
Weierstraß-Institut
für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 – 8633

Existence and asymptotic analysis of a phase field

model for supercooling

Olaf Klein1 , Fabio Luterotti2, Riccarda Rossi3

submitted: 30th June 2005

1 Weierstrass Institute for Applied Analysis
and Stochastics (WIAS)
Mohrenstr. 39
D–10117 Berlin
Germany
E-Mail: klein @ wias-berlin.de

2 Dipartimento di Matematica
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Abstract

We prove an existence result for an initial-boundary value problem which models
a perturbation of a phase transition phenomenon with supercooling effects. When
the perturbation parameter goes to 0, an asymptotic analysis is performed. It
leads to an existence result for a slight modification of the original problem in the
framework of Young measures.

1 Introduction

We address the following system of phase field type

∂tϑ + L∂tχ− κ∆ϑ = f in Ω× (0, T ),(1.1)

−η(ϑ,∇χ)(∂tχ)− −∆χ + β(χ) + σ′(χ) 3 L

ϑc

(ϑ− ϑc) in Ω× (0, T ),(1.2)

where Ω is a bounded, connected domain of RN , N = 1, 2, 3, with smooth boundary
Γ := ∂Ω, occupied by a physical system which undergoes a solid-liquid phase transition in
the time interval (0, T ). We denote by Q the space-time cylinder Ω×(0, T ). The evolution
of the phase change phenomenon is described in terms of the absolute temperature ϑ
of the system (ϑc denoting the melting temperature), and of the order parameter χ,
representing the volume fraction of the liquid phase. Hence, (1.1) is an energy balance
equation, obtained by adopting the Fourier law q := −κ∇ϑ, with κ > 0, for the heat flux;
L > 0 is the density of the latent heat of the phase transition, and f possibly represents a
heat source. On the other hand, the parabolic equation (1.2) yields the dynamics of the
phase parameter: here, β : R → 2R is a maximal monotone operator, the subdifferential
of a convex function β̂, while σ′ is a Lipschitz continuous function. For example, we
might choose β := ∂I[a,b], i.e. the subdifferential of the indicator function of the interval
[a, b], thus inducing a constraint on the values of χ. Combining this with an appropriate

quadratic polynomial as function σ, β̂ + σ is equal to the double obstacle potential

(1.3) O(s) :=

{
−(s− a)(s− b), if s ∈ [a, b],

+∞, otherwise.

On the other hand, β is also often chosen to be an increasing polynomial function, so that
the sum β +σ′ yields the derivative of a non convex energy potential W : e.g., the double
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well potential

(1.4) W(r) := (r2 − 1)2/4 ∀r ∈ R.

Finally, η : R × R3 → [0, +∞) is a relaxation parameter function, which was first intro-
duced in the modelling of solid-liquid phase transitions with supercooling effects in the
paper [7].

In fact, in the previous paper [7], the following phase field model was addressed:

∂tϑ + L∂tχ− κ∆ϑ = f in Ω× (0, T ),(1.5)

η(ϑ,∇χ)∂tχ−∆χ + ∂I[0,1](χ) 3 L

ϑc

(ϑ− ϑc) in Ω× (0, T ),(1.6)

which was shown to be related to a generalized Stefan model with supercooling effects.
A thermomechanical derivation, according to the approach proposed by M. Frémond
(see [11]), was also developed for (1.5, 1.6). In addition, in [7], (1.5, 1.6) was also derived
as an approximation of the Stefan model. Let us point out that such a derivation gives
insight on the role of the relaxation parameter function in (1.6): actually, η provides a
continuous approximation of the map (ϑ,∇χ) 7→ c(ϑ)/|∇χ|, where c : R → [0, +∞) is
a function describing the dependence of the normal velocity of the freezing line on the
temperature. Hence, following the discussion in [7], we may think of

η(ϑ,∇χ) =
c(ϑ)

|∇χ|+ δ
, or η(ϑ,∇χ) =

c(ϑ)√
|∇χ|2 + δ

,

for some δ > 0. In [7], two existence results under two different sets of assumptions on η
were proved for the system (1.5, 1.6), supplemented with third type boundary conditions
on ϑ, homogeneous Neumann boundary conditions on χ, and suitable initial conditions
on ϑ and χ.

Later on, in the paper [12], it was argued that the order parameter equation (1.6) might
be replaced by the following relaxed equation:

(1.7) ε∂tχ− η(ϑ,∇χ)(∂tχ)− −∆χ + ∂I[0,1](χ) 3 L

ϑc

(ϑ− ϑc) in Ω× (0, T ),

where ε > 0 is a fixed constant. In [12], it is indeed shown that the system (1.1, 1.7)
provides an approximation of a generalized Stefan problem modelling a solid-liquid transi-
tion in which the water can stay liquid for some time before freezing also at temperatures
below the melting temperature ϑc, but the ice melts at ϑc, in agreement with the physical
experience.

Actually, in the present paper we will consider the PDE system coupling (1.1) and an
alternative equation for the phase parameter, namely

(1.8) ε∂tχ− η(ϑ,∇χ)(∂tχ)− −∆χ + β(χ) + σ′(χ) 3 L

ϑc

(ϑ− ϑc) in Ω× (0, T ),
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(which of course generalizes (1.7)). Then, note that (1.2) can be formally obtained from
(1.8) by setting ε = 0. More precisely, we will firstly prove an existence result for the
system (1.1, 1.8), supplemented with the initial conditions

(1.9) ϑ(·, 0) = ϑ0 χ(·, 0) = χ0 in Ω

on ϑ and χ, with third type boundary conditions on ϑ and with homogeneous Neumann
boundary conditions on χ,

(1.10) κ∂nϑ + ωϑ = g, ∂nχ = 0 in Γ× (0, T ),

where ω is a positive constant and g : Γ × (0, T ) → R a given function, related to the
external temperature. Secondly, we will perform an asymptotic analysis of (1.1, 1.8, 1.9,
1.10) for vanishing ε, and analyse the relations between the limiting system and system
(1.1, 1.2) in view of Young measure theory.

Let us point out that the equation (1.8) for the phase parameter displays a doubly non-
linear structure. More specifically, the analysis of (1.8) is connected with the study of
this abstract doubly nonlinear equation

(1.11) u′(t) + B(t)(u′(t)) + ∂φ(u(t)) 3 F(u(t)) in H, for a.e. t ∈ (0, T ),

where H is a Hilbert space, {B(t)}t∈(0,T ) is a family of maximal monotone operators on
H, ∂φ is the subdifferential (in the sense of convex analysis) of a proper, convex, and
l. s. c. functional φ : H → (−∞, +∞], and, finally, F : H → H is a given operator. In
fact, setting H := L2(Ω), it is straightforward to check that (1.8) may be rephrased in
the form (1.11) with appropriate choices of {B(t)}t∈(0,T ), φ, and F .

Therefore, the analysis of the system (1.1, 1.8) has led us to establish an existence theorem
for the Cauchy problem associated with (1.11), in the aforementioned setup, and under
the assumption that F : H → H is a continuous operator with linear growth (cf. (3.6)
later on). Indeed, we may think of F as a Lipschitz perturbation. As for {B(t)}t∈(0,T ), we
focus on the case of operators given by the product of a positive function in L∞(Q) and a
maximal monotone bounded operator in H (see (3.9) below). Doubly nonlinear equations
of this kind are particularly relevant in the applications as shown in [9]; nonetheless, let
us point out that, as far as we know, (1.11) has not been investigated yet. Indeed, results
for time-independent B and F ≡ 0 (but a more general operator ∂ψ acting on u′) have
been obtained in the seminal papers [9, 6] by means of the theory of maximal monotone
operators, [4, 5]. More recently, a Lipschitz continuous perturbation of a very particular
type, (but with a time-independent B) has been tackled in [15]. Indeed, our existence
result for (1.11) will follow from approximation by a time discretization procedure.

The plan of the paper is as follows. In the next section we give the notation, the as-
sumptions and state the main results. Section 3 is devoted to the proof of our existence
theorem for (the Cauchy problem related to) (1.11). Subsequently, in section 4, we prove

3



the well-posedness of the problem (1.1, 1.8, 1.9, 1.10): we introduce the Yosida regular-
ization of β, we use a fixed point procedure which relies on the results of section 3, and
then we pass to the limit with respect to the regularization parameter. The asymptotic
analysis of (1.1, 1.8, 1.9, 1.10), as ε → 0, is performed in section 5 in the framework of
Young measures. Finally, some useful tools are recalled in the Appendix for the sake of
completeness.

2 General setup and main results

Our functional setting is given by the spaces

H := L2(Ω), V := H1(Ω), and W :=
{
v ∈ H2(Ω) : ∂nv = 0

}
;

we identify H with its dual space H ′, so that W ⊂ V ⊂ H ⊂ V ′ ⊂ W ′, with dense and
compact embeddings. We denote by ‖ · ‖V , ‖ · ‖H and ‖ · ‖V ′ the norms on V , H, and
V ′, respectively, and by (·, ·)H the scalar product in H, while 〈·, ·〉 is the duality pairing
between V ′ and V .
In general, given a Banach space Y , C0

w([0, T ]; Y ) will denote the space of the weakly
continuous Y -valued functions on [0, T ]. Finally, we denote by C0(Q) the space of the
continuous functions on Q with compact support.

Assumptions on the data. We assume that the relaxation parameter function η fulfills
the following:

η : R× R3 → [0, +∞) is continuous;(2.1)

∃Kη > 0 η(u, v) ≤ Kη ∀(u, v) ∈ R× R3;(2.2)

∃kη > 0 η(u, v) ≥ kη

1 + |v| ∀(u, v) ∈ R× R3.(2.3)

Moreover,

β : R→ 2R is a maximal monotone graph, 0 ∈ β(0), and β = ∂β̂, with(2.4)

β̂ : R→ [0,∞] convex, l. s. c. ;(2.5)

σ ∈ C1(R), and σ′ ∈ CLip(R) with Lipschitz constant Λσ.(2.6)

The graph β : R → 2R and the function β̂ : R → [0,∞] induce a maximal monotone

operator βH : H → 2H and a functional β̂H : H → [0,∞], with βH = ∂β̂H . In the sequel,
we will often employ the notation

D(β̂H) :=
{

v ∈ H : β̂H(v) ∈ L1(Ω)
}

.

4



Finally, when needed we will also strengthen our coercivity assumptions on the sum β̂ +σ
by

(2.7) ∃Cβ,1, Cβ,2 ≥ 0 such that β̂(s) + σ(s) ≥ Cβ,1|s|2 − Cβ,2 ∀ s ∈ D(β̂).

Remark 2.1. Note that if β̂ and σ are polynomial functions, and the degree of β̂ is bigger
than the degree of σ, then (2.7) clearly holds. So, the choice β̂ + σ = W , with W the
standard double-well potential (1.4)) is admissible.

Another admissible choice (associated with the original problem (1.5)-(1.6)), is given by

β̂ being any proper, convex, l. s. c. functional with bounded domain (like the indicator
function of [0, 1]), and σ being any function satisfying (2.6), such that the double-obstacle
potential (1.3) would be admissible.

Also the choice β̂ = L, with L(s) := ln( s
1−s

) if s ∈ (0, 1) and L(s) := +∞ otherwise,
would be admissible.

As for the data of the problem, we suppose that

ϑ0 ∈ H, χ0 ∈ V ∩D(β̂H);(2.8)

f ∈ L2(0, T ; V ′), g ∈ L2(0, T ; H−1/2(Γ)).(2.9)

2.1 Variational formulation of the problem and existence result

Let us introduce the operator A : V → V ′ by

〈Au, v〉 :=

∫

Ω

∇u∇v dx ∀u, v ∈ V,

and let us also consider J : V → V ′, defined by

(2.10) 〈Ju, v〉 :=

∫

Ω

∇u · ∇v + ω〈u, v〉Γ ∀u, v ∈ V.

Of course, J is linear and bounded on V ; moreover, a standard version of Poincaré’s
inequality ensures that the operator J is also coercive on V , with bounded inverse J−1 :
V ′ → V . Thus, we will endow the spaces V and V ′ with the norms

(2.11) ‖v‖2
V := 〈Jv, v〉 ∀v ∈ V, ‖w‖2

V ′ := 〈w, J−1(w)〉 ∀w ∈ V ′,

which are equivalent to the usual norms on V and V ′.

We also consider the function F ∈ L2(0, T ; V ′) given by

(2.12) 〈F (t), v〉 := 〈f(t), v〉+ 〈g(t), v〉Γ, ∀v ∈ V for a.e. t ∈ (0, T ).
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In the present framework, we can give the variational formulation for the initial boundary
value problem (1.1, 1.8, 1.9, 1.10) -note that for convenience we normalize the constants L,
κ, and ϑc to 1, while highlighting the coefficient ε of ∂tχ in (1.8), in view of a subsequent
asymptotic analysis.

Problem 2.2. Find ϑ ∈ H1(0, T ; V ′) ∩ C0([0, T ]; H) ∩ L2(0, T ; V ), χ ∈ H1(0, T ; H) ∩
C0([0, T ]; V ) ∩ L2(0, T ; W ), such that χ ∈ D(β̂) a.e. in Q, and

∂tϑ + ∂tχ + Jϑ = F in V’, a.e. in (0, T ),(2.13)

ε∂tχ− η(ϑ,∇χ)(∂tχ)− + Aχ + ξ + σ′(χ) = ϑ in H, a.e. in (0, T ),

for some ξ ∈ L2(0, T ; H) with ξ ∈ β(χ) a.e. in Q,
(2.14)

ϑ(x, 0) = ϑ0(x), χ(x, 0) = χ0(x) for a.e. x ∈ Ω.(2.15)

We can now state our main existence result.

Theorem 1. Assume (2.1)-(2.2), (2.4)-(2.6), and (2.8)-(2.9). Then, Problem 2.2 admits
a solution (ϑ, χ, ξ).

Remark 2.3. Let us stress that the coercivity assumptions (2.3) on η and (2.7) are not
needed in the proof of Theorem 1, but instead play a crucial role in the proof of Theorem 2.
As it will be clear from the proof of the latter results, (2.3) and (2.7) basically compensate
for the poorness of estimates on ∂tχ.

Remark 2.4. Because of the special doubly nonlinear character of (2.14) (in particular,
due to the problems arising from the the factor η(ϑ,∇χ) and the nonlinearity β(χ)), we
could not derive any uniqueness result for the Problem 2.2.

2.2 Singular limit of Problem 2.2

Let (ϑ0, χ0, f, g) be a quadruple of data complying with (2.8) and (2.9), and let {ϑε
0}ε,

{χε
0}ε, {f ε}ε, and {gε}ε be suitable approximating sequences as ε ↓ 0, fulfilling

χε
0 ⇀ χ0 in V , sup

ε

∣∣∣β̂H(χε
0)

∣∣∣ < ∞, ϑε
0 ⇀ ϑ0 in H,(2.16)

f ε ⇀ f in L2(0, T ; V ′), gε ⇀ g in L2(0, T ; H−1/2(Γ)),(2.17)

so that the sequence {F ε} ⊂ L2(0, T ; V ′) defined by {f ε} and {gε} by means of (2.12)
also fulfills

(2.18) F ε → F in L2(0, T ; V ′) as ε ↓ 0.

Remark 2.5. The boundedness assumption for β̂H(χε
0) follows from the convergence for

χε
0 if a condition of the form

(2.19) ∃Cβ,3 ≥ 0, q > 0, such that β̂H(v) ≤ Cβ,3 (‖v‖q
V + 1) ∀v ∈ D(β̂H) ∩ V ;
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holds. This condition is for example satisfied if β̂ is polynomial of at most degree 6 or if
β̂ is an indicator function.

Theorem 2. Assume (2.1)-(2.7). Let {ϑε
0}ε, {χε

0}ε, {f ε}ε, and {gε}ε fulfil (2.16)-(2.17)
and, accordingly, let {(ϑε, χε, ξε)} be a sequence of solutions to Problem 2.2 supplemented
with the sequence of data {(ϑε

0, χ
ε
0, f

ε, gε)}.
Then, there exist subsequences {ϑεk

}, {χεk
}, {ξεk

}, and there exist ϑ ∈ H1(0, T ; V ′) ∩
C0([0, T ]; H)∩L2(0, T ; V ), χ ∈ H1(0, T ; V ′)∩C0([0, T ]; H)∩L∞(0, T ; V )∩L2(0, T ; W ) ⊂
C0

w([0, T ]; V ), ξ ∈ L2(0, T ; H), and a Young measure ν = {ν(x,t)} ∈ Y(Q;R), with

(2.20) supp(ν(x,t)) ⊂ ∩∞p=1{∂tχεk
(x, t) : k ≥ p} for a.e. (x, t) ∈ Q,

such that, setting

(2.21) `(x, t) :=

∫

R
(λ)−dν(x,t)(λ) for a.e. (x, t) ∈ Q,

we have ` ∈ L2(0, T ; L4/3(Ω)) and the following convergences hold as k ↑ ∞ :

χεk
⇀∗χ in L∞(0, T ; V ) ∩ L2(0, T ; W ),(2.22)

χεk
→ χ in Lp(0, T ; V ) ∩ C0([0, T ]; H) for all 1 ≤ p < ∞,(2.23)

ε∂tχε → 0 in L2(0, T ; L2(Ω)) as ε ↓ 0,(2.24)

(∂tχεk
)− ⇀ ` in L2(0, T ; L4/3(Ω)),(2.25)

ϑεk
⇀∗ϑε in L∞(0, T ; H) ∩ L2(0, T ; V ),(2.26)

ϑεk
→ ϑ in Lp(0, T ; H) for all 1 ≤ p < ∞,(2.27)

ϑεk
+ χεk

⇀ ϑ + χ in H1(0, T ; V ′),(2.28)

ξεk
⇀ ξ in L2(0, T ; H).(2.29)

Moreover, the quadruple (ϑ, χ, ξ, `) fulfills (2.13), the initial conditions (2.15), and

(2.30)
−η(ϑ,∇χ)` + Aχ + ξ + σ′(χ) = ϑ in H, a.e. in (0, T ),

ξ ∈ β(χ) a.e. in Q.

Finally, for all 0 ≤ t1 < t2 ≤ T there holds

(2.31) χ(x, t1)−
∫ t2

t1

`(x, t)dt ≤ χ(x, t2) for a.e. x ∈ Ω.

More generally, let µ ∈ M(Q) the limit Radon measure of ∂tχεk and ρ the Radon measure
on Q given by

(2.32) 〈ρ, f〉 :=

∫

Q

f(x, t)

(∫

R
ξdν(x,t)(ξ)

)
dxdt ∀f ∈ C0(Q).

Then,

(2.33) 〈µ, f〉 ≥ 〈ρ, f〉 ∀f ∈ C0(Q) with f ≥ 0.
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In the sequel of the paper, we adopt the convention of denoting by the two symbols C,
C ′ (whose meaning can vary within the same line) all the positive constants occurring in
the estimates, in some cases specifying their dependence on other known constants.

Remark 2.6. The inequality (2.31) yields that −` is a lower bound for the decrease of χ.
It is an open question, whether one can formulate conditions ensuring that (2.31) becomes
an equality on some subset of Ω and for some values of t and s. Indeed, so far we have
not been able to conclude that ` = (∂tχ)−, and hence to solve our original problem (1.1,
1.2, 1.9, 1.10).

3 An existence result for an abstract doubly nonlin-

ear evolution equation

Let us now enlist our assumptions on the function α, on the the operators B and F , as
well as on the functional φ. Namely, we suppose that (cf. with the growth and coercivity
assumptions of [9, 6]):

∃Kα > 0 s.t. 0 ≤ α(x, t) ≤ Kα for a.e. (x, t) ∈ Q;(3.1)

B : R→ 2R is maximal monotone, 0 ∈ B(0), and(3.2)

∃Ψ > 0 : |ξ| ≤ Ψ(|v|+ 1) ∀ξ ∈ B(v) ∀v ∈ R;(3.3)

φ : H → (−∞, +∞] is proper, convex, l. s. c. , and ∃S ≥ 0 s.t.

the functional u 7→ φ(u) + S‖u‖2
H has compact sublevels;

(3.4)

F : H → H is a continuous operator, and(3.5)

∃M > 0 ‖F(u)‖H ≤ M (‖u‖H + 1) ∀u ∈ H.(3.6)

For example, a Lipschitz continuous operator F is admissible within this framework. Note
also that, by convexity, there exist positive constants S ′ and Cφ such that

(3.7) φ(u) + S ′‖u‖2
H ≥ −Cφ ∀ u ∈ H.

We will denote by BH the realization of the operator B on H. Hence, BH : H → 2H is a
maximal monotone operator, fulfilling

(3.8) ∃Ψ > 0 : ‖ξ‖H ≤ Ψ(‖v‖H + |Ω|1/2) ∀ξ ∈ BH(v) ∀v ∈ H.

Moreover, for a.e. t ∈ (0, T ) we will call B(t) the operator B(t) : H → 2H defined by
(3.9)
v ∈ B(t)(u) if there exists ξ ∈ H, ξ ∈ BH(u) s.t. v(x) = α(x, t)ξ(x), for a.e. x ∈ Ω.
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Problem formulation. Given the notation (3.9), we can now give a precise formulation
to the Cauchy problem for (1.11).

Problem 3.1. Given u0 ∈ H and f ∈ L2(0, T ; H), find a function u ∈ H1(0, T ; H) such
that

(3.10) u(0) = u0,

and there exist w, v ∈ L2(0, T ; H) such that

w(t) ∈ B(t)(u′(t)) for a.e. t ∈ (0, T ),(3.11)

v(t) ∈ ∂φ(u(t)) for a.e. t ∈ (0, T ),(3.12)

u′(t) + w(t) + v(t) = F(u(t)) + f(t) for a.e. t ∈ (0, T ).(3.13)

Theorem 3. Assume (3.1)-(3.6): then, for any u0 ∈ D(φ) Problem 3.1 has a solution
u ∈ H1(0, T ; H).

As it will be clear from the proof of Thm. 3, we can suppose f ≡ 0 in (3.13) without loss
of generality, since this does not alter the substance of the argument.

3.1 Approximation

Time discretization. We fix a time step τ > 0, such that there exists some Nτ ∈ N
with τNτ = T , and consider the corresponding partition of the interval (0, T )

Pτ := {t0 = 0 < t1 < · · · < tn < · · · < tNτ−1 < tNτ = T}, tn := nτ for n = 1, . . . , Nτ .

We also set

(3.14) αn
τ (x) :=

1

τ

∫ tn

tn−1

α(x, t)dt for a.e. x ∈ Ω, n = 1, . . . , Nτ .

By (3.1), αn
τ ∈ L∞(Ω) for all n = 1, . . . , Nτ , so that the operator

(3.15)
Bn

τ : H → 2H given by:

v ∈ Bn
τ (u) if there exists ξ ∈ H, ξ ∈ BH(u), s.t. v(x) = αn

τ (x)ξ(x) for a.e. x ∈ Ω,

is well defined, maximal monotone, and bounded on H. Following the approach of [9, 6],
the starting point for the construction of approximate solutions to Problem 3.1 is the
following backward finite difference scheme:

9



Problem 3.2. Given U0
τ := u0, find U1

τ , . . . , UNτ
τ ∈ H, w1

τ , . . . , wNτ
τ ∈ H, and v1

τ , . . . , vNτ
τ ∈

H, such that for every n = 1, . . . , Nτ

un
τ − un−1

τ

τ
+ wn

τ + vn
τ = F(un−1

τ ) in H,(3.16)

wn
τ ∈ Bn

τ

(
un

τ − un−1
τ

τ

)
,(3.17)

vn
τ ∈ ∂φ(un

τ ).(3.18)

Indeed, Problem (3.2) has at least one solution {(un
τ , wn

τ , vn
τ )}Nτ

n=1. This can be shown by
slightly adapting the proof of [6, Lemma 3.1].

Approximate solutions. Let Uτ and Uτ be, respectively, the left-continuous and the
right-continuous piecewise-constant interpolant of the values {un

τ }Nτ
n=1 fulfilling Uτ (tn) =

Uτ (tn) = un
τ for all n = 1, . . . , Nτ , i.e.,

(3.19) Uτ (t) = un
τ ∀t ∈ (tn−1, tn], Uτ (t) = un−1

τ ∀t ∈ [tn−1, tn), n = 1, . . . , Nτ .

We also introduce the piecewise linear interpolant Uτ of {un
τ }Nτ

n=1, defined by

(3.20) Uτ (t) :=
t− tn−1

τ
un

τ +
tn − t

τ
un−1

τ ∀t ∈ [tn−1, tn), n = 1, . . . , Nτ .

Also, let Wτ and V τ be the piecewise constant interpolants of the values {wn
τ }Nτ

n=1 and
{wn

τ }Nτ
n=1. Furthermore, we consider the piecewise constant interpolant ατ of {αn

τ (x)}Nτ
n=1,

i.e.,

(3.21) for tn−1 < t ≤ tn ατ (x, t) := αn
τ (x) for a.e. x ∈ Ω .

Note that ατ ∈ L∞(Q) and for any 1 ≤ p < ∞,

(3.22) ατ → α in Lp(Q) as τ ↓ 0.

Accordingly, we introduce the family of operators Bτ (t) : H → 2H by setting

v ∈ Bτ (t)(u) if there exists ξ ∈ H, ξ ∈ BH(u) s.t.

v(x) = ατ (x, t)ξ(x), for a.e. x ∈ Ω.
(3.23)

Hence, (3.16)-(3.18) may be rewritten as

U ′
τ (t) + Wτ (t) + V τ (t) = F(Uτ (t)) for a.e. t ∈ (0, T ),(3.24)

Wτ (t) ∈ Bτ (t)(U
′
τ (t)) for a.e. t ∈ (0, T ),(3.25)

V τ (t) ∈ ∂φ(Uτ (t)) for a.e. t ∈ (0, T ).(3.26)
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Finally, let tτ , tτ : [0, T ] → [0, T ] be defined by

(3.27)
tτ (0) = tτ (0) := 0, tτ (t) := tk for t ∈ (tk−1, tk],

and tτ (t) := tk−1 for t ∈ [tk−1, tk).

Of course, for every t ∈ [0, T ] tτ (t) ↓ t and tτ (t) ↑ t as τ ↓ 0.

In the sequel, we will prove that, up to a subsequence, the sequence {(Uτ ,Wτ , V τ )}τ

converges to a triplet (u,w, v) solving Problem 3.1.

Preliminary results. The following result, whose proof is immediate, will play a crucial
role in passing to the limit in (3.24)-(3.26).

Lemma 3.3. Let {αm} ⊂ L∞(Q) be a sequence fulfilling

∃C ≥ 0 0 ≤ αm(x, t) ≤ C for a.e. (x, t) ∈ Q,(3.28)

∃α ∈ L∞(Q) s.t. αm(x, t) → α(x, t) for a.e. (x, t) ∈ Q.(3.29)

For every m ∈ N, let {Bm(t)}, be the family of maximal monotone operators associated
with αm through (3.9). Let us denote by Bm the realization of {Bm(t)} on L2(0, T ; H),
i.e. the maximal monotone operator Bm : L2(0, T ; H) → 2L2(0,T ;H) defined by

v ∈ Bm(u) ⇔ v(t) ∈ Bm(t)(u(t)) for a.e. t ∈ (0, T ), u, v ∈ L2(0, T ; H).

Analogously, let B : L2(0, T ; H) → 2L2(0,T ;H) be the operator associated with {B(t)} (cf.
(3.9)).

Then,

(3.30) Bm G-converges to B in L2(0, T ; H) as m ↑ ∞.

We will also need the following Discrete Gronwall lemma,

Lemma 3.4. Let ψ, α0, α1, . . . , αn, x0, x1, . . . , xn be given non–negative numbers such that

x0 ≤ ψ, xi ≤ ψ +
i−1∑
j=0

αjxj, ∀1 ≤ i ≤ n.

Then, we have

xi ≤ ψ exp

(
i−1∑
j=0

αj

)
, ∀1 ≤ i ≤ n.
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3.2 Proof of Theorem 3

A priori estimates on the approximate solutions. First of all, we test (3.16) by

uk
τ −uk−1

τ . In view of (3.17), there exists ξk
τ ∈ BH

(
uk
τ −uk−1

τ

τ

)
such that wk

τ (x) = αk
τ (x)ξk

τ (x)

for a.e. x ∈ Ω, hence

(3.31) (wk
τ , uk

τ − uk−1
τ )H = τ

∫

Ω

αk
τ (x)ξk

τ (x)

(
uk

τ (x)− uk−1
τ (x)

τ

)
dx ≥ 0

due to the fact that αk
τ ≥ 0 a.e. in Ω and to the assumption (3.2) on the operator

B : R→ 2R. Moreover, owing to the convexity inequality

(vk
τ , uk

τ − uk−1
τ )H ≥ φ(uk

τ )− φ(uk−1
τ )

and to the trivial estimate

(F(uk−1
τ ), uk

τ − uk−1
τ )H ≤ τ

2
‖F(uk−1

τ )‖2
H +

τ

2

∥∥∥∥
uk

τ − uk−1
τ

τ

∥∥∥∥
2

H

,

testing (3.16) by uk
τ − uk−1

τ leads to

(3.32)
‖uk

τ − uk−1
τ ‖2

H

2τ
+φ(uk

τ ) ≤ φ(uk−1
τ )+

τ

2
‖F(uk−1

τ )‖2
H ≤ φ(uk−1

τ )+M2τ
(
1 + ‖uk−1

τ ‖2
H

)
.

Arguing in the same way as in the proof of [14, Prop. 4.6], we note that

1

2
‖un

τ ‖2
H −

1

2
‖u0‖2

H =
n∑

k=1

(
1

2
‖uk

τ ‖2
H −

1

2
‖uk−1

τ ‖2
H

)
≤

n∑

k=1

(‖uk
τ ‖2

H − ‖uk
τ ‖H‖uk−1

τ ‖H

)

≤
n∑

k=1

‖uk
τ ‖H‖uk

τ − uk−1
τ ‖H ≤ µ

n∑

k=1

‖uk
τ − uk−1

τ ‖2
H

2τ
+

1

2µ

n∑

k=1

τ‖uk
τ ‖2

H

≤
n∑

k=1

µ
(
φ(uk−1

τ )− φ(uk
τ ) + M2τ‖uk−1

τ ‖2
H

)
+ µM2T +

1

2µ

n∑

k=1

τ‖uk
τ ‖2

H

≤ ≤ µ
(
φ(u0)− φ(un

τ )
)

+ µM2(T + τ‖u0‖2
H) +

(
µM2τ +

τ

2µ

) n∑

k=1

τ‖uk
τ ‖2

H

≤ µS ′‖un
τ ‖2

H + µ
(
φ(u0) + Cφ + M2T + M2τ‖u0‖2

H

)

+

(
µM2τ +

τ

2µ

) n∑

k=1

τ‖uk
τ ‖2

H ,

where we have Young’s inequality for a suitable µ > 0 to be chosen in the fourth inequality,
(3.32) in the fifth inequality, and finally (3.7). Hence, we obtain

‖un
τ ‖2

H ≤ C + 2µS ′‖un
τ ‖2

H + 2

(
µM2τ +

τ

2µ

) n∑

k=1

τ‖uk
τ ‖2

H ,
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where the constant C only depends on u0, and the data of our problem. Then, let us
choose µ = 1/(4S ′). For τ sufficiently small, we can now apply Lemma 3.4, and we easily
conclude a bound for {Uτ} in L∞(0, T ). Hence,

(3.33) ‖Uτ‖L∞(0,T ) + ‖Uτ‖L∞(0,T ) + ‖Uτ‖L∞(0,T ) ≤ C,

for a constant C independent of τ .

Turning back to (3.32) and adding it up for k = 1, . . . , n, we obtain

(3.34)

∫ tn

0

‖U ′
τ (s)‖2

Hds + φ(Uτ (tn)) ≤ φ(u0) + M2T + M2

∫ tn

0

‖Uτ (s)‖2
Hds,

whence there exists a positive constant C, independent of t and τ , such that

(3.35) φ(Uτ (t)) ≤ C, and φ(Uτ (t)) ≤ C

by convexity.

Moreover, thanks to (3.7) and the estimate (3.33), we have that φ(Uτ ) is bounded in
L∞(0, T ), so that the energy estimate (3.34) also gives

(3.36) {Uτ} is bounded in H1(0, T ; H).

Recall that Wτ = ατξτ , for some ξτ (t) ∈ BH(U ′
τ (t)) for a.e. t ∈ (0, T ). Hence, thanks to

(3.8) and (3.36), we have that the sequence {ξτ} is bounded in L2(0, T ; H). Then, by
(3.1), we deduce that

(3.37) {Wτ} is bounded in L2(0, T ; H).

Furthermore, by a comparison in (3.24) and (3.6), we also have that

(3.38) {V τ} is bounded in L2(0, T ; H).

Finally, observe that

(3.39) ‖Uτ − Uτ‖L∞(0,T ;H) = Cτ 1/2,

(an analogous estimate holds for Uτ ), as a consequence of

‖un
τ − Uτ (t)‖2

H ≤ τ

∫ tn

tn−1

‖U ′
τ (s)‖2

H ds ≤ Cτ.
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Compactness of the approximate solutions. For any vanishing sequence {τk} of
time steps, τk ↓ 0 as k ↑ ∞, we can find a further subsequence (still labelled τk), a limit
function u ∈ H1(0, T ; H), and w, v ∈ L2(0, T ; H), such that as k ↑ +∞

Uτk
, Uτk

, Uτk
,→ u in L∞(0, T ; H),(3.40)

U ′
τk

⇀ u′ weakly in L2(0, T ; H),(3.41)

Wτk
⇀ w and V τk

⇀ v weakly in L2(0, T ; H).(3.42)

Indeed, the estimate (3.36) and the inequality

‖Uτ (t)− Uτ (s)‖H ≤ (t− s)
1
2‖U ′

τ‖L2(0,T ;H),

ensure that {Uτ} is equicontinuous on H for τ sufficiently small. On the other hand,
thanks to (3.33) and (3.35), we may conclude that {Uτ (t)}τ is contained in some sublevel
of the function u 7→ φ(u) + S‖u‖2

H . Hence, by (3.4), the sequence {Uτ (t)}τ is relatively
compact in H for every t ∈ [0, T ]. Thanks to the equicontinuity property, the Ascoli
compactness Theorem yields that {Uτ}τ is relatively compact in C0([0, T ]; H).

Hence, (3.40) follows, as well, thanks to (3.39).

Moreover, (3.41) and (3.42) follow from (3.36) and (3.37)-(3.38) by standard weak com-
pactness results.

Passage to the limit and conclusion of the proof. As a consequence of (3.40) and
of (3.5)-(3.6), we also have for all 1 ≤ p < ∞,

(3.43) F(Uτk
) → F(u) in Lp(0, T ; H) as k ↑ ∞.

Then, also taking into account (3.41)-(3.42), we manage to pass to the limit in (3.24)
and conclude that the triplet (u,w, ξ) fulfills (3.13). Moreover, (3.12) follows from (3.40),
(3.41), and the strong-weak closedness of (the maximal monotone operator realizing) ∂φ
in L2(0, T ; H).

It remains to check (3.11): to this aim, for all τ > 0 we consider the operator Bτ realizing
the family of the operators {Bτ (t)} in L2(0, T ; H) (see Lemma 3.3). Thanks to (3.1),
(3.22), and Lemma 3.3, we have that

(3.44) Bτk
G-converges to B in L2(0, T ; H) as k ↑ ∞,

B being the realization of the family of operators {B(t)} associated with the function α.
Hence, in view of (3.25), (3.41), (3.42), and the closure property (A.2) of of G-convergence,
(3.11) follows if we prove that

(3.45) lim sup
k↑∞

∫ T

0

(
Wτk

(t), U ′
τk

(t)
)

H
dt ≤

∫ T

0

(w(t), u′(t))Hdt.
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Thus, we test (3.24) by U ′
τk

and integrate on the interval (0, T ). This leads to

∫ T

0

(
Wτk

(t), U ′
τk

(t)
)

H
dt = −

∫ T

0

‖U ′
τk

(t)‖2
Hdt−

∫ T

0

(
V τk

(t), U ′
τk

(t)
)

H
dt

+

∫ T

0

(F(Uτk
(t)), U ′

τk
(t)

)
H

dt.

Therefore, taking the lim supk↑∞ of both sides we obtain

lim sup
k↑∞

∫ T

0

(
Wτk

(t), U ′
τk

(t)
)

H
dt ≤ − lim inf

k↑∞

∫ T

0

‖U ′
τk

(t)‖2
Hdt

+ lim
k↑∞

∫ T

0

(F(Uτk
(t)), U ′

τk
(t)

)
H

dt− lim inf
k↑∞

Nτ∑
j=1

(vj
τ , u

j
τ − uj−1

τ )H ,

The first and the second term on right-hand side of the above inequality can be easily
dealt with in view of the convergences (3.41) and (3.43). As for the third summand, it
reduces to

φ(u0)− lim inf
k↑∞

φ(Uτk
(T ) = φ(u0)− lim inf

k↑∞
φ(Uτk

(T ) ≤ φ(u0)− φ(u(T )),

where we have used that, by construction, Uτk
and Uτk

coincide on the nodes of the
partition Pτk

, the uniform convergence (3.40), and the lower semicontinuity of φ.

Hence, (3.45) follows from

lim sup
k↑∞

∫ T

0

(
Wτk

(t), U ′
τk

(t)
)

H
dt

≤ φ(u(0))− φ(u(T ))−
∫ T

0

‖u′(t)‖2
H dt +

∫ T

0

(F(u(t)), u′(t))H dt

=

∫ T

0

(−v(t)− u′(t) + F(u(t)), u′(t))H dt =

∫ T

0

(w(t), u′(t))Hdt,

where we have employed the chain rule [5, Lemma 3.3, p. 73] for ∂φ.

4 Existence for Problem 2.2

Throughout this section, we will set ε = 1 in (2.14).
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4.1 An approximate problem

Let {βν}ν>0 be the sequence of the Yosida regularizations of β (see e.g. [5]): standard
results in the theory of maximal monotone operators ensure that βν ∈ CLip(R), with
Lipschitz constant 1/ν. We also recall that, for every ν > 0, βν is the derivative of the

Yosida approximation β̂ν of β̂; in view of (2.5), for every ν > 0 β̂ν(r) ≥ 0 for all r ∈ R.

We approximate Problem 2.2 by the following

Problem 4.1 (Problem Pν). Find ϑν ∈ H1(0, T ; V ′) ∩ C0([0, T ]; H) ∩ L2(0, T ; V ), and
χν ∈ H1(0, T ; H) ∩ C0([0, T ]; V ) ∩ L2(0, T ; W ), fulfilling (2.15), (2.13), and

(4.1) ∂tχ− η(ϑ,∇χ)(∂tχ)− + Aχ + βν(χ) + σ′(χ) = ϑ in H, a.e. in (0, T ).

In the sequel, we first establish an existence result for Problem Pν , and then we show
that any sequence {(ϑν , χν)} of solutions to Problem Pν converges, up to a subsequence,
to a pair (ϑ, χ) solving Problem 2.2.

Proposition 4.2. Assume (2.1)-(2.2), (2.4)- (2.6), and (2.8)-(2.9). Then, for any ν > 0
Problem Pν admits a solution (ϑν , χν).

We are going to prove Proposition 4.2 by applying the Schauder fixed point theorem to a
suitably defined solution operator.

Solution operator for the approximate problem. Preliminarily, we need the fol-
lowing result.

Lemma 4.3. Under the assumptions (2.1)-(2.2), and (2.4)-(2.6), for any χ0 ∈ V , h ∈
L2(0, T ; H) and j ∈ L2(0, T ; V ) there exists a unique χ ∈ H1(0, T ; H) ∩ C0([0, T ; V ] ∩
L2(0, T ; W ) solving the Cauchy problem

(4.2)
∂tχ− η(h,∇j)(∂tχ)− + Aχ + βν(χ) + σ′(χ) = h in H, a.e. in (0, T )

χ(0) = χ0.

Moreover, there exists a constant C ≥ 0, only depending on T , |Ω|, ν, and Λσ, such that
for any t ∈ (0, T ]

(4.3) ‖χ‖H1(0,t;H)∩C0([0,t];V )∩L2(0,t;W ) ≤ C
(‖χ0‖V + ‖h‖L2(0,t;H)

)
.

Proof. Note that (4.2) may be recast in the abstract form (3.13) setting

BH : H → H induced by B : R→ R with B(s) := −(s)− ∀ s ∈ R,

α : Ω× (0, T ) → R given by α(x, t) := η(h(x, t),∇j(x, t)) for a.e. (x, t) ∈ Q,

φ : H → [0, +∞) φ(v) :=

{∫
Ω

1
2
|∇v|2 if v ∈ H1(Ω),

+∞ otherwise,

F : H → H defined by F(v) := −βν(v)− σ′(v) ∀v ∈ H,

f(t) := h(t) for a.e. t ∈ (0, T ).
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Indeed, it is easy to check that, in the framework of (2.1)-(2.2) and (2.4)-(2.6), the above
choices fulfil the assumptions of Theorem 3. Let us only note that, since βν and σ′ are
Lipschitz continuous on R, for all v ∈ H, βν(v) + σ′(v) ∈ H, and the growth condition
(3.6) easily follows.

Hence, we may conclude that there exists a solution χ ∈ H1(0, T ; H) to the Cauchy
problem (4.2). Further, testing the equation by ∂tχ and integrating on the interval (0, t),
we obtain

(4.4)

∫ t

0

‖∂tχ(s)‖2
Hds +

∫ t

0

∫

Ω

η(h(x, s),∇j(x, s))|(∂tχ(x, s))−|2dxds +
1

2
‖∇χ(t)‖2

H

+

∫

Ω

β̂ν(χ(x, t))dx ≤ 1

2
‖∇χ0‖2

Hdx +

∫

Ω

β̂ν(χ
0(x)) + C‖χ0‖2

H +

∫ t

0

‖h(s)‖2
Hds

+Λ2
σ

∫ t

0

‖χ(s)− χ0‖2
Hds +

3

4

∫ t

0

‖∂tχ(s)‖2
Hds,

where we have used (2.6) to conclude that

∫ t

0

(σ′(χ(s)), ∂tχ(s))H ds ≤
∫ t

0

‖σ′(χ(s))− σ′(χ0)‖2
Hds + T‖σ′(χ0)‖2

H +
1

2

∫ t

0

‖∂tχ(s)‖2
Hds

≤ T‖σ′(χ0)‖2
H + Λ2

σ

∫ t

0

‖χ(s)− χ0‖2
Hds +

1

2

∫ t

0

‖∂tχ(s)‖2
Hds,

as well as the elementary inequality
∫ t

0

(h(s), ∂tχ(s))H ≤
∫ t

0

‖h(s)‖2
Hds +

1

4

∫ t

0

‖∂tχ(s)‖2
Hds.

Note that the second integral term on the left-hand side of the above inequality is non
negative, as well as the fourth term. Hence, there exists a positive constant C, depending
on T , |Ω|, and Λσ, such that

1

4

∫ t

0

‖∂tχ(s)‖2
Hds ≤ C

(
‖χ0‖2

V + ‖h‖2
L2(0,T ;H) +

∫ t

0

(∫ s

0

‖∂tχ(r)‖2
Hdr

)
ds

)
.

Thus, the Gronwall Lemma yields an a priori estimate for ‖χ‖H1(0,t;H) in terms of ‖χ0‖V

and ‖h‖L2(0,T ;H). On account of (4.4), we deduce the same estimate for ‖∇χ‖L∞(0,t;H),
hence for ‖χ‖L∞(0,t;V ). Note also that

‖
√

η(h,∇j)(∂tχ)−‖L2(0,t;H) + ‖σ′(χ)‖L∞(0,t;H) ≤ C
(‖h‖L2(0,t;H) + ‖χ0‖V

)
,

while
‖βν(χ)‖L∞(0,t;H) ≤ Cν

(‖h‖L2(0,t;H) + ‖χ0‖2
V

)

(the constant Cν in fact also depends on ν, and blows up for ν ↓ 0). By comparison in
(4.2), we obtain ‖Aχ‖L2(0,t;H) ≤ C(1 + ‖χ0‖V ), whence the estimate for ‖χ‖L2(0,t;W ) by
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standard elliptic regularity results. It is also well-known that H1(0, T ; H) ∩ L2(0, T ; W )
is continuously embedded in C0([0, T ]; V ), whence χ ∈ C0([0, T ]; V ).

In order to prove uniqueness (the same argument would also yield a result of continuous
dependence on the data χ0 and h), let χ1, χ2 ∈ H1(0, T ; H) ∩ C0([0, T ; V ] ∩ L2(0, T ; W )
be two solutions to (4.2), and let us denote by χ̃ their difference χ1−χ2. Hence, χ̃ satifies

∂tχ̃(t)− η(h(t),∇j(t))(∂tχ1(t))
− + η(h(t),∇j(t))(∂tχ2(t))

− + Aχ̃(t) + βν(χ1(t))− βν(χ2(t))

+ σ′(χ1(t))− σ′(χ2(t)) = 0 in H for a.e. t ∈ (0, T ),

which we test by ∂tχ̃. Upon integrating on (0, t), 0 < t ≤ T, we obtain

∫ t

0

‖∂tχ̃(s)‖2
H ds +

∫ t

0

(−η(h(s),∇j(s))(∂tχ1(s))
− + η(h(s),∇j(s))(∂tχ2(s))

−, ∂tχ̃(s)
)

H
ds

+
1

2
‖∇χ̃(t)‖2

H =

∫ t

0

(βν(χ1(s)) + σ′(χ1(s))− βν(χ2(s))− σ′(χ2(s)), ∂tχ̃(s))H ds

≤ 1

2

∫ t

0

‖∂tχ̃(s)‖2
H ds +

(
1

ν2
+ Λ2

σ

) ∫ t

0

‖χ̃(s)‖2
H ds.

By monotonicity, we have that

∫ t

0

(−η(h(s),∇j(s))(∂tχ1(s))
− + η(h(s),∇j(s))(∂tχ2(s))

−, ∂tχ̃(s)
)

H
ds ≥ 0,

hence we deduce that

1

2

∫ t

0

‖∂tχ̃(s)‖2
H ds ≤

(
1

ν2
+ Λ2

σ

)
T

∫ t

0

(∫ s

0

‖∂tχ̃(r)‖2
H dr

)
ds,

which yields χ̃(t) = 0 for all t ∈ [0, T ], again by the Gronwall lemma.

Let (ϑ, χ) ∈ L2(0, T ; H)×L2(0, T ; V ) be given: Lemma 4.3 applies, yielding the existence
of a unique χ̂ fulfilling

(4.5)





χ̂ ∈ H1(0, T ; H) ∩ C0([0, T ; V ] ∩ L2(0, T ; W ) with χ̂(0) = χ0 and

∂tχ̂− η(ϑ(t),∇χ(t)) (∂tχ̂)− + Aχ + βν(χ̂) + σ′(χ̂) = ϑ(t) in H,

for a.e. t ∈ (0, T ).

On the other hand, easily adapting a standard result in the theory of parabolic equations
(see [13, Thm. 4.1, p. 238]), or applying the theory of nonlinear semigroups generated
by maximal monotone operators (cf. [4, Thm. 2.1, p. 189] or [5, Thm. 3.6, p. 72]), we
conclude that there exists a unique

(4.6)

{
ϑ̂ ∈ H1(0, T ; V ′) ∩ C0([0, T ]; H) ∩ L2(0, T ; V ) with ϑ̂(0) = ϑ0 and

∂tϑ̂ + Jϑ̂ = F − ∂tχ̂ in V ′, a.e. in (0, T ).
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On account of (4.5) and (4.6), we define S : L2(0, T ; H) × L2(0, T ; V ) → L2(0, T ; H) ×
L2(0, T ; V ) to be the solution operator

(4.7) S(ϑ, χ) := (ϑ̂, χ̂).

Henceforth, we will use the simpler notation (ϑ, χ) for (ϑ̂, χ̂). Of course, any fixed point

(ϑ̂, χ̂) for S yields a solution to Problem Pν .

4.2 Proof of Proposition 4.2

Given R0 > 0 and a final time T0 > 0 (which will be specified later), we set

Y := {(w, u) ∈ L2(0, T0; H)× L2(0, T0; V ) : max{‖w‖L2(0,T0;H), ‖u‖L2(0,T0;V )} ≤ R0}.
Proposition 4.4. Assume (2.1)-(2.2), (2.4)-(2.6), and (2.8)-(2.9).
Then, for any R > 0 there exists T0 ∈ (0, T ] such that

S maps Y into itself;(4.8)

S : Y → Y is a continuous operator;(4.9)

S : Y → Y is a compact operator.(4.10)

Proof. Ad (4.8). Fix (ϑ, χ) ∈ Y , and let (ϑ, χ) := S(ϑ, χ). It follows from Lemma 4.3
(cf. (4.3)), that there exists a constant C, only depending on T , |Ω| and Λσ, such that

(4.11) ‖χ‖H1(0,T0;H)∩C0([0,T0];V ) ≤ C
(‖χ0‖V + ‖ϑ‖L2(0,T0;H)

) ≤ C (‖χ0‖V + R0) .

On the other hand, by construction the pair (ϑ, χ) in particular fulfills problems (4.5)-
(4.6) on the interval (0, T0). Let us test (4.6) by ϑ and integrate on (0, t), t ∈ (0, T0]. Also
taking into account (2.11), we obtain

(4.12)

1

2
‖ϑ(t)‖2

H +
1

2

∫ t

0

‖ϑ(s)‖2
V ds

≤ 1

2

∫ t

0

‖F (s)‖2
V ′ds +

1

2

∫ t

0

‖∂tχ(s)‖2
Hds +

1

2

∫ t

0

‖ϑ(s)‖2
Hds

≤ 1

2

∫ t

0

‖F (s)‖2
V ′ds + C

(
‖χ0‖2

V + ‖ϑ‖2
L2(0,T0;H)

)
+

1

2

∫ t

0

‖ϑ(s)‖2
Hds

≤ 1

2

∫ t

0

‖F (s)‖2
V ′ds + C

(‖χ0‖2
V + R2

0

)
+

1

2

∫ t

0

‖ϑ(s)‖2
Hds,

where in the last passage we have employed the previous estimate (4.11). A straightfor-
ward application of Gronwall’s lemma yields

(4.13) ‖ϑ(t)‖2
H ≤ ‖ϑ0‖2

H exp

{
T

(
1

2
‖F‖2

L2(0,T ;V ′) + ‖χ0‖2
V + CR2

0

)}
≤ C‖ϑ0‖2

H .
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Therefore, we deduce from (4.11)-(4.13) that there exists a constant C, only depending
on T , |Ω|, R0, ‖F‖L2(0,T ;V ′), ‖ϑ0‖H , and ‖χ0‖V , such that

max
{‖χ‖L2(0,T0;V ), ‖ϑ‖L2(0,T0;H)

} ≤ CT0.

Choosing 0 < T0 ≤ R0/C, we conclude that S(ϑ, χ) ∈ Y , whence (4.8).

Ad (4.10). In fact, for any (ϑ, χ) ∈ Y we have the following additional estimates for the
pair (ϑ, χ) = S(ϑ, χ):

(4.14)
‖χ‖L2(0,T0;W ) ≤ C

(‖χ0‖V + ‖ϑ‖L2(0,T0;H)

) ≤ C ′,

‖ϑ‖H1(0,T0;V ′)∩L2(0,T0;V ) ≤ C ′

where the constant C ′ only depends on T , |Ω|, R0, ν, ‖F‖L2(0,T ;V ′), ‖ϑ0‖H , and ‖χ0‖V ,

but not on (ϑ, χ). Indeed, the estimate for ‖χ‖L2(0,T0;W ) is a consequence of (4.3). The
bound for ‖ϑ‖L2(0,T0;V ) follows from (4.12), which also yields

‖ϑ‖2
L2(0,T0;V ) ≤ ‖F‖2

L2(0,T ;V ′) + C
(
‖χ0‖2

V + ‖ϑ‖2
L2(0,T0;H)

)
+ T0‖ϑ‖2

L∞(0,T0;H)

≤ C
(
‖F‖2

L2(0,T ;V ′) + ‖χ0‖2
V + ‖ϑ0‖2

H + R2
0 + T0

)
,

the second inequality being due to (4.13). Arguing by comparison in (4.6), we also deduce
the estimate for ‖ϑ‖H1(0,T0;V ).
Recalling the a priori estimates (4.11) and (4.13), we conclude that S is a compact oper-
ator.

Ad (4.10). Let {(ϑn, χn)}n ⊂ Y fulfil

(4.15) ϑn → ϑ∞ in L2(0, T0; H) and χn → χ∞ in L2(0, T0; V )

as n ↑ ∞. Up to a subsequence, we may assume that for a.e. (x, t) ∈ Ω × (0, T0),
ϑn(x, t) → ϑ∞(x, t) and ∇χn(x, t) → ∇χ∞(x, t). Hence, by (2.1), (2.2) and the Lebesgue
theorem, we conclude

(4.16) η(ϑn,∇χn) → η(ϑ∞,∇χ∞) in L2(0, T0; H).

The estimates (4.11), (4.13), (4.14) for the corresponding sequence S(ϑn, χn) := (ϑn, χn)
yield

‖χn‖H1(0,T0;H)∩C0([0,T0];V )∩L2(0,T0;W ) + ‖ϑn‖H1(0,T0;V ′)∩C0([0,T0];H)∩L2(0,T0;V ) ≤ C,

independently of n ∈ N.
Standard weak compactness results, as well as the well-known [16, Thm. 4, Cor. 5], guaran-
tee that there exists a subsequence {nk}k, and a limit pair (χ, ϑ), with χ ∈ H1(0, T0; H)∩
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C0([0, T0]; V ) ∩ L2(0, T0; W ), and ϑ ∈ H1(0, T0; V
′) ∩ C0([0, T0]; H) ∩ L2(0, T0; V ), such

that the following convergences hold for {χnk
} and {ϑnk

} as k ↑ ∞ :

χnk
⇀∗χ in H1(0, T0; H) ∩ L∞([0, T0]; V ) ∩ L2(0, T0; W );(4.17)

χnk
→ χ in C0([0, T0]; H) ∩ Lp(0, T0; V ) for any 1 ≤ p < ∞;(4.18)

ϑnk
⇀∗ϑ in H1(0, T0; V

′) ∩ L∞([0, T0]; H) ∩ L2(0, T0; V );(4.19)

ϑnk
→ ϑ in C0([0, T0]; V

′) ∩ Lp(0, T0; H) for any 1 ≤ p < ∞.(4.20)

By the Lipschitz continuity of βν and σ′, we readily deduce from (4.18) that βν(χnk
) →

βν(χ) and σ′(χnk
) → σ′(χ) in Lp(0, T0; H) for any 1 ≤ p < ∞. Moreover, there exists

ζ ∈ L2(0, T0; H) such that

(4.21) −η(ϑnk
,∇χnk

)(∂tχnk
)− ⇀ ζ in L2(0, T0; H).

By (4.15) and the convergences (4.17)-(4.21) so far retrieved, we are able to pass to the
limit in the equations (4.5) and (4.6) fulfilled by χnk

and ϑnk
. Thus, we find

∂tϑ + ∂tχ + Jϑ = F in V ′ a.e. in (0, T0);(4.22)

∂tχ + ζ + Aχ + βν(χ) + σ′(χ) = ϑ∞ in H a.e. in (0, T0).(4.23)

Actually, we have

(4.24) ζ(x, t) = −η(ϑ∞(x, t), χ∞(x, t))(∂tχ(x, t))− for a.e. (x, t) ∈ Ω× (0, T ).

Indeed, by (4.16) and Lemma 3.3, the maximal monotone operator Bn : L2(0, T0; H) →
L2(0, T0; H), defined by
(4.25)

Bn(v) := −
∫ T0

0

∫

Ω

η(ϑn(x, t),∇χn(x, t))(v(x, t))− dxdt ∀v ∈ L2(0, T0; H) ∀n ∈ N,

converges in the sense of graphs to the operator B∞, still defined by formula (4.25)
with η(ϑ∞,∇χ∞) instead of η(ϑn,∇χn). Thus, in view of (A.2) (see Section A), we can
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conclude (4.24) by noting that
(4.26)

lim sup
k↑∞

∫ T0

0

∫

Ω

(−η(ϑnk
(x, t),∇χnk

(x, t))(∂tχnk
)−(x, t) dxdt ≤

lim sup
k↑∞

(
−1

2
‖∇χnk

(T0)‖2
H +

1

2
‖∇χ0‖2

H

)

− lim inf
k↑∞

∫ T0

0

(‖∂tχnk
(t)‖2

H + (βν(χnk
(t)) + σ′(χnk

(t)), ∂tχnk
(t))H − (ϑ∞(t), ∂tχnk

(t))H

)
dt

≤ −1

2
‖∇χ(T0)‖2

H +
1

2
‖∇χ0‖2

H

−
∫ T0

0

(‖∂tχ(t)‖2
H + (βν(χ(t)) + σ′(χ(t)), ∂tχ(t))H − (ϑ∞(t), ∂tχ(t))H

)
dt

=

∫ T0

0

∫

Ω

ζ(x, t)∂tχ(x, t) dxdt.

Observe that the first inequality in the chain above follows by testing (4.5) (written for
χnk

) by ∂tχnk
, and the second one by combining the strong and weak convergences (4.17)-

(4.20); the final equality is due to (4.23).

Thanks to (4.22)-(4.23), and (4.24), we obtain that the limit pair (ϑ, χ) has the regularity
required in (4.5)-(4.6), and fulfills

∂tϑ + ∂tχ + Jϑ = F in V ′ a.e. in (0, T0);(4.27)

∂tχ− η(ϑ∞,∇χ∞) + Aχ + βν(χ) + σ′(χ) = ϑ∞ in H a.e. in (0, T0).(4.28)

Hence, (ϑ, χ) = S(ϑ∞, χ∞), and by the Uryhson Lemma we have that, by uniqueness of
the limit, the convergences (4.17)-(4.20) hold along the whole sequences {ϑn}, {χn}. In
particular,

S(ϑn, χn) → S(ϑ∞, χ∞) in L2(0, T0; H)× L2(0, T0; V ),

which entails (4.9).

Conclusion of the proof of Proposition 4.2. By the Schauder fixed point theorem,
the solution operator S : Y → Y has a fixed point (ϑ, χ), yielding by construction a local
solution to Problem Pν on the time interval [0, T0].

Let us now perform the following estimates: first, we test (4.27) by ϑ, (4.28) by ∂tχ, add
the resulting relations and integrate on (0, t), 0 ≤ t ≤ T0. Upon cancellation of two terms,
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we easily obtain

1

2
‖ϑ(t)‖2

H +

∫ t

0

‖ϑ(s)‖2
V ′ds +

∫ t

0

∫

Ω

η(ϑ(x, s),∇χ(x, s))|(∂tχ(x, s))−|2 dxds(4.29)

+

∫ t

0

‖∂tχ(s)‖2
H +

1

2
‖∇χ(t)‖2

H +

∫

Ω

β̂ν(χ(x, t))dx

≤ 1

2
‖ϑ0‖2

H +

∫ t

0

〈F (s), ϑ(s)〉 ds +
1

2
‖∇χ0‖2

H +

∫

Ω

β̂ν(χ0(x))dx

+

∫ t

0

(σ′(χ(s)), ∂tχ(s))Hds ≤ C(‖χ0‖2
V + ‖ϑ0‖2

H) +
1

2

∫ t

0

‖F (s)‖2
V ′ ds

+
1

2

∫ t

0

‖ϑ(s)‖2
V +

1

2

∫ t

0

‖∂tχ(s)‖2
Hds +

1

2
Λ2

σ

∫ t

0

‖χ(s)− χ0‖2
Hds,

where we have used (2.11), and, in the last passage, the Lipschitz continuity of σ′ (cf. the

proof of Lemma 4.3). Using that β̂ν ≥ 0 and applying Gronwall’s Lemma, we deduce that

(4.30)

∫ t

0

‖∂tχ(s)‖2
Hds ≤ C

(
‖χ0‖2

V + ‖ϑ0‖2
H + ‖F‖2

L2(0,T ;V ′)

)
exp(Λ2

σT
2)

for any 0 ≤ t ≤ T0. Hence, (4.29) and (4.30) yield that

(4.31) ‖χ‖H1(0,t;H)∩C0([0,t];V ) + ‖
√

η(ϑ,∇χ)(∂tχ)−‖L2(0,t;H) + ‖ϑ‖C0([0,t];H)∩L2(0,t;V ) ≤ C,

for a constant C again depending only on ‖χ0‖V , ‖ϑ0‖H , and ‖F‖L2(0,T ;V ′), but not on
t ∈ [0, T0]. A comparison argument in (4.27) and in (4.28) and standard elliptic regularity
results entail the additional estimates

(4.32) ‖χ‖L2(0,t;W ) + ‖ϑ‖H1(0,t;V ′) ≤ C.

It is straightforward to realize that the global estimates (4.30)-(4.32) guarantee that the
pair (ϑ, χ) can be extended to a solution of the system (4.5)-(4.6), on the whole interval
[0, T ].

4.3 Passage to the limit in the approximate problem and con-
clusion of the proof of Theorem 1

The proof of Theorem 1 follows from the following result, stating that any solution (ϑν , χν)
to Problem Pν converges to a solution (ϑ, χ) of Problem 2.2 as ν ↓ 0.

Proposition 4.5. Assume (2.1)-(2.2), (2.4)- (2.6), and (2.8)-(2.9), and let {(ϑν , χν)}ν

be the sequence of the solutions to Pν . Then, there exists a subsequence νj ↗ ∞ for
j ↑ ∞, and a triplet (ϑ, χ, ξ), with ϑ ∈ H1(0, T ; V ′) ∩ C0([0, T ]; H) ∩ L2(0, T ; V ), χ ∈
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H1(0, T ; H) ∩ C0([0, T ]; V ) ∩ L2(0, T ; W ) and χ ∈ D(β̂) a.e. in Q, and ξ ∈ L2(0, T ; H),
such that the convergences (4.17)-(4.20) hold for {ϑνj

}, ϑ and {χνj
}, χ as j ↑ ∞, as well

as

(4.33) βνj
(χνj

) ⇀ ξ in L2(0, T ; H) as j ↑ ∞.

Moreover, ξ ∈ β(χ) a.e. in Ω, and the triplet (ϑ, χ, ξ) is a solution to Problem 2.2.

Proof. Note that the a priori estimates (4.30) and (4.31) are indeed independent of the
parameter ν, whence, also by a comparison in (2.13),

(4.34)
‖χν‖H1(0,T ;H)∩C0([0,T ];V ) + ‖

√
η(ϑν ,∇χν)(∂tχ)−‖L2(0,T ;H)

+ ‖ϑν‖H1(0,T ;V ′)∩C0([0,T ];H)∩L2(0,T ;V ) ≤ C,

for a constant C only depending on the data χ0, ϑ0 and F of the Problem. Hence, testing
(2.14) by βν(χν), and noting that

∫ t

0

〈Aχν(s), βν(χν(s))〉 ds ≥ 0

for all t ∈ [0, T ] by monotonicity, we readily deduce that

‖βν(χν)‖L2(0,t;H) + ‖χν‖L2(0,t;W ) ≤ C ∀ν > 0 ∀t ∈ [0, T ],

the second bound again by comparison in (2.14) and by elliptic regularity results.

By [16, Thm. 4, Cor. 5] and the aforementioned weak compactness results, there exists a
subsequence {nj} and a quadruple (ϑ, χ, ξ, ζ) along which the convergences (4.17)-(4.20)
and (4.33) hold, as well as

ζ ∈ L2(0, T ; H), −η(ϑνj
,∇χνj

)(∂tχνj
)− ⇀ ζ in L2(0, T0; H) as j ↑ ∞.

Note that the maximal monotone operator β : R → 2R induces a maximal monotone
operator on L2(0, T ; H). Thanks to [4, Prop. 1.1, p. 42], to conclude ξ ∈ β(χ) a.e. in Ω,
it is sufficient to prove that

lim sup
j↑∞

∫ T

0

∫

Ω

βnj
(χnj

(x, t))χnj
(x, t) dxdt ≤

∫ T

0

∫

Ω

ξ(x, t)χ(x, t) dxdt,

which is a consequence of the strong convergence for χnj
in L2(0, T ; H) and of (4.33).

Thus, passing to the limit in (2.13) and in (4.1), we find that the quadruple (ϑ, χ, ξ, ζ)
fulfills (2.13) and

(4.35) ∂tχ + ζ + Aχ + ξ + σ′(χ) = ϑ, ξ ∈ β(χ), in H for a.e. t ∈ (0, T ).
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Hence, in order to conclude that (ϑ, χ, ξ) solves Problem 2.2, it remains to check

ζ(x, t) = −η(ϑ(x, t),∇χ(x, t))(∂tχ(x, t))− for a.e. (x, t) ∈ Ω× (0, T ).

This can be verified by exactly repeating the argument for (4.24) in the proof of Proposi-
tion 4.4, i.e., by proving the analogue of the lim sup inequality (4.26). The computations
for obtaining such inequality are the same as for Proposition 4.4, with the only exception
of

lim sup
j↑∞

(
−

∫ T

0

∫

Ω

βνj
(χνj

(x, t))∂tχνj
(x, t)dxdt

)
≤ −

∫ T

0

∫

Ω

ξ(x, t)∂tχ(x, t)dxdt.

Indeed, the above inequality follows from

lim inf
j↑∞

∫ T

0

∫

Ω

βνj
(χνj

(x, t))∂tχνj
(x, t)dxdt = lim inf

j↑∞

(∫

Ω

β̂νj
(χνj

(x, t))dx−
∫

Ω

β̂νj
(χ0(x))dx

)

≥
∫

Ω

(
β̂(χ(x, t))− β̂(χ0(x))

)
dx =

∫ T

0

∫

Ω

ξ(x, t)∂tχ(x, t)dx.

Here, we have applied the chain rule for l. s. c. convex functionals to get the first and the
third identity. The intermediate inequality is a consequence of the fact that the integral
functional on H associated with β̂νj

Mosco-converges (see Section A and (A.1)) to the

integral functional on H associated with β̂, and of the strong convergence of χνj
(t) to χ(t)

in H for all t ∈ [0, T ] .

5 Asymptotic analysis for Problem 2.2

Proof of Theorem 2. The first part of our argument consists in finding suitable a
priori estimates on the sequences {ϑε} and {χε}, in order to eventually apply suitable
weak compactness results. We will often use the short-hand notation

ηε for η(ϑε,∇χε).

First a priori estimate. We test (2.13) by ϑε, (2.14) by ∂tχε, add the resulting equations
and integrate on (0, t). Applying the chain rule [5, Lemma 3.3, p. 73] to the subdifferential

β of the l. s. c. , convex functional β̂, we obtain

(5.1)

1

2
‖ϑε(t)‖2

H +

∫ t

0

‖ϑε(s)‖2
V ds + ε

∫ t

0

‖∂tχε(s)‖2
Hds +

1

2
‖∇χε(t)‖2

H

+

∫ t

0

∫

Ω

ηε(x, s)|(∂tχε(x, s))−|2dxds +

∫

Ω

(
β̂(χε(x, t)) + σ(χε(x, t))

)
dx

=
1

2
‖ϑε

0‖2
H +

1

2
‖∇χε

0‖2
H +

∫

Ω

(
β̂(χε

0(x)) + σ(χε
0(x))

)
dx +

∫ t

0

〈F ε(s), ϑε(s)〉 ds.
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Of course, the last term on the right-hand side of (5.1) is estimated in the obvious way

∣∣∣∣
∫ t

0

〈F ε(s), ϑε(s)〉 ds

∣∣∣∣ ≤
1

2

∫ t

0

‖F (s)‖2
V ′ds +

1

2

∫ t

0

‖ϑε(s)‖2
V ds.

Moreover, by (2.6), there exists a positive constant, also depending on Λσ, such that

∫

Ω

σ(χε
0(x)) ≤ C

(‖χε
0‖2

H + 1
)

Taking into account (2.18), and that by (2.16) the sequences {ϑε
0}, {χε

0}, and β̂H(χε
0) are

bounded in H, in V , and in H respectively, we conclude that
∫

Ω

(
β̂(χε(x, t)) + σ(χε(x, t))

)
dx ≤ C

for a positive constant C independent of ε, whence we infer an a priori bound for χε in
L∞(0, T ; H) in view of (2.7) and Poincaré’s inequality.

In the end, (5.1) yields that there exists a constant C > 0 such that

(5.2) ‖ϑε‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖χε‖L∞(0,T ;V ) + ε1/2‖∂tχε‖L2(0,T ;H) ≤ C ∀ε > 0,

Second a priori estimate. Furthermore, it follows from the previous estimate that

(5.3) ‖
√

η(ϑε,∇χε)(∂tχε)
−‖L2(0,T ;H) ≤ C ∀ε > 0,

whence, for a.e. t ∈ (0, T )

(5.4)

∫

Ω

|(∂tχε(x, t))−| 43 dx =

∫

Ω

(ηε(x, t))
2
3 |(∂tχε(x, t))−| 43 1

(ηε(x, t))
2
3

dx

≤
∥∥∥(ηε(t))

2
3 |(∂tχε(t))

−| 43
∥∥∥

L3/2(Ω)

∥∥∥∥∥
1

(ηε(t))
2
3

∥∥∥∥∥
L3(Ω)

.

Note that the application of Hölder’s inequality in the latter passage is justified by the
following inequality, due to our assumption (2.3),

1

(ηε(x, t))2
≤ k−2

η (1 + |∇χε(x, t)|)2 ≤ 2k−2
η (1 + |∇χε(x, t)|2) for a.e. (x, t) ∈ Q.

Hence, in view of (5.2), 1/ηε ∈ L∞(0, T ; H), and for a.e. t ∈ (0, T )

∥∥∥∥∥
1

(ηε(t))
2
3

∥∥∥∥∥
L3(Ω)

=

∥∥∥∥
1

ηε(t)

∥∥∥∥
2
3

L2(Ω)

≤ C(1 + ‖∇χε(t)‖
2
3

L2(Ω)) ≤ C(1 + ‖χε‖
2
3

L∞(0,T ;V )) ≤ C.
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Thus, it follows from (5.4) that for a.e. t ∈ (0, T )

‖(∂tχε(t))
−‖L4/3(Ω) ≤ ‖

√
ηε(t)(∂tχε(t))

−‖H ,

so that (5.3) yields

(5.5) ‖(∂tχε)
−‖L2(0,T ;L4/3(Ω)) ≤ C ∀ε > 0.

Third a priori estimate. Preliminarily, we note that for a.e. x ∈ Ω and for all t ∈ [0, T ]

∣∣∣∣
∫ t

0

∂tχε(x, s)ds

∣∣∣∣ ≤ |χε(x, t)|+ |χε
0(x)|,

so that, by (5.2),

∫

Ω

∣∣∣∣
∫ t

0

∂tχε(x, s)ds

∣∣∣∣ dx ≤ |Ω|1/2
(‖χε‖L∞(0,T ;H) + ‖χε

0‖H

) ≤ C.

Therefore,

‖(∂χε)
+‖L1(0,T ;L1(Ω)) =

∫

Ω

∫ t

0

(∂tχε(x, s))+ ≤
∫

Ω

∣∣∣∣
∫ t

0

∂tχε

∣∣∣∣ +

∫

Ω

∫ t

0

(∂tχε)
−

≤ C(1 + ‖(∂χε)
+‖L2(0,T ;L4/3(Ω))).

In view of the previous (5.5), we obtain

(5.6) ‖∂tχε‖L1(0,T ;L1(Ω)) ≤ C ∀ε > 0.

Fourth a priori estimate. By comparison in (2.13), we conclude

(5.7) ‖ϑε + χε‖H1(0,T ;V ′) ≤ C ∀ε > 0.

Moreover, testing (2.14) by ξε and integrating in time, we find

(5.8)

∫

Ω

β̂(χε(x, t))dx +

∫ t

0

‖ξε(s)‖2
Hds

≤
∫

Ω

β̂(χε
0(x))dx +

∫ t

0

(
ηε(s)(∂tχε(s))

− − σ′(χε(s)) + ϑε(s), ξε(s)
)

H
ds.

Actually, (5.8) ensues from the chain rule [5, Lemma 3.3, p. 73], and from the formal
estimate ∫ t

0

(Aχε(s), ξε(s))H ds ≥ 0,

which is due to the monotonicity of β and could be made rigorous by approximating β
with its Yosida regularization. Exploiting the positivity of β̂, (2.19) and the boundedness
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of {χε
0} in V , the a priori bound (5.2) (which yields, by the Lipschitz continuity of σ′,

that σ′(χε) is bounded in L2(0, T ; H)), and, finally, (5.3), we easily deduce that

(5.9) {ξε} is bounded in L2(0, T ; H).

Finally, testing (2.14) by {Aχε}, using as usual the formal identity

(∂tχε(t), Aχε(t))H =
1

2

d

dt
‖∇χε‖2

H(t) for a.e. t ∈ (0, T ),

and taking into account all the previous estimates, we conclude that {Aχε} is bounded
in L2(0, T ; H), whence, by elliptic regularity results,

(5.10) ‖χε‖L2(0,T ;W ) ≤ C ∀ε > 0.

Compactness. (5.2) immediately yields (2.24); moreover, in view of (5.10) as well,
by standard weak-star compactness results, there exists a subsequence of {χε} and χ ∈
L2(0, T ; W ) ∩ L∞(0, T ; V ) for which (2.22) holds. Note that, up to extracting a further
subsequence, in view of (5.6) and of [16, Cor. 4], χεk

→ χ in C0([0, T ]; H) ∩ L2(0, T ; V ).
Then, (2.23) follows from the pointwise convergence of χε to χ in V , and from the estimate
(5.2) for ‖χε‖L∞(0,T ;V ).

As for {ϑεk
}, (5.2) yields that there exist ϑ ∈ L2(0, T ; V )∩L∞(0, T ; H) and a subsequence

(which we do not relabel), such that (2.26) holds. On the other hand, thanks to (5.7)
and [16, Cor. 4] as well, the sequence {ϑεk

+ χεk
} is weakly compact in H1(0, T ; V ′) and

compact in L2(0, T ; H) (hence Lp(0, T ; H) for all 1 ≤ p < ∞ by (5.2)): in view of (2.22),
(2.23), and (2.26), we easily identify its limit as ϑ + χ, so that (2.28) ensues, up to a
subsequence. Hence, in view of (2.23) we immediately deduce (2.27) as well.

Further, (2.29) ensues from (5.9); by the strong convergence of χεk
to χ in L2(0, T ; H)

and by the strong-weak closedness of the graph of β (more precisely, of the graph of the
maximal monotone operator induced by β on L2(0, T ; H)), we conclude that ξ ∈ β(χ)
a.e. in Q.

Finally, recalling Remark B.3, we infer from (5.6) that the sequence ∂tχε is tight, so that
by Theorem B.2 ∂tχεk

admits a limiting Young measure ν ∈ Y(Q;R), fulfilling (B.5),
which entails (2.20), as well as (B.6).
Proof of (2.25). Now, we fix an arbitrary j ∈ L2(0, T ; L4(Ω)) and choose in (B.6) the
normal integrand g : Q×R→ (−∞, +∞] given by g(x, t, ξ) := j(x, t)(ξ)−. Note that the
sequence (x, t) 7→ g−(x, t, ∂tχεk

(x, t)) = (j(x, t))−(∂tχεk
(x, t))− is uniformly integrable on

Q: in fact, the estimate
∫

I×A

|(j(x, t))−(∂tχεk
(x, t))−|dxdt ≤

∫

I

‖j(t)‖L4(A)‖(∂tχεk
(t))−‖L4/3(A)

≤ ‖(∂tχεk
)−‖L2(0,T ;L4/3(Ω))

(∫

I

‖j(t)‖2
L4(A)dt

)2

∀A ⊂ Ω, I ⊂ (0, T ),
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the estimate (5.5) on ∂tχε, and the elementary property

∀ε > 0 ∃δ > 0 s.t. |I × A| ≤ δ ⇒ ‖j‖L2(I;L4(A)) ≤ ε,

easily yield that {(j)−(∂tχεk
)−} complies with the definition of uniform integrability.

Hence, by (B.6)

lim inf
k↑∞

∫ T

0
L4/3(Ω)〈(∂tχεk

(t))− , j(t)〉L4(Ω) dt = lim inf
k↑∞

∫

Q

j(x, t) (∂tχεk
(x, t))− dxdt

≥
∫

Q

j(x, t)

(∫

R
(ξ)−dν(x,t)(ξ)

)
dxdt =

∫ T

0
L4/3(Ω)〈`(t), j(t)〉L4(Ω) dt.

Choosing now in (B.6) the normal integrand g̃(x, t, ξ) := −j(x, t)(ξ)− (it can be checked
in the same way that the sequence (x, t) 7→ g̃−(x, t, ∂tχεk

(x, t)) = (j(x, t))+(∂tχεk
(x, t))−

is uniformly integrable), we easily obtain

lim sup
k↑∞

∫ T

0
L4/3(Ω)〈(∂tχεk

(t))− , j(t)〉L4(Ω) dt ≤
∫

Q

j(x, t)

(∫

R
(ξ)−dν(x,t)(ξ)

)
dxdt

=

∫ T

0
L4/3(Ω)〈`(t), j(t)〉L4(Ω) dt.

Hence, we conclude (2.25). Combining this with (2.23), we observe that (2.31) is satisfied.

In the end, note that

(5.11) η(ϑεk
,∇χεk

)(∂tχεk
)− ⇀ η(ϑ,∇χ)` in L2(0, T ; V ′), as k ↑ ∞.

In fact, up to extracting further subsequences, we deduce from (2.23) and (2.27) that
ϑεk

→ ϑ and ∇χεk
→ ∇χ a.e. on Ω. Arguing as in the previous Section, we conclude by

the Lebesgue’s dominated convergence theorem that

η(ϑεk
,∇χεk

) → η(ϑ,∇χ) in Lp(0, T ; Lp(Ω)) for all 1 ≤ p < ∞,

and it is then easy to check (5.11), taking into account (2.25).
Passage to the limit. The convergences (2.22)-(2.28) so far obtained, as well as (5.11),
enable us to pass to the limit as εk ↓ 0 in (2.13) (also taking into account (2.18)), in
(2.14), as well as in the initial conditions (2.15) (recalling (2.16)). Hence, the pair (ϑ, χ)
fulfills (2.13), (2.30) and (2.15). By (5.6), we also conclude that, up to a subsequence,
∂tχεk

weakly star converges to a Radon measure µ ∈ M(Q), which we can identify with
the distributional derivative ∂tχ of χ. By Remark B.3, we may compare µ and the limit
Young measure ν. Indeed, introducing the measure ρ (cf. (2.32)), we deduce (2.33), which
states that the measure µ− ρ is positive.
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A Mosco and G-convergence

We refer to, e.g., the monograph [1] for an exhaustive exposition of the notions which
we are going to briefly recall below. Throughout this subsection, H will denote a Hilbert
space, with scalar product 〈·, ·〉.
Definition A.1 (Mosco convergence). Let ψn, ψ : H → R∪{+∞} be proper, convex,
and l. s. c. functionals: we say that {ψn} converges to ψ in the sense of Mosco if

• ∀z ∈ H there exists a sequence zn → z such that ψn(zn) → ψ(z) as n ↑ ∞;

• ∀z ∈ H and ∀zn ⇀ z as n ↑ ∞, ψ(z) ≤ lim infn↑∞ ψn(zn).

As a straightforward consequence of [1, Prop. 3.20. p. 298], we have that for every proper
(convex and l.s.c) functional ψ : H → R ∪ {+∞}, the sequence of the Moreau-Yosida
approximates {ψλ}λ of ψ

(A.1) ψλ Mosco-converges to ψ as λ ↓ 0.

Definition A.2 (G-convergence.). We say that a sequence An : H → 2H of maximal
monotone operators converges to a maximal monotone operator A on H in the sense of G-
convergence (or in the sense of graphs), if ∀[x, y] ∈ A there exists a sequence [xn, yn] ∈ An

such that [xn, yn] → [x, y] strongly in H×H.

A crucial property of G-convergence (which can be retrieved in the proof of [1, Prop. 3.59,
p. 361]) is that, when An G-converges to A, then

(A.2)

{
[xn, yn] ∈ An, xn ⇀ x, yn ⇀ y in H,

lim infn↑∞ 〈xn, yn〉 ≤ 〈x, y〉 =⇒ [x, y] ∈ A.

B Compactness tools of Young measures theory

We briefly recall some basic notions and results of Young measures theory, referring to
e.g. [17, 3] for a self-contained introduction to this topic.

Notation. In the sequel, B will be a separable Banach space and Q the product space
Ω× (0, T ); L and B will denote the σ-algebras of the Lebesgue measurable subsets of Q
and of the Borel subsets of B, respectively, and L ⊗ B the usual product σ-algebra in
the space Q × B. Further, the set of all Borel probability measures on B is denoted by
P(B), while Cb(B) will be the Banach space of the continuous and bounded real functions
defined on B and M(Q; B) the set of measurable functions from Q to B.
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We recall that a function h : Q×B → [0, +∞] is a positive normal integrand if

(B.1a) h : Q×B → [0, +∞] is L ⊗ B-measurable,

(B.1b) the maps v 7→ h(x,t)(v) := h(x, t, v) are l. s. c. for a.e. (x, t) ∈ Q.

A positive normal integrand h is also coercive if the sublevels

(B.1c)
{
v ∈ B : h(x,t)(v) ≤ c

}
are compact for any c ≥ 0 and for a.e. (x, t) ∈ Q.

Definition B.1 (Young measures). A Young measure is a family ν := {ν(x,t)}(x,t)∈Q of
probability measures in P(B), such that one of the following two (equivalent) conditions
holds

(x, t) ∈ Q 7→ ν(x,t)(D) is L-measurable ∀D ∈ B;(B.2a)

(x, t) ∈ Q 7→
∫

B

f(ξ) dν(x,t)(ξ) is L-measurable ∀f ∈ Cb(B).(B.2b)

We denote by Y(Q; B) the set of all Young measures.

We recall a version of Fubini’s Theorem, adapted to families of Young measures [10, p.
20-II].

Theorem B.1. Let ν = {ν(x,t)}(x,t)∈Q be a Young measure in B; there exists one and
only one measure ν on L ⊗ B such that

ν(A× C) =

∫

A

ν(x,t)(C) dxdt ∀A ∈ L, C ∈ B;

in particular, ν(A× B) = |A| ∀A ∈ L. Moreover, for every L ⊗ B-measurable function
h : Q×B → [0, +∞], the function

(x, t) 7→
∫

B

h(x, t, ξ)dν(x,t)(ξ) is L-measurable,

and the following extension of Fubini’s formula holds:

(B.3)

∫

Q×B

h(x, t, ξ) dν(x, t, ξ) =

∫

Q

( ∫

B

h(x, t, ξ)dν(x,t)(ξ)
)

dxdt.

Definition B.2 (Tightness). We say that a family U ⊂ M(Q; B) is tight w.r.t. a
normal coercive integrand h satisfying (B.1a, b, c) if

(B.4) S := sup
u∈U

∫

Q

h(x, t, u(x, t))dt < +∞.

We say that U is tight in B if there exists a normal coercive integrand h for which (B.4)
holds.
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The following crucial compactness result was first proved in [2].

Theorem B.2 (Balder). Let un ∈ M(Q; B) be tight w.r.t. a normal coercive inte-
grand (B.1a,b,c,B.4). Then, there exists a subsequence unk and a Young measure ν =
{ν(x,t)}(x,t)∈Q ∈ Y(Q; B), which we call a limit Young measure for un, such that for a.e.
(x, t) ∈ Q

(B.5) supp(ν(x,t)) ⊂ ∩∞p=1{unk(x, t) : k ≥ p},
(i.e. the measure ν(x,t) is concentrated on the set of the limit points of {unk(x, t)}), and

(B.6)

lim inf
k→∞

∫

Q

g(x, t, unk(x, t)) dxdt ≥
∫

Q

(∫

E

g(x, t, ξ)dν(x,t)(ξ)

)
dxdt

for every normal integrand g : Q×B → (−∞, +∞] s.t.

the sequence (x, t) 7→ g−(x, t, unk(x, t)) is uniformly integrable.

Remark B.3. [Comparison between limits in the sense of measures.] For later conve-
nience, let us focus on the case B := R, and let {un} ⊂ L1(Q) be a bounded sequence,
i.e.,

(B.7) sup
n∈N

∫

Q

|un(x, t)|dxdt < +∞.

It follows from well-known weak compactness results in functional analysis that {un}
admits a subsequence {unk} weakly-star converging to a measure µ in the space M(Q) of
the Radon measures on Q, i.e.

(B.8) lim
k↑∞

∫

Q

unk(x, t)f(x, t)dxdt = 〈µ, f〉 ∀f ∈ C0(Q),

C0(Q) denoting the space of the continuous functions on Q with compact support.

On the other hand, (B.7) is indeed a tightness estimate, as the functional h(x, t, ξ) := |ξ|
is trivially a normal coercive integrand on Q×R. Therefore, by Theorem B.2, there exists
a limit Young measure ν such that, up to a subsequence, (B.6) holds.

In particular, if the sequence {(un)−} is uniformly integrable, it follows from (B.6) that

lim inf
k↑∞

∫

Q

f(x, t)unk(x, t)dxdt ≥
∫

Q

f(x, t)

(∫

R
ξdν(x,t)(ξ)

)
dxdt

for all positive f ∈ C0(Q) (it suffices to apply (B.6) to the integrand g(x, t, ξ) := f(x, t)ξ,
and note that, since f ≥ 0, g−(x, t, un(x, t)) = f(x, t)(un)−(x, t) for a.e. (x, t) ∈ Q). Let
us now denote by % the Radon measure on Q defined by

(B.9) 〈%, f〉 :=

∫

Q

f(x, t)

(∫

R
ξdν(x,t)(ξ)

)
dxdt.

Hence, in view of (B.8), we conclude

(B.10) 〈µ, f〉 ≥ 〈%, f〉 ∀f ∈ C0(Q), f ≥ 0.
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