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Abstract

We consider a passive nonlinear optical cavity containing a photonic crystal
inside it. The cavity is driven by a superposition of the two coherent beams
forming a periodically modulated pump. Using a coupled mode reduction
and direct numerical modeling of the full system we demonstrate existence of
resting and moving transversely localized structures of light in this system.

Dissipative structures in optical systems have been the subject of intense research
during the last years [1]. They result from the modulational (often called Turing [2])
instability that triggers a spontaneous transition from homogeneous steady states
to self-organized or ordered structures. These can be either periodic or localized in
space. The latter case corresponds to stationary localized pulses that are formed in
the plane transverse to the beam propagation direction. They are often called cavity
solitons, and have been observed experimentally in a wide class of optical systems:
lasers with saturable absorber [3], liquid crystal light valve with optical feedback
[4], and single-mirror feedback systems using sodium vapor [5]. The experimental
realization of a write/erase system based on cavity solitons in semiconductor mi-
croresonator gives hope to achieve an integrable all-optical information processor

[6].

Recently, the inclusion of the transverse refractive index modulation into models
of intracavity nonlinear optics has revealed the existence of a new type of localized
structures associated with Bragg reflection in lasers with a saturable absorber [7] and
in discrete sets of coupled lasers [8] and resonantors [9]. It has also been shown that
the modulation of the refractive index can inhibit a modulational instability [10].
Solitons in periodically patterned semiconductor amplifiers, i.e. without feedback,
have been theoretically predicted in [11]. More recently, slowly moving dissipative
localized structures of light have been found in a thin photonic crystal film with
Kerr nonlinearity excited under the conditions of the so-called Fano resonance [12].

In this Letter, we consider a nonlinear passive cavity with a photonic crystal pumped
by two plane waves beams. We show that the photonic crystal induces a modula-
tional instability and creates conditions for existence of stable Bragg-like localized
structures in the transverse direction. These structures have zero transverse velocity
if the two coherent pumping beams are symmetric and the phase shift § between
the pump intensity profile and the refractive index modulation is an integer multi-
ple of 7. If these two conditions are not satisfied simultaneously then the localized
structure move with constant velocity.

We consider a planar passive cavity with two adjacent media inside it, see Fig.
1. The first is a nonlinear two-level medium. The second is the photonic crystal
introducing a refractive index modulation along the transverse directions. The cavity
is driven by two coherent pump beams with amplitudes P, 5 . The interference
between the two pumping waves produces a spatial modulation of the driving fields,
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Figure 1: Schematic setup of the nonlinear cavity filled with a passive medium (PM) and
a photonic crystal film (PCF). The Fabry-Perot cavity with flat Mirrors (M) is driven by
two pumping beam P, .

see Fig. 1. For simplicity, we consider the pure absorptive bistability, i.e. the atomic
detuning is equal to zero. In the mean-field approximation [1], the electric field
envelope F' and the population difference N can be described by the dimensionless
partial differential equations

oF O*F
a5 = [y +i0 + 2CN — 2icos(kz)] F + Zﬁ
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The modulation of the refractive index introduced by the photonic crystal is approx-
imated by the coskz function and its amplitude is rescaled to 2. Here k£ denotes
the wavenumber of the refractive index modulation. 6 is the cavity detuning and
C is the cooperativity parameter [1]. The decay rates associated with the electric
field and population difference are v and I, respectively. ¢ is the pump incidence
angle. Diffraction is modeled by the second derivative with respect the transverse
coordinate z.

To study Egs. (1,2), we decompose the electric field and the population difference
into a linear superposition of waves having opposite wavenumbers: F' = A;e**/2 +
Age™*2/2 and n = ny + n1e™*® + nye ™ where A;5 and ng; o are slowly varying
envelopes with respect to the transverse coordinate. Substituting these decomposi-
tions into Egs. (1,2) and performing adiabatic elimination of the variables ng; 2, we



get the following nonlinear coupled mode equations:

A . A
aatl = (y 4 Q) Ay + idy + Pl aagl 2001+ 1A)GAL,  (3)
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where

Gl=1+1+[A4)+(1+]4%)?

where () = kq is the rescaled sum of the incidence angle between the two pumping
waves and £ = z/k. The effective detuning is Q = 6 + k?/4.
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Figure 2: Instability boundaries as a function of the effective detuning parameter Q. (a)
Pump P, = P, = P versus ). The solid curve is the modulational instability boundary.
The bistability region is delimited by the three dashed curves. Grey region indicates
photonic band gap (BG). (b) Critical wavenumber at the modulational instability versus
Q. Parameters are v = 0.01, C = 0.4, § =0, and Q = 0.

Let us first examine the symmetric pumping situation, i.e., P, = P, with a zero
phase shift between the pump intensity and the refractive index, i.e., § = 0. In this
case, the linear stability analysis of the uniform steady-state solutions of Egs. (3,4)
with respect to a finite wavenumber perturbations shows that the system exhibits
a modulational instability in both the monostable and the bistable regimes. The
results of this analysis is summarized in Fig. 2 where we plot the critical pump
amplitude as a function of the effective detuning. The critical wavenumbers cor-
responding the maximum gain are plotted in Fig. 2 (b). From Fig. 2, we see that



the modulational instability takes place outside the photonic band gap. The band
gap indicated in this figure by the grey area is calculated from Egs. (3,4) without
dissipative terms as the region of non-existence of solutions of the form exp(+iQ¢)
for real @Q and Q.
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Figure 3: Stationary localized structures. 2 = 1.05. Other parameters are the same as in
Fig. 2. (a) Real and imaginary parts of the field amplitudes A; 3 for P, = P, = 0.225. Solid
(broken) lines correspond to A; (Az). (b) Bifurcation diagram. LS: localized structures,
HSS: homogeneous steady state. Broken lines correspond to unstable solutions.

When a modulational instability appears subcritically, localized structures are formed
in the hysteresis loop involving the homogeneous steady state and periodic patterns
[1]. In what follows, we focus on the localized structures whose existence is ensured
by the Bragg scattering at the periodic refractive index modulation. These struc-
tures can not be generally traced back to the limit with transversely homogeneous
refractive index, where photonic band gap disappears. We find the transverse pro-
files of the localized structures by solving numerically the nonlinear coupled mode
Egs. (3, 4). Fig. 3a represents typical profiles of the amplitudes A; 5 corresponding
to bright stationary localized solutions which have been calculated for the case of
symmetric pumping, 6 = 0, Q = 0, and P, = P, when the coupled mode equa-
tions are invariant under the reflection transformation £ — —§, A; < As. The
branch of the localized structures obtained by varying the pump strength parameter
P = P, = P, is shown in Fig. 3b together with the branch of spatially homogeneous
solutions of the coupled mode equations.

The localized structures found within the framework of the coupled mode approach
exist also in the full model, as we demonstrated by direct numerical modelling of
Egs. (1,2), see Fig. 4. The localized structure shown in this figure is formed by

4



IF|

1.0
S
0.5
0-0||||||||||||||||||||
30 20 -10 0 10 20 30
X

Figure 4: Stationary localized structure obtained by direct numerical simulation of Egs.
(1,2). Parameters are v = 0.05, C =2.0,§ =0, Q =0, P, = P, = 1.2, k = 2.5, and
0 = —0.3125.

the two waves counterpropagating in the transverse direction and therefore it is
characterized by oscillations of the electric field intensity with the spatial frequency
k equal to that of the refractive index modulation and a phase shift = between
the two neighboring intensity maxima, which fully complies with predictions of
the coupled mode approach. In that respect our structures are similar to the so-
called “staggered” solitary waves in discrete nonlinear systems [13] and different from
the iinstaggeredBolitons reported in [11]. The phase of the intensity oscillations of
the localized structure shown in Fig. 4 coincides with that of the refractive index
profile. From this figure we see that the homogeneous steady state of the coupled
mode equations which serves as a background for the localized solution in Fig. 3a
corresponds to a spatially periodic solution of Egs. (1,2).

In the case when the pumping is asymmetric, the localized structures move with
a constant velocity. Fig. b5 illustrates the dependence of the localized structure
velocity v = d€/dt on the phase d, imbalance between the amplitudes of the pump
beams 6P = (P, — P1)/(P, + P,), and the angle of incidence Q. From Fig. 5 (a) we
see that a phase shift § between the pump intensity and the refractive index profiles
results in a very small v, which is approximately four orders of magnitude smaller
than ¢ itself. However, v increases rapidly with ¢ and localized structures disappear
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Figure 5: Transverse velocity v = d¢/dt of a localized structure as a function of (a) the
phase shift 4, (b) pump imbalance P = (P, — P;)/(Py + P1), where Py + P, = 0.45, (c)
the sum of incidence angles Q. Other parameters are the same as in Fig. 3.

as ¢ tends to m/2. On the other hand, v depends linearly on the pump imbalance
0P and on @, although much more sensitively so on the latter. This behavior is
shown in Figs. 5 (a) and (c).

Finally, we note that Eqgs. (3,4) are invariant with respect to the transformation
A — —A7, Ay — A5 Q — —Q, 0 — § + m applied together with complex conju-
gation. In particular, this means that the stationary localized structures found at
0 = 0 can be transformed into the structures with § = +x for the same absolute
value but opposite sign of the detuning parameter 2. Unlike the structure shown
in Fig. 4, the structures with 6 = +7 are characterized by intensity oscillations
anti-phase with those of the refractive index profile.

In conclusion, using the nonlinear coupled mode approach and numerical modelling
of the full system, we have demonstrated the existence of bistability, modulational
instability and stable Bragg localized structures in the transverse section of an exter-
nally pumped passive cavity with photonic crystal. The localized structures move if
the pumping is asymmetric or if the phase detuning d, see Eq. (1), is different from
0 or w. The coupled mode reduction similar to the one applied above can be used to
study other driven nonlinear systems with a photonic band gap and one may expect
that localized structures constitute a generic and general feature of such systems.
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