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Abstract: We prove the almosf sure convergence to zero of the fluctuations of the free energy, resp.
local free energies, in a class of disordered mean-field spin systems that generalize the Hopfield model
in two ways: 1) Multi-spin interactions are permitted and 2) the random variables ¢! describing the
‘patterns’ can have arbitrary distributions with mean zero and finite 4+ e-th moments. The number
of patterns, M, is allowed to be an arbitrary multiple of the systemsize. This generalizes a previous
result of Bovier, Gayrard, and Picco [BGP3] for the standard Hopfield model, and improves a result
of Feng and Tirozzi [FT) that required M to be a finite constant. Note that the convergence of the

“mean of the free energy is not proven.
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I. Introduction

Over the last yeafs some iﬁtereétiﬁg properties of ‘self-averéging’ have been observed in two
" classes of ‘spin-glasé’ type models of the mean field type, the Sherrington-Kirkpatrick model [SK]
and the Hopfield model [FP, Ho]. The latter, largely used in the context of neural networks, is
maybe particularly interesting, as it contains a parameter, the number M of stored patterns as a
function of the size of the system, N which can be adjusted to alter the properties of the model.
In a paper of Pastur and Shcherbina [PS], it was observed that the variance of the free energy
of a finite system of size N in the SK-model tends to zero like 1/N, implying the convergence to
zero in probability of the difference between the free energy and its mean. This result was later
generalized to the Hopfield model by Shcherbina and Tirozzi [ST] under the assumption that the
ratio @ = M/N remains bounded as N 1 co. Further results of this type can be found in an
interesting paper by Pastur, Shcherbina and Tirozzi [PST]. Self-averaging propertiés of the large
deviation rate function as a function of the macroscopic parameters of the model (the so called
‘overlap-parameters’, see below) were used crucially in two papers by Bovier, Gayrard and Picco
[BGP2, BGP3]. There, sharper than variance estimates were needed, and as a consequence [BGP3]
contains in particular a proof of the almost sure convergence to zero of the difference between the
free energy and its mean, both in the Hopfield model under the assumption the M /N be bounded,
and in the SK-model. Independently, Feng and Tirozzi [FT] ha.v;e recently proven such a result in
a class of generalized Hopfield modeis, however under the very restrictive assumption that M itself
be a bounded function of N. The purpose of the present note is to show that such a condition is

in fact unnecessary.

Let us describe the class of models we will consider. We denote by Sy = {—1,1}¥ the space
of functions ¢ : A — {=1,1}. We call o a spin configuration on A. § = {—1,1}¥ denotes the
space of half infinite sequences equipped with the product topology of the discrete topology on
{-1,1}. We denote by By and B the corresi)onding Borel sigma algebras. We will define a random
Hamiltonian function on the spaces SA as follows. Let (9, F, IP) be an abstract probability space.
Let £ = {£/}i uev be a two-parameter family of independent, random variables on this space.
We will specify we a,ssumptions on their distribution later. In the context of neural networks,
one assumes usually that IP(¢¥ = 1) = IP(¢! = -1) = i, but here we aim for more general

distributions. We consider Hamiltonians of the form

1 M(N) N

N,._l Z Z f:: 50’,‘1...'0',', » (1.1)

p=1 1,..,1l,=1

HN(U) = -

Here r > 2 is some chosen integer. The case r = 2 corresponds to the usual Hopfield model, and
models with general r were introduced by Lee et al. [Lee] and Peretto and Niez [PN]. Feng and

Tirozzi [FT] also studied these models, but removed the terms in the sum where two or more indices
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coincide, which actually amounts to adding a term of the order of a constant to H which does not
alter the free energy. One may actually consider more general models in which the Hamiltonian
" is given as a linear combination of terms of the type (1.1) with different values of r. This only

complicates but not really alters the proofs, and our results can easily be extended to this situation.

Let us introduce the so-called ‘overlap-parameters’. This is the M-dimensional vector my(c)

whose components are given by
N
1
mi(0) = 5 ) tai (1.2)
=1

In terms of these quantities, the Hamiltonian can be written in the very pleasant form

r

Hn(o)=—N [|my (o)l _ (1.3)
Let us introduce a family x, s of smooth fﬁnctions satisfying

(1) xp.6(2) 2 0,

(2) l i xp.5(2)

-1
YOREXEE

(3) Tgiei<p} < Xp,6(2) < Lgpz<pte}

(4) Inx,,s(z) is a concave function of & (where we use the convention In0 = —co). (This condition

actually only plays a réle in the case r = 2). We define

- - 1 - . .
Zn(i) = Inpps(m) = 5 ), e PO, 1w (Ima(o) - 7l3) (1.4)
cESN .

and
frp(i) = =B In Zy, () | (1.5)

Observe that since we have chosen § = 1/v/N, the function ¢ in (1.4) is essentially a charac-

teristic function. Note that the free energy is given in terms of these quantities as

Fn(B) = jlv—fN,o;(O) (1.6)

We will prove

Theorem 1: Assume that lim -—(-—l = a < oo and that lEf“ 0, IE(E“) =1 andlE(f“)He

o0, for some € > 0. Let p and Hm”z be bounded.
(i) If r = 2, for alln < oo there ezists T, < o0, such that for all T > 7,, and for N large enough,
1P ||fw,p () = T ()] > 7(ln NN E] < N (L.7)
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(i) If r > 3, then there ezist constants C,c,c’' > 0 s.t.

—cNZ? 7
1P (| o) — B, ()| > 2] < {j_w,; fosgz<o (1.8)

We prove Theorem 1 in the next section. Before doing that, we will show that it implies

Theorem 2: Under the assumptions of Theorem 1,
lim |F(8) - EFx(8) =0, as (19)

Remark: Theorem 2 was proven under the additional assumption that ¥ = +1 for the case
r =2 in [BGP3]. In [FT]| Theorem 2 was proven under the hypothesis M(N) < M < oo and that
IE (¢})" < co. |

Remark: Theorem 2 may in some way be regarded as a strong law of large numbers. We are,
however, reluctant to employ this term, because the convergence of IE Fy(8) to a limit is in general
not proven. In the standard Hopfield model this was proven under the assumption lim 5100 M(;_V)_ =0
by Koch [K] (see also [BG]).

Theorem 2 would be immediate from Theorem 1, if we were allowed to set 72 = 0 and p = co.
The latter is not really possible, since the constants 7, resp. ¢ depend on p. However, essenﬁa.]ly,
Fyn(B) and N fn,,(0) differ only by an asymptotically negligible amount, if p is chosen somewhat
large. To see this, note first that

lma (o)l < || A (1.10)

where A(N) is the N x N-matrix whose elements are
M .
Ay(N) =+ D oekek _ (1.11)
p=1

The crucial element linking Theorem 2 to Theorem 1 are bounds on the maximal eigenvalues of
this matrix. The eigenvalue distribution of this matrix was first analyzed by Marchenko and Pastur
[MP]. Girko [Gi] proved that under the hypothesis of Theorem 1, the maximal eigenvalue of A(N)
converges to (1 + a)? in probability. Adding the ideas used by Bai and Yin [BY] one can easily
show that this convergence takes also place almost surely, and even in the case where only the 4-th
moment of £ is finite. We will need additional estimates on the moments of || A(N')|| which we are
only able to prove if we have a little more than four moments. The relevant estimate is formulated

in the following lemma.

Lemma 3: Assume that £ satisfies the hypothesis stated in Theorem 1. Then, for any0 < n < 1/6
and any § > 0, if N is sufficiently large,
P (AN 2 (14 Va)(1+2)] S N(1+2)7V"77" 4

ca

oo (1.12)
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— M — €
where a = 5, v = Gy

Remark: The proof of Lemma 3 is in fact an adaptation of the the truncation idea in [BY] and
fairly standard estimates on the traces of powers of A, as in [BY] (but see also [BGP1]). We will
therefore not give the details of the proof of Lemma 3, but only mention that the second term is a
bound on the probability that any of the £} exceeds the value v/N§, while the first is a bound one
would obtain if all ¢! satisfied this condition.

We conclude the introduction by giving the proof of Theorem 2, assuming Theorem 1.

Proof: (of Theorem 2) Let us fix p = 2(1 + /a)?. Notice first that

In Zn T awyi<er = In Zn,0(0) L) av)li<o} (1.13)
Therefore i
In Zy =In Zno(0)Lgyawyi<et + In ZnTgay)> 0} (1.14)
=1nZn,p(0) +1n Zn,,(0)Igy acyy>pp + 10 Zn Ty aqvy > o3
By Theorem 1 and the first Borel-Cantelli lemma it follows that
.1 ' '
’ 1%1%10 v nZn,(0)— Eln Zy,(0)| =0, a.s. (1.15)

Thus Theorem 2 will be proven if we can show that (In Zn,(0) + In Zx) Iy acny>py | O both

almost surely and in mean. The almost sure convergence follows easily, since
P [(ln Zn,o(0)+1nZy) ]I{||A(N)t]>p} #0 i.O.] <IP|AN)||>pio]=0 (1.16)

where the last equality follows from applying Lemma 3.1 from Bai and Yin [BY]. Finally, to prove

convergence of the mean, we use that first of all
|Hn(0)] < Nllma (0)l3llma(o)lle?
< Nlima(o)l; (1.17)
SN |
and therefore,

Iln Zn,5(0) +1n Zn | Ly aovy>op < 210 Zn T awy)>p}

Iy (1.18)
S2NBI AN Ly acvyn> ey
- But
EIAMNIT Ly acni>ey = p°P[[AN)]] > p] +/ zy® P [||A(N)|| > y] dy
) P
z 2z o A
< 2°(1+va)® (N2 4 22
< < [Z o —yN1/n(e) =/ (4n(=)) ca
+2°(1+ Va)? /1 z(1+y) 1(N€ v y‘ +7V7/4y—z+;7z)dy
(1.19)



To obtain the last expression we used Lemma 3 and made the choice § = §(y,z) = y*/* and
n(z) = max (6, ¢/8). Obviously, the right hand side of (1.19) tends to zero as N T oo, as desired.

This concludes the proof of Theorem 2, assuming Theorem 1.{

Remark: Note that the estimate in (1.19) implies in particular that
AN < C(1 +v/a)y (1.20)

for some constant depending only on e. This is relevant for proving Theorem 1 in the case r = 2

(see [BGP3]).

2. Proof of Theorem 1

The basic idea of the proof is the same as in [BGP3] where the case r = 2 has been considered.
The case » > 3 turns out to be considerably simpler, and we will only present this case here.
Since the only properties of the random variables ¢! that are used in [BGP3] are estimates on the
expectations of the norms of matrices of the type of A(N'), the generalization to random variables
satisfying only the hypothesis of Theorem 1 is straightforward from the results presented in Section

1. We thus consider part (i) of Theorem 1 as proven.

The fact that in the case r > 3 sharper estimates can be obtained may justify the presentation

of the details of the proof in that case. We fix p and write for simplicity

fn(m) = fn,p(m) (2.1)

We now introduce the decreasing sequence of sigma-algebras ¥ that are generated by the ran-
dom variables {¢/' }"EN and the corresponding martingale difference sequence (first introduced by
Yurinskii [Yu])

FP () = E [y ()| Fi] - IE [fn(m)| Fera] (2.2)

Notice that we have the identity
Fn(i) = Efn(m) = Z FB(m | (2.3)

To get the sharpest possible estimates, we want to use an exponential inequality. To this end we
observe that [BGP3] '

N

= 2’%}'{6 tINz 7 IE [ (x)(m)l}-z] th)(m)If-} (N)(m)|fN+1]

(2.4)
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To make use of this inequality, we need bounds on the conditional Laplace transforms; namely, if
we can show that, for some function £(¥)(t), In IE [etfz(:)(’ﬁ)|fk+1] < L®)(¢), uniformly in Fry1,
then we obtain that

Note that this construction, so far, is completely model independent. In the estimation of the

Z £ ()

k=1

> Nz] <2infe -l 3T, £ (2.5)

conditional Laplace transforms, a conventional trick [PS] is to introduce a continuous family of
Hamiltonians, H I(JC)(G', u), that are equal to the original one for » = 1 and are independent of &
for u = 0. We will do this in a slightly different form than in [ST, BGP2, BGP3, FT]. We first
introduce the M (NN )-dimensional vectors

1
mi(o,u) = N D &0 + ubko (2.6)
";k '
and then define

AP (0,u) = —NW#“ )r (2.7)

Note that this procedure can of course be used in all cases where the Hamiltonian is a function of

the macroscopic order parameters. Naturally, we set

1 —BEM (g | .
2 (m,u) = 57 Y e PNy (Imi (e, 0) - i) (2.8)
oESN
and finally
AP ) = a7 (1 2 (h, v) - In 2 (7, 0)) (2.9)

Since for the remainder of the proof, T as well as N will be fixed values, to simplify our notations
we will write fi(u) = fz(v)(m u). Notice that

AP () = E (V| F] ~ B [fu(1)| Frs] (2.10)
and that, since
IE [fx(0)|Fx] — IE [fx(0)| F41] = O (2.11)
this implies
k) oy [ / r
7B () = /0 du (T [ 1)\ 7] - BB [£i(u)| Fons]) (2.12)

To bound the Laplace transform, we use that, for all z € IR,

e<1l+z+ %mzelzl (2.13)



so that .
IE [etfg)(m)lfk-}-l] S 1 + ;tz [(f(k)( )) elt‘f(k)(m)llfk'l-l] (2_14)

Our strategy in [BGP3] was to use a rather poor uniform bound on f(; )(ﬁz) in the exponent but to
prove a better estimate on the remaining conditioned expectation of the square. Here it will turn

“out that the uniform bound is already sufficiently good to be used throughout in (2.14).

Namely

= (oo S -0

(2.15)
where &, denotes the expectation w.r.t. the probability measure
1 - o,u
ga(——-—)xp,a(umN (0,0) — |[3)e PN (w) 4g (2.16)
Obviously,
0
[fr(u)| € €k E—H k)(a u)| + s [Z(mN(a, u) — m*) €L ok } (2.17)

The second term in (2.17) is easy:

|

< shmbrn [Z [my (o, u) - ﬁl"l} (2.18)
n .

= 2ebiullmn(o,u) - il < B2LE . ma(o,u) - ],

b [ 3 (mlh(o,0) - ) €lon
mn

so under our hypothesis it is bounded by a constant. What remains is to bound the expectation of
the modulus of %H](\’;)(a, u). This is the only estimate that is model-dependent. Computing the
derivative we get

M(N)

Z rép ok [mg\’;)’“(a, u)]r—1

8
‘%Hﬁ)(”’“) =
u=1

M(N) k

<r| Y dton [mi o)

p=1

(2.19)
M(N)

3 [m (o))

k=1

r-3

<r lm(Nk)(a, u)

[><]

- . r-3 -
<r|mPle )| Im e vl
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In the usual case, where €| < 1, we can bound the sup-norms appearing in (2.19) by ng’;)(a, u)” <

1; in the case of unbounded ¢, we can still use that ”mg\’;)(a', u)” < “mg\l,c)(a, u)“z. (Note that
00 ,

to get (2.19) we need that » > 3. In the case r = 2, we could only get a bound in terms of the

L'-norm of mS\';)(o, u), which is typically a factor of v/M larger than the L?-norm). Hence we get

5 |
G| 5o HN(0,0)| S réullmi (0, )3
\ (2.20)
<r (Il + Vo + N172)
if |€¥] <1, and
8 ‘ .
En | 5o Hi (0,)] < réiallmiy (0,237
(2.21)

<r (I + Vo r 82)

~ in general. In both bounds we used the fact that the measure £, has support on those o for which
x does not vanish. Putting (2.21) and (2.18) together, we see that indeed

|f§f)(ﬁz)l <C (2.22)

where C = C(7, p, %) is same finite constant depending on 7, p and % Using this bound in
(2.14) we see that

‘ C?
LE() < 7t2ecl*l (2.23)

To obtain (1.8), we insert this bound into (2.5) and bound the infimum over ¢ by its value for
t = &5, if z < 1n2C, and by its value for t = C~%, if z > Cln2. This concludes the proof of
Theorem 1. .
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