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Abstract

This article studies coercive approximation procedures in the infinitesimal
inelastic deformation theory. For quasistatic, strictly monotone, viscoplastic
models using the Young measures approach a convergence theorem in general
Orlicz spaces is proved.

1 Introduction and formulation of the problem

In this article we study well-posedness of systems, which model viscoplastic defor-
mation behaviour of solids at small strain in quasistatic setting of the problem. Let
us start with the formulation of the initial-boundary value problem, which we are
going to investigate. Let 0 C R? be a bounded domain with smooth boundary ).
We have to find the displacement field u : Q x R — R3, the Cauchy stress tensor
T:Q xRy — 8 =R and the inelastic deformation tensor e : Q x R, — RY
satisfying the following system of equations

div,T(z,t) = —F(x,1),
T(x,t) = D(e(u(x,t))—eP(x,t)),

c(u(z, 1)) = %(Vmu(x,t)—i—vgfu(x,t)), (MS)

(e, t) = Q(PT(:L', t)> ,

where the function F' : Q x R, — R3 describes the external forces acting on the
material, D : S — S? is the elasticity tensor which is assumed to be constant in
time and space, symmetric and positive definite. Moreover, G : 83 — PS? is the
inelastic constitutive function and the map P is defined by PT =T — %trT - 1. We
investigate here only models of monotone type (for the definition see [1]). Flow rule
(MS4) is of monotone type if the function G is monotone and G(0) = 0. Additionally,
we assume that G is strictly monotone

\V/O'1,0'2 683 0'17&0'2 = (g(O’l)—g(Ug),Ul—Ug) >0

and continuous. We call monotone models with a strictly monotone inelastic con-
stitutive function also strictly monotone.

We consider system (MS) with the following boundary condition of mixed type: the
Dirichlet boundary condition on I'y C 92

u(z,t) = gp(z,t) forx €'y andt >0 (1.1)
and the Neumann boundary condition on I'y C 92

T(x,t) -n(z) = gn(z,t) forz ey andt >0 (1.2)



where n(z) is the exterior unit normal vector to the boundary 02 at the point z,
I'; and 'y are open in 99, disjoint, “smooth enough” sets satisfying 02 = T'; U T’y
and Hy(I'1) > 0, where Hy denotes the 2-dimensional Hausdorff measure. Moreover,
the functions gp, gy are given boundary data. Finally, the initial condition for the
inelastic strain tensor is in the form

eP(z,0) = eP(x) (1.3)

with a given initial data e?° : Q — PS3.

System (MS) with the assumptions on the inelastic constitutive function written
above belongs to the class of monotone models defined in the monograph [1]. The
vector of internal variables z contains the inelastic strain tensor only and the free
energy function associated with the system is in the form

pi(e, ) = 5D =)+ (e =),

where p is the mass density which we assume to be constant. We see that the
quadratic form 1 is semi-positive definite only and the considered model is not
coercive. It was shown in [1| and in [2] that in the inelastic deformation theory
coercive models (models with positive defined free energy) are L2-well-posed. In the
noncoercive case in the article [5] an approximation procedure was proposed. The
idea of the approximation was very simple. A noncoercive model was approximated
by a sequence of coercive models. Therefore this process is called in the literature a
coercive approximation. Convergence of this procedure in the dynamical setting of
the problem, assuming homogeneous boundary conditions and a polynomial growth
condition for the inelastic constitutive function, was studied for system (MS) in [6].
The main mathematical tool used in |6] was the Minty-Browder method. By this
monotonicity trick the weak limit of the nonlinear term appearing in the system
was characterized. In the quasistatic case, using variational inequalities techniques,
system (MS) with homogeneous boundary conditions was investigated in [17].
Assuming that G is strictly monotone, continuous and satisfies a nondegeneration
condition (see Section 4 for the definition of this condition) we prove in this article
a convergence result of the coercive approximation process for system (MS) without
any growth conditions for the function G in Orlicz spaces associated with the inelastic
constitutive function. To characterize the weak limit of the nonlinear term in (MS)
we use the Young measures approach. The main mathematical tool used in our
method is a generalisation of the compactness result published in [11].

2 Coercive approximation

In this section we formulate the coercive approximation process for system (MS)
and present an existence and uniqueness result for the approximated problem. Let
us write system (MS) in the following form

divxpg—lﬁ(s(x,t),sp(:v,t)) = —F(x,1),

e(u(z,t)) = %(qu(z, t) + VEu(z,t)), (2.4)



0
Y t) = G~ Pog(elat). (1)
where o o
PE(E,EP) =D(e—-¢e") = —P@(&?ﬁp) :

Hence, we see that our system of equations possesses a symmetry property given by
the last two equalities. The coercive approximation procedure destroys this property
slightly. Let k be a positive natural number. We define the following approximate
free energy function

1 1
k p —= — — Py . P —_— .
p" (e, eP) 21)(5 eP) - (e —eP) + 2k;D€ €.

This positive definite quadratic form is associated with the following approximate
system

div,T"(x,t) = —F(x,t),
TH(z,t) = D(e(u®(x,t)) — PF(a,t) + %é(uk(x, t)),
(1)) = %(Vmuk(x, £) + Vb (2, 1)) (CA)

PR t) = g(PTk(x,t)>,

where 7% = D(eF — eFP) = T% — 1De(u¥). System (CA) will be studied with the
boundary conditions

uF(z,t) = gp(x,t) for z €l andt >0 (2.1)
TH(x,t) -n(x) = gn(z,t) for z €Ty andt >0 (2.2)

and with the initial condition
Pk (z,0) = ePO(x) , (2.3)

where the given data gp, gy, F,e”? are the same as used in system (MS). Let us
assume that 20 € L2(Q; PS?), F(z,0) € L2(Q;R?), gp(x,0) € Hz2(I1;R?) and
gn(x,0) € H 2(I'y; R3), where H* denotes the standard Sobolev space constructed
over IL2. Moreover, we use the notation W*? for the Sobolev spaces over LP. The
initial function e”° generates initial values for the stress and the displacement. Let
us denote by 7%° and by «*? the unique solution of the linear problem

div,7%%(z) = —F(x,0)

THO () = D(a(u“(x))—ap’°<x>+%e<uk70<x>>) (2.4)

uk70(aj)\r1 = gD(xv 0) ) Tk70(x> ’ n(ﬂ?)‘pQ = gN(xv 0) :

We see that the initial values T%9 4*° are not constant in the approximation proce-

dure. Nevertheless, using the standard elliptic estimates for the differences u*0 —2/!°
we conclude that 11
[t = ey < (7 + 7)) (2.5)



Hence, the sequence {u*°} is a Cauchy sequence in the space H'(2;R?) and con-
verges to some function u°. Moreover, from the definition of 7%° we conclude that
TH0 — TO in the space L2(Q;8?%). Additionally, (u°,7°) is the unique solution of
the problem

div,T%2z) = —F(z,0)
T(z) = D(a(uo(x))—ap’o(x)> (2.6)
u(@)r, = gp(x,0), T°(x) n(x)r, = gn(z,0).

Next, we present an existence and uniqueness result for system (CA). A proof of
this result can be found in |2] or in [8].

Theorem 2.1 (existence for each approximation step) Let us assume that the
given data have the following reqularity

F e W»=((0,T); L*(% R?))
gp € W*((0,T);HE (D RY)), gy € W2((0,7); 2 (I; RY)).

Moreover, assume that eP° € 1L.2(Q; PS®) implies that for all k  G(PT*) €
L2(Q2; PS?) where the initial stress T is defined as the solution of the system (2.4).
If the constitutive function G is monotone, continuous and satisfies G(0) = 0 then
for each positive number k the problem (CA) with the boundary conditions (2.1),
(2.2) and the initial condition (2.3) possesses a global in time, unique solution

(ub, T, ePF)y € Wh>o((0,T); H (Q; R?) x L2(Q; 8* x PS?)) for all T > 0.

In fact from |2] and [8] follows that problem (CA) is L2-well-posed which means
that the solution depends continuously on given data. Next, we have to obtain
some estimates for the approximate sequence to conclude a convergence result of
this sequence. We will see that the free energy function ¥ can be controlled in
the space L>°(IL') by a constant which does not depend on k. Unfortunately, if
k — oo then the limit free energy 1 is not coercive and we loose a control of
strains in L°°(IL?). This is the main problem appearing in the theory of inelastic
deformations.

3 Emergy estimates

Next, we are going to obtain a convergence result for the approximation procedure
defined in the last section. In the dynamical setting for all monotone and viscoplastic
models (noncoercive models for which the inelastic constitutive function do not blow
up on finite domains) in the article |7| weak convergence of strains in 1.'(Q x (0, 7))
was obtained, provided that the given data satisfy the so called save load condition.
We are going to follow this idea for system (MS). In this section we prove the main
estimates for the approximate sequence.



Definition 3.1 We say that the given data F,gp,gn satisfy the weak save load
condition if the unique solution (u*,T*) of the linear system

div,T*(z,t) = —F(x,t)
T*(x,t) = De(u*(x,t)) (3.1)
u (@), = gplz,t), T(x)-n(@)r, = gn(z,1).

have the reqularity:

for all T >0 u* € WL°((0,T); HY(Q; R3)), T* € WH((0,T); L?(2; S%)) and
G(PT*) € L®((0,T); L*(2; PS?)).
The first estimate which we are going to prove is the energy estimate for the ap-

proximate sequence. Let us define the energy function associated with system (MS)
by

Ele,eP)(1) = /Q (e, 1), (1)) dae (3.2)

and the energy associated with system (CA) by
et = [ ot e o) do. (33
Q

Theorem 3.1 (energy estimate) Assume that the given data F,gp, gn,eP° sat-
isfy the requirements from Theorem 2.1 and additionally F,gp, gy have the weak
save load property. Then there exists a positive constant C(T') not depending of k
such that

EF(eR — &%, ePR) (1) (3.4)
/ / G(PT"(z, 7)) — g(PT*(ZL',T),PTk(ZL',T)—PT*(I’,T)) dedr < C(T),
where ef = e(u”), e* = e(u*) and (u*,T*) is the solution of system (5.1).

Proof
Calculating the time derivative of the energy £¥(eF — ¢*, ePF)(t) we have

dori ko phyiy

& (e =t e h(t) =
/D(sk—s*—sp’k) (eh —er —ePFyde + — /Ds — &) (eF =) dx =
0

/D(sk—s*—ep’kjté(sk—s*))-(Vut —vu:)dx—/(T TPy =
Q Q

— / div (T% — (1 + l)T*)(ufj — ) dr — / G(PT*)(PT* — PT*) dx
Q k Q
+/89(Tk—(1+ ;)T*) (uF — ) dS(z) . (3.5)



Using the definition of the pair (u*,7*) we obtain that

%Sk(a — ", PRy ):—/g(PTk)(PTk—PT*)dx

1
—l——/F(u —ut)dx——/ gN(uf—u;‘)dS(:B):
k Ja k Jr,

— / (G(PT*) — G(PT*))(PT* — PT*) dx — / G(PT*)(PT* — PT*) dx

—|—%/QF(U —ut)dx—%/mg]v( —uy) dS(z). (3.6)

Next we integrate in time over (0,¢) and estimate the last three integrals from the
right hand side of (3.6).

/t/ G(PT*)(PT* — PT*)dx dr

/Hg (PT*) |22 + = /5'f &, PR dr (3.7)

and the first term on the right hand side is bounded by the weak save load condition.

1 t
E//F(uf—u:)d:vdT:
——//Eu—u )dxdr

o3 |ret—wyde— ¢ [ FO)0 — ) as (33)

Using regularity of F,u®? and u* we see that the last integral in (3.8) is bounded.
Moreover, on I'; we have u* —u* = 0 hence, by the Korn inequality ||u* — U ||l ) <
C(Q)le¥ — e*||L2(. This allows us to write that

// Fu)drdr < = /||Ft||L2d7'

/5k( — &%, ePPVdr + C()||F||3s + aF (e — ¥, eP®)y +C,  (3.9)
0

where a > 0 is any positive number, C'(«) do not depend on k and C' is a global
positive constant. Similarly we estimate the last integral

——//FQgN —u})dS(z //Mgmu —u)dS(x)dr
—E/HQN(U —u’)dS(z) + k/FZgN(O)( ut? —u(0)dS(x) . (3.10)

Using the continuity of the trace operator and again the Korn inequality we arrive
at the inequality

1 [ ) 1 [
1 / / on(uf — ) dS(x) dr < * / lgnalliaeay dr
k; 0 Ty 2 0

t
+C’/ EF (R — &%, ePFYdr + C(B)||gn ||y + BEF (" —e*,ePF) + C', (3.11)
0



where § > 0 is any positive number, C'(3) do not depend on k£ and C' is a global
positive constant. Finally, we choose a and (3 so small that o+ 5 < 1, insert (3.7),
(3.9) and (3.11) into the time integral of (3.6) and use the Gronwall Lemma. u

Next step is an estimate for the time derivatives of the approximate sequence. This
is the main estimate in the existence theory. In the dynamical setting of the problem
this was done for general monotone models in the article |[7]|. In the quasistatic case
for coercive and self-controlling models (for the definition of the class containing self-
controlling models we refer to [5]). System (MS) does not have the self-controlling
structure and therefore we are going to follow the idea from [7].

Theorem 3.2 (energy estimate for time derivatives) Assume that the given
data F, gp, gn,eP° satisfy all assumptions from Theorem 2.1. Additionally suppose
that the boundary data gy and the external force F posses the regularity

VT>0 Ints gne € LZ(Q x (0,T)),  Fi, Fy € L>((0, 7); L*(€; 8%))

and the sequence G(PT*°) is bounded in 1.(Q; PS?). Then the energy function &
for the time derivatives can be estimated as follows: for all t € (0,T)

EX(el, el M) (1) < D(T)(1 + P [CA(SIHE (3.12)
te(0,

where the positive constant D(T) does not depend on k.

Proof

Let us denote by (¥, &2") the shifted functions (¥ (z,t + h),eP*(x,t + h)) for h €
(0,7). Calculating the time derivative of the function E¥(ek — &k &% — ePF)(t) in
the same manner as in the proof of Theorem 3.1 we arrive at the equality

d
8 (e — et et — P )(t) =

_ / div (TF — T)(of — o*) da + / (TF — THyn(of — o%) dS(z) +
Q o0

- @ty - G (PTE - PT)da <

/Q (FF = FRY(of — o) da + /8 (T =Tk =4 dS( (3.13)

(the last inequality follows by monotonicity of the function G). Here v* = u¥ and

TF,vF, F, are shifted functions T%, v*, F respectively. Using the boundary conditions
we have

d
G = et - ) < [ (B - POk - o) da
Q

n / (T} — Tn(ghy, — gb) dS(z) + / (g3 — gn)(of — %) dS(z), (3.14)

s

where g, = Oigp and gp;,, gn,n are shifted functions gf, gn. Next we integrate
(3.14) with respect to t, shift all difference operators onto given data, divide by h?



and pass to the limit A — 0". Then we obtain the inequality

EF (b, P (1) < EM(eh, ) / TARE

T ( ) T n|_ s
+C(T) t:gép)”g[’“”H? o Jup 19541153 1, s(%p 17" - ll -4 50

+CD)( sup gnalliews + sup lgnellums ) sup 0¥ in
te(0,7) te(0,T) te(0,T)

g

+ sup. 1 ooy [0 (3.15)

3
te(0,T L2

where the positive constant C(7") do not depend on k. Using the continuous em-
bedding LD(€2) C L2(€2), where LID(Q) consists of integrable functions u for which
the weak derivative e(u) is also integrable, we have

181, 30y < CO(llefllioy + [ lgpel dS(x)) - (3.16)

L2 (Q) r
By the trace theorem in the space LID({2) we can estimate the boundary norm of v*
It hscom < ) (It + [ lopildS (3.17)

Finally, by the trace theorem in the space L?(div ) we obtain that

175 nlly g ey < C(Q)<||Tk||L2(m + ||F||L2(Q)) . (3.18)

Inserting (3.16), (3.17) and (3.18) into (3.15), observing that the sequence
EF(ek, 2%)(0) is bounded and using the following inequality ||€¥(|L1 ) < C(||e?"||Liq)
+[|T}{l12(02)) we complete the proof. n

To close the energy estimate for the time derivatives we have to prove the bound-
edness of the strains in the space L>((0,7);L'(£2;8?)). To do this we use an idea
from the article [9]. First we define a stronger save load condition.

Definition 3.2 We say that the given data F, gp, gy satisfy the save load condition
if the unique solution (u*,T*) of the linear system (3.1) have the regularity required
in Definition 3.1 and additionally there exists § > 0 such that for o € PS3

sup |G(PT" +0)] € L*((0, T); L* (% Ry)) .

o<

Theorem 3.3 Let us assume that all requirements from Theorem 3.2 hold and the
given data satisfy the save load condition. Then the sequences {6t’k},{6f} are

bounded in the space L>°((0,T); L' (Q2; 8%)).

Proof
Let us fix § > 0 from the save load condition and fix o € PS? with |o| <. By the
monotonicity of the inelastic constitutive function we have

(G(PT*) — G(PT* + o), PT* — PT* —0) > 0. (3.19)



We rewrite (3.20) in the form
etk < (G(PT"), PT* — PT*) — (G(PT* + o), PT* — PT* — o). (3.20)

Next we take the supremum with respect to |o| < § and integrate over ). Hence,
we conclude that

/ |eP¥| da < = /(g(PTk),PTk — PT*)dx
Q
1 ~
+5/ sup |G(PT* + o)|(|PT*| + |PT*| + ) dx (3.21)
Q |o|<d

According to the save load condition and to the energy estimate from Theorem 3.1
we see that the last integral in the right hand side of (3.22) is bounded in time.
Hence, to end the proof we have to estimate the previous integral. By equality (3.6)
we have

d ok, k « pk
dtg (¥ — ", ePP)(t)

v [ rk =g [ gl —uase). G22)

Next, we observe that

/ G(PT*)(PT* — PT*)dx =
Q

)ask ek e*,gpvk)(t)) < aER(ek, MY (1) + C(a)ER(ER — &%, &P M) (1) + C(T), (3.23)

where o > 0 is arbitrary and the positive constants C'(«), C(T) do not depend on

k. Moreover, on the set I'y we have u¥ — uf = 0 which allows us to use the Korn

inequality in the form |[uf — uf|lm@) < C(Q)||e} — &flli2(). These observations
imply that

/ G(PT*)(PT* — PT*) dx
Q

< BEF (R PFV(H) + C(B)ER(X — e, ePR)(t) + C(T), (3.24)

where 3 > 0 is arbitrary and the positive constants C'(3), C(T) do not depend on k.
Choosing (3 so small that 26D(T) < 1, where D(T) is the constant from Theorem

3.2 we obtain
/|€ |da:<— sup /|€ | dz + C(T)
Q 2 40,1

where C(T') is independent of k. This inequality completes the proof immediately. m

Remark The boundedness of the energy £%(e¥, e7*)(¢) implies that the functions
/ (G(PT*) — G(PT*))(PT* — PT*)dz and / G(PT*)(PT* — PT*) dx
Q Q
are also bounded on finite time intervals.

In [7] in dynamical setting of the problem was proved that if the function PT* is
bounded then the sequences of strains are relatively weakly precompact in the space
LY(Q x (0,7);8%). Note that the boundedness of PT* automatically implies the
condition from Definition 3.2. In this article we obtain a similar result in the next
section.



4 Convergence in Orlicz spaces

We start this section with some definitions and results concerning vector-valued
Orlicz spaces generated by N-functions which are not necessary spherical symmetric.
For more information and proofs we refer to [17].

Definition 4.1 Let M : R™ — R be a strictly convex and differentiable function.
(a) If M satisfies the condition limy .o A™'M(\p) = oo for all p € R™\ {0} and
additionally for all p € R™ M(p) = M(—p) then we say that M is an N -function.
(b) The Legendre transformation of M is called the dual conjugate to M and is
denoted by M*.

(¢c) If M is an N -function we denote by Ly (Q;R™) the set of all functions p : Q —
R™ from L' (Q; R™) such that

/Q M(p(z)) dz < oo.

(d) The Orlicz space Ly (2;R™) consists of all functions p € L'(Q; R™) such that

Hp||LM—sup{‘/ dx‘ q € Ly+(R™) and /M* ))dxgl}

s finite.
(e) We say that M satisfies the Ag-condition if there exist positive constant ¢, A such
that M (2p) < cM(p) for all |p| > A.

Theorem 4.1 Let M be an N -function.
(a) The space Ly (Q;R™) with the norm ||p||L,, is @ Banach space.
(b) If p € Ly (;R™) then p € Ly (Q;R™) and

1Pl Ly < 1+/QM(p(:B))dx.

(¢) If p € Ly (S R™) and ||plln,, <1 then p € Ly (€ R™) and

/ M(p(z)) dz < [plls,, -

(d) If p € Ly (;R™) and q € Ly« (2;R™) then the function (p,q) is integrable and
the following version of the Hdlder inequality holds

/ (p(@), g(@))| dz < [Pl lglleyy.

(e) If M satisfies the Ag-condition then Ly (Q;R™) = Ly (2;R™) and the space
L>(Q;R™) is dense in Ly (Q; R™).

(f) If M satisfies the Ag-condition then the dual space to the Orlicz space Ly (€2; R™)
is the Orlicz space Ly« (£2; R™).

In this section we want to prove that the weak limit of the coercive approximation
obtained in the last section satisfies system (MS). To do this we assume that the
inelastic constitutive function G satisfies the following nondegeneration condition.

10



Definition 4.2 We say that the function G satisfies the nondegeneration condition
if there exists an N -function M and positive constant ¢ such that

vpeS®  M(p)+ M (G(p) <c(G(p)p)

and the dual conjugate M* satisfies the Ao-condition.

Note that if G is equal to the derivative of some A -function then G satisfies im-
mediately the nondegeneration condition, provided that the dual conjugate satisfies
the Aj-condition. This is a consequence of the equality M(p) + M*(DM(p)) =
(DM (p), p) which is satisfied by all N-functions. This condition implies that G can-
not behave extremely weird. Compare this condition with similar conditions from
|6] and from [17].

Theorem 4.2 Suppose that the inelastic constitutive function G satisfies the non-
degeneration condition and all assumptions from Theorem 3.3 hold. Additionally,
assume that the function PT* defined by the save load condition possesses the requ-
larity

VT>0 PI*eL>*(Qx(0,T); PS*).

Then the sequences of strains and of time derivatives of strains converges weakly
in the space L'(Q x (0,T):8%) and the weak limit of V% belongs to the space

Lo°((0,T); Lp+(92; 8?)), where M is the N'-function from the nondegeneration con-
dition.

Proof

We want to obtain an estimate for the sequence of the time derivatives of inelastic
strains in a space in which bounded sets are weakly precompact in L' (Qx (0, T); §?)).
Let us start with the following observation:

/ G(PT™PT* do < ‘ / G(PT™(PT* — PTY) dx) + / G(PTMPT*dz. (4.1)
Q Q Q

By the nondegeneration condition, the remark at the end of Section 3 and the
additional regularity of PT™ we obtain

/Q M(PT*) dz + /Q M*(G(PT*)) dx

<c / G(PT*)PT" dx < C(T) + ¢|G(PT*) |l |1 PT" I~y - (4.2)
Q

Consequently, the sequence {e”*} is bounded in L>((0,T); L+ (Q; PS?)) and the
sequence {PT*} is bounded in L°°((0,T); Ly(€; PS?)). This yields that the se-
quence {£"} is bounded in Ly« (2 x (0,T); PS?)) and in this space bounded sets
are relatively weakly precompact in L}(Q x (0,7"); 8%)). Hence, there a subsequence
(which will be denoted by {*} again) such that e?* — & in L'(Q x (0,7);S%))
where €P is the weak limit of the sequence {Ep’k}. Moreover, without loss of general-
ity we can assume that PT* > PT in L>°((0, T); Ly (92; PS?)) where T is the weak
limit of the sequence {T*} in the space L>°((0,T);1L?(£2; S?)). Using the convexity
of the function M* we conclude that e? € 1L>°((0,T); Las+(2;8?)). Finally, by the
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equality (1 + ;)ef = D'TF + % we obtain a convergence result for the sequence

{55} [

From the last theorem we deduce that the approximate sequence (u*, T* eP*) con-
verges weakly to a limit (u, T, e”). These functions satisfy the system of equations

div,T(z,t) = —F(x,t) in L=((0,7);L*(;R?)),
c(u(z, 1)) = %(Vu(:c,t) VT u( 1) in L((0,T): LY SY)) |
P(x,t) = w— I}Lrgoef’k(z,t) = x(z,t) in L®((0,7); Ly (2 8%),

the boundary condition (1.1) and (1.2) and the initial condition (1.3). Hence, it
remains to prove that

x(z,t) = G(PT(z,t)) fora.e. (z,t)e€Qx(0,T). (4.3)

In [7] equality (4.3) was proved using the gradient structure of the inelastic con-
stitutive function. In |5|, provided that G possesses a polynomial growth only, the
function y was characterized by the Minty-Browder method. Here we are going to
use the following general theorem using the Young measures approach.

Theorem 4.3 Let 2 C R" be a measurable set of finite measure and let a function
A R" — R"™ satisfy the following conditions:

(i) A(§) is continuous.
(it) For all &,& € R, & # &

[A(&1) = A(&)] - [61 — & > 0.

(111) There exist positive constants ci,cs and an N -function such that for all & it
holds

A(€) - € = ar{ M (&) + M*(A(E))}
and

|A(E)] < eaM™(A(€)),
where M* is the dual conjugate function to M.

Let 2" : Q — R"™ be a sequence of measurable functions such that
(iv) {A(z") - 2"} is uniformly bounded in L' (Q),
(v) 2" > zin Ly(Q) and A(z") — A in LY(Q),
(vi)

1imsup/A(z")-z"dx < /f_l-zdx.

n—0o0

Q Q

12



Then

Z" — 2z in measure.

We postpone a proof of this theorem (it will be done in the last section) and prove
that by this general tool equality (4.3) follows. We set G = A and 2" = PT™ and
see that we have only to show that (vi) holds to satisfy the all requirements of this
theorem. Moreover, we immediately have that if the sequence {PT’“} converges in
measure then there exists a subsequence (again denoted with the same symbol) that
PT*(x,t) — PT(x,t) for a.e. (2,t) € Qx (0,T). Hence, the continuity of G implies
(4.3). In the next theorem we prove condition (vi).

Theorem 4.4

t t
lim sup / / G(PT*)PT* dx dr < / / X - PTdzdr. (4.4)
0 JQ 0 JQ

k—o0

Proof
From Theorem 3.1 we have

ER(F — o PRV (1) = ER(F — %, P ) (0) — /0 /Q G(PTH)(PT* — PT*) da

v [ et an- 3 ot - wyas@. @

From Theorem 3.2 we conclude that two last integrals on the right hand side of (4.5)
converge to zero if £ tends to infinity. Moreover, in the same manner as in the proof
of Theorem 3.1 we obtain

5(6—5*,6”)(1‘):5(6—5*,€p)(0)—/0 /QX.pdedT. (4.6)

A comparison of the initial energies yields
EF(eF — &% ePM)(0) = E(e — €*,eP)(0) + % /QDSO edx
Consequently we arrive at the inequality
E(eF —e*, eP?)(t) + /Ot /Q G(PT®)PT* dx dr + Ry(t)
<E(e—€%eP)(t) + /t/ﬂx - PTdxdr,
0

where Ry (t) converges to zero uniformly on bounded time intervals. Finally, the
convexity of the energy function completes the proof. [ ]

13



5 Young measures tools

For the convenience of the reader we collect below all the necessary tools concerning
Young measures used in the proof of Theorem 4.3. For more details and the proofs,
we refer to [16, Corollaries 3.2-3.4], and [3, Theorem 2.9], see also [13, 15].

Lemma 5.1 Suppose that the sequence of maps 27 : @ — R? generates the Young
measure v. Let F': Q x R? — R be a Carathéodory function (i.e. measurable in the
first argument and continuous in the second). Let also assume that the negative part
F~(z,2(x)) is weakly relatively compact in L1(Q). Then

liminf/ (z,2 (2 dx>// z, \)dv(N)dz.
j—00

Q Q Rd

If, in addition, the sequence of functions x — |F|(x, 2 (x)) is weakly relatively com-
pact in LY(Q) then

.ﬂw%né/f@AMMM i LY(Q)

Remark The second part of the above theorem can be easily extended to vector
valued functions F'.

Lemma 5.2 Suppose that a sequence 27 of measurable functions from € to R? gen-
erates the Young measure v : Q — M(R?). Then

2} — 2 in measure if and only if v, = 0.4 a.e.

6 Proof of Theorem 4.3

We apply Lemma 5.1 to the function A(2") - 2". The coercivity condition from

assumption (i77) of the theorem assures that the negative part of this function is
equal to zero; thus it is certainly weakly relatively compact in L}(€2). This allows to
conclude that

liminf/A 2 dx>// Edvy(s, &)dx, (6.7)
Q Q Rn

where 1, is the Young measure generated by the sequence {z"}. Since the sequence
{A(z™)} is uniformly bounded in Ly (), it is weakly relatively compact in L'(Q),
which implies A = [, A(¢)dv,(€). Thus, from assumption (vi), the following in-
equality holds

//A( ¢) dv, (€ /fdux dg:>// ) - € dvy(€) da (6.8)

Q R7 Q Rn

14



From the monotonicity of A we have that

//ﬁ@@m%@mxza (6.9)

R

where h is defined by

Simple calculations imply that

[ [1egan@as = [ [ -cinioie- [ [a@ane)- [

Q R Q R7 R™

which, together with (6.8), assures that

(//h@@ﬂ%@ﬂxﬁ& (6.10)

Q Rn»

Then, (6.9) and (6.10) imply that [o, h(z,§)dv,(§) = 0 for a.e. x € Q. Moreover,
since v, > 0, we have

supp{r,} = { . édvx@)} :

Note that the single point in the right-hand side set is located a.e. in the point
z(x), where z is the weak limit of the sequence {z"}. Finally we can conclude that
Vy = 0.(z) a.e.. A direct application of Lemma 5.2 yields that 2" — z in measure. m
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