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AbstratThis artile studies oerive approximation proedures in the in�nitesimalinelasti deformation theory. For quasistati, stritly monotone, visoplastimodels using the Young measures approah a onvergene theorem in generalOrliz spaes is proved.1 Introdution and formulation of the problemIn this artile we study well-posedness of systems, whih model visoplasti defor-mation behaviour of solids at small strain in quasistati setting of the problem. Letus start with the formulation of the initial-boundary value problem, whih we aregoing to investigate. Let Ω ⊂ R
3 be a bounded domain with smooth boundary ∂Ω.We have to �nd the displaement �eld u : Ω × R+ → R

3, the Cauhy stress tensor
T : Ω × R+ → S3 = R

n×n
sym and the inelasti deformation tensor εp : Ω × R+ → R

Nsatisfying the following system of equations
div xT (x, t) = −F (x, t) ,

T (x, t) = D(ε(u(x, t)) − εp(x, t)) ,

ε(u(x, t)) =
1

2
(∇xu(x, t) + ∇T

x u(x, t)) , (MS)
ε

p
t (x, t) = G

(

PT (x, t)
)

,where the funtion F : Ω × R+ → R
3 desribes the external fores ating on thematerial, D : S3 → S3 is the elastiity tensor whih is assumed to be onstant intime and spae, symmetri and positive de�nite. Moreover, G : S3 → PS3 is theinelasti onstitutive funtion and the map P is de�ned by PT = T − 1

3
trT · I. Weinvestigate here only models of monotone type (for the de�nition see [1℄). Flow rule(MS4) is of monotone type if the funtion G is monotone and G(0) = 0. Additionally,we assume that G is stritly monotone

∀ σ1, σ2 ∈ S3 σ1 6= σ2 ⇒ (G(σ1) − G(σ2), σ1 − σ2) > 0and ontinuous. We all monotone models with a stritly monotone inelasti on-stitutive funtion also stritly monotone.We onsider system (MS) with the following boundary ondition of mixed type: theDirihlet boundary ondition on Γ1 ⊂ ∂Ω

u(x, t) = gD(x, t) for x ∈ Γ1 and t ≥ 0 (1.1)and the Neumann boundary ondition on Γ2 ⊂ ∂Ω

T (x, t) · n(x) = gN(x, t) for x ∈ Γ2 and t ≥ 0 (1.2)1



where n(x) is the exterior unit normal vetor to the boundary ∂Ω at the point x,
Γ1 and Γ2 are open in ∂Ω, disjoint, �smooth enough� sets satisfying ∂Ω = Γ1 ∪ Γ2and H2(Γ1) > 0, where H2 denotes the 2-dimensional Hausdor� measure. Moreover,the funtions gD, gN are given boundary data. Finally, the initial ondition for theinelasti strain tensor is in the form

εp(x, 0) = εp,0(x) (1.3)with a given initial data εp,0 : Ω → PS3.System (MS) with the assumptions on the inelasti onstitutive funtion writtenabove belongs to the lass of monotone models de�ned in the monograph [1℄. Thevetor of internal variables z ontains the inelasti strain tensor only and the freeenergy funtion assoiated with the system is in the form
ρψ(ε, εp) =

1

2
D(ε− εp) · (ε− εp) ,where ρ is the mass density whih we assume to be onstant. We see that thequadrati form ψ is semi-positive de�nite only and the onsidered model is notoerive. It was shown in [1℄ and in [2℄ that in the inelasti deformation theoryoerive models (models with positive de�ned free energy) are L

2-well-posed. In thenonoerive ase in the artile [5℄ an approximation proedure was proposed. Theidea of the approximation was very simple. A nonoerive model was approximatedby a sequene of oerive models. Therefore this proess is alled in the literature aoerive approximation. Convergene of this proedure in the dynamial setting ofthe problem, assuming homogeneous boundary onditions and a polynomial growthondition for the inelasti onstitutive funtion, was studied for system (MS) in [6℄.The main mathematial tool used in [6℄ was the Minty-Browder method. By thismonotoniity trik the weak limit of the nonlinear term appearing in the systemwas haraterized. In the quasistati ase, using variational inequalities tehniques,system (MS) with homogeneous boundary onditions was investigated in [17℄.Assuming that G is stritly monotone, ontinuous and satis�es a nondegenerationondition (see Setion 4 for the de�nition of this ondition) we prove in this artilea onvergene result of the oerive approximation proess for system (MS) withoutany growth onditions for the funtion G in Orliz spaes assoiated with the inelastionstitutive funtion. To haraterize the weak limit of the nonlinear term in (MS)we use the Young measures approah. The main mathematial tool used in ourmethod is a generalisation of the ompatness result published in [11℄.2 Coerive approximationIn this setion we formulate the oerive approximation proess for system (MS)and present an existene and uniqueness result for the approximated problem. Letus write system (MS) in the following form
div xρ

∂ψ

∂ε
(ε(x, t), εp(x, t)) = −F (x, t) ,

ε(u(x, t)) =
1

2
(∇xu(x, t) + ∇T

x u(x, t)) , (2.4)2



ε
p
t (x, t) = G

(

− Pρ
∂ψ

∂εp
(ε(x, t), εp(x, t))

)

,where
ρ
∂ψ

∂ε
(ε, εp) = D(ε− εp) = −ρ

∂ψ

∂εp
(ε, εp) .Hene, we see that our system of equations possesses a symmetry property given bythe last two equalities. The oerive approximation proedure destroys this propertyslightly. Let k be a positive natural number. We de�ne the following approximatefree energy funtion

ρψk(ε, εp) =
1

2
D(ε− εp) · (ε− εp) +

1

2k
Dε · ε .This positive de�nite quadrati form is assoiated with the following approximatesystem

div xT
k(x, t) = −F (x, t) ,

T k(x, t) = D(ε(uk(x, t)) − εp,k(x, t) +
1

k
ε(uk(x, t)) ,

ε(uk(x, t)) =
1

2
(∇xu

k(x, t) + ∇T
x u

k(x, t)) , (CA)
ε

p,k
t (x, t) = G

(

P T̂ k(x, t)
)

,where T̂ k = D(εk − εk,p) = T k − 1
k
Dε(uk). System (CA) will be studied with theboundary onditions

uk(x, t) = gD(x, t) for x ∈ Γ1 and t ≥ 0 (2.1)
T k(x, t) · n(x) = gN(x, t) for x ∈ Γ2 and t ≥ 0 (2.2)and with the initial ondition

εp,k(x, 0) = εp,0(x) , (2.3)where the given data gD, gN , F, ε
p,0 are the same as used in system (MS). Let usassume that εp,0 ∈ L

2(Ω;PS3), F (x, 0) ∈ L
2(Ω; R3), gD(x, 0) ∈ H

1

2 (Γ1; R
3) and

gN(x, 0) ∈ H
− 1

2 (Γ2; R
3), where H

s denotes the standard Sobolev spae onstrutedover L
2. Moreover, we use the notation W

k,p for the Sobolev spaes over L
p. Theinitial funtion εp,0 generates initial values for the stress and the displaement. Letus denote by T k,0 and by uk,0 the unique solution of the linear problem

div xT
k,0(x) = −F (x, 0)

T k,0(x) = D
(

ε(uk,0(x)) − εp,0(x) +
1

k
ε(uk,0(x))

) (2.4)
uk,0(x)|Γ1

= gD(x, 0) , T k,0(x) · n(x)|Γ2
= gN(x, 0) .We see that the initial values T k,0, uk,0 are not onstant in the approximation proe-dure. Nevertheless, using the standard ellipti estimates for the di�erenes uk,0−ul,0we onlude that

‖uk,0 − ul,0‖H1(Ω) ≤ C
(1

k
+

1

l

)

. (2.5)3



Hene, the sequene {uk,0} is a Cauhy sequene in the spae H
1(Ω; R3) and on-verges to some funtion u0. Moreover, from the de�nition of T k,0 we onlude that

T k,0 → T 0 in the spae L
2(Ω;S3). Additionally, (u0, T 0) is the unique solution ofthe problem

div xT
0(x) = −F (x, 0)

T 0(x) = D
(

ε(u0(x)) − εp,0(x)
) (2.6)

u0(x)|Γ1
= gD(x, 0) , T 0(x) · n(x)|Γ2

= gN(x, 0) .Next, we present an existene and uniqueness result for system (CA). A proof ofthis result an be found in [2℄ or in [8℄.Theorem 2.1 (existene for eah approximation step) Let us assume that thegiven data have the following regularity
F ∈ W

2,∞((0, T ); L2(Ω; R3))

gD ∈ W
3,∞((0, T ); H

1

2 (Γ1; R
3)) , gN ∈ W

2,∞((0, T ); H− 1

2 (Γ2; R
3)) .Moreover, assume that εp,0 ∈ L

2(Ω;PS3) implies that for all k G(PT k,0) ∈
L

2(Ω;PS3) where the initial stress T k,0 is de�ned as the solution of the system (2.4).If the onstitutive funtion G is monotone, ontinuous and satis�es G(0) = 0 thenfor eah positive number k the problem (CA) with the boundary onditions (2.1),(2.2) and the initial ondition (2.3) possesses a global in time, unique solution
(uk, T k, εp,k) ∈ W

1,∞((0, T ); H1(Ω; R3) × L
2(Ω;S3 × PS3)) for all T > 0 .In fat from [2℄ and [8℄ follows that problem (CA) is L

2-well-posed whih meansthat the solution depends ontinuously on given data. Next, we have to obtainsome estimates for the approximate sequene to onlude a onvergene result ofthis sequene. We will see that the free energy funtion ψk an be ontrolled inthe spae L
∞(L1) by a onstant whih does not depend on k. Unfortunately, if

k → ∞ then the limit free energy ψ is not oerive and we loose a ontrol ofstrains in L
∞(L2). This is the main problem appearing in the theory of inelastideformations.3 Energy estimatesNext, we are going to obtain a onvergene result for the approximation proedurede�ned in the last setion. In the dynamial setting for all monotone and visoplastimodels (nonoerive models for whih the inelasti onstitutive funtion do not blowup on �nite domains) in the artile [7℄ weak onvergene of strains in L

1(Ω× (0, T ))was obtained, provided that the given data satisfy the so alled save load ondition.We are going to follow this idea for system (MS). In this setion we prove the mainestimates for the approximate sequene.
4



De�nition 3.1 We say that the given data F, gD, gN satisfy the weak save loadondition if the unique solution (u∗, T ∗) of the linear system
div xT

∗(x, t) = −F (x, t)

T ∗(x, t) = Dε(u∗(x, t)) (3.1)
u∗(x)|Γ1

= gD(x, t) , T ∗(x) · n(x)|Γ2
= gN(x, t) .have the regularity:for all T > 0 u∗ ∈ W

1,∞((0, T ); H1(Ω; R3)), T ∗ ∈ W
1,∞((0, T ); L2(Ω;S3)) and

G(PT ∗) ∈ L
∞((0, T ); L2(Ω;PS3)) .The �rst estimate whih we are going to prove is the energy estimate for the ap-proximate sequene. Let us de�ne the energy funtion assoiated with system (MS)by

E(ε, εp)(t) =

∫

Ω

ρψ(ε(x, t), εp(x, t)) dx (3.2)and the energy assoiated with system (CA) by
Ek(ε, εp)(t) =

∫

Ω

ρψk(ε(x, t), εp(x, t)) dx . (3.3)Theorem 3.1 (energy estimate) Assume that the given data F, gD, gN , ε
p,0 sat-isfy the requirements from Theorem 2.1 and additionally F, gD, gN have the weaksave load property. Then there exists a positive onstant C(T ) not depending of ksuh that

Ek(εk − ε∗, εp,k)(t) (3.4)
+

∫ t

0

∫

Ω

(

G(P T̂ k(x, τ)) − G(PT ∗(x, τ), P T̂ k(x, τ) − PT ∗(x, τ)
)

dx dτ ≤ C(T ) ,where εk = ε(uk), ε∗ = ε(u∗) and (u∗, T ∗) is the solution of system (3.1).ProofCalulating the time derivative of the energy Ek(εk − ε∗, εp,k)(t) we have
d

dt
Ek(εk − ε∗, εp,k)(t) =
∫

Ω

D(εk − ε∗ − εp,k) · (εk
t − ε∗t − ε

p,k
t ) dx+

1

k

∫

Ω

D(εk − ε∗) · (εk
t − ε∗t ) dx =

∫

Ω

D(εk − ε∗ − εp,k +
1

k
(εk − ε∗)) · (∇uk

t −∇u∗t ) dx−

∫

Ω

(T̂ k − T ∗) · εp,k
t dx =

−

∫

Ω

div (T k − (1 +
1

k
)T ∗)(uk

t − u∗t ) dx−

∫

Ω

G(P T̂ k)(P T̂ k − PT ∗) dx

+

∫

∂Ω

(T k − (1 +
1

k
)T ∗)n(uk

t − u∗t ) dS(x) . (3.5)
5



Using the de�nition of the pair (u∗, T ∗) we obtain that
d

dt
Ek(εk − ε∗, εp,k)(t) = −

∫

Ω

G(P T̂ k)(P T̂ k − PT ∗) dx

+
1

k

∫

Ω

F (uk
t − u∗t ) dx−

1

k

∫

Γ2

gN(uk
t − u∗t ) dS(x) =

−

∫

Ω

(G(P T̂ k) − G(PT ∗))(P T̂ k − PT ∗) dx−

∫

Ω

G(PT ∗)(P T̂ k − PT ∗) dx

+
1

k

∫

Ω

F (uk
t − u∗t ) dx−

1

k

∫

Γ2

gN(uk
t − u∗t ) dS(x) . (3.6)Next we integrate in time over (0, t) and estimate the last three integrals from theright hand side of (3.6).

∫ t

0

∫

Ω

G(PT ∗)(P T̂ k − PT ∗) dx dτ

≤
1

2

∫ t

0

‖G(PT ∗)‖2
L2(Ω)dτ +

1

2

∫ t

0

Ek(εk − ε∗, εp,k)dτ (3.7)and the �rst term on the right hand side is bounded by the weak save load ondition.
1

k

∫ t

0

∫

Ω

F (uk
t − u∗t ) dx dτ =

−
1

k

∫ t

0

∫

Ω

Ft(u
k − u∗) dx dτ

+
1

k

∫

Ω

F (uk − u∗) dx−
1

k

∫

Ω

F (0)(uk,0 − u∗(0)) dx . (3.8)Using regularity of F, uk,0 and u∗ we see that the last integral in (3.8) is bounded.Moreover, on Γ1 we have uk−u∗ = 0 hene, by the Korn inequality ‖uk−u∗‖H1(Ω) ≤
C(Ω)‖εk − ε∗‖L2(Ω). This allows us to write that

1

k

∫ t

0

∫

Ω

F (uk
t − u∗t ) dx dτ ≤

1

2

∫ t

0

‖Ft‖
2
L2 dτ

+C

∫ t

0

Ek(εk − ε∗, εp,k)dτ + C(α)‖F‖2
L2 + αEk(εk − ε∗, εp,k) + C , (3.9)where α > 0 is any positive number, C(α) do not depend on k and C is a globalpositive onstant. Similarly we estimate the last integral

−
1

k

∫ t

0

∫

Γ2

gN(uk
t − u∗t ) dS(x) dτ =

1

k

∫ t

0

∫

Γ2

gN,t(u
k − u∗) dS(x) dτ

−
1

k

∫

Γ2

gN(uk − u∗) dS(x) +
1

k

∫

Γ2

gN(0)(uk,0 − u∗(0)) dS(x) . (3.10)Using the ontinuity of the trae operator and again the Korn inequality we arriveat the inequality
−

1

k

∫ t

0

∫

Γ2

gN(uk
t − u∗t ) dS(x) dτ ≤

1

2

∫ t

0

‖gN,t‖L2(Γ2) dτ

+C

∫ t

0

Ek(εk − ε∗, εp,k)dτ + C(β)‖gN‖L2(Γ2) + βEk(εk − ε∗, εp,k) + C , (3.11)6



where β > 0 is any positive number, C(β) do not depend on k and C is a globalpositive onstant. Finally, we hoose α and β so small that α+ β < 1, insert (3.7),(3.9) and (3.11) into the time integral of (3.6) and use the Gronwall Lemma.Next step is an estimate for the time derivatives of the approximate sequene. Thisis the main estimate in the existene theory. In the dynamial setting of the problemthis was done for general monotone models in the artile [7℄. In the quasistati asefor oerive and self-ontrolling models (for the de�nition of the lass ontaining self-ontrolling models we refer to [5℄). System (MS) does not have the self-ontrollingstruture and therefore we are going to follow the idea from [7℄.Theorem 3.2 (energy estimate for time derivatives) Assume that the givendata F, gD, gN , ε
p,0 satisfy all assumptions from Theorem 2.1. Additionally supposethat the boundary data gN and the external fore F posses the regularity

∀ T > 0 gN,tt, gN,t ∈ L
∞(Ω × (0, T )) , Ft, Ftt ∈ L

∞((0, T ); L3(Ω;S3)) ,and the sequene G(PT k,0) is bounded in L
2(Ω;PS3). Then the energy funtion Ekfor the time derivatives an be estimated as follows: for all t ∈ (0, T )

Ek(εk
t , ε

p,k
t )(t) ≤ D(T )(1 + sup

t∈(0,T )

‖εk,p
t ‖L1(Ω)) , (3.12)where the positive onstant D(T ) does not depend on k.ProofLet us denote by (εk

h, ε
p,k
h ) the shifted funtions (εk(x, t + h), εp,k(x, t + h)) for h ∈

(0, T ). Calulating the time derivative of the funtion Ek(εk
h − εk, ε

p,k
h − εp,k)(t) inthe same manner as in the proof of Theorem 3.1 we arrive at the equality

d

dt
Ek(εk

h − εk, ε
p,k
h − εp,k)(t) =

−

∫

Ω

div (T k
h − T k)(vk

h − vk) dx+

∫

∂Ω

(T k
h − T k)n(vk

h − vk) dS(x) +

−

∫

Ω

(G(P T̂ k
h ) − G(T̂ k)(P T̂ k

h − P T̂ k) dx ≤
∫

Ω

(F k
h − F k)(vk

h − vk) dx+

∫

∂Ω

(T k
h − T k)n(vk

h − vk) dS(x) (3.13)(the last inequality follows by monotoniity of the funtion G). Here vk = uk
t and

T k
h , v

k
h, Fh are shifted funtions T k, vk, F respetively. Using the boundary onditionswe have
d

dt
Ek(εk

h − εk, ε
p,k
h − εp,k)(t) ≤

∫

Ω

(F k
h − F k)(vk

h − vk) dx

+

∫

Γ1

(T k
h − T k)n(gt

D,h − gt
D) dS(x) +

∫

Γ2

(gN,h − gN)(vk
h − vk) dS(x) , (3.14)where gt

D = ∂tgD and gt
D,h, gN,h are shifted funtions gt

D, gN . Next we integrate(3.14) with respet to t, shift all di�erene operators onto given data, divide by h27



and pass to the limit h→ 0+. Then we obtain the inequality
Ek(εk

t , ε
p,k
t )(t) ≤ Ek(εk

t , ε
p,k
t )(0) +

∫ t

0

‖Ftt‖L3(Ω)‖v
k‖

L
3

2 (Ω)
dτ

+C(T )
(

sup
t∈(0,T )

‖gt
D,tt‖

H
1

2 (Γ1)
+ sup

t∈(0,T )

‖gt
D,t‖

H
1

2 (Γ1)

)

sup
t∈(0,T )

‖T k · n‖
H

−
1

2 (∂Ω)

+C(T )
(

sup
t∈(0,T )

‖gN,tt‖L∞(Γ2) + sup
t∈(0,T )

‖gN,t‖L∞(Γ2)

)

sup
t∈(0,T )

‖vk‖L1(∂Ω)

+ sup
t∈(0,T )

‖Ft‖L3(Ω)‖v
k‖

L
3

2 (Ω)
(3.15)where the positive onstant C(T ) do not depend on k. Using the ontinuous em-bedding LD(Ω) ⊂ L

3

2 (Ω), where LD(Ω) onsists of integrable funtions u for whihthe weak derivative ε(u) is also integrable, we have
‖vk‖

L
3

2 (Ω)
≤ C(Ω)

(

‖εk
t ‖L1(Ω) +

∫

Γ1

|gD,t| dS(x)
)

. (3.16)By the trae theorem in the spae LD(Ω) we an estimate the boundary norm of vk

‖vk‖L1(∂Ω) ≤ C(Ω)
(

‖εk
t ‖L1(Ω) +

∫

Γ1

|gD,t| dS(x)
)

. (3.17)Finally, by the trae theorem in the spae L
2(div ) we obtain that

‖T k · n‖
H

−
1

2 (∂Ω)
≤ C(Ω)

(

‖T k‖L2(Ω) + ‖F‖L2(Ω)

)

. (3.18)Inserting (3.16), (3.17) and (3.18) into (3.15), observing that the sequene
Ek(εk

t , ε
p,k
t )(0) is bounded and using the following inequality ‖εk

t ‖L1(Ω) ≤ C(‖εp,k
t ‖L1(Ω)

+‖T k
t ‖L2(Ω)) we omplete the proof.To lose the energy estimate for the time derivatives we have to prove the bound-edness of the strains in the spae L

∞((0, T ); L1(Ω;S3)). To do this we use an ideafrom the artile [9℄. First we de�ne a stronger save load ondition.De�nition 3.2 We say that the given data F, gD, gN satisfy the save load onditionif the unique solution (u∗, T ∗) of the linear system (3.1) have the regularity requiredin De�nition 3.1 and additionally there exists δ > 0 suh that for σ ∈ PS3

sup
|σ|≤δ

|G(PT ∗ + σ)| ∈ L
∞((0, T ); L2(Ω; R+)) .Theorem 3.3 Let us assume that all requirements from Theorem 3.2 hold and thegiven data satisfy the save load ondition. Then the sequenes {εp,k

t } , {εk
t } arebounded in the spae L

∞((0, T ); L1(Ω;S3)).ProofLet us �x δ > 0 from the save load ondition and �x σ ∈ PS3 with |σ| ≤ δ. By themonotoniity of the inelasti onstitutive funtion we have
(G(P T̂ k) − G(PT ∗ + σ), P T̂ k − PT ∗ − σ) ≥ 0 . (3.19)8



We rewrite (3.20) in the form
ε

p,k
t · σ ≤ (G(P T̂ k), P T̂ k − PT ∗) − (G(PT ∗ + σ), P T̂ k − PT ∗ − σ) . (3.20)Next we take the supremum with respet to |σ| ≤ δ and integrate over Ω. Hene,we onlude that

∫

Ω

|εp,k
t | dx ≤

1

δ

∫

Ω

(G(P T̂ k), P T̂ k − PT ∗) dx

+
1

δ

∫

Ω

sup
|σ|≤δ

|G(PT ∗ + σ)|(|P T̂ k| + |PT ∗| + δ) dx (3.21)Aording to the save load ondition and to the energy estimate from Theorem 3.1we see that the last integral in the right hand side of (3.22) is bounded in time.Hene, to end the proof we have to estimate the previous integral. By equality (3.6)we have
∫

Ω

G(P T̂ k)(P T̂ k − PT ∗) dx = −
d

dt
Ek(εk − ε∗, εp,k)(t)

+
1

k

∫

Ω

F (uk
t − u∗t ) dx−

1

k

∫

Γ2

gN(uk
t − u∗t ) dS(x) . (3.22)Next, we observe that

∣

∣

∣

d

dt
Ek(εk − ε∗, εp,k)(t)

∣

∣

∣
≤ αEk(εk

t , ε
p,k
t )(t) + C(α)Ek(εk − ε∗, εp,k)(t) + C(T ) , (3.23)where α > 0 is arbitrary and the positive onstants C(α), C(T ) do not depend on

k. Moreover, on the set Γ1 we have uk
t − u∗t = 0 whih allows us to use the Korninequality in the form ‖uk

t − u∗t‖H1(Ω) ≤ C(Ω)‖εk
t − ε∗t‖L2(Ω). These observationsimply that

∫

Ω

G(P T̂ k)(P T̂ k − PT ∗) dx

≤ βEk(εk
t , ε

p,k
t )(t) + C(β)Ek(εk − ε∗, εp,k)(t) + C(T ) , (3.24)where β > 0 is arbitrary and the positive onstants C(β), C(T ) do not depend on k.Choosing β so small that 2βD(T ) < 1, where D(T ) is the onstant from Theorem3.2 we obtain

∫

Ω

|εp,k
t | dx ≤

1

2
sup

t∈(0,T )

∫

Ω

|εp,k
t | dx+ C(T )where C(T ) is independent of k. This inequality ompletes the proof immediately.Remark The boundedness of the energy Ek(εk

t , ε
p,k
t )(t) implies that the funtions

∫

Ω

(G(P T̂ k) − G(PT ∗))(P T̂ k − PT ∗) dx and

∫

Ω

G(P T̂ k)(P T̂ k − PT ∗) dxare also bounded on �nite time intervals.In [7℄ in dynamial setting of the problem was proved that if the funtion PT ∗ isbounded then the sequenes of strains are relatively weakly preompat in the spae
L

1(Ω × (0, T );S3). Note that the boundedness of PT ∗ automatially implies theondition from De�nition 3.2. In this artile we obtain a similar result in the nextsetion. 9



4 Convergene in Orliz spaesWe start this setion with some de�nitions and results onerning vetor-valuedOrliz spaes generated byN -funtions whih are not neessary spherial symmetri.For more information and proofs we refer to [17℄.De�nition 4.1 Let M : R
n → R be a stritly onvex and di�erentiable funtion.(a) If M satis�es the ondition limλ→∞ λ−1M(λp) = ∞ for all p ∈ R

n \ {0} andadditionally for all p ∈ R
n M(p) = M(−p) then we say that M is an N -funtion.(b) The Legendre transformation of M is alled the dual onjugate to M and isdenoted by M∗.() If M is an N -funtion we denote by LM(Ω; Rn) the set of all funtions p : Ω →

R
n from L

1(Ω; Rn) suh that
∫

Ω

M(p(x)) dx <∞ .(d) The Orliz spae LM (Ω; Rn) onsists of all funtions p ∈ L
1(Ω; Rn) suh that

‖p‖LM
= sup

{

∣

∣

∣

∫

Ω

(p(x), q(x)) dx
∣

∣

∣
: q ∈ LM∗(Ω; Rn) and

∫

Ω

M∗(q(x)) dx ≤ 1

}is �nite.(e) We say that M satis�es the ∆2-ondition if there exist positive onstant c, λ suhthat M(2p) ≤ cM(p) for all |p| > λ.Theorem 4.1 Let M be an N -funtion.(a) The spae LM (Ω; Rn) with the norm ‖p‖LM
is a Banah spae.(b) If p ∈ LM(Ω; Rn) then p ∈ LM(Ω; Rn) and

‖p‖LM
≤ 1 +

∫

Ω

M(p(x)) dx .() If p ∈ LM(Ω; Rn) and ‖p‖LM
≤ 1 then p ∈ LM(Ω; Rn) and

∫

Ω

M(p(x)) dx ≤ ‖p‖LM
.(d) If p ∈ LM(Ω; Rn) and q ∈ LM∗(Ω; Rn) then the funtion (p, q) is integrable andthe following version of the Hölder inequality holds

∫

Ω

|(p(x), q(x))| dx ≤ ‖p‖LM
‖q‖LM∗

.(e) If M satis�es the ∆2-ondition then LM(Ω; Rn) = LM(Ω; Rn) and the spae
L
∞(Ω; Rn) is dense in LM(Ω; Rn).(f) If M satis�es the ∆2-ondition then the dual spae to the Orliz spae LM(Ω; Rn)is the Orliz spae LM∗(Ω; Rn).In this setion we want to prove that the weak limit of the oerive approximationobtained in the last setion satis�es system (MS). To do this we assume that theinelasti onstitutive funtion G satis�es the following nondegeneration ondition.10



De�nition 4.2 We say that the funtion G satis�es the nondegeneration onditionif there exists an N -funtion M and positive onstant c suh that
∀p ∈ S3 M(p) +M∗(G(p)) ≤ c (G(p), p)and the dual onjugate M∗ satis�es the ∆2-ondition.Note that if G is equal to the derivative of some N -funtion then G satis�es im-mediately the nondegeneration ondition, provided that the dual onjugate satis�esthe ∆2-ondition. This is a onsequene of the equality M(p) + M∗(DM(p)) =

(DM(p), p) whih is satis�ed by all N -funtions. This ondition implies that G an-not behave extremely weird. Compare this ondition with similar onditions from[6℄ and from [17℄.Theorem 4.2 Suppose that the inelasti onstitutive funtion G satis�es the non-degeneration ondition and all assumptions from Theorem 3.3 hold. Additionally,assume that the funtion PT ∗ de�ned by the save load ondition possesses the regu-larity
∀ T > 0 PT ∗ ∈ L

∞(Ω × (0, T );PS3) .Then the sequenes of strains and of time derivatives of strains onverges weaklyin the spae L
1(Ω × (0, T );S3)) and the weak limit of εp,k

t belongs to the spae
L
∞((0, T );LM∗(Ω;S3)), where M is the N -funtion from the nondegeneration on-dition.ProofWe want to obtain an estimate for the sequene of the time derivatives of inelastistrains in a spae in whih bounded sets are weakly preompat in L

1(Ω×(0, T );S3)).Let us start with the following observation:
∫

Ω

G(P T̂ k)P T̂ k dx ≤
∣

∣

∣

∫

Ω

G(P T̂ k)(P T̂ k − PT ∗) dx
∣

∣

∣
+

∫

Ω

G(P T̂ k)PT ∗ dx . (4.1)By the nondegeneration ondition, the remark at the end of Setion 3 and theadditional regularity of PT ∗ we obtain
∫

Ω

M(P T̂ k) dx+

∫

Ω

M∗(G(P T̂ k)) dx

≤ c

∫

Ω

G(P T̂ k)P T̂ k dx ≤ C(T ) + c‖G(P T̂ k)‖L1(Ω)‖PT
∗‖L∞(Ω) . (4.2)Consequently, the sequene {εp,k

t } is bounded in L
∞((0, T );LM∗(Ω;PS3)) and thesequene {PT k} is bounded in L

∞((0, T );LM(Ω;PS3)). This yields that the se-quene {εp,k
t } is bounded in LM∗(Ω × (0, T );PS3)) and in this spae bounded setsare relatively weakly preompat in L

1(Ω× (0, T );S3)). Hene, there a subsequene(whih will be denoted by {εp,k
t } again) suh that εp,k

t ⇀ ε
p
t in L

1(Ω × (0, T );S3))where εp is the weak limit of the sequene {εp,k}. Moreover, without loss of general-ity we an assume that PT k ∗
⇀ PT in L

∞((0, T );LM(Ω;PS3)) where T is the weaklimit of the sequene {T k} in the spae L
∞((0, T ); L2(Ω;S3)). Using the onvexityof the funtion M∗ we onlude that εp ∈ L

∞((0, T );LM∗(Ω;S3)). Finally, by the11



equality (1 + 1
k
)εk

t = D−1T k
t + ε

p,k
t we obtain a onvergene result for the sequene

{εk
t }.From the last theorem we dedue that the approximate sequene (uk, T k, εp,k) on-verges weakly to a limit (u, T, εp). These funtions satisfy the system of equations

div xT (x, t) = −F (x, t) in L
∞((0, T ); L2(Ω; R3)) ,

ε(u(x, t)) =
1

2
(∇u(x, t) + ∇Tu(x, t)) in L

∞((0, T ); L1(Ω;S3)) ,

ε
p
t (x, t) = w − lim

k→∞
ε

p,k
t (x, t) = χ(x, t) in L

∞((0, T );LM∗(Ω;S3)) ,the boundary ondition (1.1) and (1.2) and the initial ondition (1.3). Hene, itremains to prove that
χ(x, t) = G(PT (x, t)) for a.e. (x, t) ∈ Ω × (0, T ) . (4.3)In [7℄ equality (4.3) was proved using the gradient struture of the inelasti on-stitutive funtion. In [5℄, provided that G possesses a polynomial growth only, thefuntion χ was haraterized by the Minty-Browder method. Here we are going touse the following general theorem using the Young measures approah.Theorem 4.3 Let Ω ⊂ R

n be a measurable set of �nite measure and let a funtion
A : R

n −→ R
n satisfy the following onditions:(i) A(ξ) is ontinuous.(ii) For all ξ1, ξ2 ∈ R

n, ξ1 6= ξ2

[A(ξ1) − A(ξ2)] · [ξ1 − ξ2] > 0.(iii) There exist positive onstants c1, c2 and an N -funtion suh that for all ξ itholds
A(ξ) · ξ ≥ c1{M(ξ) +M∗(A(ξ))}and

|A(ξ)| ≤ c2M
∗(A(ξ)),where M∗ is the dual onjugate funtion to M .Let zn : Ω → R

n be a sequene of measurable funtions suh that(iv) {A(zn) · zn} is uniformly bounded in L
1(Ω),(v) zn ∗

⇀ z in LM (Ω) and A(zn) ⇀ Ā in L
1(Ω),(vi)

lim sup
n→∞

∫

Ω

A(zn) · zn dx ≤

∫

Ω

Ā · z dx.

12



Then
zn → z in measure.We postpone a proof of this theorem (it will be done in the last setion) and provethat by this general tool equality (4.3) follows. We set G = A and zn = P T̂ n andsee that we have only to show that (vi) holds to satisfy the all requirements of thistheorem. Moreover, we immediately have that if the sequene {P T̂ k} onverges inmeasure then there exists a subsequene (again denoted with the same symbol) that

P T̂ k(x, t) → PT (x, t) for a.e. (x, t) ∈ Ω× (0, T ). Hene, the ontinuity of G implies(4.3). In the next theorem we prove ondition (vi).Theorem 4.4
lim sup

k→∞

∫ t

0

∫

Ω

G(P T̂ k)P T̂ k dx dτ ≤

∫ t

0

∫

Ω

χ · PT dx dτ . (4.4)ProofFrom Theorem 3.1 we have
Ek(εk − ε∗, εp,k)(t) = Ek(εk − ε∗, εp,k)(0) −

∫ t

0

∫

Ω

G(P T̂ k)(P T̂ k − PT ∗) dx

+
1

k

∫ t

0

∫

Ω

F (uk
t − u∗t ) dx−

∫ t

0

1

k

∫

Γ2

gN(uk
t − u∗t ) dS(x) . (4.5)From Theorem 3.2 we onlude that two last integrals on the right hand side of (4.5)onverge to zero if k tends to in�nity. Moreover, in the same manner as in the proofof Theorem 3.1 we obtain

E(ε− ε∗, εp)(t) = E(ε− ε∗, εp)(0) −

∫ t

0

∫

Ω

χ · PT dx dτ . (4.6)A omparison of the initial energies yields
Ek(εk − ε∗, εp,k)(0) = E(ε− ε∗, εp)(0) +

1

2k

∫

Ω

Dε0 · ε0 dx .Consequently we arrive at the inequality
E(εk − ε∗, εp,k)(t) +

∫ t

0

∫

Ω

G(P T̂ k)P T̂ k dx dτ +Rk(t)

≤ E(ε− ε∗, εp)(t) +

∫ t

0

∫

Ω

χ · PT dx dτ ,where Rk(t) onverges to zero uniformly on bounded time intervals. Finally, theonvexity of the energy funtion ompletes the proof.
13



5 Young measures toolsFor the onveniene of the reader we ollet below all the neessary tools onerningYoung measures used in the proof of Theorem 4.3. For more details and the proofs,we refer to [16, Corollaries 3.2-3.4℄, and [3, Theorem 2.9℄, see also [13, 15℄.Lemma 5.1 Suppose that the sequene of maps zj : Ω → R
d generates the Youngmeasure ν. Let F : Ω × R

d → R be a Carathéodory funtion (i.e. measurable in the�rst argument and ontinuous in the seond). Let also assume that the negative part
F−(x, zj(x)) is weakly relatively ompat in L

1(Ω). Then
lim inf

j→∞

∫

Ω

F (x, zj(x))dx ≥

∫

Ω

∫

Rd

F (x, λ)dνx(λ)dx.If, in addition, the sequene of funtions x 7→ |F |(x, zj(x)) is weakly relatively om-pat in L
1(Ω) then

F (·, zj(·)) ⇀

∫

Rd

F (x, λ)dνx(λ) in L
1(Ω)Remark The seond part of the above theorem an be easily extended to vetorvalued funtions F .Lemma 5.2 Suppose that a sequene zj of measurable funtions from Ω to R

d gen-erates the Young measure ν : Ω → M(Rd). Then
zj → z in measure if and only if νx = δz(x) a.e..

6 Proof of Theorem 4.3We apply Lemma 5.1 to the funtion A(zn) · zn. The oerivity ondition fromassumption (iii) of the theorem assures that the negative part of this funtion isequal to zero; thus it is ertainly weakly relatively ompat in L
1(Ω). This allows toonlude that

lim inf
n→∞

∫

Ω

A(zn) · zn dx ≥

∫

Ω

∫

Rn

A(ξ) · ξ dνx(s, ξ)dx , (6.7)where µx is the Young measure generated by the sequene {zn}. Sine the sequene
{A(zn)} is uniformly bounded in LM∗(Ω), it is weakly relatively ompat in L

1(Ω),whih implies Ā =
∫

Rn A(ξ)dνx(ξ). Thus, from assumption (vi), the following in-equality holds
∫

Ω

∫

Rn

A(ξ) dνx(ξ) ·

∫

Rn

ξdνx(ξ) dx ≥

∫

Ω

∫

Rn

A(ξ) · ξ dνx(ξ) dx. (6.8)14



From the monotoniity of A we have that
∫

Ω

∫

Rn

h(x, ξ)dνx(ξ)dx ≥ 0, (6.9)where h is de�ned by
h(x, ξ) :=

[

A(ξ) − A(
∫

Rn ξdνx(ξ))
]

·
[

ξ −
∫

Rn ξdνx(ξ)
]

.Simple alulations imply that
∫

Ω

∫

Rn

h(x, ξ)dνx(ξ)dx =

∫

Ω

∫

Rn

A(ξ) · ξdνx(ξ)dx−

∫

Ω

∫

Rn

A(ξ)dνx(ξ) ·

∫

Rn

ξdνx(ξ)dx,whih, together with (6.8), assures that
∫

Ω

∫

Rn

h(x, ξ)dνx(ξ)dx ≤ 0. (6.10)Then, (6.9) and (6.10) imply that ∫

Rn h(x, ξ)dνx(ξ) = 0 for a.e. x ∈ Ω. Moreover,sine νx ≥ 0, we have
supp{νx}

a.e
=

{
∫

Rn

ξdνx(ξ)

}

.Note that the single point in the right-hand side set is loated a.e. in the point
z(x), where z is the weak limit of the sequene {zn}. Finally we an onlude that
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