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SELF-AVERAGING IN A CLASS OF 

GENERALIZED HOPFIELD MODELS# 
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Mohrenstrasse 39, D-10117 Berlin, Germany 

Abstract: We prove the almost sure convergence to zero of the :fluctuations of the free energy, resp. 
local free energies, in a class of disordered mean-field spin systems that generalize the Hopfield model 
in two ways: 1) Multi-spin interactions are permitted and 2) the random variables tf describing the 
'patterns' can have arbitrary distributions with mean zero and finite 4+€-th moments. The number 
o~ patterns, M, is allowed to be an arbitrary multiple of the systemsize. This generalizes a previous 
result of Bavier, Gayrard, and Picco [BGP3] for the standard Hop:fi.eld model, and improves a result 
of Feng and Tirozzi [FT] that required M to be a finite constant. Note that the convergence of the 

· mean of the free energy is not proven. 
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I. Introduction 
. .. 

Over the last years some interesting properties of 'self-averaging' have been observed in two 
classes of 'spin-glass' type models of the mean field type, the Sherrington-Kirkpatrick model [SK] 
and the Hopfield model [FP, Ho]. The latter, largely used in the context of neural networks, is 
maybe particularly interesting, as it contains a parameter, the number M of stored patterns as a 
function of the size of the system, N which can be adjusted to alter the properties of the model. 
In a paper of Pastur and Shcherbina [PS], it was observed that the variance of the free energy 
of a finite system of size N in the SK-model tends to zero like 1/ N, implying the convergence to 
zero in probability of the difference between the free energy and its mean. This result was later 
generalized to the Hopfield model by Shcherbina and Tirozzi [ST] under the assumption that the 
ratio a = M / N remains bounded as N j oo. Further results of this type can be found in an 
interesting paper by Pastur, Shcherbina and Tirozzi [PST]. Self-averaging properties of the large 
deviation rate function as a function of the macroscopic parameters of the model (the so called 
'overlap-parameters', see below) were used crucially in two papers by Bavier, Gayrard and Picco 
[BGP2, BGP3]. There, sharper than variance estimates were needed, and as a consequence [BG~3] 
contains in particular a proof of the almost sure convergence to zero of the difference between the 
free energy and its mean, both in the Hopfield model under the assumption the M / N be bounded, 
and in the SK-model. Independently, Feng and Tirozzi [FT] have recently proven such a result in 
a class of generalized Hopfield models, however under the very restrictive assumption that M itself 
be a bounded function of N. The purpose of the present note is to show that such a condition is 
in fact unnecessary. 

Let us describe the class of models we will consider. We denote by SN = { -1, l}N the space 
of functions a : A --+ { -1, 1}. We call a a spin configuration on A. S = { -1, 1} IN denotes the 
space of half infinite sequences equipped with the product topology of the discrete topology on 
{-1, 1}. We denote by BA and B the corresponding Borel sigma algebras. We will define a random 
Hamiltonian function on the spaces SA as follows. Let (n,:F,IP) be an abstract probability space. 
Let ~ = fff}i,µeJN be a two-parameter family of independent, random variables on this space. 
We will specify we assumptions on their distribution later. In the context of neural networks, 
one assumes usually that IP( ~f = 1) = IP( ~f = -1) = t, but here we aim for more general 
distributions. We consider Hamiltonians of the form 

l M(N) N 

HN(a) = - Nr-1 L L ~fi · · ·~tai1 · · .O"i,. 
µ=1 ii , ... ,1,.=l 

(1.1) 

Here r 2: 2 is some chosen integer. The case r = 2 corresponds to the usual Hopfield model, and 
models with general r were introduced by Lee et al. [Lee] and Peretto and Niez [PN]. Feng and 
Tirozzi [FT] also studied these models, but removed the terms in the sum where two or more indices 
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coincide, which actually amounts to adding a term of the order of a constant to H which does not 
alter the free energy. One may actually consider more general models in which the Hamiltonian 

' is given as a linear combination of terms of the type (1.1) with different values of r. This only 
complicates but not really alters the proofs, and our results can ea~ily be extended to this situation. 

Let us introduce the so-called 'overlap-parameters'. This is the M-dimensional vector mN( a) 
whose components are given by 

N 

m~(a) = ~ L ~fai 
i=l 

(1.2) 

In terms of these quantities, the Hamiltonian can be written in the very pleasant form 

(1.3) 

Let us introduce a family Xp,6 of smooth functions satisfying 

(1) Xp,o(x) ~ 0, 

(2) I f.;xe.s(x) I < 8_1 
Xe,s(x) - ' 

( 4) ln Xp,o(x) is a concave function of x (where we use the convention ln 0 = -oo ). (This condition 
actually only plays a role in the case r = 2). We define 

ZN(m) = ZN,{3,p,o(m) = 2~ L e-f3HN(<T)Xp,1/VN (llmN(a) - mllD (1.4) 
uESN · 

and 

(1.5) 

Observe that since we ha~e chosen 8 = 1/./ii, the function e in (1.4) is essentially a charac-
teristic function. Note that the'. free· eriergy is given in terms of these quantities as 

(1.6) 

We will prove 

Theorem 1: Assume that lim Mt) =a< oo and that IE~f = O, IE (~f) 2 = 1 and IE (~f)He < 
oo, for some€> 0. Let p and llmll2 be bounded. 

{i) If r = 2, for all n < oo there exists Tn < oo, such that for all r ~ Tn 1 and for N large enough, 

IP [lfN,p(m)- IEfN,p(m)I ~ r(lnN)312Ni] ~ N-n 
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{ii) If r ~ 3, then there exist constants C, c, c' > 0 s.t. 

IP [lfN,p(m) - IEfN,p(m)I ~ zN]::; { e=:~:, if 0::; z < c 
e , if z ~ C 

(1.8) 

We prove Theorem 1 in the next section. Before doing that, we will show that it implies 

Theorem 2: Under the assumptions of Theorem 1, 

lim IFN(,B) - IEFN(,B)I = 0, a.s. 
Njoo 

(1.9) 

Remark: Theorem 2 was proven under the additional assumption that ~f = ±1 for the case 
r = 2 in [BGP3]. In [FT] Theorem 2 was proven under the hypothesis M(N)::; Mo < oo and that 

IE (~f)4 < oo. 

Remark: Theorem 2 may in some way be regarded as a strong law of large numbers. We are, 
however, reluctant to employ this term, because the convergence of IEFN(f3) to a limit is in general 
not proven. In the standard Hopfield model this was proven under the assumption limNioo M}.;1) = 0 
by Koch [K] (see also [BG]). 

Theorem 2 would be immediate from Theorem 1, if we were allowed to set ih = 0 and p = oo. 

The latter is not really possible, since the constants r, resp. c depend on p. However, essentially, 
FN(f3) and N fN,p(O) differ only by an asymptotically negligible amount, if p is chosen somewhat 
large. To see this, note first that 

llmN(a)ll~ ::; llA(N)ll 

where A( N) is the N x N-matrix whose elements are 
M 

Ai;(N) = ~ :E ~f ~f 
µ=1 

(1.10) 

(1.11) 

The crucial element linking Theorem 2 to Theorem 1 are bounds on the maximal eigenvalues of 
this matrix. The eigenvalue distribution of this matrix was first analyzed by Marchenko and Pastur 
[MP]. Girko [Gi] proved that under the hypothesis of Theorem 1, the maximal eigenvalue of A(N) 
converges to (1 + a)2 in probability. Adding the ideas used by Bai and Yin [BY] one can easily 
show that this convergence takes also place almost surely, and even in the case where only the 4-th 
moment of lf is finite. We will need additional estimates on the moments of llA(N)ll which we are 
only able to prove if we have a little more than four moments. The relevant estimate is form~ated 
in the following lemma. 

Lemma 3: Assume that~ satisfies the hypothesis stated in Theorem 1. Then, for any 0 < 1/::; 1/6 
and any S > 0, if N is sufficiently large, 

IP [llA(N)ll ~ (1 + yla)2(1 + z)] ::; N(l + z)-N"
171

o-
1171 + Ne/:~He 
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where a= ~, I = 4(4~e). 
Remark: The proof of Lemma. 3 is in fact an adaptation of the the truncation idea in [BY] and 

fairly standard estimates on the traces of powers of A, as in [BY] (but see also [BGPl]). We will 

therefore not give the details of the proof of Lemma 3, but only mention that the second term is a 

bound on the probability that any of the ~f exceeds the value VJi8, while the first is a bound one 

would obtain if all ~f satisfied this condition. 

We conclude the introduction by giving the proof of Theorem 2, assuming Theorem 1. 

Proof: (of Theorem 2) Let us fix p = 2( 1 + fo.)2. Notice first that 

Therefore ~ 
ln ZN = ln ZN,p(O)JI{llA(N)ll:5P} + ln ZNJI{llA(N)ll>P} 

= ln ZN,p(O) + ln ZN,p(O)JI{llA(N)ll>P} + ln ZNJI{llA(N)ll>P} 
By Theorem 1 and the first Borel-Cantelli lemma it follows that 

· fif! ~ l!n ZN,p(O) - .lE!n ZN,p(O)I = O, a.s. 

(1.13) 

(1.14) 

(1.15) 

Thus Theorem 2 will be proven if we can show that (ln ZN,p(O) + ln ZN) JI{llA(N)ll>P} l 0 both 

almost surely and in mean. The almost sure convergence follows easily, since 

IP ((In ZN,p(O) +In ZN) :IT{llA(N)ll>P} # 0 i.o.] ~IP [llA(N)ll > p i.o.] = 0 (1.16) 

where the last equality follows from applying Lemma 3.1 from Bai and Yin [BY]. Finally, to prove 

convergence of the mean, we use that first of all 

and therefore, 

But 

IHN(a)I ~ NllmN(a)ll~llmN(a)ll~2 

~ NllmN(a)ll2 

~ NllA(N)llr/2 

lln ZN,p(O) + ln ZNI JI{llA(N)ll>p} ~ 2 ln ZN JI{llA(N)ll>P} 

~ 2N ~llA(N)ljr/2 JI{llA(N)ll>P} 

1EllA( N)llx:IT{llA(N)ll>P} = Px IP [llA( N)ll > p] + {"' xyx-l IP [llA(N)ll > Y] dy 

< 2x(l + Va)2x (N2-N-r/s + ~) 
- Ne/4 

(1.17) 

(1.18) 

+ 2x(1 + va)2:r: loo x(l + )x-1 (N e-yN7/'fJ(to)y-a/(iTJ(m)) + CQ'. ) d 
} 1 Y Ne/4y:r:+e/4 Y 

(1.19) 

4 



To obtain the last expression we used Lemma 3 and made the choice 6 = 8(y, x) = y~/4 and 
77(x) = max(6,x/8). Obviously, the right hand side of (1.19) tends to zero as N j oo, as desired. 
This concludes the proof of Theorem 2, assuming Theorem 1.0 

Remark: Note that the estimate in (1.19) implies in particular that 

JEllA(N)ll ~ C(l + va)2 (1.20) 

for some constant depending only on f. This is relevant for proving Theorem 1 in the case r = 2 
(see [BGP3]). 

2. Proof of Theorem 1 

The basic idea of the proof is the same as in [BGP3] where the case r = 2 has been considered. 
The case r ~ 3 turns out to be considerably simpler, and we will only present this case here. 
Since the only properties of the random variables lf that are used in [BGP3] are estimates on the 
expectations of the norms of matrices of the type of A(N), the generalization to random variables 
satisfying only the hypothesis of Theorem 1 is straightforward from the results presented in Section 
1. We thus consider part (i) of Theorem 1 as proven. 

The fact that in the case r ~ 3 sharper estimates can be obtained may justify the presentation 
of the details of the proof in that case. We fix p and write for simplicity 

!N(m) = !N,p(m) (2.1) 

We now introduce the decreasing sequence of sigma-algebras :Fk that are generated by the ran-
dom variables {~nr::V and the corresponding martingale difference sequence (first introduced by 
Yurinskii [Yu]) 

(2.2) 

Notice that we have the identity 

N 

!N(m) - lEfN(m) = L jc;>(m) (2.3) 
k=l 

To get the sharpest possible estimates, we want to use an exponential inequality. To this end we 
observe that [BGP3] 

IP [ t .n;i(m) ;::: Nz] ~ 2 fr~ e-l•IN• lEexp { t t f;l(m)} 
(2.4) 

= 2 i~t e-ltlNz 1E [ 1E [ ..• JE [ etj;;->(m) l:F2] etj;:>cm.) l:F3] ... etj1N>(m) l:F N+i] 
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To make use of this inequality, we need bounds on the conditional Laplace transforms; namely, if 
we can show that, for some function £(k)(t), ln lE [ etj~>(m) l:Fk+l] ~ £(k)(t), uniformly in :Fk+l, 
then we obtain ·that 

IP [ t j}:>(m.) ?_ N z] ~ 2 ir1. e-ltlNz+ 2:7=1 .c<•>(t) 
k=l 

(2.5) 

Note that this construction, so far, is completely model independent. In the estimatfon of the 
conditional Laplace transforms, a conventional trick [PS] is to introduce a continuous family of 
Hamilt~nians, .iJ}_;)(a, u), that are equal to the original one for u = 1 and are independent of ek 
for u = 0. We will do this in a slightly different form than in [ST, BGP2, BGP3, FT]. We first 
introduce the M(N)-dimensional vectors 

(k) - 1 (""""' ) mN (a, u) = N ~ tWi + utkak 

i~Js 

(2.6) 

and then define 

(2.7) 

Note that this procedure can of course be used in all cases where the Hamiltonian is a function of 
the macroscopic order parameters. Naturally, we set 

z~)(m, u) = 2~ L e-{3iic;>cu,u)Xo,p (llm~)(a, u) - mll~) 
<TESN 

(2.8) 

and finally 

(2.9) 

Since for the remainder of the proof, ih as well as N will be fixed values, to simplify our notations 
we will write fk(u) = Jt)(m,u). Notfce that 

(2.10) 

and that, since 

(2.11) 

this implies 

J1;>(m) = l du (IE [f.(,(u)!Fk] - IE [fk(u)!Fk+i]) (2.12) 

To bound the Laplace transform, we use that, for all x Em, 

(2.13) 
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so that 
(2.14) 

Our strategy in [BGP3] was to use a rather poor uniform bound on J);\m) in the exponent but to 
prove a better estimate on the remaining conditioned expectation of the square. Here it will turn 
out that the uniform bound is already sufficiently good to be used throughout in (2.14). 

Namely 

f ' ( ) _ c- (!__H(k)( ) + 2_ X~,oCllm~)(o-, u) - mllD "' ( (k),µ( ) __ µ) tµ ) k u -"k,u 8u N o-,u ~N (k) - 2 ~ mN o-,u m C:.kO"k 
tJ Xp,o(llmN (o-, u) - mll2) µ 

(2.15) 
where Ek,u denotes the expectation w.r.t. the probability measure 

1 x o(llm(k)(o- u) - mll2)e-.Bii~>(u,u)do-
. z(k)( _ ) p, N ' 2 

N m,u 
(2.16) 

Obviously, 

lfHu)[ $ l\u I :u H};l(u, u)I + 13 ffitk,u [ ~ (m~(cr, u) - mi') fruk] (2.17) 

The second term in (2.17) is easy: 

13 ffitk,u [ ~(m~(u,u)-mi')fruk] 

$ ilffitk,u [ ~ [m~(cr, u)- m"1] (2.18) 

== f3ffiEk,u llmN(o-, u) - mll 1 ~ ~{¥Ek,u jjmN(o-, u)- mll 2 

~ ~{¥J p + N-1/2 

so under our hypothesis it is bounded by a·constant. What remains is to bound the expectation of 
the modulus of :u H<;) ( o-, u). This is the only estimate that is model-dependent. Computing the 

derivative we get 

1

8 I M(N) r-1 
BuH};l(u,u) = ~ r(ruk [m~l·"(cr,u)] 

M(N) r-1 

~ r L e~O"k [m~),µ(o-,u)] 
µ=l (2.19) 

3 M(N) 2 

~ r llm~>(o-,u)ll: L [m~),µ(u,u)] 
. µ=1 

~ rllm~>(u,u)ll:
3 

llm~>(u,u)ll~ 
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In the usual case, where lefl ~ 1, we can bound the sup-norms appearing in (2.19) by llm~)(u, u)IL:> ~. 
1; in the case of unbounded e, we can still use that llm~)(u, u)L, ~ llm~>ccr, u)1l

2
• (Note that 

to get (2.19) we need that r ~ 3. In the case r = 2, we could only get a bound in terms of the 
L 1-norm of m~)(cr, u), which is typically a factor of .JM larger than the L 2-norm). Hence we get 

I 
a (k) I (k) 2 ek,u 8u H N (cr, u) ~ rek,ullmN (cr, u)l'2 

~ r (llmll2 + v P + N-112) 2 

(2.20) 

if 1er1 ~ 1, and 

t:k,u I :u H~)(o-, u)I :5 r£k,ullm}:'\o-, u)ll;-1 

~ r (llmll2 + VP+ N-1!2 ) r-l 

(2.21) 

in general. In both bounds we used the fact that the measure ek,u has support on those O' for which 
x does not vanish. Putting (2.21) and (2.18) together, we see that indeed 

(2.22) 

where C = C(ih, p, ~) is same finite constant depending on m, p and ~. Using this bound in 
(2.14) we see that 

(2.23) 

To obtain (1.8), we insert this bound into (2.5) and bound the infimum over t by its value for 
t = ~2 , if z < ln 2C, and by its value for t = c-1 , if z ~ C In 2. This concludes the proof of 
Theorem 1. 0 
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