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AbstractThe operator-splitting methods base on splitting of the complex probleminto the sequence of the simpler tasks. A useful method is the iterative split-ting method which ensures a consistent approximation in each step. In ourpaper, we suggest a new method which is based on the combination of splittingthe time interval and the traditional iterative operator splitting. We analyzethe local splitting error of the method. Numerical examples are given in orderto demonstrate the method.1 IntroductionTraditionally there are two fundamentally di�erent algorithmic approaches to thesolution to mathematical model of complex physical processes� For the fully coupling approach, considered the discrete form, the governingequations are solved as a single, usually very complicated system.� For the decoupling approach, considered the discrete form, the governing equa-tions are decoupled in more simpler uncoupled sub-problems and are solvedas more simpler tasks.The operator-splitting methods belong to the second type and they are used tosolve complex physical models of di�erent nature especially in the geophysical andenvironmental physics. They are developed and applied in di�erent works, see, e.g.[8] and [14] and references therein. The basic idea of the operator-splitting meth-ods based on splitting of complex problem into a sequence of simpler tasks, calledsplit sub-problems. In the traditional operator splitting methods the solutions tothe several sub-split problems are not approximations of the solution to the originalun-split problem, only when executing the full cycle for one splitting step, we haveconsistency, see, e.g. [5] and [8]. There is an other class of splitting methods, the iter-ative operator method, where a system of one-step iterative methods is constructedon the whole interval and each sub-iteration requires to solve a problem only withone sub-operator from the complex original problem, see, e.g. [9] and the detailedreferences therein. In this case, the di�erent splitting solution are consistent to theoriginal solution on each steps. However, the algorithmic realization of this methodleads to some diÆculties.In our paper, we propose a new iterative operator splitting method which is a com-bination of the traditional operator splitting (de-coupling of the time interval into1



the smaller parts with the splitting time-step) and the iterative splitting method(on each split time-interval we use the one-step iterative methods). In some sense,our approach is similar to the ADI-iteration process.Our paper is organized as follows.In the Section 2, we investigate the traditional operator splitting methods and anal-yse their accuracy. In the next section, we introduce the iterative splitting methodon split time intervals. In the Section 4, we analyze the accuracy (local splittingerror) of this method, which, in case of stability, ensures also the convergence.The convergence-order of the method is derived. For the practical realization ofthis method we propose the interpolation of initial values of the intermediate splitsolution. We also investigate the consistency (and convergence) of this modi�ed (in-terpolated) problem and give a useful recommendation to the choice of the iterationstep in the algorithm. In the Section 5, we investigate di�erent numerical exampleswhich shows the validity of our theoretical results. We close the paper with someconclusions and plans for the further work.2 Traditional Operator-Splitting MethodsIn the following, we describe those traditional operator-splitting methods which arewidely used for the solution to the real-life problems. We focus our attention to thecase of two linear operators, i.e. we consider the Cauchy problem@tc(t) = Ac(t) +Bc(t) t 2 (0; T ); c(0) = c0; (2.1)whereby the initial function c0 is given, and A and B are assumed to be boundedlinear operators in the Banach-space X with A;B :X! X. In realistic applicationsthe operators correspond to physical operators, e.g. space convection and di�usionoperators.2.1 Sequential operator-splitting methodFirst, we describe the simplest operator-splitting, which is called sequential operatorsplitting. The sequential operator-splitting method is introduced in [5], as a method,which solves two sub-problems sequentially on sub-intervals [tn; tn+1], where n =0; 1; : : : ; N � 1, t0 = 0 and tN = T . The di�erent sub-problems are connected viathe initial conditions. This means that we replace the original problem (2.1) withthe sub-problems on the sub-intervals@c�(t)@t = Ac�(t); t 2 (tn; tn+1) with c�(tn) = cnsp; (2.2)@c��(t)@t = Bc��(t); t 2 (tn; tn+1) with c��(tn) = c�(tn+1);2



for n = 0; 1; : : : ; N � 1, whereby c0sp = c0 is given from (2.1). The approximatedsplit solution at the point t = tn+1 is de�ned as cn+1sp = c��(tn+1).Clearly, the change of the original problems with the sub-problems usually resultssome error, called local splitting error. Obviously, the local splitting error of thesequential operator splitting method can be derived as follows, cf. [8],�n = 1�n (exp(�n(A+B))� exp(�nB) exp(�nA)) cnsp= 12�n[A;B] c(tn) +O(� 2n); (2.3)whereby the splitting time-step is de�ned as �n = tn+1 � tn. We de�ne [A;B] :=AB � BA as commutator of A and B. Consequently, the splitting error is O(�n)when the operators A and B do not commute. When the operators commute thenthe method is exact, see [8]. Hence, by de�nition, the sequential operator splittingis called �rst order splitting method.2.2 Symmetrically weighted sequential operator splittingFor non commuting operators the sequential operator splitting is not symmetricw.r.t. the operators A and B and it has of �rst order accuracy. However, in manypractical cases we require splittings of higher order accuracy. We can achieve this bythe following modi�ed splitting method, called symmetrically weighted sequentialoperator splitting which is already symmetrical w.r.t. the operators.The algorithms reads as follows. We consider again the Cauchy problem (2.1) andwe de�ne the operator-splitting on the time interval [tn; tn+1] (where tn+1 = tn+ �n)as @c�(t)@t = Ac�(t); with c�(tn) = cnsp; (2.4)@c��(t)@t = Bc��(t); with c��(tn) = c�(tn+1);and @v�(t)@t = Bv�(t); with v�(tn) = cnsp; (2.5)@v��(t)@t = Av��(t); with v��(tn) = v�(tn+1);where cnsp is known.Then the approximation at the next time-level tn+1 is de�ned ascn+1sp = c��(tn+1) + v��(tn+1)2 : (2.6)3



The splitting error of this operator splitting method is derived as follows, cf. [2]�n = 1�n fexp(�n(A+B))��12[exp(�nB) exp(�nA) + exp(�nA) exp(�nB)]gc(tn): (2.7)An easy computation shows that in the general case�n = O(� 2n); (2.8)i.e. the method is of second order accurate. We note that in the case of commutingoperators A and B the method is exact, i.e. the splitting error vanishes.2.3 Strang-Marchuk operator-splitting methodOne of the most popular and widely used operator-splittings is the so-called Strangoperator-splitting (or Strang-Marchuk operator-splitting), which reads as follows [11,12] @c�(t)@t = Ac�(t); with tn � t � tn+1=2 and c�(tn) = cnsp; (2.9)@c��(t)@t = Bc��(t); with tn � t � tn+1 and c��(tn) = c�(tn+1=2);@c���(t)@t = Ac���(t); with tn+1=2 � t � tn+1 and c���(tn+1=2) = c��(tn+1);where tn+1=2 = tn + 0:5�n and the approximation on the next time level tn+1 is de-�ned as cn+1sp = c���(tn+1).The splitting error of the Strang splitting is�n = 124� 2n([B; [B;A]]� 2[A; [A;B]]) c(tn) +O(� 3n); (2.10)see, e.g. [8]. This means that this operator-splitting is of second order, too. We notethat under some special conditions for the operators A and B, the Strang splittinghas third order accuracy and even can be exact, see [5].In the next section, we present some other type of operator-splitting methods whichare based on the combination of the operator-splitting and the iterative methods.3 Iterative operator-splitting methodThe traditional operator-splittings have several drawbacks {besides their bene�ts{� For non-commuting operators we may have a very large constant in the localsplitting error which requires the use of unrealistically small splitting timestep. 4



� Within a full splitting step in one sub-interval the inner values are not approx-imation to the solution to the original problem.� Splitting the original problem into the di�erent sub-problems with one opera-tor, i.e. neglecting the other components, is physically questionable.In order to avoid the above problems, one can use the iterative operator splitting onthe interval [0; T ], cf. [9]. In the following, we suggest the modi�cation of this methodby introducing the splitting time discretization. We suggest an algorithm which isbased on the iteration for the �xed sequential operator splitting discretization withthe step-size �n. On the time interval [tn; tn+1] we solve the following sub-problemsconsecutively, for i = 1; 3; 5; : : : ; 2m+ 1.@ci(t)@t = Aci(t) + Bci�1(t); with ci(tn) = cnsp; (3.1)@ci+1(t)@t = Aci(t) + Bci+1(t); with ci+1(tn) = cnsp; (3.2)where c0(t) is any �xed function for each iteration. (As before, cnsp denotes theknown split approximation at the time level t = tn.) The split approximation atthe time-level t = tn+1 is de�ned as cn+1sp = c2m+1(tn+1). (Clearly, the functionsck(t) (k = i � 1; i; i + 1) depend on the interval [tn; tn+1], too, but, for the sake ofsimplicity, in our notation, we omit the dependence on n.)The algorithm (3.1) and (3.2) is an iterative method which on each steps consistsof both operators A and B. Hence, in these equations, there is no real separationof the di�erent physical processes. However we note that, due to the sub-division ofthe time interval into the sub-intervals, this process di�ers from the simple �x-pointiteration and turns it into a more eÆcient numerical method.We want remark that the algorithm (3.1) and (3.2) is a real operator splitting dealingwith the equation (3.1) requires to solve a problem with the operator A, and (3.2)requires to solve a problem with the operator B. Hence, like in the sequentialoperator splitting we separate the two operators.4 Analysis of the iterative operator-splittingmethodIn this section, we analyze the consistency and the order of the iterative operator-splitting method. First, in the Section 4.1, we consider the original (3.1) and (3.2)algorithm and prove its consistency and de�ne the order of the local splitting error.Dealing with (3.1) and (3.2) requires the knowledge of the functions ci�1(t) and ci(t)on the whole interval [tn; tn+1], which is typically not the case, since we know theirvalues only at several points of the split interval. Hence, typically we can de�ne onlysome interpolation to these functions. In the Section 4.2, we prove the consistencyof such a modi�ed algorithm. 5



4.1 Local error analysis of the iterative operator-splittingmethodIn the following we will analyze the consistency and the order of the local splittingerror of the method (3.1){(3.2) for the linear bounded operators A;B : X ! X,where X is a Banach-space, cf. [13].Theorem 4.1. Let A;B 2 L(X) are given linear bounded operators. We considerthe abstract Cauchy problem@tc(t) = Ac(t) +Bc(t); 0 < t � T;c(0) = c0: (4.1)Then the problem (4.1) has a unique solution; the iteration (3.1){(3.2) byi = 1; 3; : : : ; 2m+ 1 is consistent with the order of the consistency O(� 2mn ).Proof. Since A + B 2 L(X) therefore it is a generator of a uniformly continuoussemi-group, hence the problem (4.1) has a unique solution c(t) = exp((A+B)t)c0.Let us consider the iteration (3.1){(3.2) on the sub-interval [tn; tn+1]. For the localerror function ei(t) = c(t)� ci(t) we have the relations@tei(t) = Aei(t) +Bei�1(t); t 2 (tn; tn+1];ei(tn) = 0; (4.2)and @tei+1(t) = Aei(t) +Bei+1(t); t 2 (tn; tn+1];ei+1(tn) = 0; (4.3)for m = 0; 2; 4; : : : , with e0(0) = 0 and e�1(t) = c(t). In the following, we usethe notations X2 for the product space X � X enabled with the norm k(u; v)k =maxfkuk; kvkg (u; v 2 X). The elements Ei(t), Fi(t) 2 X2 and the linear operatorA : X2 ! X2 are de�ned as followsEi(t) = � ei(t)ei+1(t) � ; Fi(t) = � Bei�1(t)0 � ; A = � A 0A B � : (4.4)Then, using the notations (4.4), the relations (4.2) and (4.3) can be written in theform @tEi(t) = AEi(t) + Fi(t); t 2 (tn; tn+1];Ei(tn) = 0: (4.5)Due to our assumptions, A is a generator of the one-parameter C0-semi-group(expAt)t�0, hence using the variations of constants formula, the solution to theabstract Cauchy problem (4.5) with homogeneous initial condition can be writtenas Ei(t) = Z ttn exp(A(t� s))Fi(s)ds; t 2 [tn; tn+1]: (4.6)6



(See, e.g. [3].) Hence, using the denotationkEik1 = supt2[tn;tn+1] kEi(t)k ; (4.7)we have kEik(t) � kFik1 Z ttn kexp(A(t� s))kds= kBkkei�1kZ ttn kexp(A(t� s))kds; t 2 [tn; tn+1]: (4.8)Since (A(t))t�0 is a semi-group, therefore the so called growth estimationk exp(At)k � K exp(!t); t � 0; (4.9)holds with some numbers K � 0 and ! 2 IR, cf. [3].� Assume that (A(t))t�0 is a bounded or exponentially stable semi-group, i.e.(4.9), holds with some ! � 0. Then obviously the estimatek exp(At)k � K; t � 0; (4.10)holds, and hence, on base of (4.8), we have the relationkEik(t) � KkBk�nkei�1k; t 2 [tn; tn+1]: (4.11)� Assume that (expAt)t�0 has an exponential growth with some ! > 0. Using(4.9), we have Z ttn kexp(A(t� s))kds � K!(t); t 2 [tn; tn+1]; (4.12)where K!(t) = K! (exp(!(t� tn))� 1) ; t 2 [tn; tn+1]: (4.13)Hence K!(t) � K! (exp(!�n)� 1) = K�n +O(� 2n): (4.14)The estimations (4.11) and (4.14) result in thatkEik1 = KkBk�nkei�1k+O(� 2n): (4.15)Taking into the account the de�nition of Ei and the norm k � k1, we obtainkeik = KkBk�nkei�1k+O(� 2n); (4.16)and hence kei+1k = K1� 2nkei�1k+O(� 3n); (4.17)which proves our statement. 7



Remark 4.2. WhenA and B are matrices, i.e. (3.1) and (3.2) is a system of ordinarydi�erential equations, for the growth estimation (4.9) we can use the concept of thelogarithmic norm. see, e.g. [8]. Hence, for many important class of matrices we canprove the validity of (4.9) with ! � 0:Remark 4.3. We note that a huge class of important di�erential operators generatecontractive semi-group. This means that for such problems {assuming the exactsolvability of the split sub-problems{ the iterative splitting method is convergent insecond order to the exact solution.Remark 4.4. We note that the assumption A 2 L(X) can be weakened: It isenough to assume that the operator A is the generator of a C0-semi-group.Remark 4.5. When T is a suÆciently small number then we don't need the parti-tion of the interval [0; T ] into the subintervals. For this case the convergence of theiteration (3.1) and (3.2) to the solution to the problem (4.1) follows immediatelyfrom Theorem 4.1 and the rate of the convergence is equal to the order of the localsplitting error.Remark 4.6. The estimate (4.25) shows that after the �nal iteration step (i =2m+ 1) we have the estimationke2m+1k = Kmke0k� 2mn +O(� 2m+1n ): (4.18)This relation shows that the constant in the leading term strongly depends on thechoice of the initial guess c0(t). When the choice is c0(t) = 0 (see [9]) then ke0k = c(where c is the exact solution to the original problem) and hence the error maybevery signi�cant.4.2 Consistency analysis of the iterative operator-splittingmethod with interpolated split solutionsThe algorithm (3.1) and (3.2) requires the knowledge of the functions ci�1(t) andci(t) on the whole interval [tn; tn+1]. However, when we solve the split sub-problems,usually we apply some numerical methods which allow us to know the values of theabove functions only at some points of the interval. Hence, typically we can de�neonly some interpolation to the exact functions.In the following, we consider and analyze the modi�ed iterative process@ci(t)@t = Aci(t) + Bcinti�1(t); with ci(tn) = cnsp; (4.19)@ci+1(t)@t = Acinti (t) + Bci+1(t); with ci+1(tn) = cnsp; (4.20)where cintk (t) ( for k = i � 1; i) denotes an approximation of the function ck(t) onthe interval [tn; tn+1] with the accuracy O(� pn). (For simplicity, we assume the sameorder of accuracy p on each sub-intervals.)8



Then the iteration (4.19) and (4.20) for the error function Ei(t) implies again therelation (4.5) with the modi�ed right side, namelyFi(t) = � Bei�1(t) +Bhi�1(t)Ahi(t) � ; (4.21)where hk(t) = ck(t)� cintk (t) = O(� pn) for k = i� 1; i. HencekFik1 � maxfkBk kei�1k+ khi�1k; kAk khikg; (4.22)which results in the estimationkFik1 � kBk kei�1k+ C � pn: (4.23)Consequently, for these assumptions the estimation (4.16) becomes the followingkeik � K(kBk�nkei�1k+ C � p+1n ) +O(� 2n): (4.24)Therefore, for these assumptions the estimation (4.25) takes the modi�ed formkei+1k � K1� 2nkei�1k+KC� p+2n +KC� p+1n +O(� 3n): (4.25)Hence, we haveTheorem 4.7. Let A;B 2 L(X) are given linear bounded operators and considerthe abstract Cauchy problem (4.1). Then for any interpolation of order p � 1 theiteration (4.19) and (4.20) by i = 1; 3; : : : 2m+ 1 is consistent with the order of theconsistency � where � = minf2m � 1; pg .Remark 4.8. The above Theorem 4.7 shows that the number of the iteration shouldbe chosen according to the order of the interpolation formula. For additional itera-tion we cannot expect more accurate solution.Remark 4.9. We can use the piecewise constant approximation of the functionck(t), namely, cintk (t) = ck(tn) = const which is known from the split solution. Inthis case, it is enough to take only two iterations in the case of suÆciently smalldiscretization step-size.Remark 4.10. The above analysis was done for the local error. The global erroranalysis {as usual{ is the same and leads to the �-order convergence.5 Numerical ResultsIn this section, we deal with test examples to verify our theoretical results, presentedin the previous sections. We have chosen these model problems where the exactsolutions are known such that we can compute the exact values of the errors.9



In our examples, �rst we considered a simple scalar equation for the ordinary dif-ferential equation (ODE) and then the system of ODE's. We present the 
exibilityand improvement of the iterative operator splitting method. In the scheme of thevarious operator-splitting methods, we use also the analytical method of such re-duced ODE's. We can verify the number of iteration-steps with respect to the orderof the approximation of the functions.5.1 First test-example: Scalar equationWe consider the following Cauchy problem for the scalar equationu0(t) = (��1 � �2)u(t); u(0) = u0; (5.1)which has the exact solutionu(t) = exp(�(�1 + �2))t)u0: (5.2)For the problem (5.1), we split the right hand side into the sum of two scalaroperators A + B, where Au = ��1u and Bu = ��2u. According to the iterativesplitting method (3.1) and (3.2), we apply the following algorithmu0i(t) = ��1ui � �2ui�1; (5.3)u0i+1(t) = ��1ui � �2ui+1; (5.4)on the interval t 2 [0;�t], with ui(0) = ui+1(0) = u0 and u0(t) = 0 and i =1; 3; 5; : : : ; 2m+ 1, where m is a positive integer.For two equations (5.3) and (5.4), we can derive the analytical solutions asui(�t) = exp(�1�t) ui(0) + �2�1uapprox;i�1(t) (exp(��1�t)� 1); (5.5)ui+1(�t) = �1�2uapprox;i(t) (exp(��2�t)� 1) + exp(�2�t) ui+1(0); (5.6)where we have ui+1(0) = u0 and ui(0) = u0 with the index i = 0; 2; 4; : : : . Theinitial conditions are u0(0) = u0 and u�1(0) = 0.Based on this solutions, we compare the results of iterative splitting method withthe analytical solution to the complex equation.The combination of handling the iterative steps and the time-partitions is thereforeimportant. We consider a time-interval [0;�t] and divide this interval in n intervalswith length � = �tn . We can improve the results by using smaller time-steps andmore iterative steps. We can optimize the cost of computation and use more largertime-steps with less than 2� 4 iteration-steps, cf. Theorem 4.7.For our example, we choose �1 = 0:25 , �2 = 0:5 and �t = 1:0, such that we get ourexact solution with uexact = exp(�0:75) � 0:4723665.10



Number of Number of unum err = juexact � unumjtime-partitions iterations i1 2 0:540346 6.798 �10�21 4 0:50034 2.797 �10�21 10 0:49653 2.416 �10�21 100 0:49653 2.416 �10�25 2 0:48207 9.710 �10�35 4 0:48032 7.955 �10�35 10 0:48031 7.946 �10�35 100 0:48031 7.946 �10�310 2 0:477004 4.637 �10�310 4 0:47656 4.196 �10�310 10 0:476562 4.196 �10�310 100 0:476562 4.196 �10�3100 2 0:47281 4.449 �10�4100 4 0:472807 4.4047 �10�4100 10 0:472807 4.4047 �10�4100 100 0:472807 4.4047 �10�4Table 1: Numerical results for the �rst example of a ODE.In the Table 1, we show the errors between the analytical and numerical results.For small time-partitions and more iteration-steps, we get the best results and canimprove them be more re�nement. For an error-interval about 10�3 we suggest acoarser time-partition and see eÆcient and accurate results with 2 and 4 iteration-steps. From the theory we derive a interpolation order of 1 and convergent resultsafter 3 time-steps, these �ts with our results.In the next example we present improved results done by the iterative method fora more complex example. We compare the iterative with the traditional results.5.2 Second test-example of a systems of an ODELet us consider in this computations a more complicate example, where the motiva-tion behind is a chemical reaction process for educts and products. The educts trans-form to the products with the velocity-rate �1 and reverse the products transform tothe educts by the velocity-rate �2. Chemical reaction models and bio-remediationhave such processes cf. [4] and [6].We deal with the following equation :@tu1 = ��1u1 + �2u2; (5.7)@tu2 = �1u1 � �2u2; (5.8)u10(0) = u10; u20(0) = u20; (5.9)11



where �1 2 IR+ and �2 2 IR+ are the velocity-rate. Further, u1 is the concentrationof the educts and u2 is the concentration of products.We rewrite the equation-system (5.7){(5.9) in operator notation, and end up withthe following equations @tu = Au+Bu ; (5.10)u0(0) = u0 ; u1(0) = 0 ; (5.11)where u(t) = (u1(t); u2(t))T for t 2 [0;�t], and our spit operators areA = � ��1 �20 0 � ; B = � 0 0�1 ��2 � : (5.12)We chose such an example to have AB 6= BA, therefore, we have a splitting errorof �rst order for the usual sequential splitting methods, called A-B splitting.For the complex equation-system (5.7)-(5.9) we can derive the analytical solutionby integrating the system of ODE'su1(t) = u10 + u20 exp(�(�1 + �2)t); (5.13)u2(t) = �1�2 u10 � u20 exp(�(�1 + �2)t): (5.14)To validate the methods and obtain the improved results, we compare the results ofa �rst order method with the iterative method.We have the parameters �1 = 0:25, �2 = 0:5 and the end-time �t = 1:0 withthese values we get the analytical solutions to our equation : u1;exact = 1:0 andu2;exact = 0:73618.5.2.1 The A-B splitting method (�rst order method)The traditional sequential splitting (A-B splitting method) is used as a �rst methodand various time-partions are computed.For this A-B splitting, we de�ne the following numerical algorithm in an A- andB-stepA-step @tu�1 = ��1u�1 + �2u�2; (5.15)@tu�2 = 0; (5.16)u�1(0) = u10; u�2(0) = u20; (5.17)B-step @tu��1 = 0; (5.18)@tu��2 = �1u��1 � �2u��2 ; (5.19)u��1 (0) = u�1(�t); u��2 (0) = u�2(�t); (5.20)12



where t 2 [0;�t] and the result of the computation is u(�t) = (u��1 (�t); u��2 (�t))t.For the equation-systems (5.15){(5.17) and (5.18){(5.20) we derive the analyticalsolutions and apply them in our numerical scheme, leading tou�1(t) = u10 exp(��1t) + u20�2�1 ; (5.21)u�2(t) = u20 ; (5.22)and u��1 (t) = u��1 (0) ; (5.23)u��2 (t) = u��1 (0)�1�2 + u��2 (0) exp(��2t) ; (5.24)and u��1 (0) = u�1(t), u��2 (0) = u�2(t).We compute the A-B splitting with our given parameters �1 = 0:25, �2 = 0:5 andthe initial conditions u0 = 1, u1 = 1 and the end-time �t = 1:0. The results arecompared with the analytical solution, cf. (5.13) and (5.14).We present the numerical errors for the A-B splitting method and variation in thetime-partitions in the Table 2.Number of u1;num u2;num err1 err2time-partitions1 1:2211 0:8476 2.211 �10�1 1.105 �10�110 1:1802 0:8263 1.802 �10�1 9.01 �10�2100 1:1763 0:8243 1.763 �10�1 8.815 �10�2Table 2: Numerical results for the second example with the �rst order A-B splittingmethod.In the Table 2, we see the decreasing of the error by smaller time-steps but weobtain a slow convergence rate. The classical splitting-method could not halfen theprevious error and we propose an acceleration with the new iterative method.The improved method is presented in the next subsection.5.2.2 The iterative splitting method (improved method of higher order)For the iterative splitting method, we have the following splitting equations of oursystem of ODE's. We divide in step i and i+ 1 as followingStep i @tui1 = ��1ui1 + �2ui2; (5.25)@tui2 = �1ui�11 � �2ui�12 ; (5.26)ui1(0) = u10; ui2(0) = u10;13



where we have the initial conditions as u�11 (0) = 0 and u�12 (0) = 0.Step i+ 1 @tui+11 = ��1ui1 + �2ui2; (5.27)@tui+12 = �1ui+11 � �2ui+12 ; (5.28)ui+11 (0) = u10; ui+12 (0) = u10;where t 2 [0;�t] and i = 0; 2; 4; : : : ; 2m and m > 0.For the step i and i + 1, we can derive the analytical solutions and apply them inour numerical scheme. The analytical solutions are given asui1(t) = u10 exp(��1t) + u20�2�1+ ui�11 (t)(�2t� �2�1 ) + ui�12 (t)(��22�1 t� �22�21 ); (5.29)ui2(t) = ui�11 (t)�1t� ui�12 (t)�2t+ u20; (5.30)and ui+11 (t) = �ui1(t)�1t+ ui2(t)�2t+ u10; (5.31)ui+12 (t) = u10�1�2 + u20 exp(��2t)+ ui1(t)(��21�2 t� �21�22 ) + ui2(t)(�1t� �1�2 ); (5.32)where u�11 (0) = 0 and u�12 (0) = 0 and i = 0; 2; 4; : : : ; 2m and m > 0.We compute with our given scheme, cf. equations (5.25){(5.28) and our numericalresults are presented in Table 3.The numerical results show an improvement of e�ectivity in larger time-steps andlesser iteration steps by the iterative splitting method. Because of the higher or-der and of the accelerate algorithm for th iterative method. For non commutativeoperators, we get a �rst order result with the A-B splitting method and with theiterative splitting method we obtain improved convergence-rates by the higher ordermethod. The iterative method is at least of second order and 3 iteration steps areenough to reach the optimal results, cf. Theorem 4.7.For such complex situations, we will propose the new iterative splitting methods.In further works we will design new methods with both characteristics, robust A-Bsplitting method and higher order iterative splitting method.6 Conclusions and DiscussionsWe present the mathematical background for the coupling of simple physical andone-dimensional software tools to multi-physical and multi-dimensional software-tools. Based on the operator splitting methods, we present the possible splitting14



Number of Number of u1;num u2;num err1 err2time-partitions iterations1 1 1:1743 0:7799 1.743 �10�1 4.373 �10�21 2 1:1316 0:7753 1.316 �10�1 3.919 �10�21 4 1:1279 0:7749 1.279 �10�1 3.879 �10�21 10 1:1276 0:7749 1.276 �10�1 3.875 �10�210 1 1:025 0:8053 2.52 �10�2 6.916 �10�210 2 1:024 0:8050 2.4 �10�2 6.88 �10�210 4 1:024 0:8050 2.4 �10�2 6.88 �10�210 10 1:024 0:8050 2.4 �10�2 6.88 �10�2100 1 1:0025 0:8035 2.502 �10�3 6.732 �10�2100 2 1:00248 0:8035 2.48 �10�3 6.732 �10�2100 4 1:00248 0:8035 2.48 �10�3 6.732 �10�2100 10 1:00248 0:8035 2.48 �10�3 6.732 �10�2Table 3: Numerical results for the second example with the iterative splittingmethod.methods and the errors. The discussion about the application of the splitting meth-ods is done. We have compared di�erent splitting methods and obtain improvedconvergence results for the iterative method. In the future, we will focus on the de-velopment of improved operator-splitting methods with respect to the application innonlinear convection-di�usion-reaction-equations, arising from chemical and biolog-ical models, cf. [6] and [4] and heat-transfer problems, arising from crystal-growth,cf. [7],[10] and [1].References[1] N. Bubner, O. Klein, P. Philip, J. Sprekels, and K. Wilmanski. A transientmodel for the sublimation growth of silicon carbide single crystals. Journal ofCrystal Growth, 205: 294-304, 1999.[2] P. Csom�os, I. Farag�o, and A. Havasi. Weighted sequential splittings and theiranalysis. Comput. Math. Appl., (to appear)[3] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear EvolutionEquations. Springer, New York, 2000.[4] R.E. Ewing. Up-scaling of biological processes and multiphase 
ow in porousmedia. IIMA Volumes in Mathematics and its Applications, Springer-Verlag,295 (2002), 195-215.[5] I. Farago. Splitting methods for abstract Cauchy problems. Lect. NotesComp.Sci. 3401, Springer Verlag, Berlin, pp. 35-45, 2005.15
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