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Abstract

The paper is devoted to the dissipative Schr�odinger-Poisson system. We indicate conditions

in terms of the Schr�odinger-Poisson data which guarantee the uniqueness of the solution.

Moreover, it is shown that if the system is suÆciently small shrunken, then it always admits

a unique solution.
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2 H. Neidhardt, J. Rehberg

1 Introduction

Let us �rst consider a closed quantum system on the bounded domain 
 consisting of

positively and negatively charged carriers which are called holes and electrons in the fol-

lowing. These systems can be described by one-electron Hamiltonians in e�ective mass

approximation (Ben-Daniel-Duke form)

H�[V ] = �
1

2
r �
�

1

m�
r 
�
+ V  ; (1.1)

supplemented by self-adjoint boundary conditions where \+00 indicates holes and \�00

stands for electrons. By m� the position dependent e�ective masses of holes and elec-

trons are denoted. The potential V is di�erent for holes and electrons:

V � = V �0 � '

where V �0 are potentials which are �xed for a given device, for instance, a double barrier.

The Planck constant ~ and the elementary charge q are scaled to 1 for simplicity.

The collective behaviour of holes and electrons is described by density operators %�[V ]. If

the system is closed, then it is assumed that the density operators are equilibrium states,

i.e non-negative trace class operators of the form by

%�[V ] = f�
�
H�[V ]

�
where f� are equilibrium distribution functions. The trace class property is satis�ed if the

distribution functions f� decay suÆciently fast. In this case they admit the de�nition of

carrier density operators N�
f�
(�) : L1

R
(
) �! L1

R
(
), cf. [16, 17], which assign for bounded

electrostatic potentials V 2 L1
R
(
) a L1-function which is called the carrier densities such

that the relations

tr(%�[V ]�!) = tr(f�(H�[V ])�!) =

Z
!

dxN�
f�
(V )(x)

are satis�ed for all Borel subsets ! of 
. The subindex R indicates real functions. If to the

quadrouble fH+[V +
0 + ']; H�[V �0 � ']; f+; f�g we add the Poisson equation

�r � (�r') = C +N+
f+
(V +

0 + ')�N�
f�
(V �0 � ') (1.2)

with boundary conditions

'(a) = 'a and '(b) = 'b; (1.3)

then we get the so-called (closed) Schr�odinger-Poisson system. By � and C the dielectric

permittivity and the doping pro�le are denoted. It turns out that if the functions f� are

strictly monotone, then the carrier density operators N�
f�
(�) are anti-monotone, cf. [8, 21].

Using this anti-monotonicity one gets that the (closed) Schr�odinger-Poisson system admits

a unique solution, [8, 27, 28], even for heterogeneous material compositions and mixed

Dirichlet and Neumann boundary conditions for Schr�odinger's operator, see [16, 17].

Up to now the quantum system was supposed to be closed. Hence, there is no interaction

with the environment, in particular, no exchange of carriers, i.e. the carrier currents vanish.
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In view of modelling semiconductor devices the operating principle of which is the 
ow of

electrons and holes this is not justi�ed. That is why we pass to open quantum systems,

see also [10, 29]. In [16] non-selfadjoint boundary conditions for the Schr�odinger operators

(1.1) were proposed which are induced by a potential 
ow acting on the boundary @
 of the

quantum system. The spectral theory for the associated non self-adjoint Schr�odinger-type

operators has been developed in [18]. For a one dimensional device this ansatz was analyzed

in detail in [2, 18, 19, 20]. The arising model was called a dissipative Schr�odinger-Poisson

system.

More precisely, on the Hilbert space H := L2(
), 
 := (a; b) � R
1 , the self-adjoint oper-

ators H�[V ] are now replaced by dissipative Schr�odinger-type operators which arise from

the same di�erential expressions (1.1), however, supplemented by dissipative boundary

conditions of the form

1

2m�(a)
 0(a) = ���a  (a) and

1

2m�(b)
 0(b) = ��b  (b) (1.4)

��a ; �
�
b 2 C+ := fz 2 C : =m(z) > 0g. The equilibrium distribution functions f� are

substituted by density matrices �� 2 L1(R;B(C 2 )) obeying

��(�) = ��(�)� and ��(�) � 0

for a.e � 2 R with respect to the Lebesgue measure. The density matrices �� de�ne density

operators %�[V ] on the so-called dilation space K � H which are non-negative self-adjoint

but not trace class operators commuting with the minimal self-adjoint dilation K�[V ] of

H�[V ], see [19]. However, under certain decaying assumptions on the density matrices ��

the reduced density operators %�
H
[V �] := PKH %

�[V �] � H are always of trace class. Using

this property one can introduce carrier density operators N�
��
(�) : L1

R
(
) �! L1

R
(
), cf.

[20], which like above assign to each electrostatic V 2 L1
R
(
) carrier densities from L1

R
(
)

such that

tr(%�
H
[V ]�!) =

Z
!

dxN�
��
(V )(x)

holds for all Borel subsets ! of 
. Again, if to the quadrouble fH+[V +
0 + ']; H�[V �0 �

']; �+; ��g we add the Poisson equation (1.2), where N�
f�
(�) is replaced by N�

��
(�), and

the boundary conditions (1.3), then we get the so-called open or dissipative Schr�odinger-

Poisson system, see [2, 3, 20]. In contrast to the closed case the monotonicity property of

the carrier density operators is lost now. This has the consequence that one can prove the

existence of a solution of the dissipative Schr�odinger-Poisson system but not its uniqueness,

see [3].

In the following we are going to �ll this gap. The main technical tool for this business

is to show that the carrier density operators are in fact locally Lipschitz continuous and

not only continuous as proven in [3]. The proof of this property relies on the theory of

Kato-smooth operators, see [22, 23]. We show that the orthogonal projection PKH from the

dilation space K onto the original space H is Kato-smooth with respect to the minimal

self-adjoint dilations K�[V ] and we calculate their smoothness constants which allows

us to compute the local Lipschitz constants for the carrier density operators. For this

purpose we have to strengthen the assumptions on the e�ective masses m�. In [3] it

was assumed that m� + 1
m�

2 L1
R
(
). In addition we demand that now that m� has

a �nite total variation. This admits countably many discontinuities, what is suÆcient
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for applications to heterogeneous material compositions. The solutions becomes unique if

the local Lipschitz constants of the carrier density operators are small enough. This result

should be interpreted as follows: it is known that uniqueness cannot be expected in general

because there are physical situations where the existence of several solutions explain well

observed hysteresis phenomena [14, 30]. Thus, our uniqueness result can physically be seen

as a �ltering instrument in the following sense: if the parameters of the system obey our

conditions, then the above hysteresis phenomena are de�nitely absent.

It turns out that uniqueness takes always place if we shrink the dissipative Schr�odinger-

Poisson system to a suÆciently small subdevice 
0 � 
. That means, we consider the same

boundary conditions (1.4) and (1.3), the same density matrices �� but replace the mass

functions m� by m� � 
0, the potentials V �0 by V �0 � 
0, the dielectric permittivity � by

�� 
0 and the doping pro�le C by C � 
0. If 
0 will be suÆciently small, then the shrunken

Schr�odinger-Poisson systems admits a unique solution.

This has implications for dissipative hybrid models considered in [4] which use a mixed

description by a drift-di�usion model and a dissipative Schr�odinger-Poisson system. In

more detail, one divides the device � = [a0; b0] into two regions 
c = (a0; a) [ (b; b0) and


q = (a; b), which are called \classical zone" and \quantum zone", respectively. On the

\classical zone" 
c, which is disconnected, one uses a classical drift di�usion description,

cf. [11, 25, 31], while on the \quantum zone" 
q a dissipative Schr�odinger-Poisson system

is considered. The length j
q j of the quantum zone 
q is crucial for the hybrid model.

Indeed, if 
 is very large, then we have nearly a quantum description of the device which

increases the costs of the numerical treatment of the model. If the quantum zone 
 is very

small, then by the above result it can happen that the hybrid model has only one solution

in contradiction to a pure classical description which usually allows several solutions. This

shows us that one has very carefully to choose the quantum zone in hybrid models.

The paper is organized as follows. In Section 2 we introduce a series of constants repeatedly

used in the following. If the Schr�odinger-Poisson data are �xed, then the constants are

�xed.The dissipative Schr�odinger-type operator is introduced and in detail investigated in

Section 3. Crucial are the notions of the characteristic function, see subsection 3.3, and the

phase shift, see subsection 3.4. The self-adjoint dilations and Lax-Phillips scattering theory

are recalled in subsection 3.6 and 3.7. The carrier density operator is de�ned in Section

4. Its local Lipschitz continuity is veri�ed in subsection 4.2. The dissipative Schr�odinger-

Poisson system is considered in Section 5. The existence proof is sketched in subsection 5.2,

the uniqueness is proven in subsection 5.3, the uniqueness for a suÆciently small shrunken

Schr�odinger-Poisson system is established in subsection 5.4. We end with some remarks in

Section 6.

2 Notation, Assumptions and Constants

By Lp(
; X;m) 1 � p < 1, 
 = (a; b), we denote the space of m-measurable and p-

integrable functions over 
 with values in a Banach space X . By L1(
; X;m) the space

of essentially bounded functions is denoted. If m is the Lebesgue measure, then we write

Lp(
) = Lp(
; C ;m) and L
p
R
(
) := Lp(
;R;m), 1 � p � 1. The Lebesgue measure of a

set is denoted by j � j.

The norm of a Banach or Hilbert space X is indicated by k � kX or simply by k � k, the
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scalar product of a Hilbert space X by (�; �)X or simply by (�; �) where the �rst argument
is the linear one. The dual space is indicated by X�. By B(X;Y ) the space of all linear
bounded operators from the Banach space X to the Banach space Y is denoted with

norm k � kB(X;Y ). If X = Y , then B(X;X) = B(X) and k � kB(X;Y ) = k � kB(X). If X

is a Hilbert spaces, then B1(X) and B2(X) denote the spaces of trace class and Hilbert-

Schmidt operators, respectively. For a densely de�ned linear operator A : X �! Y we

denote by A�, spec(A) and res(A) its adjoint, spectrum and resolvent set, respectively. We

write X [V ] if we have in mind a parameter dependence on V and X(V ) if a functional

dependence on V is considered. Of course, it is quite possible that a parameter dependence

becomes a functional one and vice versa.

Furthermore, we denote by W 1;2(
) the usual Sobolev spaces of complex-valued functions

on 
. The subspace of elements with homogeneous Dirichlet boundary conditions at the

end points of the interval 
 � R is denoted by W
1;2
0 (
). Its dual with respect to the

L2-pairing is denoted by W
�1;2
0 (
) = (W

1;2
0 (
))�. If we have in mind only real-valued

functions, then we write W
1;2
R

(
) and W
1;2
0;R(
).

With respect to the Schr�odinger-type operators we made the following

Assumptions 2.1 (Schr�odinger assumptions)

(Q1) There are constants m� > 0 and m� > 0 such that m� � m�(x) � m� for x 2 
.

(Q2) �
�
a ; �

�
b 2 C+ = fz 2 C : =m(z) > 0g

(Q3) V
�
0 2 L1

R
(
)

(Q4) The matrix valued-functions ��(�) 2 L1(R;B(C 2 )) obey 0 � ��(�) = ��(�)�. There

are real, continuous di�erentiable, even functions g�(�) : R �! R+ such that

0 � ��(�) � g�(�)IC2 ; � 2 R; (2.1)

sign(�)
d

d�
g�(�) � 0; � 2 R; (2.2)Z 1

0

d�
g�(�)
p
�

<1 (2.3)

and ���� dd�g�(�)
���� � c�g�(�); � 2 R; (2.4)

where c� are given real constants.

In particular, the functions

g�(�) = c�0 (1 + �2)�1=2; � 2 R;

used in [2] satisfy the assumptions (2.2)-(2.4) with c� = c�0 .

The parameter set Q := fm�; ��a ; �
�
b ; V

�
0 ; �

�g is called the Schr�odinger data of the device


. The Schr�odinger data are �xed in the following.

With respect to the Poisson equation we made the following
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Assumptions 2.2 (Poisson assumptions)

(P1) The doping pro�le C is from W
�1;2
0 (
).

(P2) The dielectric permittivity � is positive and satis�es �+ 1
�
2 L1

R
(
).

The quadrouble P := fC; �; 'a; 'bg is called the Poisson data of the device 
 which are

also �xed through the paper. The union D := Q[P is called the Schr�odinger-Poisson data

of the device 
.

For the convenience of the reader we collect here important constants which are composed

of the Schr�odinger-Poisson data and which are needed in the following. We set

B�0 := 2g�(0) +
1

2�

q
j
jm�

Z 1

0

d�
g�(�)
p
�

(2.5)

and

B�1 :=
1

�
g(0)

q
j
jm�: (2.6)

We note that the quantities B�0 and B�1 depend only one the Schr�odinger data and on the

length j
j of the device.

The embedding operators fromW
1;2
0 (
) into L1(
) and L1(
) intoW

�1;2
0 (
) are denoted

by E1 and E1, respectively. We note that E1 = E�1 �L1(
). Their norms are equal and

are denoted by "1 in the sequel. A straightforward computation shows that "1 �
p
j
j.

Let b' be the function


 3 x �!
1R b

a
dt 1

�(t)

(
'a

Z x

a

dt
1

�(t)
+ 'b

Z b

x

dt
1

�(t)

)
: (2.7)

Clearly, b' 2 W 1;2(
) ,! L1(
). We set

D0 := "1k1=�kL1
p
1 + j
j

�
kCkW�1;2

0

+ (2.8)

"1

�
B+
0 +B�0 + B+

1

q
kV +

0 + b'kL1 +B�1

q
kV �0 � b'kL1��

and

D1 := "21k1=�kL1
p
1 + j
j

�
B+
1 +B�1

�
: (2.9)

Using D0 and D1 we introduce the radii

r0 :=
1

2

�
D1 +

q
D2
1 + 4D0

�
(2.10)

and

r�1 := kV �0 + b'kL1 + r0 (2.11)

If h : [a; b] �! R is a function of �nite total variation and x; y 2 [a; b], then the total

variation of hj[x;y] is denoted by
Wy
x h. If

1
m�

has a �nite total variation, then we set

M� :=
p
m� exp

(
m�

2

b_
a

1

m�

)
: (2.12)
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Next we introduce the functions

R�j (y) :=M�

�
1 + j��j j

r
2

m�

�
exp

�
y j
j (M�)2

r
2

m�

�
(2.13)

for y � 0 and j = a; b. Further we set

L�(y) :=

r
2

�

�
R�a [2y + 2 + 
�0 ]

2

(��a )2
+
R�b [2y + 2 + 
�0 ]

2

(��b )
2

�1=2

: (2.14)

for y � 0 where the representation

��a = q�a + i
(��a )

2

2
and ��b = q�b + i

(��b )
2

2
: (2.15)

is used. The constants 
�0 are given by


�0 := 2m�(q�)2

(
1

2
+

1

q�j
jm� +

s
1

4
+

1

q�j
jm�

)
(2.16)

where

q� := maxf0; q�a ; q
�
b g: (2.17)

We de�ne

G�(y) =

q
B�0 +B�1

p
y; y � 0: (2.18)

and

L�(x; y) := c�(G�(x) +G�(y))2 + 4�j
jL�(x)L�(y)G�(x)G�(y); (2.19)

for x; y � 0. Finally, we introduce the constant

L := L+(r+1 ; r
+
1 ) + L

�(r�1 ; r
�
1 ): (2.20)

and we set

U := "21k1=�kL1
p
1 + j
j L: (2.21)

We note again that the introduce constants (2.5)-(2.21) depend only on the Schr�odinger-

Poisson data which means that they are �xed for �xed Schr�odinger-Poisson data.

3 Schr�odinger-type operators

Since it is unimportant in this section whether we have to do with electrons or with holes we

admit the superscript � in this section. Further, throughout we assume that Schr�odinger

data Q = fm;�a; �b; V0; �g satisfy the Schr�odinger assumptions mutatis mutandis.
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3.1 De�nitions

Following the suggestion of [16, 17] we consider the non-selfadjoint Schr�odinger-type oper-

ator H [V ] on the Hilbert space H de�ned by

dom(H [�a; �b; V ]) =

8><>:f 2 W 1;2 :

1
m(x)

f 0(x) 2W 1;2(
);
1

2m(a)
f 0(a) = ��af(a);

1
2m(b)

f 0(b) = �bf(b)

9>=>;
and

(H [�a; �b; V ]g)(x) = (l[V ]g)(x); g 2 dom(H [�a; �b; V ]);

where

(l[V ]g)(x) := �
1

2

d

dx

1

m(x)

d

dx
g(x) + V (x)g(x);

cf. [18, 19], where V 2 L1
R
(
) and �a; �b 2 C+ := fz 2 C : =m(z) � 0g, are called the

boundary coeÆcients. The operator H [�a; �b; V ] is maximal dissipative if either �a 2 C+

or �b 2 C+ . In both cases the operator is completely non-selfadjoint, see [18]. In the

following we consider the case �a; �b 2 C+ . In this case we usually write H [V ] instead of

H [�a; �b; V ]. The spectrum of H [V ] consists of isolated eigenvalues in the lower half-plane

with the only accumulation point at in�nity, i.e spec(H [V ]) � C� := fz 2 C : =m(z) � 0g.
Since the operator H [V ] is completely non-selfadjoint, its eigenvalues are non-real.

Besides the operator H [V ] we consider the operator HR[V ] := H [qa; qb; V ], V 2 L1
R
(
),

qa; qb 2 R. The operatorHR[V ] is self-adjoint and semi-bounded from below. In some sense

the operator HR[V ] can be regarded as the real part of the maximal dissipative H [V ]. By


[V ] we denote the bottom of the spectrum of HR[V ], i.e. 
[V ] := inf spec(HR[V ]).

Lemma 3.1 Let the Schr�odinger assumptions Q1 be satis�ed. If qa; qb 2 R, then


[V ] � �
0 � kV�kL1 (3.1)

where V�(x) :=
1
2
fjV (x)j � V (x)g, x 2 
, and 
0 is given by (2.16).

Proof. We consider the quadratic form h[qa; qb](�; �),

h[qa; qb](f; f) := �qajf(a)j2 � qbjf(b)j2 +
Z b

a

1

2m(x)
jf 0(x)j2 dx;

f 2 dom(h[qa; qb; V ]) = W 1;2(
), which is associated with the self-adjoint operator

H [qa; qb; 0]. The quadratic form h[qa; qb](�; �) admits the estimate

h[qa; qb](f; f) � bh(f; f) := �qfjf(a)j2 + jf(b)j2g+
1

2m

Z b

a

jf 0(x)j2 dx

where q := maxf0; qa; qbg, cf. (2.17). The quadratic form bh corresponds to the self-adjoint
operator bH ,

( bHf)(x) = �
1

2m

d2

dx2
f(x); f 2 dom( bH);
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dom( bH) =

�
f 2W 2;2(
) :

1

2m
f 0(a) = �qf(a);

1

2m
f 0(b) = qf(b)

�
:

A straightforward computation shows that � = ��2, � � q
p
2m, is an eigenvalue of bH if

and only if � satis�es the equation

�j
j
p
2m = ln

 
�+ q

p
2m

�� q
p
2m

!
:

Hence, if � = ��2 is an eigenvalue, then the estimate

�j
j
p
2m �

2q
p
2m

�� q
p
2m

holds. This yields

� = ��2 � �2mq2
(
1

2
+

1

qj
jm
+

s
1

4
+

1

qj
jm

)
:

Using this estimate we immediately verify (3.1). �

3.2 Elementary solutions and estimates

An important tool to investigate the dissipative operator H [V ] are the so-called elementary

solutions de�ned by

l[V ](va(x; z)) = zva(x; z); va(a; z) = 1;
1

2m(a)
v0a(a; z) = ��a (3.2)

l[V ](vb(x; z)) = zvb(x; z); vb(b; z) = 1;
1

2m(b)
v0b(b; z) = �b: (3.3)

The existence of these solutions for each z 2 C can be proved by writing (3.2) and (3.3) in

integral form

va(x; z) = 1� 2�aMa(x) + 2

Z x

a

dt (Ma(x) �Ma(t))(V (t)� z)va(t; z) (3.4)

and

vb(x; z) = 1� 2�bMb(x) + 2

Z b

x

dt (Mb(x)�Mb(t))(V (t)� z)vb(t; z) (3.5)

where

Ma(x) :=

Z x

a

dt m(t) and Mb(x) :=

Z b

x

dt m(t)

Since (3.4) and (3.5) are Volterra-type equations they have always solutions for any z 2 C ,

in particular, for z = � 2 R. Moreover, one gets that va and vb as well as
1
m
v0a and 1

m
v0b

are absolutely continuous.

In the following the estimates are based on Gronwall's lemma which we need in a slightly

generalized form.
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Lemma 3.2 (Gronwall's lemma) Let � be a �nite Borel measure on [a; b]. If the non-

negative continuous function g(�) : [a; b] �! R obeys

0 � g(x) � C +

Z
[a;x]

g(t) d�(t); x 2 [a; b]; C > 0; (3.6)

then the estimate

g(x) � C exp

(Z
[a;x]

d�(t)

)
; x 2 [a; b]; (3.7)

holds.

The proof follows immediately from Lemma 5 of [15]. Using Gronwall's lemma we are

going to establish bounds for the elementary solutions if � > 0. At �rst we prove this for

the special case V = 0 and later on we extend the result to V 6= 0.

Let V = 0. We consider the the boundary value problem

l[0]w(x; �) = �w(x; �); w(a; �) = p;
1

2m(a)
w0(a; �) = q;

where p; q 2 C .

Lemma 3.3 Let the Schr�odinger assumption Q1 be satis�ed. If m has a �nite total vari-

ation, then

jw(x; �)j �

s
jpj2 +

2

�m(a)
jqj2 M; (3.8)

for x 2 [a; b] and � > 0, where M is de�ned by (2.12).

Proof. We note that

�
1

2

d

dx

1

m(x)

d

dx
w(x; �) = �w(x; �)

is satis�ed for a.e. x 2 [a; b] with respect of the Lebesgue measure. Multiplying by
1

m(x)
w0(x; �) we get

�
1

2

1

m(x)
w0(x; �)

d

dx

1

m(x)
w0(x; �) = �w(x; �)

1

m(x)
w0(x; �)

which yields

1

2

d

dx

���� 1

m(x)
w0(x; �)

����2 = �
�

m(x)

d

dx
jw(x; �)j2

for a.e. x 2 [a; b]. Since 1
m(x)

w0(x; �) is absolutely continuous we obtain

1

2

���� 1

m(x)
w0(x; �)

����2 = 1

2

���� 1

m(a)
w0(a; �)

����2 � �

Z x

a

1

m(t)

d

dt
jw(t; �)j2 dt

for x 2 [a; b]. Since m has a �nite total variation, the limits m(x � 0) := limy"xm(y) for

x 2 (a; b] and m(x+0) := limy#xm(y) for x 2 [a; b) exist. Further, we set m(a�0) := m(a)
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and m(b + 0) := m(b). Notice that m(x) and m(x � 0) are di�erent only on a countable

set. Hence we can replace 1
m(t)

by 1
m(t�0) above. Using the boundary conditions we get���� 1

m(x)
w0(x; �)

����2 = 4 jqj2 � 2�

Z
[a;x]

1

m(t� 0)
d jw(t; �)j2

for all x 2 [a; b] where the integral on the right-hand side is regarded as a Lebesgue-Stieltjes

integral. If m has a �nite total variation, then by assumption Q1 the function 1
m

has a

�nite total variation, too. By Theorem 21.67 and Remark 21.68 of [13] we get���� 1

m(x)

d

dx
w(x; �)

����2 + 2�

m(x+ 0)
jw(x; �)j2 = (3.9)

4 jqj2 +
2�

m(a)
jw(a; �)j2 + 2�

Z
[a;x]

jw(t; �)j2 d�(t)

where � is the signed measure associated with 1
m
. Since 1

m
is of bounded variation, the

functions $(x) :=
Wx
a

1
m

and �(x) := $(x) � 1
m(x)

, x 2 [a; b], are non-decreasing. Notice

that 1
m(x)

= $(x) � �(x). Thus we �ndZ
[a;x]

jw(t; �)j2 d�(t) =
Z
[a;x]

jw(t; �)j2 d�$(t)�
Z
[a;x]

jw(t; �)j2 d��(t);

where �$ and �� the measures associated with $ and �, respectively. HenceZ
[a;x]

jw(t; �)j2 d�(t) �
Z
[a;x]

jw(t; �)j2 d�$(t); x 2 [a; b]:

Inserting this estimate into (3.9) and using the boundary condition w(a; �) = p we get

1

m(x+ 0)
jw(x; �)j2 �

2

�
jqj2 +

1

m(a)
jpj2 +

Z
[a;x]

jw(t; �)j2 d�$(t); x 2 [a; b];

which yields

jw(x; �)j2 � m(x+ 0)

�
2

�
jqj2 +

1

m(a)
jpj2
�
+m(x+ 0)

Z
[a;x]

jw(t; �)j2 d�$(t)

for x 2 [a; b]. Since m(x) � m, x 2 [a; b], we obtain

jw(x; �)j2 � m

�
2

�
jqj2 +

1

m(a)
jpj2
�
+m

Z
[a;x]

jw(t; �)j2 d�$(t)

Applying Lemma 3.2, we immediately get

jw(x; �)j2 �
�
2

�
jqj2 +

1

m(a)
jpj2
�
exp

(
m

Z
[a;x]

d�$(t)

)

for x 2 [a; b]. Hence

jw(x; �)j �

s
jpj2 +

2

�m(a)
jqj2

p
m exp

(
m

2

Z
[a;x]

d�$(t)

)



12 H. Neidhardt, J. Rehberg

for x 2 [a; b]. Finally, taking into accountZ
[a;x]

d�$(t) �
Z
[a;b]

d�$(t) �
b_
a

1

m

we prove (3.8). �

We note that a similar lemma holds if the end point a is replaced by b.

In the following we consider the solutions w0(x; �) and w1(x; �) of the boundary value

problems

(l[0]w1)(x) = �w1(x; �); w1(a; �) = 1;
1

2m(a)
w01(a; �) = 0;

(l[0]w0)(x) = �w0(x; �); w0(a; �) = 0;
1

2m(a)
w00(a; �) = 1:

By Lemma 3.3 we have the estimates

jw1(x; �)j �M and jw0(x; �)j �

s
2

�m(a)
M; x 2 [a; b]; � > 0:

Lemma 3.4 Let the Schr�odinger assumption Q1 be satis�ed and let V 2 L1
R
(
). If m has

a �nite total variation, then

jvj(x; �)j �

(
Rj(kV kL1); � � 1;

Rj(kV + 1� �kL1); � < 1;
; j = a; b; x 2 
; (3.10)

where Rj(�) is de�ned by (2.13)

Proof. The solution va(x; �) satis�es the integral equation

va(x; �) = w1(x; �) � �aw0(x; �)+Z x

a

dt fw0(x; �)w1(t; �) � w0(t; �)w1(x; �)gV (t)va(t; �);

x 2 
 and � 2 R. Therefore, we have the estimate

jva(x; �)j �

M

 
1 + j�aj

s
2

�m(a)

!
+M2

s
2

�m(a)

Z x

a

dt jV (t)j jva(t; �)j;

x 2 
 and � > 0. Applying Gronwall's lemma we �nd

jva(x; �)j �M

 
1 + j�aj

s
2

�m(a)

!
exp

(
M2

s
2

�m(a)

Z x

a

dt jV (t)j

)
for x 2 
 and � > 0. If � � 1, then we immediately verify the �rst part of (3.10).

If � < 1, then vj(x; �) satis�es the equation l[V + 1 � �]va(x; �) = va(x; �). Taking into

account the �rst estimate of (3.10) we prove the second estimate. The proof for j = b is

similar. �
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3.3 Characteristic function

Let us introduce the operator-valued function T (z) : H �! C
2 ,

T [V ](z)f :=

�
�b((H [V ]� z)�1f)(b)

��a((H [V ]� z)�1)f(a)

�
; �a; �b > 0;

for z 2 res(H [V ]) and f 2 L2(
). Using Theorem 2.1 of [19], we �nd

T [V ](z)f =
1

W (z)

 
��b

R b
a
dy va(y; z)f(y)

�a
R b
a
dy vb(y; z)f(y)

!

for f 2 L2(
) where W (z) denotes the Wronskian of the solutions va(x; z) and vb(x; z),

W (z) := va(x; z)
1

2m(x)
v0b(x; z)� vb(x; z)

1

2m(x)
v0a(x; z);

which is independent from x 2 
. The adjoint operator is given by

(T [V ](z)��) (x) =
1

W (z)

�
��bva(x; z); �avb(x; z)

�
� (3.11)

x 2 
, where

� =

�
�b

�a

�
2 C

2 : (3.12)

and the right-hand side is regarded as a matrix multiplication. Similarly, we set

T�[V ](z)f :=

�
�b((H [V ]� � z)�1f)(b)

��a((H [V ]� � z)�1f)(a)

�
for z 2 res(H�) and f 2 L2(
). Using again Theorem 2.1 of [19]we �nd

T�[V ](z)f =
1

W�(z)

 
��b

R b
a
dy v�a(y; z)f(y)

�b
R b
a
dy v�b(y; z)f(y)

!
:

whereW�(z) is the Wronskian of the solutions v�a(x; z) := va(x; z) and v�b(x; z) := vb(x; z),

W�(z) := v�a(x; z)
1

2m(x)
v0�b(x; z)� v�b(x; z)

1

2m(x)
v0�a(x; z):

which also independent from x 2 
. The adjoint operator has the representation

(T�[V ](z)
��) (x) =

1

W�(z)

�
��bv�a(x; z); �av�b(x; z)

�
�

x 2 
, � 2 C
2 .

The operator H [V ] can be (up to unitary equivalence) characterized by its characteristic

function z ! �[V ](z), with z 2 res(H [V ])\ res(H [V ]�), cf. [9]. The characteristic function

�[V ](�) of the maximal dissipative operator H [V ] is a two-by-two matrix-valued function

which satis�es the relation

�[V ](z)T [V ](z)f = T�[V ](z)f; z 2 res(H [V ]) \ res(H [V ]�);
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f 2 H. In terms of the adjoint elementary solutions the characteristic function can be

expressed as follows:

�[V ](z) = IC2 + i
1

W�(z)

�
�2bv�a(b; z) ��b�a
��b�a �2av�b(a; z)

�
;

which can be written as

�[V ](z) = IC2 � i�T [V ](z)�;

z 2 res(H [V ]) \ res(H [V ]�), where the operator � : L2(
) �! C , is de�ned by

�f :=

�
�bf(b)

��af(a)

�
; f 2 dom(�) := C(�
):

Notice that the operator � is not closed and not closable. The characteristic function

�[V ](�) is a holomorphic on res(H [V ]) \ res(H [V ]�) and contractive on C� [ R, i.e. it

satis�es

k�[V ](z)k � 1 for z 2 C� [ R:

In particular, it is well-de�ned and continuous on R, cf. [19]. We note that by Lemma 2.2

of [26] one has lim�!�1 k�[V ](�)� IC2 kB(C2 ) = 0.

3.4 Phase shift

The phase shift ![V ] is de�ned by

e2�i![V ](�) := det(�[V ](�)); � 2 R;

where it is assumed that ![V ](�) : R �! R is continuous. Notice that the phase shift is

determined modulo Z. Since lim�!�1 det(�[V ](�)) = 1 by Lemma 2.2 of [26] we �x the

phase shift by the condition

lim
�!�1

![V ](�) = 0:

Lemma 3.5 [26, Lemma 4.1] Let the Schr�odinger assumptions Q1 and Q2 be satis�ed. If

V 2 L1
R
(
), then the phase shift is holomorphic in a neighbourhood of R and satis�es

!0[V ](�) :=
d

d�
![V ](�) = �

1

2�
tr(T [V ](�)T [V ](�)�) � 0 (3.13)

for � 2 R.

Lemma 3.5 shows that the phase shift is non-increasing. Moreover, since ![V ](�1) = 0

the phase shift is always non-positive, i.e ![V ](�) � 0 for � 2 R. Let us introduce the

counting function

�[V ](�) := cardfs � � : det(�[V ](s)) = 1g; � 2 R:

It turns out that the �[V ](�) is comparable with the counting function ND[V ](�),

ND[V ](�) := cardfs � � : s 2 spec(HD [V ])g; � 2 R:

where HD[V ] denotes the Schr�odinger-type operator with Dirichlet boundary conditions.
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Theorem 3.6 [26, Theorem 4.7] Let the Schr�odinger assumption Q1 and Q2 be satis�ed.

If V 2 L1
R
(
), then

ND[V ](�) � �[V ](�) � ND[V ](�) + 1; � 2 R:

Corollary 3.7 Let the Schr�odinger assumption Q1 and Q2 be satis�ed. If V 2 L1
R
(
),

then

0 � �![V ](�) � 2 +
1

�

p
2mj
j

p
(�+ kV�kL1)+ (3.14)

for � 2 R.

Proof. Since �![V ](�) is non-decreasing by Lemma 3.5 the estimate �![V ](�) � 1 +

�[V ](�), � 2 R, holds. By Remark 4.8 of [26] and Theorem 3.6 one gets

ND[V ](�) �
1

�

p
2mj
j

p
(�+ kV�kL1)+; � 2 R;

which yields (3.14). �

3.5 Lipschitz continuity of the phase shift

We are going to verify the Lipschitz continuity of the phase shift by giving bounds for the

derivative of ![V ].

Proposition 3.8 Let the Schr�odinger assumptions Q1 and Q2 be satis�ed and let V 2
L1
R
(
). If m has a �nite total variation, then

j![V ](�)� ![V ](�0)j � j
j L( kV kL1)2 j�� �0j; (3.15)

�; �0 2 R where L(�) is de�ned by (2.14).

Proof. Since the phase shift is continuously di�erentiable it is suÆcient to show

�!0[V ](�) � j
j L( kV kL1)2, � 2 R. Taking into account Lemma 3.5 we get

!0[V ](�) = �
1

2�

2X
j=1

kT [V ](�)�ejk2L2 ; � 2 R; (3.16)

where

e1 :=

�
1

0

�
and e2 :=

�
0

1

�
:

By (3.11) we �nd

kT [V ](�)�e1k2L2 =
�2b

jW (�)j2

Z b

a

dx jva(x; �)j2:

Let

E :=

�
0 1

1 0

�
:
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We note that kE�[V ](�)kB(C2 ) � 1, � 2 R, and

tr(E�[V ](�)) = �2i
�a�b

W (�)
; � 2 R;

which yields
�a�b

jW (�)j
� 1; � 2 R:

Hence

kT [V ](�)�e1k2L2 �
1

�2a

Z b

a

dx jva(x; �)j2; � 2 R:

Applying Lemma 3.4 we get the estimate

kT [V ](�)�e1k2L2 � j
j
Ra[ kV + 2� �0kL1 ]2

�2a
; � 2 [�0 � 1;1): (3.17)

where �0 := �kV kL1 � 
0 and 
0 is given by (2.16). By Lemma 3.1 one immediately gets

that (�1; �0) � res(H [V ]). Using the resolvent formula

(H [V ]� �)�1 = (H [V ]� �0)
�1
�
I + (�� �0)(H [V ]� �)�1

	
;

� 2 (�1; �0), we �nd the representation

T [V ](�) = T [V ](�0)
�
I + (� � �0)(H [V ]� �)�1

	
; (3.18)

� 2 (�1; �0). By �[V ] we denote the numerical range of H [V ]. One easily veri�es that

�[V ] � fz 2 C : <e(z) � �0g. Applying Theorem 3.1 of [18] we get the estimate

k(H [V ]� �)�1kB(L2(
)) �
1

dist(�[V ]; �)
�

1

j�� �0j
� 1

for � 2 (�1; �0 � 1). Hence we �nd the estimate

kI + (�� �0)(H [V ]� �)�1kB(L2(
)) � 1 +
j�� �0j
j�� �0j

= 2

for � 2 (�1; �0 � 1). Further, from (3.18) we get

T [V ](�)�e1 = fI + (�� �0)(H [V ]� � �)�1gT [V ](�0)�e1

for � 2 (�1; �0 � 1). Using (3.17)

kT [V ](�)�e1k2L2 � 4 kT [V ](�0)�e1k2L2 � 4 j
j
Ra[ kV + 2� �0kL1 ]2

�2a
; (3.19)

� 2 (�1; �0 � 1). Taking into account (3.17) and (3.19) we �nally get

kT [V ](�)�e1k2L2 � 4 j
j
Ra[ kV + 2� �0kL1]2

�2a
; � 2 R: (3.20)

Similarly, we prove

kT [V ](�)�e2k2L2 � 4 j
j
Rb[ kV + 2� �0kL1 ]2

�2b
; � 2 R: (3.21)
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From (3.16), (3.20) and (3.21) we obtain

�!0[V ](�) �
2

�
j
j

�
Ra[ kV + 2� �0kL1 ]2

�2a
+
Rb[ kV + 2� �0kL1 ]2

�2b

�
for � 2 R. Inserting �0 = �kV kL1 � 
0 into this formula and using the de�nition (2.14)

we obtain (3.15). �

3.6 Dilations

Since H [V ] is a maximal dissipative operator there is a larger Hilbert space K � H and a

self-adjoint operator K[V ] on K such that

PKH (K[V ]� z)�1 �H = (H [V ]� z)�1; =m(z) > 0; (3.22)

see [9]. The operator K[V ] is called a self-adjoint dilation of the maximal dissipative

operator H [V ]. Obviously, from the condition (3.22) one gets

PKH (K[V ]� z)�1 �H = (H [V ]� � z)�1; =m(z) < 0:

If the condition

clospanfz 2 C n R : (K[V ]� z)�1Hg = K

is satis�ed, then K[V ] is called a minimal self-adjoint dilation of H [V ]. Minimal self-

adjoint dilations of maximal dissipative operators are determined up to an isomorphism,

in particular, all minimal self-adjoint dilations are unitarily equivalent. The self-adjoint

operator K[V ] is absolutely continuous and its spectrum coincides with the real axis, i.e.

spec(K) = R. The multiplicity of its spectrum is two. For more details the reader is

referred to [19].

De�nition 3.9 ( c.f. [22]) Let K be a selfadjoint, absolutely continuous operator on a

Hilbert space H and A be a bounded operator on H. Then A is called K-smooth if there

is a constant CA > 0 such thatZ +1

�1

dt kAe�itK ~fk2H � 2� C2
Ak~fk

2
H (3.23)

for all ~f 2 H. The smallest constant CA is denoted by kAkK .

Let us verify that the projection PKH is K[V ]-smooth. To this end we need the following

lemma which was proved in [26].

Lemma 3.10 [26, Lemma 5.3] Let the Schr�odinger assumptions Q1 and Q2 be satis�ed.

If V 2 L1
R
(
), then

d

d�
(EK[V ](�)P

K
H
~f; PKH~g)K = (T [V ](�)PKH

~f; T [V ](�)PKH~g)C2

for a.e � 2 R and ~f;~g 2 K where EK[V ](�) denotes the spectral measure of the the self-

adjoint dilation K[V ].
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Proposition 3.8 and Lemma 3.10 imply the smoothness of PK
H
:

Theorem 3.11 Let the Schr�odinger assumptions Q1 and Q2 be satis�ed and let V 2
L1
R
(
). If m has a �nite total variation, then the projection PK

H
is K[V ]-smooth and the

estimate

kPKHkK[V ] �
p
j
j L( kV kL1) (3.24)

holds where L(�) is de�ned by (2.14).

Proof. In accordance with [22] we set

a2 := sup
��R; ~f2K; ~f 6=0

kEK[V ](�)P
K
H
~fk2

j�j k~fk2

where � = (�1; �2) � R are bounded intervals of R and j�j := �2 � �1 denotes their

length. Then Theorem 5.1 of [22] states kPK
H
kK[V ]) =

p
a2. Thus, the K[V ]-smoothness of

the projection PKH including the estimate (3.24) is shown if we verify

a2 � j
j L(kV kL1)2:

Using Lemma 3.10 we get that

kEK[V ](�)P
K
H
~fk2K =

1

2�

Z
�

d� kT [V ](�)fk2H:

We note that

kT [V ](�)fk2H � kfk
2
Htr(T [V ](�)

�T [V ](�)) = kfk2H tr(T [V ](�)T [V ](�)�);

� 2 R. Hence

kEK[V ](�)P
K
H
~fk2K � k~fk

2
K

1

2�

Z
�

d� tr(T [V ](�)T [V ](�)�):

Taking into account Lemma 3.5 we obtain the estimate

kEK[V ](�)P
K
H
~fk2K � �k~fk

2
K

Z
�

d� !0[V ](�):

Hence we obtain

kEK[V ](�)P
K
H
~fk2
K

k~fk2
K

� (![V ](�1)� ![V ](�2))

Using (3.15) we �nd the estimate

kEK[V ](�)P
K
H
~fk2
K

j�j kfk2
K

� j
j L(kV kL1)2:

�
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3.7 Lax-Phillips scattering theory

The dilation space K admits the decomposition

K = D� � H�D+:

where D� = L2(R� ; C
2 ), see [19]. Since

e�itK[V ]D� � D�; t � 0;

e�itK[V ]D+ � D+; t � 0

as well as \
t2R

e�itK[V ]D� =
\
t2R

e�itK[V ]D+ = f0g;

[
t2R

e�itK[V ]D� =
[
t2R

e�itK[V ]D+ = K (3.25)

the subspaces D� and D+ are called incoming and outgoing subspaces with respect to

e�itK[V ], cf. [1, Ch. XII] or [24]. Further, introducing the Hilbert space K0,

K0 = L2(R; C 2 ) = D� �D+ � K = D� �H�D+;

and the self-adjoint di�erentiation operator K0,

(K0f)(x) = �i
d

dx
f(x); f 2 dom(K0) =W 1;2(R; C 2 );

one easily veri�es that D� and D+ are incoming and outgoing subspaces with respect to

e�itK0 . The Lax-Phillips wave operators are de�ned by

W�(K[V ];K0; J�) := s� lim
t!�1

eitK[V ]J�e
�itK0

where the identi�cation operators J� : K0 �! K are given by

~f = J�f := PK0D�f � 0� 0; f 2 K0;

~f = J+f := 0� 0� PK0D+
f; f 2 K0:

Since
e�itK[V ]jD� = e�itK0 jD�; t � 0;

e�itK[V ]jD+ = e�itK0 jD+; t � 0;

the wave operators W�(K[V ];K0; J�) exist. Using (3.25) one proves the completeness of

the wave operators, i.e. ran(W�(K[V ];K0; J�)) = K. For for details see [1, Ch. XII] or

[24]. De�ning the Fourier transform F : K0 �! bK0 = L2(R; C 2 ) by

(Ff)(�) :=
1

p
2�

Z
R

dx e�ix�f(x); f 2 K0; � 2 R:
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one de�nes the generalized Fourier transform �[V ] : K �! bK0 by
�[V ] := FW�(K[V ];K0; J�)

�; (3.26)

cf. Remark 5.2 of [20], which is an isometry. Moreover, if M is the multiplication operator

de�ned by

(M bf) = � bf(�); bf 2 dom(M) = f bf 2 bK0 : � bf(�) 2 bK0g:
on the Hilbert space K0, then M = �[V ]K[V ]�[V ]�1.

Lemma 3.12 Let the Schr�odinger assumptions Q1 and Q2 be satis�ed and let V;W 2
L1
R
(
). If m has a �nite total variation, then the estimate

k(W�(K[W ];K[V ])� IK)kB(K) � 2� j
j L(kV kL1) L(kWkL1) kV �WkL1 (3.27)

holds where L(�) is given by (2.14).

Proof. Similar to formula (X.3.24) of [22] one has�
(W�(K[W ];K[V ])� IK)~f;~g

�
K

=

�i
Z 0

�1

dt
�
[W � V ]PKH e

�itK[V ] ~f; PKH e
�itK[W ]~g

�
;

for ~f;~g 2 dom(K[V ]) = dom(K[W ]). Hence, we obtain the estimate����(W�(K[W ];K[V ])� IK)~f;~g
�
K

��� �
kV �WkL1

�Z
R

dt kPKH e
�itK[V ] ~fk2

�1=2�Z
R

dt kPKH e
�itK[W ]~gk2

�1=2

;

~f ;~g 2 K. Applying (3.23) and (3.24) we obtain����(W�(K[W ];K[V ])� IK)~f;~g
�
K

��� �
2�j
j L(kV kL1) L(kWkL1) kV �WkL1 k~fkk~gk

for ~f;~g 2 K which proves (3.27). �

4 Carrier density operator and continuity

4.1 Carrier density operator

In the following an operator % : K �! K is called a density operator if % is a bounded, non-

negative, self-adjoint operator. The operator % is called a steady state, if % commutes with

K[V ], see [20]. Thus any steady state % is unitarily equivalent to a multiplication operatorb� on the Hilbert space L2(R; C 2 ) induced by a density matrix �(�) 2 L1(R;B(C 2 )). In the

following we assume that the function �(�) is �xed. This leads to a steady state of the form

%[V ] = �[V ]�1b� �[V ]; (4.1)
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which depends on V . The reduced density operator %H[V ] 2 B(H) is de�ned

%H[V ] := PKH %[V ] � H:

Similarly, we de�ne the reduced density operator gH(K[V ]) 2 B(H) by

gH(K[V ]) := PKHg(K[V ]) � H:

Notice that by the Schr�odinger assumption (2.1) one has

0 � %H[V ] � gH(K[V ]): (4.2)

Lemma 4.1 Let the Schr�odinger assumptions Q1, Q2 and Q4 be satis�ed. If V 2 L1
R
(
),

then gH(K[V ]) is a trace class operator such that

0 � tr(gH(K[V ])) � G(kV�kL1)2 (4.3)

where G(�) is de�ned by (2.18).

Proof. Let f kg1k=1 be an orthonormal basis in H. By the spectral theorem

nX
k=1

(gH(K[V ]) k ;  k) =

nX
k=1

(g(K[V ]) k;  k) =

Z
R

d� g(�)

nX
k=1

d

d�
(EK[V ](�) k ;  k)

where we have used that the spectral measure EK[V ](�) of K[V ] is absolutely continuous

with respect to the Lebesgue measure. Applying Lemma 3.10 we �ndZ
R

d� g(�)
d

d�
(EK[V ](�) k ;  k) =

1

2�

Z
R

d� g(�)(T [V ](�) k ; T [V ](�) k); k 2 N;

which yields

nX
k=1

(g(K[V ]) k;  k) =
1

2�

Z
R

d� g(�)

nX
k=1

(T [V ](�) k ; T [V ](�) k):

Hence we obtain

nX
k=1

(g(K[V ]) k ;  k) �
1

2�

Z
R

d� g(�) tr(T [V ](�)�T [V ](�))

or
nX

k=1

(g(K[V ]) k;  k) �
1

2�

Z
R

d� g(�) trC2 (T [V ](�)T [V ](�)
�) (4.4)

By (3.13) we get

1

2�

Z
R

d� g(�) trC2 (T [V ](�)T [V ](�)
�) = �

Z
d� g(�)!0[V ](�); � 2 R;

which yields

1

2�

Z
R

d� g(�) trC2 (T [V ](�)T [V ](�)
�) = �g(�)![V ](�)j�=+1�=�1 +

Z
R

d� g0(�)![V ](�):
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By Corollary 3.7 we have

�![V ](�) � 2 +
1

�

p
mj
j

p
(� + kV�kL1)+

for � 2 R. We note that the conditions (2.2) and (2.3) imply

lim
�!1

p
� g(�) = 0:

Taking into account this property we obtain

1

2�

Z
R

d� g(�) trC2 (T [V ](�)T [V ](�)
�) =

Z
R

d� g0(�)![V ](�):

Since g0(�) � 0 for � � 0 and g0(�) � 0 for � � 0 as well as ![V ](�) � 0, � 2 R, we get

1

2�

Z
R

d� g(�) trC2 (T [V ](�)T [V ](�)
�) �Z +1

0

d� g0(�)![V ](�) � �
Z 1

0

d� g0(�)

�
2 +

1

�

p
mj
j

p
�+ kV�kL1

�
:

Integrating by parts we �nd

1

2�

Z
R

d� g(�) trC2 (T [V ](�)T [V ](�)
�) �

g(0)

�
2 +

1

�

p
mj
j

p
kV�kL1

�
+

1

2�

p
mj
j

Z 1

0

d�
g(�)p

�+ kV�kL1

which yields the estimate

1

2�

Z
R

d� g(�) trC2 (T [V ](�)T [V ](�)
�) ��

2g(0) +
1

2�

p
mj
j

Z 1

0

d�
g(�)
p
�

�
+

1

�
g(0)

p
mj
j

p
kV�kL1 :

From (4.4) we get the estimate

nX
k=1

(g(K[V ]) k ;  k) �
�
2g(0) +

1

2�

p
mj
j

Z 1

0

d�
g(�)
p
�

�
+

1

�
g(0)

p
mj
j

p
kV�kL1 :

for n 2 N which shows that
P1

k=1(g(K[V ]) k;  k) is �nite for any orthonormal basis of H.

Hence, the restriction gH(K[V ]) is a trace class operator. Using the notation (2.5), (2.6)

and (2.18) we obtain (4.3). �

In the Hilbert space H let us introduce the multiplication operator

(M(h)f)(x) := h(x)f(x); f 2 dom(M(h)) = H;

for functions h 2 L1(
). Since %H[V ] is a trace class operator the functional �� given

by h �! tr(%H[V ]M(h)) is well-de�ned on L1(
). Moreover, setting ��(�) := �(��) for
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Borel subsets � of 
 one de�nes a Borel measure on 
 which is absolutely continuous with

respect to the Lebesgue measure, cf. [20]. Its Radon-Nikodym derivative u�[V ] 2 L1(
)

obeys the relation

tr(%[V ]M(h)) =

Z b

a

dx u�[V ](x)h(x); h 2 L1(
): (4.5)

The function u�[V ](�) is not negative and is called the carrier density for a given potential

V 2 L1. The operator N�(V ) : L
1
R
(
) �! L1

R
(
) de�ned by

N�(V ) := u�[V ]; V 2 dom(N�) := L1R (
);

is called the carrier density operator.

Proposition 4.2 Let the Schr�odinger assumptions Q1, Q2 and Q4 be satis�ed. If V 2
L1
R
(
), then

kN�(V )kL1 � G(kV�kL1)2 (4.6)

where G(�) is de�ned by (2.18).

Proof. From (4.5) one gets the estimate

ku�[V ]kL1 � k%H[V ]kB1(H) = tr(%H[V ]):

Using (4.2) we obtain the estimate

ku�[V ]kL1 � tr(gH(K[V ])):

Finally, taking into account Lemma 4.1 we verify (4.6). �

4.2 Lipschitz continuity

Further, it was shown that the carrier density operator is continuous, i.e., if Vn
L1�! V ,

then N�(Vn)
L1�! N�(V ). We are going to show that the continuity of the carrier density

operator can be improved to bounded Lipschitz continuity, cf. De�nition III.1.2 of [12].

At �rst let us prove the following lemma.

Lemma 4.3 Let g(�) be non-negative, continuously di�erentiable even functions obeying

(2.2). The condition (2.4) is satis�ed if and only if

jg(�)� g(�)j � c maxfg(�); g(�)gj�� �j (4.7)

holds for �; � 2 R.

Proof. We assume � � �. Obviously, we have

g(�)� g(�) =

Z �

�

g0(t) dt; �; � 2 R;
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which yields

jg(�)� g(�)j � c
Z �

�

g(t) dt

where we have used (2.4). Let � 2 R+ . Since g(�), � 2 R+ , is decreasing by (2.2) we �nd

jg(�)� g(�)j � cg(�)(� � �); 0 � � � �;

which yields (4.7). If � � 0 � �, then

jg(�)� g(�)j = jg(�)� g(��)j � cmaxfg(�); g(��)gj�+ �j � cmaxfg(�); g(�)gj�� �j

which also yields (4.7). The case � � � � 0 follows from the case 0 � � � �.

Conversely, if (4.7) is satis�ed, then tending � to � we obtain

jg0(�)j � cmaxfg(�); g(�)g = c g(�); � 2 R;

which proves (2.4). �

Next we consider the operator G[V ] :=
p
g(K[V ]) � H acting from H into K.

Lemma 4.4 Let the Schr�odinger assumptions Q1, Q2 and Q4 be satis�ed. If V 2 L1
R
(
),

then G[V ] 2 B2(H;K) and
kG[V ]kB2(H;K) � G(kV�kL1) (4.8)

where G(�) is de�ned by (2.18). If V;W 2 L1
R
(
), then

kG[V ]�G[W ]kB2(H;K) � c (G(kV�kL1) +G(kW�kL1)) kV �WkL1 : (4.9)

Proof. By

kG[V ]k2B2(H;K) = tr(G[V ]�G[V ]) = tr(gH(K[V ]))

and Lemma 4.1 one gets (4.8). Further, from (2.4) and Lemma 4.3 we obtain that

jg(�)� g(�)j � cmaxfg(�); g(�)gj�� �j � c (g(�) + g(�)) j�� �j; �; � 2 R;

which yields���pg(�)�pg(�)��� �pg(�) +pg(�)� � c�pg(�) +pg(�)�2 j�� �j: �; � 2 R;

Therefore we get���pg(�)�pg(�)��� � c�pg(�) +pg(�)� j�� �j; �; � 2 R:

Hence, if we put

h(�; �) :=

p
g(�)�

p
g(�)

(�� �)
�p

g(�) +
p
g(�)

� ; �; � 2 R;

then jh(�; �)j � c, �; � 2 R. Since the operators V and W act only on the subspace H we

get
p
G[V ](V �W )+(V �W )

p
G[W ] 2 B2(K). Applying the technique of double operator

spectral integrals [5, 6, 7] we �nd the representationp
g(K[V ])�

p
g(K[W ]) =Z

R

Z
R

h(�; �) dEK[V ](�) fG[V ](V �W ) + (V �W )G[W ]�g dEK[W ](�):
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which yields
p
g(K[V ])�

p
g(K[W ]) 2 B2(K). Moreover, we �nd the estimate


pg(K[V ])�
p
g(K[W ])





B2(K)

�

c
�
kG[V ]kB2(H;K) + kG[W ]kB2(H;K)

	
kV �WkB(H):

Since G[V ] :=
p
g(K[V ]) � H and G[W ] :=

p
g(K[W ]) � H we obtain

kG[V ]�G[W ]kB2(H;K) � c
�
kG[V ]kB2(H;K) + kG[W ]kB2(H;K)

	
kV �WkB(H):

Using (4.8) we �nally get (4.9). �

Proposition 4.5 Let the Schr�odinger assumptions Q1, Q2 and Q4 be satis�ed. If m has

a �nite total variation and V;W 2 L1
R
(
), then

kN�(V )�N�(W )kL1 � L(kV kL1 ; kWkL1) kV �WkL1 (4.10)

where L(�; �) is given by (2.19).

Proof. By (4.5) we getZ b

a

dx (u�[V ](x) � u�[W ](x))h(x) = tr((%H[V ]� %H[W ])M(h))

for any h 2 L1(
) where %[V ] and %[W ] are de�ned in accordance with (4.1). By (3.26)

we have

%[V ] =W�(K[V ];K0) F
� b� F W�(K[V ];K0)

�

and

%[W ] =W�(K[W ];K0) F
� b� F W�(K[W ];K0)

�

The wave operators W�(K[V ];K0) and W�(K[W ];K0) exist and are complete; conse-

quently, the wave operator W�(K[W ];K[V ]) exists and is complete. Moreover, the repre-

sentation

W�(K[W ];K0) =W�(K[W ];K[V ])W�(K[V ];K0)

holds. For brevity we set W�[W;V ] := W�(K[W ];K[V ]) as well as W�[W ] :=

W�(K[W ];K0) andW�[V ] :=W�(K[V ];K0). Let us introduce the matrix valued function

�0(�) := g(�)�1�(�); � 2 R:

By assumption Q4 one has

0 � �0(�) � IC2 ; � 2 R:

Using this notation we �nd the representation

%H[V ]� %H[W ] = G[V ]�%0[V ]G[V ]�G[W ]�%0[W ]G[W ] =

(G[V ]� �G[W ]�) %0[V ]G[V ] +G[W ]�%0[V ] (G[V ]�G[W ]) +

G[W ] (%0[V ]� %0[W ])G[W ]:
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Hence, we get the estimate

k%H[V ]� %H[W ]kB1(H;K) ��
kG[V ]kB2(H;K) + kG[W ]kB2(H;K)

	
kG[V ]�G[W ]kB2(H;K) +

kG[W ]kB2(H;K) kG[W ]kB2(H;K) k%0[V ]� %0[W ]kB(H):

By the representation

%0[V ]� %0[W ] = %0[V ]�W�[W;V ]%0[V ]W�[W;V ]
� =

(IK �W�[W;V ])%0[V ]W�[W;V ]
� + %0[V ](IK �W�[W;V ]

�)

and Lemma 3.12 we obtain the estimate

k%0[V ]� %0[W ]kB(K) � 4� j
j L[V ]L[W ] kV �WkL1:

By Lemma 4.4 we get

k%H[V ]� %H[W ]kB1(H;K) �
�
c
�
G(kV kL1) +G(kWkL1)

�2
+

4� j
j L(kV kL1) L(kWkL1) G(kV kL1) G(kWkL1)
�
kV �WkL1

which proves (4.10). Taking into account the de�nition (2.19) we verify(4.10). �

5 Dissipative Schr�odinger-Poisson system

5.1 Rigorous de�nition

By W
1;2
0 (
) we denote the subspace of W 1;2(
) given by W

1;2
0 (
) := ff 2 W 1;2(
) :

f(a) = f(b) = 0g. Its dual space with respect to the scalar product < �; � > of L2(
) is

denoted by W
�1;2
0 (
).

At �rst we will give a rigorous de�nition of Poisson's equation and afterwards de�ne what

we will call a solution of the dissipative Schr�odinger Poisson system. We de�ne the Poisson

operator P :W
1;2
R

(
) �!W
�1;2
0;R (
) as usual by

< P�; & >=
Z b

a

dx �
d�

dx

d&

dx
; � 2W 1;2

R
(
); & 2 W 1;2

0;R(
):

Further, we set P0 := P �W 1;2
0;R(
). The operators P and P0 are linear and bounded. We

have

j < P�; & > j � k�kL1k�kW 1;2k&kW 1;2

0

:

Hence P is continuous. Furthermore, one has the estimate

k'kW 1;2

0

�
p
1 + j
j k'0kL2 ; ' 2 W 1;2

0 (
):

Thus, we get by (5.1)

k'k2
W

1;2

0

� k1=�kL1
p
1 + j
j < P0'; ' >; ' 2W 1;2

0 (
):
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By the Lax-Milgram lemma the inverse operator P�10 exists and its norm does not exceed

k1=�kL1
p
1 + j
j, i.e.

kP�10 kB(W�1;2

0
;W

1;2

0
)
� k1=�kL1

p
1 + j
j : (5.1)

De�nition 5.1 Let u� 2 L1. We say that ' 2 W
1;2
R

satis�es Poisson's equation with

boundary conditions '(a) = 'a and '(b) = 'b if � := '� b' 2W 1;2
0 (
) and the equation

P0� = C +E1u
+ �E1u

�:

is ful�lled, where b' is de�ned by (2.7).

De�nition 5.2 We say that ' 2 W
1;2
R

(
) is a solution of the dissipative Schr�odinger-

Poisson system if

1. the carrier densities u� 2 L1(
) are given by u� = N�
��
(V �0 � b'�E1�), � := '� b',

and

2. ' satis�es the Poisson equation.

5.2 Existence of solutions and estimates

Let us introduce the non-linear mappings Q : L1
R
(
) �!W

1;2
0;R(
),

Q( ) := P�10

�
C +E1N+

�+
(V +

0 + b'+  )�E1N�
��
(V �0 � b'�  )

�
; (5.2)

 2 dom(Q) = L1
R
(
), and Q1 : L1

R
(
) �! L1

R
(
),

Q1( ) = E1Q( );

 2 dom(Q1) = L1
R
(
). It was shown in [2] that the dissipative Schr�odinger-Poisson

system admits a solution if and only if Q1 admits a �xed point. Moreover, if �1 2 L1
R
(
)

is a �xed point, i.e., Q1(�1) = �1, then ' := b' +Q(�1) is a solution of the dissipative

Schr�odinger-Poisson system. If �1 2 L1
R
(
) is a �xed point, i.e. �1 = Q1(�1), then one

has the estimate

k�1kL1 = kQ1(�1)kL1(
) � "1kP�10 kB(W�1;2

0
;W

1;2

0
)
�
�
kCkW�1;2

0

+

"1kN+
�+
(V +

0 + b'+ �1)kL1 + "1kN�
��
(V �0 � b'� �1)kL1

�
:

Taking into account (5.1) we obtain

k�1kL1 = kQ1(�1)kL1(
) � "1k1=�kL1
p
1 + j
j �

�
kCkW�1;2

0

+ (5.3)

+"1kN+
�+
(V +

0 + b'+ �1)kL1 + "1kN�
��
(V �0 � b'� �1)kL1

�
:

Applying Proposition 4.2 we �nd

kN+
�+
(V +

0 + b'+ �1)kL1 � B+
0 +B+

1

q
k(V +

0 + b'+ �1)�kL1
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which yields

kN+
�+
(V +

0 + b'+ �1)kL1 � B+
0 +B+

1

q
kV +

0 + b'kL1 +B+
1

p
k�1kL1 :

Similarly, we obtain

kN�
��
(V �0 � b'� �1)kL1 � B�0 +B�1

q
kV �0 � b'kL1 +B�1

p
k�1kL1 :

Inserting these estimates into (5.3) we �nd

k�1kL1 � D0 +D1

p
k�1kL1 (5.4)

where D0 and D1 are given by (2.8) and (2.9). From (5.4) we obtain the estimate

k�1kL1 � r0 (5.5)

for any �xed point of the map Q1 where r0 is de�ned by (2.10). So the following theorem

is proven:

Theorem 5.3 [3, Theorem 4.8] If the Schr�odinger and Poisson assumptions are satis�ed,

then the dissipative Schr�odinger-Poisson system always admits a solution. Moreover, for

any solution ' 2W 1;2
R

(
) the estimate k'1 � b'kL1 � r0 holds.

We note that the radius r0 depends only on the Schr�odinger and Poisson data. Therefore,

if the Schr�odinger and Poisson data are �xed, then the radius r0 is �xed.

However, Theorem (5.3) does not answer the question whether this solution is unique.

5.3 Uniqueness

Now we are going to give conditions under which the solution of the dissipative Schr�odinger-

Poisson system is unique.

Theorem 5.4 Let the Schr�odinger and Poisson assumptions be satis�ed. If m� have

�nite total variations and the condition U < 1 is valid, where U is given by (2.21), then the

dissipative Schr�odinger-Poisson system admits only one solution.

Proof. Let �1 and � 01 two �xed points of Q1. From (5.2) we get the representation

�1 � � 01 = E1P�10 E1

n�
N+
�+
(V +)�N+

�+
(W+)

�
�
�
N�
��
(V �)�N�

��
(W�)

�o
where

V + := V +
0 + b'+ �1 and W+ := V +

0 + b'+ � 01

and

V � := V �0 + b'+ �1 and W� := V �0 + b'+ � 01:

Hence we �nd

k�1 � � 01kL1 � "21kP
�1
0 kB(W�1;2

0
;W

1;2

0
)
�

�
n


N+

�+
(V +)�N+

�+
(W+)





L1

+



N�

��
(V �)�N�

��
(W�)





L1

o
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Using (5.1) we obtain

k�1 � � 01kL1 � "21k1=�kL1
p
1 + j
j �

�
n


N+

�+
(V +)�N+

�+
(W+)





L1

+



N�

��
(V �)�N�

��
(W�)





L1

o
Applying Proposition 4.5 we get

k�1 � � 01kL1 � "21k1=�kL1
p
1 + j
j �

�
�
L+(kV +kL1 ; kW+kL1) + L�(kV �kL1 ; kW�kL1)

	
k�1 � � 01kL1

We have

kV +kL1 � kV +
0 + b'kL1 + k�1kL1 � r+1

where we have used the estimate (5.5) and r+1 is de�ned by (2.11). Similarly we prove that

kW+kL1 � r+1

and

kV �kL1 � r�1 and kW�kL1 � r�1

where we have used the de�nitions (2.11). Since

L�(kV �kL1 ; kW�kL1) � L�(r�1 ; r
�
1 )

we obtain

k�1 � � 01kL1 � "21k1=�kL1
p
1 + j
j L k�1 � � 01kL1

where L is given by (2.20). Hence, if condition (2.21) is satis�ed, then k�1 � � 01kL1 has

to be zero which proves the uniqueness. �

5.4 Uniqueness and shrinking

Our next aim is to show that a dissipative Schr�odinger-Poisson system admits always a

solution if j
j is small. To this end we introduce the following

De�nition 5.5 Let 
0 � 
 and let D = Q\P be Schr�odinger-Poisson data of the device


. We say D0 := Q0 \P0 are shrunken Schr�odinger-Poisson data of D if

Q0 := fm� � 
0; ��a ; �
�
b ; V

�
0 � 
0; ��g and P0 := fC � 
0; �� 
0; 'a; 'bg:

The corresponding dissipative Schr�odinger-Poisson system is called a shrunken dissipative

Schr�odinger-Poisson system.

De�nition 5.5 means that we leave unchanged the boundary coeÆcients ��a ; �
�
b of the

dissipative Schr�odinger operators and the density matrices as well as the boundary values

of the inhomogeneous Poisson equation but we restrict the e�ective massesm�, the external

potentials V �0 , the doping pro�le C and dielectric permittivity � to the subinterval 
0.

We note that the quantities (2.5)-(2.21) except (2.15) in fact depend on the interval 
.

We express this fact by adding in notation the term [
], for instance, B�0 [
], B
�
1 [
],b'[
](x); : : : ;U[
].
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Theorem 5.6 Let the Schr�odinger and Poisson assumptions be satis�ed and let m� have

�nite total variations. A shrunken dissipative Schr�odinger-Poisson system admits a unique

solution if j
0j, 
0 � 
, is suÆciently small.

Proof. By Theorem 5.4 it is suÆciently to show that lim supj
0j!0 U[

0] = 0. Since

m� � m�(x) � m�; x 2 
0;

we obtain from (2.5) and (2.6) that

lim
j
0j!0

B�0 [

0] = 2g�(0) and lim

j
0j!0
B�1 [


0] = 0:

Since

kb'[
0]kL1(
0) � maxfj'aj; j'bjg

we �nd

kV �0 � 
0 + b'[
0]kL1(
0) � kV �0 kL1(
) +maxfj'aj; j'bjg:

Taking into account this estimate and using kC � 
0kW�1;2 � kCkW�1;2 , "1[

0] �

p
j
0j we

obtain

lim
j
0j!0

D�
0 [


0] = 0 and lim
j
0j!0

D�
1 [


0] = 0

which yields

lim
j
0j!0

r�0 [

0] = 0

and

lim sup
j
0j!0

r�1 [

0] � kV �0 kL1(
) +maxfj'aj; j'bjg: (5.6)

Since
Wb0

a0

�
1
m�

� 
0
�
�
Wb
a

1
m�

, 
0 = (a0; b0), we get

lim sup
j
0j!0

M�[
0] �M�[
]:

Further, we have

lim sup
j
0j!0

R�j (r
�
1 [


0]) �M�[
]

�
1 + j��j j

r
2

m�

�
; j = a; b:

using Lemma 3.1, (2.16) and (5.6) one gets

lim
j
0j!0

f2r�1 [

0] + 2
0[


0]gj
j = 4q�m�

which yields

lim sup
j
0j!0

R�j (2r
�
1 [


0] + 2
0[

0]) �

M�[
]

�
1 + j��j j

r
2

m�

�
exp

�
4q�m�(M�[
])2

r
2

m�

�
; j = a; b:
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Using that we obtain

lim sup
j
0j!0

L�(r�[
0]) �M�[
] exp

�
4q�m�(M�[
])2

r
2

m�

�
�

�
�

1

(��a )2

�
1 + j��a j

r
2

m�

�
+

1

(��b )
2

�
1 + j��b j

r
2

m�

��
:

By

lim
j
0j!0

G�(r�1 [

0]) =

p
2g�(0):

we have

lim
j
0j!0

L�(r�[
0]; r�[
0]) = 8c�g�(0):

Therefore, we �nally obtain

lim
j
0j!0

L[
0] = 8(c+g+(0) + c�g�(0))

where

L[
0] := L+(r+1 [

0]; r+1 [


0]) + L�(r�1 [

0]; r�1 [


0]):

Since limj
0j!0 "1[

0] = 0 we �nd limj
0j!0 U[


0] = 0 where

U[
0] := "21[

0]
p
1 + j
0jL[
0]:

Applying Theorem 5.4 we see that for suÆciently small domains 
0 � 
 the solution of

the dissipative Schr�odinger-Poisson system is unique. �

6 Remarks

Let us comment the results.

1. Comparing the existence Theorem 5.3 with Theorem 4.8 of [2] one observes that

Theorem 5.3 proves the existence under weaker assumptions. In particular, the

Schr�odinger assumption Q4 is weaker than Assumption 4.2 A�4 of [2]. The assump-

tion Q4 is close to a necessary condition. However, both proofs use the Schauder

�xed point theorem.

2. In contrast to [2] the proof of the crucial estimate (4.6) of Proposition 4.2, cf. Theorem

3.1 of [2], is now based on the phase shift and its asymptotic behaviour at �1 and

+1.

3. The asymptotic properties of the phase shift are established by a detailed investiga-

tion in [26].

4. The uniqueness proof is essentially based on the Lipschitz continuity of the carrier

density operator, cf. Proposition 4.5 which heavily rests on the Lipschitz continuity

of the Lax-Phillips wave operators, cf. Section 3.7. This continuity relies on Kato's

theory of smooth operators, cf. [22, 23].

5. The results of the paper, in particular the results of Section 5.4, suggest the possibility

that the solution of the dissipative hybrid model, cf. [4], is also unique provided the

quantum zone is suÆciently small.
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