”—2@M+7,n—1 0 [613 ‘6(g—u)]}

S 6111" 6111" 6§ 6111-‘ 6111-‘
_ Odpldry] 0(g—u) Op Oduldr;]
n—1 X . X
(17) T drl [ 6111" 6111" 6111" 6111" ] dO’,

cf. [7, 8]. Herein, the notion /09X has to be understood in the sense of Ou/9X = (Vu,X).
Moreover, du = du|dr;] and dp = dp[dr;] denote the local shape derivatives of the state
and its adjoint, that satisfy the boundary value problems

Adu =0 in 2,
1. —
(18) du = d7’2<§;n>a(gTFU) on I,
and
Adp =0 in Q\ %,
Odp Odu[dr;]
1. dp| = = 3
(1.9) R
dp = —dry(%, np) 2P T
= —dr —— onT.
14 2\&, 1T 6111"

Remark 1.1. Fquivalent domain integral representations for the shape gradient and shape
Hesstan can be directly derived from the differentiation of (1.1). We have

VJ(Q)[dr]= / (V(u — ug) (x), Vdu[dr](x))dx,
(1.10) B
V2J(Q)[dry,drs] = / (Vdu[dr,], Vdu[dry]) + (V(u — ug), Vdu?[dry, dry])dx,
B
where the second local derivative d?u = d?u[dr;,drs] of the state u satisfies a characteri-

zation equation similar to the first derivative

Ad?u =0 n (2,
0%(g — u) Oduldr,)] O0duldr]
dzu = d’f‘ld’f’gw — d’f‘l 6§ — d’f‘g 6§

see [7] for the details. Especially, symmetry of the shape Hessian is obuvious.

(1.11)

on T,

1.3. Compactness of the Hessian at the Optimal Domain. Next, we will investigate
the shape Hessian at a stationary domain 2*, that is, the first order necessary condition
VJ(Q*)[dr] = 0 holds for all dr € C?2(S). Consequently, all quantities arising in the



considerations below are related to the domain Q*. Notice that the necessary condition
implies

9p O(u—g)
6np 6np
Lemma 1.2. Equation (1.12) is satisfied if and only if O(u — g)/0nr = 0 on [' or

Op/Onr = 0 on a subset & C I' with positive measure relative to I'. In the latter case it
follows p = 0 in Q*\ B.

(1.12) =0 onl.

Proof. Assume the dp/Onr = 0 on a subset & C I with nontrivial measure. Then, since p
is harmonic in Q*\ B according to (1.4) and due to the homogeneous Dirichlet boundary
conditions at T, the unique continuation property for C*-boundaries (cf. Hérmander [19])
implies immediately the assertion. O

The solution (u — g)/0nr = 0 corresponds to a degeneration of the data or of the whole
shape problem, respectively, and makes no sense. In particular, it would imply duldr] = 0
for all admissible dr, see (1.8). Thus, we suppose 0p/dnr = 0. Then, since p = 0 in
"\ B according to Lemma 1.2, the shape Hessian simplifies to

Odp[dr,] ‘ 0(g — u)

do.
6np 6np 7

(1.13) V2J(Q)[dry, dra] = /7‘"_1 drq
S

Notice that the adjoint local shape derivative dp = dp[dr] (1.9) admits homogeneous
boundary conditions at I'. Consequently, employing the fundamental solution E(x,y) of
the Laplacian, given by

—=log|x—y|, ifn=2,

(1.14) E(x,y) = { )

prP—E if n =3,
the adjoint local shape derivative dp satisfies
O0du .
(1.15) o) = [ Blxy)ge(v)dey,  x e
s ny

The next result is derived as an immediate consequence of the identities (1.10).

Lemma 1.3. Suppose 0(u — g)/0Onr # 0 almost everywhere on I'. Moreover, we suppose
that the exceptional direction dr*, defined by
]- o~
o~ B(Q—U) ~\ X E S’
r(X) - o (X)

Bnr

(1.16) dr*(X) =
is not admissible, that is dr* ¢ HY?(T'). Then, the shape Hessian V2J(Q*) is a positive
bilinear form on HY?(T') x HY*(T), i.e.,

V2J(Q*)[dr,dr] > 0
for all dr £ 0.



Proof. We show first that the second term of the domain representation of the shape
Hessian in (1.10) vanishes at Q*, that is

(1.17) / (V(u — uq)(x), Vd?u[dr, dr](x)) dx = 0,
B
for all admissible dr. Using (1.4), the following transform is obvious

/B(V(u — ug), Vd?uldr, dr])dx = / (Vp, Vd?u[dr, dr](x))dx

ox

B / 0d?u[dr, dr]
r

= o p(x) dox.

Hence, (1.17) follows immediately from (1.4). Consequently, we arrive at the identity
V2J(Q%)[dr, dr] :/ |V du[dr](x)||? dx.
B

Observing that du[dr] is harmonic, we conclude that du[dr] # const. almost everywhere
on B provided that dr # dr* and dr # 0. This implies the assertion. O

Note that, if dr* is admissible, there holds du[dr*| = const. and consequently V2J(Q*)[dr*, dr*] =
0 due to Vdu[dr*] = 0. Especially, if (g — u)/dnr € C?2(T") is strictly positive or nega-

tive, dr* defines a regular perturbation for Q* with vanishing second variation with respect

to the objective. Therefore, there may exist a connected family of stationary domains, as

it 1s 1llustrated by the following example.

Example 1.4. We denote by
B, :={(z,y) eR*: 2® +y* < 2%}, 2 >0,

the ball with radius z. We consider B := By, ug =0, g =0 and f = 4. As one readily
verifies, the state with respect to the domain B, (z > 1) is given by u(B,) = 22— (z* +y?).
According to (1.4), the adjoint state p(B,) is given as

1—(2®+y%), ifz?+y* <1,
0, ifl<z?+y* <z

p(B.;z,y) = {

Consequently, any domain B, is a stationary domain and obviously J(B,,) = J(B,,) for
arbitrary zo > z; > 1. The direction dr* = const., corresponding to the direction of
blowing up or shrinking the circle, refers to this degeneration.

We emphasize again that the domain 2* is only a regular strict minimizer of second order
if the shape Hessian is strictly H*/?(T')-coercive, that is V2J(Q*)[dr, dr] > ||d7’||12r{1/2(1,),
cf. [2, 3, 12]. We will show next that the shape Hessian is compact which immediately
implies that strict H'/?(T")-coercivity can never be satisfied, independent of wether the
exceptional direction dr* exists or not.



Lemma 1.5. Assume u,g € C**(T), then the multiplication operator

(1.18) M: HY*(T) —» HY*T),  Mdr:=dr- (&,@W
n

18 continuous.

Proof. Abbreviating w := (X, nr)0(g—u)/0n we may write Mdr = dr-w. Due to results of
Triebel [30] or Mazja and Shaposhnikova [21], the multiplication operator M is continuous
from H'Y/?(T") to H/?(T'), since w € C%*(T") for some a > 1/2. O

Lemma 1.6. The mapping

Odp[dr]
on ’

that maps Mdr € HY*(T") via (1.8) and (1.15) onto the Neumann data Odp[dr]/On ¢
H~Y2(T) of the adjoint local shape derivative, is compact.

A: HYY(T) —» H™YX(T), A(Mdr) =

Proof. 1t is well known, that the Dirichlet-to-Neumann map A : HY3(T") — H~Y*(T)
maps the given Dirichlet data du[dr]|r = Mdr € H*/?(T') continuously to the Neumann
data ddu[dr]/On = A(Mdr) € H=*/?(T"). Green’s representation formula yields

with E(x,y) given by (1.14). Since dist(B,I') > 0, one readily infers that differentiation
gives

(y)doy — duldr](y)doy, x € QF,

Vdu[dr]( /V E(x,y) 66? y)doy — /V 86E' x y duldr|(y)doy,
nr nl"

where the kernels V,E(x, -) and V,0E(x,-)/dnr(-) keep still bounded in [H*/?(T")]" and

[H=/2(T")]" for all x on %, respectively. Hence we arrive at

Odu
< 1/2 1/2(
Hanz iy S TR IVRB08 s AC A -
0E(x, -
+ max vxg ||Mdr||H1/2(F)
x€eX 611]_'\() [H—I/Z(]_")]'n.

S ||Md7‘||H1/2(r)

which implies the continuity of

B HY2(T) & H-Y2(3), B(Mdr) = %
6112
Next, we notice that the mapping
- _ 0E(x,y)
. r-1/2 1/2 _ ,
CHE)  HOP), (€)= [ TR ),



is compact. Consequently, in view of (1.15), since the Neumann data of the adjoint local
shape derivative are computed by

Odp
6—111-\ = (C OB)(Md’f‘),

we obtain the desired assertion. O

Obviously, the shape Hessian (1.13) defines a continuous bilinear form on H/2(T') x
H'Y?(T), namely

(119) VzJ(Q*)[drl, d’f‘g] == (Md’f‘l, A(Md’f‘g))LZ(F).

According to the Lemmata 1.5 and 1.6 we conclude the final result.

Proposition 1.7. The shape Hessian
H: HYYT) - HY¥T), H=2M*"AM: H'Y*T) - H'*(I),
18 compact at the optimal domain Q*.

Remark 1.8. Assuming the boundary I' to be arbitrarily smooth, one readily infers that
the shape Hessian is even compact as a mapping H : H*(I') — H*(L') for all s > 1/2.

This proposition implies the ill-posedness of the optimization problem itself, which is
completely characterized by the nature of the shape Hessian at the critical domain.

1.4. Ritz-Galerkin Approximation of the Shape Problem. In order to solve the
minimization problem defined by (1.1) and (1.2), we are looking for the stationary points
0 satisfying

(1.20) VJ(Q)[dr] =0 for all dr € C**(S).

In accordance with [12] we shall introduce a Ritz-Galerkin method for the nonlinear
equation (1.20). To this end, we restrict ourselves again to star-shaped domains and
consider the gradient in terms of sphericals coordinates (1.6). Nevertheless, one can
consider any fixed variation field with respect to a smooth reference manifold as well, see
[12] for the details.

Let ¢1, ¢a,...,dn denote the first N spherical harmonics in R™ and consider the ansatz
space

Vi = span{¢y, ds,...,on} C C**(S).
Identifying the (finite dimensional) domain Qx and the radial function

N

rN(R) =) anga(X), XES,

n=0

we can replace (1.20) by its finite dimensional counterpart:

(1.21) seek ry € Vi such that VJ(ry)[dr] =0 for all dr € Vy.

9



Note that this is the necessary condition associated with the finite dimensional optimiza-
tion problem

(1.22) J(’I‘N) — min, 7y € V.

According to [12] we obtain an approximation error that stays in the energy norm H/%(S)
proportional to the best approximation in Vy, that is

* * : *
Iy =+ llrey S 0k llrw ey
provided that the shape Hessian is strictly H*/?(T')-coercive at the optimal domain Q*.
Since this is not the case as proven in the previous subsection, we cannot expect con-
vergence of the solution of (1.22) to the solution 7* of the original shape optimization
problem (1.1). This will be confirmed by our numerical results, see Section 3.

2. NUMERICAL METHOD TO COMPUTE THE STATE AND ITS ADJOINT

2.1. Reformulation of the State Equation. The boundary value problems (1.2) and
(1.4) have to be solved in each step of an iterative optimization process since the un-
derlying domains are always different. Finite element methods suffer from generating a
suitable triangulation for each new domain. One way out is to reformulate the given
boundary value problems as boundary integral equations. This reformulation is managed
by introducing a Newton potential Ny satisfying

(2.23) —AN;=f inD

to resolve the inhomogenity in the state equation (1.2). This Newton potential is supposed
to be explicitly known like in our numerical example (see Section 3) or computed with
sufficiently high accuracy. We emphasize that the Newton potential has to be computed
only once in advance.

Making the ansatz
(2.24) u= Ny+wv

yields then the problem of seeking a harmonic function v satisfying the following Dirichlet
problem for the Laplacian

Av =0 in )
2.2 ’
(2.25) v=g— Ny on I'.
On the other hand, for computing the adjoint state p (cf. (1.4)), we make the ansatz
p=q+xB(Ns — ua).

10



Then, we are looking for the harmonic function g satisfying the following transmission

problem
Ag=0 in B,
Jq O(Ny —u)
2.2 = N; — = X
(2.20) =N || =2
Ag=0 in Q\ B,
q = 0 on ]__‘

Now, we are able to compute both, the state and the adjoint state, by the method proposed
in Subsection 2.3.

2.2. Computing the Objective. We shall show that it suffices to know the Cauchy data
of the state and its adjoint on the boundaries 3 and I' to compute both, the functional
and the gradient. Being quite obvious in case of the shape gradient (1.3), this seems not
to be true in case of the shape functional (1.1).

However, using the Gaufl theorem we get

/(Vu,Vud)dX = / ugf dx + / uda—udax,
B B by Ony,
ou
(Vu,Vuydx = [ ufdx+ [ uz—dox.
B ) 6112

B
Employing next Greens’s second formula for the state v and the Newton potential Ny

gives

6’11, 6Nf
dx = N:d —I-/N—— —doy.
/Bufx /Bffx . f@nz uanza

Therefore, combining these identities, we conclude that

200 = [ (%~ 2 + [ VualPax + [ 2N (0 20 2 o,
B b Ons, Onx
_ 9(u — Ny) Ou

Herein, C(B) is a constant independent from the actual domain 2. Consequently, only
the Cauchy data of the state at the fixed boundary ¥ have to be computed to perform a
line search.

2.3. Boundary Integral Equations. In view of (2.25) and (2.26) we shall provide a
method to solve

Au=20
Ou
(2.28) [u] = f, [E] =g
Au=20
u=~nh

11

in B,
on 2,
in Q\ B,

on I’



where we have to set f,g = 0 in case of (2.25).

For sake of convenience we assume in the sequel that ny and nr point inside Q \ B. We
introduce the single layer operator Vsw, the double layer operator Ksw, the adjoint double

layer operator K4 and the hypersingular operator Wag with respect to the boundaries
S U e {l' %} by

(Vegu)(x) ::AE(X,y)u(y)day,

(Covn)(x) = [ Groeuty)ion, .
(Kaw)x) = [ G uty)da,
(Wagt)(x) = 0 0E(x,y)

“one(x) Jy onaly) “)9

where the fundamental solution E(x,y) is defined as in (1.14). Notice that, in the present
context, the operators with respect to one boundary are continuous mappings in terms of

Vag : H/?(®) — H'*(®),  Wae : H/?(®) — H'*(®),

Kas : HY?(®) — HY?(®), 5o s HTYV2(®) » HY?(®),
while in the case of mixed boundaries the operators are arbitrarily smoothing compact
operators.

Next, we introduce the variables us = u|y, oy := Ou/Ong, and or := Ju/Inr. Then, we
find the following integral equations with respect to u|n\§

1
Wssus, + Wrsh — (— — EE)UE + IC;‘EUF = —0y, on E,

2
1
(5 — /sz)uz — Krsh 4+ Vsxos + Vrsor =0 on X,
1
—Ksrus + (5 — Krr)h + Vsros + Vrror =0 on I,

and with respect to u|p
1
sz(uz-l-f)-l-(§+K§E)(Uz—|—g)zaz—|—g on X,

1
—(§+Kzg)(uz—l-f)—l-sz(Uz—l-g):0 on X.

Adding the corresponding integral equations and rearranging the variables yields

1
2Wssus + ZICEEO'E + ICFEUF = —Wz;z;f + (5 — K%E)g — Wrsh on E,

1
(2.29)  —2Kssus + 2Vssnos + Vrsor = (5 + /sz)f —Vsxg + Krsh on %,
1
—Ksrus, + Vsros, + Vrror = (Krr — §)h on I

12



2.4. The Variational Formulation. Next, we introduce the product space H := H'/?(%)x
H~'2(%) x H~'/?(T") equipped by the product norm

I(us, o5, 00) |3 = lluslFnem) + losli-zm + lorli- 2w
for all (ux, ox,0or) € H. Further, let a : H x H — R, be the bilinear form defined by

a((ug,ag,ap),(vg,)\g,)\p))
b2 Wy 2K5y Kig] [us

(2.30) = An |, | —2Kss 2Vss Vs | |os
Ar —Ksr Vor Verl Lovl /) pasywremyxze )
Introducing the linear functional F : H — R,
F('UZH >‘E7 AF)
vy ~Wss 1/2-K%s  —Wrs f
(2.31) =| |xs|,|1/24+Ksx  —Vix Krs g
Ar 0 0 Krr —1/2] |k

12(2)xL2(2)x L2(T)
the variational formulation is given by:

Seek (ux,ox, Xr) € H such that

(2.32) a((ug, os,or), (vs, As, )\p)) = F(vg, Az, Ar)

for all (vx, As, Ar) € H.

Lemma 2.1. The bilinear form a(-,-) from (2.30) satisfies the Garding inequality
(2.33) a((us, ox,0r), (vs,0%,0r)) + luslZamy 2 [ (us, o5, 0r)|1%,

provided that Q) has a conformal radius < 1 ifn = 2.

Proof. From Kgy = K34 we conclude (Key0s,0)r2(3) = (K§s0w,08)12(s). Hence, we
arrive at

a((ug, 0%, UF): (u’Ea 0%, UF))

2Vsn V
— 2()/\}2211’27 'UIE)LZ(E) + (|:0'E:| , |: N oy VI"E:| |:0'E:|> )
or ST IT] 19T/ r2(syxL(T)

Observing that the operator

V:HY3(E) x HV2(T) = HY*(2) x HY*(T),

T [ZVEE VFE]
' Vsr Vrr|’

is positive definite, we deduce the assertion since
Wssus, ur)rz(s) 2 luslfne g,

for all ux € HY2(Q).
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Lemma 2.2. The bilinear form a(-,-) from (2.30) is injective, provided that Q has a
conformal radius < 1 if n = 2.

Proof. Assume that (ug), Ug), 0'1(-‘1)), (ug), Ug), Ul(ﬂz)) € H solve both the transmission prob-
lem (2.28). Then, setting (vg, Az, Ar) := (ug) — u(zl),ag) — 0';2),0'1(-‘1) — Ul(ﬂz)) € H, the
Garding inequality (2.1) implies vy = const. and Ay = Ar = 0. Since the underlying
function is harmonic in ) and satisfies homogeneous Dirichlet boundary conditions at I,
it follows that const. = 0. O

Combining Lemmata 2.1 and 2.2 yields the following theorem.

Theorem 2.3. The variational formulation (2.32) admits a unique solution (ux, ox,or) €
H for all F € H', provided that §) has a conformal radius < 1 if n = 2.

Proof. The bilinear form a(-,-) is obviously continuous on H X H and in accordance
with Lemmata 2.1 and 2.2 H-coercive and injective. Hence, one concludes existence and
uniqueness of the solution by the Riesz-Schauder theory. O

2.5. The Galerkin Discretization. Since the variational formulation is stable without
further restrictions, it suffices to exploit globally continuous piecewise linear or bilinear
ansatz functions to discretize uy, and piecewise constant ansatz functions to discretize
oy and or. To this end, we introduce suitable triangulations of the boundaries ¥ and T,
which we suppose to have similar mesh sizes. For the Dirichlet data we introduce canonical
globally continuous piecewise linear (or bilinear) ansatz functions {¢f : k € A?}. For the
Neumann data we consider canonical piecewise constant ansatz functions {17 : k € V?}
on the given triangulations of the boundaries ® (& € {¥,T'}). Note that #A% ~ #V?¥
¢, 0 c {¥ T}

Then, introducing the system matrices

Way = [(Wé‘llqé?: ¢1?)L2(‘1’)]H7 Ge = [(ﬁ)’ ¢;§)L2(¢)i|kl7

(234) K<1>‘II — [(Kq)qlqé?’qu)lg(ql)]kl’ B<1> = [%(qé?’qu)lﬂ(@)]kl’

Vau = [(V¢@¢?;¢E)L2(‘I’)] kot He = [(1/}?’1/]’?)1:2(@)] Kt

where again &, ¥ € {3, T'}, and the data vectors
2 b r
f= |(Aeem), 8= |@®em|, b= |kdro)

we obtain the following linear system of equations

(2.35)
ZWEE ZKEE KEF L1 5> —sz KEE — BE _WFE Hglf
—2Ks» 2Vzy Vryp| |ox| = |Kss + By Vix Krx Gy'g
—Ksr Vzr Vrr] lor 0 0 Krr — Br| |G:'h

We mention that Hy'f and Gy'g, Gr'h correspond to the L2-orthogonal projections of
the given data f € H™Y/%(%) and g € H/?(X),h € H'?(T) onto the assciated spaces of
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the piecewise constants and (bi-) linears. That way, we can apply fast boundary element
techniques also to the boundary integral operators on the right hand side of the arising
linear system of equations (2.35).

Applying standard error estimates for the Galerkin scheme and employing the Aubin-
Nitsche trick leads to the following error estimate concerning the present discretization.

Proposition 2.4. Let h denote the mesh size of the triangulations of ¥ and I', respec-
tively. We denote the solution of (2.32) by (ug,o0x,0x) and the Galerkin solution by
(ul, ok ol). Then, we have the error estimate

||(u702701") - ( h;Ug;U’E)||H—1(z)><H—2(z)><H—2(z)

< K {|lus|lr2zy + llos |z + llorlla )}

untformly in h.

Finally, we shall encounter some issues on the efficient solution of the linear system of
equations (2.35). The complexity of computing the solution is at least quadratically since
the system matrices are densely populated. Applying fast boundary element techniques
the complexity can be reduced considerably. We use wavelet matrix compression ([4, 16,
27]) which yields in combination with the wavelet preconditioning ([5]) to a numerical
scheme of linear over-all complexity without compromising stability and accuracy of the
underlying Galerkin scheme.

2.6. Error Estimates. Recall that, in a single iteration step of the shape optimization
algorithm, we use the present method in order to solve both, (2.25) to compute the state
via (2.24) and (1.4) to compute the adjoint state. Now, we shall specify the approxima-
tion errors to the shape functional and its gradient. For sake of simplicity we neglect
approximation errors of the Newton potential Ny (2.23), i.e., we assume that it is known
analytically.

Corollary 2.5. Assume that the Newton potential Ny from (2.23) is given ezactly. Then,
the shape functional converges cubically and the shape gradient converges quadratically,
that is, the approzimation errors behave like O(h3) and O(h?), respectively.

Proof. In accordance with (2.27) we find

ON
/(ugag — u’{;ag) — (ux — u’{;)—f + (N — 2uq)(ox — Ug)dax )
)

217() — JH(Q)] = o

Due to
UnOy — u’{;ag = (u’{; —uy)(ox — Ug) + un(og — Ug) + ox(ug — u’{;)
we can estimate the first term by

/(ugag — ugag)dax
)

+ [[usllz ) llos — oklla—2) + ozl @ lus — vl g-1x) = O(R?).

< |uk — uzllrem)llos — okllza
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Further, we find

/(ug — ug)%dax
)

6112

o,

_ 3
6112 - O(h )7

HY(%)

< luz — ulllg-1(z)

/E(Nf — 2ug)(ox — of)doy

which shows |J(Q) — Ju(Q)| = O(R?).

For sake of convenience we set op := 8(u — g)/Onr and Ar := Op/dnr, while of and A2

< |lox — ofllm-2) | Ny — 2ual|m2(z) = O(h%),

denote the numerical approximations. Likewise to above, we conclude

IVJ(Q)[dr] — VJHQ)[dr]| = /F(V, n){orAr — of AL }do

Jtvimi{(ot = or)O = 3) = o = M) ~ de(or — o) }do
r
< [V, 0)[lzery(lor — o], [Ar = AE D2y + ((V,m)or, Ar = Af)rer)
+ ((V, n>>\p, or — 0”1-\1)[,2(1-\).

Herein, the first term is estimated by

(lor = o], [Ar = M )zz(ry < llor — offlz2my | Ar — At[|z2ry = O(R?).
The second term yields

((V,m)or, e = AE)rery < [{V,m)or |y l|Ar — AE[l -1 ry = O(R?),
and similarly the third term, which finishes the proof. O

3. NUMERICAL RESULTS

The numerical example will be carried out in two space dimensions. Let B be the circle
{(z,y) : z* + y* < 0.2} and
E, = {(m,y) ER?: 2 + 442 < zz}, z>0.2,

denote the ellipse with semi-axes h, = z and h, = z/2. The function u is supposed
to satisfy the Poisson equation —Au = f = 10 in Q with homogeneous Dirichlet data
ulr = g = 0. The function uy is chosen as ug(z,y) := 1 —z? —4y?. Similar to Example 1.4,
we infer J(E,) = 0 for all z > 0.2 and thus all ellipses E, are minimizers of the problem
under consideration. For the present state equation we will exploit the Newton potential
Ny = =5(z" +y*)/2.

First, we shall check the orders of convergence predicted in Corollary 2.5. We compute
the shape functional and its discretized gradient in case of the ellipse with semi-axis
hy = 0.4 and h, = 0.6 on a very fine discretization. Then, we compute on lower levels the
approximate solutions und measure the absolute (£2-) errors to our reference values. The
results are depicted in Figure 3.2. In fact, one observes cubic and quadratic approximation
orders (indicated by the dashed lines) of the functional and its gradient, respectively.
Hence, difficulties in the numerical optimization tests are not caused by lack of accuracy.
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FIGURE 3.2. Degrees of freedom versus approximation error.

Next, we try to find the unknown boundary by standard optimization methods. To
ensure uniqueness for the problem under consideration, the canonical idea is the use of
the complete H!(B)-norm of the state, i.e., looking at

J(Q) = % /B (u(x) — va(x))” + | Vau(x) — Vug(x)||2dx — inf

However, since potential values itself have no meaning for applications in both, fluid
dynamics and magnetostatics, we introduce instead an additional volume constraint

wm:Amzw

as it was already proposed by Mohammadi and Pironneau in [22]. We compute an approx-
imation for the unknown boundary I' in case of V; = 0.252- 27, 0.32-27, 0.352-27, 0.4%-27
by using the first 33 Fourier frequencies and 1024 piecewise constant and linear bound-
ary elements per boundary, respectively. The constraint optimization problem is treated
by an Augmented Lagrangian. The descent direction is derived from a quasi-Newton
method with quadratic line search, updated by the inverse BFGS-rule without damping,
see e.g. [13, 14] for the details. We choose always the circle centered in (z,y) = (0,0) with
volume V4 as initial guess and perform 100 quasi-Newton iterations. The resulting free
boundaries are plotted in Figure 3.3. The inner boundary corresponds to the problem
with V5 = 0.252 - 27 while the outer boundary corresponds to Vo = 0.42 - 2. Especially,
we observe that the computed free boundaries are only approximately the correct ellipses
since oscillations occur. Indeed, a regularization in terms of a certain H*(I')-norm can be
applied, as it is proposed in principle by Mohammadi and Pironneau in [23]. According
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FicURE 3.3. Computed free boundaries.

to the nature of the shape Hessian of the original objective, the space H*/2(T') seems to
be convenient from our point of view.
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