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Abstract

The operator-splitting methods base on splitting of the complex problem
into the sequence of the simpler tasks. A useful method is the iterative split-
ting method which ensures a consistent approximation in each step. In our
paper, we suggest a new method which is based on the combination of splitting
the time interval and the traditional iterative operator splitting. We analyze
the local splitting error of the method. Numerical examples are given in order
to demonstrate the method.

1 Introduction

Traditionally there are two fundamentally different algorithmic approaches to the
solution to mathematical model of complex physical processes

e For the fully coupling approach, considered the discrete form, the governing
equations are solved as a single, usually very complicated system.

e For the decoupling approach, considered the discrete form, the governing equa-
tions are decoupled in more simpler uncoupled sub-problems and are solved
as more simpler tasks.

The operator-splitting methods belong to the second type and they are used to
solve complex physical models of different nature especially in the geophysical and
environmental physics. They are developed and applied in different works, see, e.g.
[8] and [14] and references therein. The basic idea of the operator-splitting meth-
ods based on splitting of complex problem into a sequence of simpler tasks, called
split sub-problems. In the traditional operator splitting methods the solutions to
the several sub-split problems are not approximations of the solution to the original
un-split problem, only when executing the full cycle for one splitting step, we have
consistency, see, e.g. [5] and [8]. There is an other class of splitting methods, the iter-
ative operator method, where a system of one-step iterative methods is constructed
on the whole interval and each sub-iteration requires to solve a problem only with
one sub-operator from the complex original problem, see, e.g. [9] and the detailed
references therein. In this case, the different splitting solution are consistent to the
original solution on each steps. However, the algorithmic realization of this method
leads to some difficulties.

In our paper, we propose a new iterative operator splitting method which is a com-
bination of the traditional operator splitting (de-coupling of the time interval into
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the smaller parts with the splitting time-step) and the iterative splitting method
(on each split time-interval we use the one-step iterative methods). In some sense,
our approach is similar to the ADI-iteration process.

Our paper is organized as follows.

In the Section 2, we investigate the traditional operator splitting methods and anal-
yse their accuracy. In the next section, we introduce the iterative splitting method
on split time intervals. In the Section 4, we analyze the accuracy (local splitting
error) of this method, which, in case of stability, ensures also the convergence.
The convergence-order of the method is derived. For the practical realization of
this method we propose the interpolation of initial values of the intermediate split
solution. We also investigate the consistency (and convergence) of this modified (in-
terpolated) problem and give a useful recommendation to the choice of the iteration
step in the algorithm. In the Section 5, we investigate different numerical examples
which shows the validity of our theoretical results. We close the paper with some
conclusions and plans for the further work.

2 Traditional Operator-Splitting Methods

In the following, we describe those traditional operator-splitting methods which are
widely used for the solution to the real-life problems. We focus our attention to the
case of two linear operators, i.e. we consider the Cauchy problem

Oic(t) = Ac(t) + Be(t) te€(0,T), ¢(0)= co, (2.1)

whereby the initial function ¢y is given, and A and B are assumed to be bounded
linear operators in the Banach-space X with A, B : X — X. In realistic applications
the operators correspond to physical operators, e.g. space convection and diffusion
operators.

2.1 Sequential operator-splitting method

First, we describe the simplest operator-splitting, which is called sequential operator
splitting. The sequential operator-splitting method is introduced in [5], as a method,
which solves two sub-problems sequentially on sub-intervals [¢™,¢t"t!], where n =
0,1,...,N —1,#° = 0 and t" = T. The different sub-problems are connected via
the initial conditions. This means that we replace the original problem (2.1) with
the sub-problems on the sub-intervals

6cait) — Ac*(t)7 i€ (tn,t"+1) with c*(t”) _ C:p, (2‘2)
6cat(t) = Bc**(t), t € (tn,t"+1) with C**(tn) — c*(tn-l—l)7



for n = 0,1,..., N — 1, whereby cgp = ¢ is given from (2.1). The approximated

split solution at the point ¢ = t"*! is defined as ! = ¢™*(¢"+1).

Clearly, the change of the original problems with the sub-problems usually results
some error, called local splitting error. Obviously, the local splitting error of the
sequential operator splitting method can be derived as follows, cf. [8],

Pn = i(exp(Tn(A + B)) — exp(mnB) exp(mm4)) c:p

= %TH[A, B] c(t™) + O(72), (2.3)

whereby the splitting time-step is defined as 7, = t"*' — t". We define [A, B] :=
AB — BA as commutator of A and B. Consequently, the splitting error is O(7,)
when the operators A and B do not commute. When the operators commute then
the method is exact, see [8]. Hence, by definition, the sequential operator splitting
is called first order splitting method.

2.2 Symmetrically weighted sequential operator splitting

For non commuting operators the sequential operator splitting is not symmetric
w.r.t. the operators A and B and it has of first order accuracy. However, in many
practical cases we require splittings of higher order accuracy. We can achieve this by
the following modified splitting method, called symmetrically weighted sequential
operator splitting which is already symmetrical w.r.t. the operators.

The algorithms reads as follows. We consider again the Cauchy problem (2.1) and
we define the operator-splitting on the time interval [t™,¢""!] (where t"t! = ¢" 4+ 7,)
as

60*(t) * . * /N n
o Ac*(t), with ¢*(t") = g, -
dc (t) — Bc**(t)7 with C**(tn) _ c*(t”‘H)’
ot
and
6v*(t) * . */n n
6t _= B'U (t)7 Wlth’U (t ) — csp7 (25)
6U6t(t) — 14’U>|<"‘(t)7 Wlth ,U**(tn) _ ru*(t”-l-l)’

where c[, is known.

Then the approximation at the next time-level t"*! is defined as

Kk tn—l—l *k tﬂ-l-l
c:;l—l — c ( ) —|2_,U ( ) (26)




The splitting error of this operator splitting method is derived as follows, cf. [2]

o = —{exp(ra(A + B))—
- (2.7)
—§[eXp(TnB) eXp(TnA) + eXP(TnA) eXp(TnB)]}C(tn).

An easy computation shows that in the general case
Pn = O(Ti)a (2.8)

i.e. the method is of second order accurate. We note that in the case of commuting
operators A and B the method is exact, i.e. the splitting error vanishes.

2.3 Strang-Marchuk operator-splitting method

One of the most popular and widely used operator-splittings is the so-called Strang
operator-splitting (or Strang-Marchuk operator-splitting), which reads as follows [11,
12]

Oc*(t

cai ) _ Ac*(t), with t" <t < ¢™"/% and ¢*(t") = ¢}, (2.9)
Oc**(t

Cat( ) Ber (1), with £ <1 < 7 and ¢(#7) = ot (#711/2),
a & ok ok t

cat( ) _ AC***(t), with tn+1/2 <t< tn+1 and c***(tn+1/2) _ c:nok(tn-l—l)7

where t"t*/2 = " 4 0.57,, and the approximation on the next time level t"*! is de-

fined as it = ™ (¢"H).

The splitting error of the Strang splitting is
1
Pn = ﬂTS([Ba [Ba A]] - Z[Aa [Aa B]]) c(tn) + 0(73)7 (210)

see, e.g. [8]. This means that this operator-splitting is of second order, too. We note
that under some special conditions for the operators A and B, the Strang splitting
has third order accuracy and even can be exact, see [5].

In the next section, we present some other type of operator-splitting methods which
are based on the combination of the operator-splitting and the iterative methods.

3 Iterative operator-splitting method

The traditional operator-splittings have several drawbacks —besides their benefits—

e For non-commuting operators we may have a very large constant in the local
splitting error which requires the use of unrealistically small splitting time
step.



e Within a full splitting step in one sub-interval the inner values are not approx-
imation to the solution to the original problem.

e Splitting the original problem into the different sub-problems with one opera-
tor, i.e. neglecting the other components, is physically questionable.

In order to avoid the above problems, one can use the iterative operator splitting on
the interval [0, T, cf. [9]. In the following, we suggest the modification of this method
by introducing the splitting time discretization. We suggest an algorithm which is
based on the iteration for the fixed sequential operator splitting discretization with
the step-size 7,,. On the time interval [t*, t"!] we solve the following sub-problems
consecutively, for z = 1,3,5,...,2m + 1.

ac{;ff) = Ac(t) + Beia(t), with (") = &, (3.1)
‘%"57;“) — Aci(t) + Beiya(t), with ciya () = 2, (3.2)

where ¢o(t) is any fixed function for each iteration. (As before, ¢, denotes the
known split approximation at the time level ¢ = ¢™.) The split approximation at
the time-level t = t"*! is defined as cgr;"l = cam+1(t"*?). (Clearly, the functions
ck(t) (k =1 — 1,4, + 1) depend on the interval [t*, "], too, but, for the sake of
simplicity, in our notation, we omit the dependence on n.)

The algorithm (3.1) and (3.2) is an iterative method which on each steps consists
of both operators A and B. Hence, in these equations, there is no real separation
of the different physical processes. However we note that, due to the sub-division of
the time interval into the sub-intervals, this process differs from the simple fix-point
iteration and turns it into a more efficient numerical method.

We want remark that the algorithm (3.1) and (3.2) is a real operator splitting dealing
with the equation (3.1) requires to solve a problem with the operator A, and (3.2)
requires to solve a problem with the operator B. Hence, like in the sequential
operator splitting we separate the two operators.

4 Analysis of the iterative operator-splitting
method

In this section, we analyze the consistency and the order of the iterative operator-
splitting method. First, in the Section 4.1, we consider the original (3.1) and (3.2)
algorithm and prove its consistency and define the order of the local splitting error.

Dealing with (3.1) and (3.2) requires the knowledge of the functions ¢;_;(t) and ¢;(t)
on the whole interval [t™,¢"*!], which is typically not the case, since we know their
values only at several points of the split interval. Hence, typically we can define only
some interpolation to these functions. In the Section 4.2, we prove the consistency
of such a modified algorithm.



4.1 Local error analysis of the iterative operator-splitting
method

In the following we will analyze the consistency and the order of the local splitting
error of the method (3.1)—(3.2) for the linear bounded operators 4, B : X — X,
where X is a Banach-space, cf. [13].

Theorem 4.1. Let A,B € L(X) are given linear bounded operators. We consider
the abstract Cauchy problem

Oic(t) = Ac(t) + Be(t), 0<t<T,

4.1

¢(0) = co. (4.1)
Then the problem (4.1) has a unique solution; the iteration (8.1)-(3.2) by
1=1,3,...,2m + 1 is consistent with the order of the consistency O(72™).

Proof. Since A+ B € L(X) therefore it is a generator of a uniformly continuous
semi-group, hence the problem (4.1) has a unique solution ¢(¢) = exp((A + B)t)co.

Let us consider the iteration (3.1)—(3.2) on the sub-interval [¢*,¢"*!]. For the local
error function e;(t) = ¢(t) — ¢;(t) we have the relations

Oei(t) = Ae;(t) + Be;_1(t), t€ (™", (42)
ei(t”) = 0,

and
Oseir1(t) = Aei(t) + Beina(t), te€ (¢,
€i+1(tn) == 0,
for m = 0,2,4,..., with e(0) = 0 and e_1(t) = ¢(t). In the following, we use
the notations X2 for the product space X x X enabled with the norm ||(u,v)|| =

max{||[u|, |[v||} (v,v € X). The elements &(t), Fi(t) € X* and the linear operator
A : X2 — X2 are defined as follows

o[ ] mo=[#50) a=[28] s

Then, using the notations (4.4), the relations (4.2) and (4.3) can be written in the
form

(4.3)

0:&i(t) = A&(t) + F(t), te (¢,
&™) =0.
Due to our assumptions, A is a generator of the one-parameter Cy-semi-group
(exp At)¢>0, hence using the variations of constants formula, the solution to the

abstract Cauchy problem (4.5) with homogeneous initial condition can be written
as

(4.5)

&E(t) = /tt exp(A(t — s))F;(s)ds, tc[t", "] (4.6)
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(See, e.g. [3].) Hence, using the denotation
1€:lloe = supeegen,ensay 1€ (4.7)

we have

1€:01(2) < [|Filloo /tn lexp(A(t — s))l|ds

t (4.8)
= || Bllllei-1l] /tn lexp(A(t — s))[lds, t € [" "],
Since (\A(t))i>0 is a semi-group, therefore the so called growth estimation
| exp(At)|| < K exp(wt), >0, (4.9)

holds with some numbers K > 0 and w € R, cf. [3].

o Assume that (\A(¢))i>0 is @ bounded or exponentially stable semi-group, i.e.
(4.9), holds with some w < 0. Then obviously the estimate

|lexp(At)|| < K, t>0, (4.10)
holds, and hence, on base of (4.8), we have the relation

I1E:l[(t) < K| Bl|7alleiall, t € [£7,27]. (4.11)

o Assume that (exp .At);>o has an exponential growth with some w > 0. Using

(4.9), we have

/t: lexp(A(t — s))||ds < K,(t), te [t ", (4.12)
where
K,(t) = %(exp(w(t —t™) —1), te . (4.13)
Hence %
K,(t) < - (exp(wTy) — 1) = K7, + O(72). (4.14)

The estimations (4.11) and (4.14) result in that

[illeo = K| B 7llei-1]| + O(77). (4.15)
Taking into the account the definition of & and the norm || - ||eo, We obtain
le:|| = K| B||Tallei-1]l + O(72), (4.16)
and hence
leivall = Kimalleia || + O(73), (4.17)

which proves our statement.
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Remark 4.2. When A and B are matrices, i.e. (3.1) and (3.2) is a system of ordinary
differential equations, for the growth estimation (4.9) we can use the concept of the

logarithmic norm. see, e.g. [8]. Hence, for many important class of matrices we can
prove the validity of (4.9) with w < 0.

Remark 4.3. We note that a huge class of important differential operators generate
contractive semi-group. This means that for such problems —assuming the exact
solvability of the split sub-problems— the iterative splitting method is convergent in
second order to the exact solution.

Remark 4.4. We note that the assumption A € L£(X) can be weakened: It is
enough to assume that the operator A is the generator of a Cy-semi-group.

Remark 4.5. When T is a sufficiently small number then we don’t need the parti-
tion of the interval [0, 7] into the subintervals. For this case the convergence of the
iteration (3.1) and (3.2) to the solution to the problem (4.1) follows immediately
from Theorem 4.1 and the rate of the convergence is equal to the order of the local
splitting error.

Remark 4.6. The estimate (4.25) shows that after the final iteration step (¢ =
2m + 1) we have the estimation

le2ma|l = Komlleo]| 2™ + O(m2™ ). (4.18)

This relation shows that the constant in the leading term strongly depends on the
choice of the initial guess co(t). When the choice is ¢o(t) = 0 (see [9]) then ||eo|| = ¢
(where ¢ is the exact solution to the original problem) and hence the error maybe
very significant.

4.2 Consistency analysis of the iterative operator-splitting
method with interpolated split solutions

The algorithm (3.1) and (3.2) requires the knowledge of the functions ¢;_1(t) and
c;(t) on the whole interval [t*, t"*!]. However, when we solve the split sub-problems,
usually we apply some numerical methods which allow us to know the values of the
above functions only at some points of the interval. Hence, typically we can define
only some interpolation to the exact functions.

In the following, we consider and analyze the modified iterative process

dcy(t)

at = Aci(t) + Bci’ltl(t), with ¢(t") = c:p) (4.19)
&igi;(t) = AC,iL-nt(t) + BCi_|_1(t), with C,L'_|_1(t") = c?p) (420)

where c(¢) ( for k = 1 — 1,1) denotes an approximation of the function c(¢) on
the interval [¢*,¢"*!] with the accuracy O(7?). (For simplicity, we assume the same

order of accuracy p on each sub-intervals.)

8



Then the iteration (4.19) and (4.20) for the error function &(t) implies again the
relation (4.5) with the modified right side, namely

- Bei_l(t) —|— Bhi_l(t)

Filt) = Ah(t) , (4.21)
where hy(t) = ci(t) — c™(¢) = O(rP) for k =i — 1,i. Hence
|Fille < max{|1 B lea-s | + 1ho-all A1l 1}, (4.22)
which results in the estimation
|Fllee < 18] lecall + € 72, (4.23)

Consequently, for these assumptions the estimation (4.16) becomes the following

lesll < K(|Bl|mnlleisl] + C72™) + O(72). (4.24)

Therefore, for these assumptions the estimation (4.25) takes the modified form
leira|| < Kim2||eica|| + KCTPT2 + KCrP+ + O(72). (4.25)
Hence, we have

Theorem 4.7. Let A,B € L(X) are given linear bounded operators and consider
the abstract Cauchy problem (4.1). Then for any interpolation of order p > 1 the
iteration (4.19) and (4.20) byi =1,3,...2m + 1 is consistent with the order of the
consistency o where a = min{2m — 1, p} .

Remark 4.8. The above Theorem 4.7 shows that the number of the iteration should
be chosen according to the order of the interpolation formula. For additional itera-
tion we cannot expect more accurate solution.

Remark 4.9. We can use the piecewise constant approximation of the function
cx(t), namely, ci(t) = cx(t") = const which is known from the split solution. In
this case, it is enough to take only two iterations in the case of sufficiently small

discretization step-size.

Remark 4.10. The above analysis was done for the local error. The global error
analysis —as usual- is the same and leads to the a-order convergence.

5 Numerical Results

In this section, we deal with test examples to verify our theoretical results, presented
in the previous sections. We have chosen these model problems where the exact
solutions are known such that we can compute the exact values of the errors.



In our examples, first we considered a simple scalar equation for the ordinary dif-
ferential equation (ODE) and then the system of ODE’s. We present the flexibility
and improvement of the iterative operator splitting method. In the scheme of the
various operator-splitting methods, we use also the analytical method of such re-
duced ODE’s. We can verify the number of iteration-steps with respect to the order
of the approximation of the functions.

5.1 First test-example: Scalar equation

We consider the following Cauchy problem for the scalar equation
u'(t) = (A — Ao)ult), u(0) = uo, (5.1)

which has the exact solution
u(t) = exp(— (A1 + A2)))uo. (5.2)

For the problem (5.1), we split the right hand side into the sum of two scalar
operators A + B, where Au = —A\ju and Bu = —Asu. According to the iterative
splitting method (3.1) and (3.2), we apply the following algorithm

’U,,L(t) = —>\1’U,,L' — )\2u,i_1, (53)

u;_|_1(t) = _>‘1ui - >‘2’u”i+17 (54)

on the interval ¢t € [0, At], with u;(0) = u;4+1(0) = uo and ue(¢t) = 0 and 2 =
1,3,5,...,2m + 1, where m is a positive integer.

For two equations (5.3) and (5.4), we can derive the analytical solutions as

A
u;(At) = exp(M1AL) u;(0) + A—zuapprox,i_l(t) (exp(—A1At) — 1), (5.5)
1
A
uiy1(At) = A—luapprox,i(t) (exp(—A2At) — 1) + exp(A2At) u;41(0), (5.6)
2
where we have u;11(0) = uo and u;(0) = uo with the index : = 0,2,4,... . The

initial conditions are ug(0) = ug and u_1(0) = 0.

Based on this solutions, we compare the results of iterative splitting method with
the analytical solution to the complex equation.

The combination of handling the iterative steps and the time-partitions is therefore
important. We consider a time-interval [0, At] and divide this interval in n intervals
with length 7 = %. We can improve the results by using smaller time-steps and
more iterative steps. We can optimize the cost of computation and use more larger
time-steps with less than 2 — 4 iteration-steps, cf. Theorem 4.7.

For our example, we choose A\; = 0.25 , A, = 0.5 and At = 1.0, such that we get our
exact solution With Ueyact = €xp(—0.75) &~ 0.4723665.
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Number of Number of Upum err = |Uexact — Unum|
time-partitions | iterations 2
1 2 0.540346 6.798 x1072
1 4 0.50034 2.797 x1072
1 10 0.49653 2.416 x1072
1 100 0.49653 2.416 x1072
5 2 0.48207 9.710 x10~3
5 4 0.48032 7.955 x1072
5 10 0.48031 7.946 x1073
5 100 0.48031 7.946 x1073
10 2 0.477004 4.637 x1073
10 4 0.47656 4.196 x1073
10 10 0.476562 4.196 x1073
10 100 0.476562 4.196 x1073
100 2 0.47281 4.449 x10~*
100 4 0.472807 4.4047 x10~*
100 10 0.472807 4.4047 x107*
100 100 0.472807 4.4047 x10~*

Table 1: Numerical results for the first example of a ODE.

In the Table 1, we show the errors between the analytical and numerical results.

For small time-partitions and more iteration-steps, we get the best results and can
improve them be more refinement. For an error-interval about 107> we suggest a
coarser time-partition and see efficient and accurate results with 2 and 4 iteration-
steps. From the theory we derive a interpolation order of 1 and convergent results
after 3 time-steps, these fits with our results.

In the next example we present improved results done by the iterative method for
a more complex example. We compare the iterative with the traditional results.

5.2 Second test-example of a systems of an ODE

Let us consider in this computations a more complicate example, where the motiva-
tion behind is a chemical reaction process for educts and products. The educts trans-
form to the products with the velocity-rate A; and reverse the products transform to
the educts by the velocity-rate A\;. Chemical reaction models and bio-remediation
have such processes cf. [4] and [6].

We deal with the following equation :

(9tu1 = —>\1’U,1 —|— )\g’u,g, (57)
Ous = Aug — Agta,
ulo(o) = Uio, uzo(o) = U20, 5.9
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where A\; € IRT and A\, € IR™ are the velocity-rate. Further, u; is the concentration
of the educts and u, is the concentration of products.

We rewrite the equation-system (5.7)—(5.9) in operator notation, and end up with
the following equations

Ou = Au+ Bu, (5.10)
uo(0) = uo,u1(0)=0, (5.11)

where u(t) = (u1(t),ua(2))T for t € [0, At], and our spit operators are

S /0 0
a2 ) m(2 0 612

We chose such an example to have AB # BA, therefore, we have a splitting error
of first order for the usual sequential splitting methods, called A-B splitting.

For the complex equation-system (5.7)-(5.9) we can derive the analytical solution
by integrating the system of ODE’s

’U,l(t) = U190 + U920 exp(—()\l + Ag)t), (513)
A1

us(t) = % Uro — Uz0€xp(— (A1 + A2)t). (5.14)

To validate the methods and obtain the improved results, we compare the results of
a first order method with the iterative method.

We have the parameters A; = 0.25, Ay = 0.5 and the end-time At = 1.0 with
these values we get the analytical solutions to our equation : ujexact = 1.0 and

U2,exact — 0.73618.

5.2.1 The A-B splitting method (first order method)

The traditional sequential splitting (A-B splitting method) is used as a first method
and various time-partions are computed.

For this A-B splitting, we define the following numerical algorithm in an A- and
B-step

A-step
Oui = —Awul + Auj, (5.15)
Oy = 0, (5.16)
ui(0) = w0, u3(0) = wzo, (5.17)

B-step
Owui* = 0, (5.18)
Oy = Aul™ — dauy’, (5.19)
urt(0) = wuj(At), ur*(0) = uz(At), (5.20)

12



where ¢ € [0, At] and the result of the computation is u(At) = (uf*(At), us*(At))*.

For the equation-systems (5.15)-(5.17) and (5.18)-(5.20) we derive the analytical
solutions and apply them in our numerical scheme, leading to

wi(t) = uloexp(—)\lt)—l—ugoi—j, (5.21)
up(t) = o, (5.22)
and
ui*(t) = ui*(0), (5.23)
wt(t) = uI*(O)i—:—I—u;*(O)exp(—)\gt), (5.24)

and up*(0) = ui(t), us*(0) = u3(t).

We compute the A-B splitting with our given parameters A\; = 0.25, Ay = 0.5 and
the initial conditions ug = 1, u; = 1 and the end-time At = 1.0. The results are
compared with the analytical solution, cf. (5.13) and (5.14).

We present the numerical errors for the A-B splitting method and variation in the
time-partitions in the Table 2.

Number of Ut pum | %2,num erry errsy
time-partitions
1 1.2211 | 0.8476 | 2.211 x10~! | 1.105 x10~!
10 1.1802 | 0.8263 | 1.802 x10~! | 9.01 x10~2
100 1.1763 | 0.8243 | 1.763 x107! | 8.815 x1072

Table 2: Numerical results for the second example with the first order A-B splitting
method.

In the Table 2, we see the decreasing of the error by smaller time-steps but we
obtain a slow convergence rate. The classical splitting-method could not halfen the
previous error and we propose an acceleration with the new iterative method.

The improved method is presented in the next subsection.
5.2.2 The iterative splitting method (improved method of higher order)

For the iterative splitting method, we have the following splitting equations of our
system of ODE’s. We divide in step 2z and ¢ + 1 as following

Step 2
Ot = b + dud, (5.25)
Ol = AutTt — dub (5.26
w3 (0) = w10,u5(0) = wio,
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where we have the initial conditions as uj'(0) = 0 and u;*(0) = 0.

Stepz+1
Ottt = —ul 4 b, (5.27)
Ous™ = Audtt — dubtt (5.28
’U,Zl—l—l(O) = ulo,ui"'l(O) = Ujo0,

where ¢t € [0, At] and : = 0,2,4,...,2m and m > 0.

For the step ¢ and 2 + 1, we can derive the analytical solutions and apply them in
our numerical scheme. The analytical solutions are given as

. A
ui(t) = uoexp(—Ait) + ugoA—z
1
- A - 22 22
+ou () (at — ) +uy () (-2t — 52, (5.29)
A A A%
ub(t) = ulH(E)Ast — uh H(E) At 4 ugo, (5.30)
and
utHt) = —ul ()Mt 4 ub(t) Aat + ugo, (5.31)
- A
u’z"'l(t) = u10>\—1 + Ugg exp(—Aat)
2
- 22 22 - A
+ o ()(— 5 — 5+ up(t) (Mt — =), (5.32)
Ay A2 Ay

where u;'(0) = 0 and u;'(0) =0 and : = 0,2,4,...,2m and m > 0.

We compute with our given scheme, cf. equations (5.25)—(5.28) and our numerical
results are presented in Table 3.

The numerical results show an improvement of effectivity in larger time-steps and
lesser iteration steps by the iterative splitting method. Because of the higher or-
der and of the accelerate algorithm for th iterative method. For non commutative
operators, we get a first order result with the A-B splitting method and with the
iterative splitting method we obtain improved convergence-rates by the higher order
method. The iterative method is at least of second order and 3 iteration steps are
enough to reach the optimal results, cf. Theorem 4.7.

For such complex situations, we will propose the new iterative splitting methods.
In further works we will design new methods with both characteristics, robust A-B
splitting method and higher order iterative splitting method.

6 Conclusions and Discussions

We present the mathematical background for the coupling of simple physical and
one-dimensional software tools to multi-physical and multi-dimensional software-
tools. Based on the operator splitting methods, we present the possible splitting
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Number of Number of | U1 num | U2,num erry errsy
time-partitions | iterations
1 1 1.1743 | 0.7799 | 1.743 x107* | 4.373 x 1072
1 2 1.1316 | 0.7753 | 1.316 x107* | 3.919 x10~2
1 4 1.1279 | 0.7749 | 1.279 x107* | 3.879 x10~2
1 10 1.1276 | 0.7749 | 1.276 x10~* | 3.875 x 1072
10 1 1.025 | 0.8053 | 2.52 x10~% | 6.916 x10~2
10 2 1.024 | 0.8050 | 2.4 x1072 6.88 x1072
10 4 1.024 | 0.8050 | 2.4 x1072 6.88 x1072
10 10 1.024 | 0.8050 | 2.4 x1072 6.88 x1072
100 1 1.0025 | 0.8035 | 2.502 x1073 | 6.732 x 1072
100 2 1.00248 | 0.8035 | 2.48 x1073 | 6.732 x1072
100 4 1.00248 | 0.8035 | 2.48 x1073 | 6.732 x1072
100 10 1.00248 | 0.8035 | 2.48 x1073 | 6.732 x1072

Table 3: Numerical results for the second example with the iterative splitting
method.

methods and the errors. The discussion about the application of the splitting meth-

ods

is done. We have compared different splitting methods and obtain improved

convergence results for the iterative method. In the future, we will focus on the de-

velopment of improved operator-splitting methods with respect to the application in

nonlinear convection-diffusion-reaction-equations, arising from chemical and biolog-

ical models, cf. [6] and [4] and heat-transfer problems, arising from crystal-growth,

cf. [7],[10] and [1].

References

1]

N. Bubner, O. Klein, P. Philip, J. Sprekels, and K. Wilmanski. A transient
model for the sublimation growth of silicon carbide single crystals. Journal of

Crystal Growth, 205: 294-304, 1999.

P. Csomés, 1. Faragd, and A. Havasi. Weighted sequential splittings and their
analysis. Comput. Math. Appl., (to appear)

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution
Equations. Springer, New York, 2000.

R.E. Ewing. Up-scaling of biological processes and multiphase flow in porous
media. [IMA Volumes in Mathematics and its Applications, Springer-Verlag,
295 (2002), 195-215.

I. Farago. Splitting methods for abstract Cauchy problems. Lect. Notes

Comp.Sci. 3401, Springer Verlag, Berlin, pp. 35-45, 2005.

15



(6]

[10]

[11]

[12]

[13]

[14]

J. Geiser. Numerical Simulation of a Model for Transport and Reaction of
Radionuclides. Proceedings of the Large Scale Scientific Computations of En-
gineering and Environmental Problems, Sozopol, Bulgaria, 2001.

J. Geiser, O. Klein, and P. Philip. Numerical simulation of heat transfer in ma-
terials with anisotropic thermal conductivity: A finite volume scheme to han-
dle complex geometries. Preprint No.1033, Weierstraf-Institut fir Angewandte
Analysis und Stochastik, Berlin, 2005.

W.H. Hundsdorfer and J. Verwer Numerical solution of time-dependent
advection-diffusion-reaction equations, Springer, Berlin, (2003).

J.Kanney, C.Miller, and C. Kelley. Convergence of iterative split-operator
approaches for approzimating nonlinear reactive transport problems. Advances

in Water Resources, 26:247-261, 2003.

O. Klein, P. Philip, and J. Sprekels. Modeling and simulation of sublimation
growth of SiC bulk single crystals. Interfaces and Free Boundaries, 6: 295-314,
2004.

G.I Marchuk. Some applicatons of splitting-up methods to the solution of
problems in mathematical physics. Aplikace Matematiky, 1 (1968) 103-132.

G. Strang. On the construction and comparision of difference schemes. SIAM

J. Numer. Anal., 5:506-517, 1968.

R.S. Varga. Matriz Iterative Analysis. Prentice-Hall, Inc., Englewood Cliffs,
New Jersy, 1962.

Z.7Zlatev. Computer Treatment of Large Air Pollution Models. Kluwer Aca-
demic Publishers, 1995.

16



