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Leading to a Phase-field System of Relaxed Stefan Type 
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Abstract. 

In this paper we study an initial-boundary value Stefan-type problem with phase relaxation 
where the heat flux is proportional· to the gradient of the inverse absolute temperature. 
This problem arises naturally as limiting case of the Penrose-Fife model for diffusive phase 
transitions with non-conserved order parameter if the coefficient of the interfacial energy is 
taken as zero. It is shown that the relaxed Stefan problem admits a weak solution which is 
obtained as limit of solutions to the Penrose-Fife phase-field equations. For a special bound-
ary condition involving the heat exchange with the surrounding medium, also uniqueness of 
the solution is proved. 

1. INTRODUCTION 

In this paper, we study the initial-boundary value problem 

Co B, - A' (x) Xt + k D. (~) = g in Q , (1.1) 

).' (x) 
µxt+f3(x)3s'(x)+-B- inQ, (1.2) 

8() 
k an + a ( fJ - Br) = 0 in ~ , (1.3) 
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B ( · , 0) = Bo , x ( · , 0) = Xo in f2 . (1.4) 

Here, n c lR 3 denotes a bounded domain with smooth boundary r ; T > 0 is some final 
time, and Q := n x (0' T)' ~ := r x (0, T). In addition, Co' k 'µ'a denote positive 
physical constants. 

Equations ( 1.1)-(1. 2) may be regarded as the system of phase-field equations governing the 
kinetics of a phase transition with non-conserved order parameter x that occurs in the 
three-dimensional container n. In this connection, the variable B represents the absolute 
(Kelvin) temperature, while g and Br stand for the density of distributed heat sources and 
the outside temperature, respectively. Typically, x represents a volume density of one of the 
phases. In an ice-water system, for instance, x may be identified with the liquid fraction. 

Concerning the nonlinearities s, .A, {3 occuring in (1.1)-(1.2), we make the following assump-
tions: s and .A are smooth, and {3 = 8 I, i.e. f3 denotes the maximal monotone graph 
representing the subdifferential of the indicator function I of the interval [0, 1] ( cf. formula 
(2.1) ). The variational inequality (1.2) then entails that the variable x is forced to attain 
only values in the physically meaningful range [O, 1]. We should remark at this place that 
the whole analysis of this paper remains true (with obvious modifications) for much more 
general maximal monotone graphs f3 . 

The phase-field equations (1.1 )-(1.2) are closely connected to two models for phase transi-
tions that have been the subject of intense mathematical research in recent years, namely 
the Penrose-Fife model and the Stefan model. Indeed, if the local free energy density 
F = F (x, B) is assumed in the form 

F (x, B) = - eo B ln( 8) + a (I (x) - s (x)) - .A (x), (1.5) 

then (1.1)-(1.2) coincide with the phase-field equations resulting from the Penrose-Fife ap-
proach ( cf. [12]) if no interfacial energies are present. On the other hand, if we make the 
particular choice ( cf. [ 4]) 

.A(x) = -Lx, L 
s (x) = Bex, (1.6) 

where L and Be represent latent heat and a critical temperature (of melting, say), then 
(1.1)-(1.2) becomes · 

Co IJ, + L Xt + k L'. G) = g in Q , (1. 7) 

µ X• + i3 (x) ::i L ( 9~ - ~) in Q. (1.8) 

The latter system may be considered as a Stefan-type problem with phase relaxation, where 
the heat flux q is given by 

(1.9) 

instead of by the usual Fourier law. This becomes more evident in the case µ = 0 , because 
then (1.8) can be equivalently written as (if (} > 0, which ought to be true since B represents 
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the absolute temperature) 

X E H(B - Be), (1.10) 

with the Heaviside graph H. Substitution of (1.10) in (1.7) indeed leads to the enthalpy 
formulation of the Stefan problem, but with the heat flux given by (1.9). 

From the mathematical point of view, the phase-field equations (1.1 )-(1.2) are considerably 
more difficult to handle than both the Stefan problem with phase relaxation and usual 
Fourier-type heat flux and the (usual) Penrose-Fife system. In particular, the appearance 
of the inverse temperature 1/B in both (1.1) and (1.2) is a possible source of singularities 
which is not present in the standard Stefan problem; on the other hand, in contrast to the 
Penrose-Fife system with non-zero interfacial energy, where the second equation has the 
form 

)/ (x) 
µ Xt + f3 (x) - c t:.. X 3 s' (x) + - 8 - (1.11) 

instead of (1.2), the diffusive term - c t:.. x is missing, which entails less spatial regularity 
for the order parameter field. 

Our line of argumentation to overcome the above-mentioned difficulties will be the following. 
Assuming the function A concave, we regard the system (1.1)-(1.4) as limiting case of the 
Penrose-Fife model with non-zero interfacial energy (i.e. for c > 0 ). For the Penrose-Fife 
system, a general existence result ( cf. Lauren<;ot [8, 9]) is known, yielding solution pairs 
(Be:, Xe:) for c > 0. We shall derive a priori bounds, independent of c, for these solutions, 
and then use compactness arguments and a passage-to-the-limit procedure for c ~ 0 to 
establish the desired existence result for weak solutions to (1.1)-(1.4). 

The remainder of this paper is organized as follows. In Section 2, we define our notion of a 
weak solution to (1.1)-(1.4), specify the general assumptions for the data of the system and 
introduce the approximating Penrose-Fife system. Section 3 brings the derivation of global 
a priori estimates for the approximating solutions, and in Section 4 the passage to the limit 
is performed. Finally, in Section 5, we argue on other boundary conditions than (1.3), and 
we study a special case, nan:iely 

8() 
k a n + a B ( B - Br) = 0 in ~ . (1.12) 

If one substitutes (1.3) with (1.12), then not only existence but also uniqueness of the weak 
solution to the resulting problem can be established. By this uniqueness result, we can 
conclude that the system (1.1)-(1.2), (1.12), (1.4) is indeed the natural asymptotic limit of 
the analogous Penrose-Fife system (which has been investigated in [7]) when the interfacial 
energy tends to zero. 

We should remark at this place that a corresponding analysis is possible for the system 
(1. 7), (1.10), i.e. for the unrelaxed Stefan problem with heat flux given by (1.9). Since 
the employed techniques and, in particular, the obtained regularity results, are considerably 
different, this will be the subject of a forthcoming paper. 
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2. MAIN RESULT 

In order to state precise assumptions on the data and to introduce a variational formulation 
of the problem (1.1 )-(1.4), which henceforth will be called (P) for simplicity, we first fix 
some notations. Let ( ·, ·) represent either the scalar product in L2(f1) or the duality 
pairing between V' (the dual space of V := H 1 (f1)) and V , and let II · II stand for the 
norms in both L 2(f1) and (L2 (f1))3 • The trace of a function v. E H 1 (f1) on the boundary 
r is denoted by v lr E H 1f 2(r) or, if no confusion may arise, just by v. Furthermore, the 
notations for Sobolev spaces are the same as in [10] , for instance. 

Recalling that c0 , k, µ,a are positive constants and that /3 is the maximal monotone graph 
from lR to lR defined by 

{ 
(-oo,O] if r = 0 

f3(r)= {O} 
[O, +oo) 

if 0 < r < 1 
if r = 1 

with domain [O, 1] , the problem (P) is analyzed under the additional assumptions 

.X,s E C2([0,l]), 

.X is a concave function 

g E L00 (Q), 

Br E L00 (E), Br > 0 a.e. in E, :r E Loo(I:), 

BtBr E L00 (E), 

Bo E L00 (n), Bo> 0 a.e. inn' ;
0 

E L00 (!1), 

Bo E H1(fJ)' 

Xo E L00 (fJ), 0 :S Xo :S 1 a.e. inn. 

Remark 2.1. Observe that, owing to (2.5) and (2.7), 

Br ~ c a.e. in E , Bo ~ c a.e. in n , 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
for some constant c > 0. Moreover, it is a standard matter to verify that (2. 7) and (2.8) 
imply that 

Vr E JR., (2.11) 
as well as 

B0r lr E H 1f 2(r) n L00 (r) V r E JR. (2.12) 
Let us specify our notion of a weak solution to problem (P). 
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Definition 2.2. A couple of functions ( B, x) is called a weak solution to (P) if . 

fJ E W 1 
•
00 (0, T; V') n L00 (0, T; L2(!1)), 

B > 0 , 0 :::; X :::; 1 a.e. in Q , 

and if there exist functions 

satisfying 

e E f3(x) a.e. in Q , 

such that the following equations and conditions hold 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

( 8, (ea B - >. (x)) ( ., t) , v) = k lo \7 u(- , t) · \7 v + a l (Op u 2 
- u) (- , t )v + (g( . , t) , v) 

V v E H1(!1), for a.e. t E (0, T), (2.19) 

µ Xt + e = s'(x) + A'(x) u a.e. in Q, (2.20) 

fJ( -,0) = fJo, x( · ,0) = Xo· (2.21) 

Remark 2.3. Due to (2.14)-(2.15) and (2.2), it turns out that A(X) E W1 •00 (0, T; L2(!1)) 
and 8tA(X) = N(x) Xt a.e. in Q. From (2.16) one easily infers the following regularity 
property for the trace of u , 

. (2.22) 

and (2.22) also provides a meaning to the boundary integral in (2.19). By virtue of (2.1.3), 
one can check that () is a weakly continuous function from [O, T] into L2 (!1), so that the 
initial conditions (2.21) make sense in the space L2(!1). 

Remark 2.4. The conditions () > 0 and u = 1/fJ, holding a.e. in Q, can be rewritten 
in terms of maximal monotone operators. Indeed, letting p denote the maximal monotone 
graph specified by 

1 p(r) = --
r 

if 0 < r < +oo, 

such conditions reduce to -u E p( fJ). Alternatively, one can prescribe that -fJ E p( u) a.e. 
in Q and consider fJ as an auxiliary unknown (say, playing the same role as e }. This is 
precisely the approach followed by Kenmochi and Niezg6dka in [7]. 
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Remark 2.5. As e E {3( u) a.e. in Q and {3 = 81 , it is well-known ( cf., e.g., [3, p. 54]) 
that the variational inequality 

µxt(x, t) (x(x, t)- r) ~ (s'(x) + .A'(x)u)(x, t) (x(x, t)- r) 
Vr E [O, 1], for a.e. (x, t) E Q, 

gives an equivalent formulation of (2.20). 

The main result of this paper states the existence of solutions to the problem (P). 

(2.23) 

Theorem 2.6. Assume that {2.1)-(2.9) hold. Then problem (P) has a weak solutio~. 

To prove the theorem, we approximate (P) by the initial boundary value problem arising 
from the phase-field model proposed by Penrose and Fife (12]. The method of approximation 
consists of mollifying the equation (2.20) by adding the term -c6x (c > 0), supplied with 
homogeneous Neumann boundary conditions. Then one can use the available solutions found 
by Laurenc;ot [8,9] for the resulting system, derive estimates independent of c, and finally 
pass to the limit as c ~ 0. This is essentially our procedure. However, in order to exploit 
the results of Laurenc;ot, we first have to regularize the data g and Xo . 

For any c > 0, we introduce the function 9e : Q ~ 1R defined by 

9e(x) t) = ~ r e-(t-r)/e g(x) T) dT) (x) t) E Q. 
c lo 

Recalling (2.4), it is not difficult to see that 

9e, 8t9e E L00
( Q), (2.24) 

(2.25) 

9e ~ g strongly in L2(Q) as c ~ 0. (2.26) 

On the other hand, let Xoe E H1(n) denote the solution to the elliptic variational problem 

(Xoe, v) + c lo Vxoe · \lv = (xo, v) V v E V. 

In view of (2.9), from a (weak) maximum principle argument we deduce that 

0 ~ Xoe ~ 1 a.e. in n , V c > 0. (2.27) 

Since - c 6.xoe = Xo - Xoe , it is straightforward to conclude that 

a::· = 0 and xo. E H2(D.), (2.28) 

(2.29) 

where IDI denotes the Lebesgue measure of the domain n. In addition, the convergence 
property 

Xoe ~ Xo strongly in L2(D) as e·~ 0, (2.30) 
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can be shown, for instance, via singular perturbations techniques (see [11 ]). 

Now we have all the necessary ingredients to be able to apply the existence result in [8,9]. 

Proposition 2.7. Under the assumptions (2.1)-(2.2), (2.5)-(2.8), (2.24), (2.27)-(2.28), 
there exists a quadruple ( () t: ) Ue; ' Xt: ) et:) satisfying 

et: E H 1 (0) T; L2(0)) n L2 (0) T; H 1 (0)) n L00 (Q)) 

Ue; E H 1 (0 'T; L2(0)) n L2(0) T; H 2 (0)) n L00 (Q)) 

Xt: E H 1 (0) T; H 1(0)) n L00 (0 'T; H 2(0))) 

<t: E L00 (0) T; L2(0))' 

e 0 1 . Q e: > , Ue: = B a.e. in , 
t: 

0 :::; Xe: :::; 1, <t: E f3(Xe) a.e. in Q, 

axt: = o an a.e. in~, 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

For the proof of this theorem we refer the reader to [8,9]. Nonetheless, let us acknowledge 
that in his procedure Laurenc;ot considers a suitable regularization of the problem (2.37)-
(2.40) as well, and then makes use of very general results on quasilinear parabolic problems 
due to Amann [2]. 

Remark 2.8. In the above statement we have not expressed all the regularity properties 
of et:, ut: and Xe:. For instance, the additional properties (2.13) and (2.14) follow from a 
comparison in (2_.37) and (2.38). Moreover, ue E C 0 ([0, T]; H 1(0)) and Xe: E C0 ( Q) because 
of known interpolation or embedding theorems for Sobolev spaces. Let us also observe that, 
since ue( ·, t), Xe:( ·, t) E H 2 (0) ( C L00 (0)) for a.e. t E (0, T), the boundary conditions in 
(2.39) hold even in H 1l 2(r), a.e. in (0, T) ( cf. Remark 2.1 ). 

Henceforth we shall denote the problem (2.37)-(2.40) by (P e). Multiplying (2.37) and (2.38) 
by a test function v E H 1(0) .and accounting for (2.39), we obtain the variational equalities 

( 8, ( eo B, - A(x.)) ( · , t) , v) = k in V' u, (- , t) · V' v + a fr ( Br u: - u,) ( · , t) v + (g, (- , t) , v) 
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Vv E H 1 (f2), for a.e. t E (O,T), (2.41) 

µ ( Btxe(-, t), v) + c: lo \lxe(., t) · \lv + (ee(-, t), v) = ((s'(xe) + ,\'(xe) ue)(-, t), v) 

V v E H 1(f2), for a.e. t E (0, T), (2.42) 

which will be employed in the sequel. 

3. UNIFORM ESTIMATES 

In this section, we show estimates, independent of c: , for the solution to problem (P e) 
determined by Proposition 2. 7. We start by summarizing some inequalities satisfied by Xe. 
In fact, the next lemma is addressed to a general problem of the form 

where a > 0 , b > 0 , and 

awt - b 6.w + T/ = f a.e. in Q, 

0 ~ w ~ 1 , T/ E (3( w) a.e. in Q , 

aw . ~ an = 0 a.e. 1Il LI , 

w( ·, 0) = wo, 

8wo = 0 8n a.e. in I', 0 ~ Wo ~ 1 in n. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Lemma 3.1. Assume that (2.1) and (3.5)-(3.6) hold. Then the system (3.1)-(3 .. 4) admits 
one and only one solution 

satisfying 

for a.e. t E (0, T), (3.8) 

1111(- 't)ll 2 ~ 2llf(- 't)ll 2 + 2llf(- '0) + b 6woll 2 + 4 a r r ft Wt for a.e. t E (0 'T), lo Jn (3.9) 

~llY'w( ·, t)11 2 + b la' l16w( ·, r)i1 2dr ~ ~llY'wall 2 + l lo V' f · V'w 

V t E [ 0 , T] . ( 3 .10) 
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Proof. The uniqueness of w follows easily from the monotonicity of /3 via a standard 
contradiction argument (else one can see, for instance, (3, Theorem 2.1, p. 189]). In or-
der to prove (3.8)-(3.10) rigorously, we replace in (3.1)-(3.2) the graph /3 by its Yosida 
approximation 

{ 

if r < 0 
f3m(r) = ~r if 0 ~ r ~ 1 , m EN. 

m ( r - 1) if r > 1 
(3.11) 

Hence, denoting by Wm the solution to 

a BtWm - b6.wm + f3m(wm) = f a.e. in Q, (3.12) 

subjected to the conditions (3.3)-(3.4), it turns out that Wm is more regular than w. More 
precisely, for any m EN one has (cf., e.g., (7, Lemma 4.1]), in addition to (3.7), 

Note that also 

Wm E H2(8' T; L2(n)) n H 1 (8' T; H 2(n)) v 8 E (0 'T)' 

wm E C1((0, T]; L2(n)) n C0 ((0, T]; H2(D,)). 

(3.13) 

(3.14) 

(3.15) 

because of (3.6) and (3.11). Now let us just sketch the deduction of (3.8)-(3.10) for Wm and 
T/m = f3m( wm). First, we differentiate (3.12) with respect to time, multiply by Btwm, and 
integrate over n x (8, t) for 0 < 8 < t (we are allowed to do this by virtue of (3.14)). As 
/3:.n 2: 0 a.e. in IR , the estimate 

~ll8tWm(·,t)ll 2 + b ftll\7(8tWm)(-,T)ll 2dT ~ ~2 118tWm(·,b)ll 2 + r f ftWt 
2 lo . lo lo 

holds for any 8 E (0, T) and any t E ( 8, T). Then, taking the limit as 8 ~ 0 and 
recalling (3.7), (3.14), and (3.5), the inequality (3.8) is a straightforward consequence of 
(3.15). To derive (3.9), it suffices to test (3.12) by T/m, integrate only in space, and use 
Young's inequality 

A B < ~ IAIP + p - 1 IBIP/(p-1) 
- p p 51/(p-l) ' A, B E IR, 8 > 0, 1 < p < oo, (3.16) 

(when p = 2) along with (3.8). On account of (3.3)-(3. 7), the inequality (3.10) can be 
found after multiplication of (3.12) by -6.wm and integration by parts in space and time. 
Therefore, as Wm and T/m satisfy (3.8)-(3.9), with the help of (3.3)-(3.6) and (3.12) it is not 
difficult to infer that 

llwm II Wl ·00 (0 ,T;L2(0))nHl(O ,T;H1(0))nL00 (0 ,T;H2(0)) + ll77m 11£00 (0 ,T;L2(0)) ~ C1 v m E N' 
where the constant C1 > 0 depends only on a, b, T, llfi1H1(0,T;L2(n)), and llwollH2(n)· Hence, 
there are two functions w, ij such that, possibly extracting subsequences, Wm ~ w and T/m ~ 
ij weakly star in the abovenamed spaces, as m /' oo. Moreover, by compactness we have 
Wm~ w strongly, for instance, in C0 ((0, T]; L2(n))' which ensures that 

J,i![;,, f ( T/m ( -, l) , Wm ( -, l)) dt = f (ii (- , l) , W( -, t)) dt , 

Then, passing to the limit in the approximating system and recalling (3, Prop. 1.1, p. 42], 
we conclude that w ,ij fulfil (3.1)-(3.4), and, consequently,,that w must coincide with the 
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unique solution w to the limit problem. Finally, the estimates (3.8)-(3.10) are satisfied by 
the limit functions w and TI , thanks to the weak-star lower semicontinuity of norms. D 

Now, we work directly on the problem (P e) and derive uniform estimates for the quadruple 
(Be, Ue:, Xe:, et:). Throughout the remainder, we let (2.1)-(2.9) and (2.24)-(2.30) hold. 

Lemma 3. 2. There exists a constant C 2 such that 

II ln ( Ue)ll~1(0,T;L2(0)) + lluelli 00 (0,T;Hl(O)) + lluelr lli00 (0,T;L3(r)) 

Proof. We multiply (2.37) by -8tue: and integrate in space and time. On account of 
(2.35), (2.39)-(2.40), and (2.6)-(2.8) ( cf. also Remark 2.1), a formal Green formula allows us 
to deduce the identity 

r f 18tut:l
2 

k 0: f Co lo lo --:;;: + 2 llVue(-, t)ll2 + 3 lr(Br u;)(-, t) 

= - fo' lo >.'(x.)(8,x.)(8,u.) + ~ llY'B01 IJ2 + : £2Br(-,~t 380 

+ ~ f u;( "t) + ~ r f (8tfJr )u~ - ft f 9e: 8tue: for a.e. t E (0, T). (3.18) 
2 lr 3 lo lr lo lo 

A rigorous justification of (3.18} needs some regularization of (Pe) or, at least, of (2.37) 
(however, concerning this matter we refer, e.g., to [13] or [8]). Let now w denote a constant 
fulfilling 

llvllt-l(O) :S w (11Y'vll 2 + fr v2
) V v E H 1(D.). (3.19) 

Observe that (cf. (2.10)) 

and, thanks to (3.16), 

0: f 2 ( o:c f 3 2 0: 2 2 lrut: .,t) ~ 6 lrue(-,t) + 3 c2 H (I'), 

where H 2 (I') indicates the bi-dimensional measure of r. Moreover, in view of (2.25), we 
have 

Jl lo 9" 8,u.J :::; ~ l lo 8
::· 1

2 

+ 2~ ll9 lli=cQJ l lo u~ · 
Then, recalling (2.4)-(2.8) and (2.11)-(2.12), by (3.18)-(3.19) and (3.16) it is not difficult to 
find a constant C3 , independent of e, such that 
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:::; 03 ( 1 +J JIV'u.( ·, T )ll 2dr + l £ U~) - l ln )..'(x.)( 8tX<)( 8,u.) . 

for a.e. t E (0, T). (3.20) 

On the other hand, owing to Proposition 2. 7 along with (2.2) and (2.27)-(2.28), it turns out 
that Lemma 3.1 holds for Xt:. Hence, from (3.8) it follows that 

~ 11a.x.( ·, t)ll 2 + I': fo' llY'(a.x.)( ·, r)ll 2 dr :::; 2~ lls'(xo.) + >.'(xo.) 001 + I': b.xo.11 2 

+ la' lo s"(x.)l81x.1 2 + la' lo >."(x.)18.x.12 u. + la' lo >.'(x.)(a,u.)( a.x.) 

for a.e. t E (0, T). (3.21) 
Since 

.A"(xt:)l8tXt:l2ut: ~ 0 a.e. in Q 
because of (2.3) and (2.35), adding (3.20) to (3.21) and accounting for (2.2), (2.7), and (2.29), 
we infer that the sum of the left-hand sides is bounded from above by 

where C4 is a constant independent of e. Therefore, applying Gronwall's lemma, it is easy 
to determine another constant Cs, depending only on Co, k, a, c, µ, C4 , and T, s.uch that 

fo' fo1a,(1n(u.))l 2 + llV'u.(·,t)ll2 + £ u~(-,t) + Jl8,x.(-,t)ll 2 

+I': fo' 11\7 (a, x.)( ·, T )11 2 dr :::; Cs for a.e. t E (0, T). 

Then, as ln(801 ) E L00 (n) (cf. Remark 2.1), the estimate (3.17) is a straightforward conse-
quence of (3.19), (2.27) and (2.29). D 

Lemma 3.3. There is a constant C6 such that 

(3.22) 

Proof. By virtue of Lemma 3.1, using now (3.9) and arguing as above, it is not difficult 
to show that 

+ 01 ( 1 + ll8,x. lli2(Q)) + 4µ la' lo >.'(x.)( 8,u.)( 8,x.) for a.e. t E ( 0, T), (3.23) 

C7 being a constant independent of e. Hence, multiplying (3.20) by 4µ and adding the 
result to (3.23), by (3.17) one concludes that als~ ll~t:ll£oo(o,T;L2(0)) is uniformly bound-
ed with respect to e. Next, a comparison of the terms in (2.38) allows us to control 
lle6xt:ll£oo(o,T;L2(0)), whence (3.22) follows in view of the boundary condition in (2.39). D 
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Lemma 3.4. There is a constant C8 such that 

llBell~=(o,T;L2(0)) + II ln(ue)ll~2(0,T;H1(n)) ::; Cs Ve E (0, 1] · (3.24) 

Proof. Choosing v =Be in (2.41) and integrating in time, with the help of (2.35), (3.16), 
(2.5), and (2.25), we deduce that 

~ llB.(., t)ll2 + k fo' fo IVu~· 12 + at 7-£2(r) ~ ~ llBoll 2 

+ ~ fo' ju~ + 
2

; t 7-i2(r) llBr 11~.;(EJ + ~ ll>.'lli=co,1) fo' 11a,x.( ·, r )11 2 dr 

+ ~ l!1lll9lli=(Q) + fo' 110,( ·, T )11 2 dr V t E [O, T]. 

Therefore, on account of (3.17), an application of Gronwall's lemma yields (3.24). D 

Lemma 3.5. There exists a constant C9 such that 

(3.25) 

Proof. Due to (2.2), (3.17), and to Sobolev's embedding theorems, ll8t(.-X(xe))llL=(o,T;L2(0)) 
and llue llL=(o,T;Le(n)) are bounded independently of e. Then, thanks to (2.5) and (2. 7) as 
well, we can make use of the result stated in [6, Lemma 2.3] (a more general version is 
given in [9, Lemma 4.1]) to obtain (3.25). We point out that the argument is based on the 
Moser technique and consists of testing (2.37) by u~ and estimating the norms lluellLP(Q) 
(uniformly with respect to e and p) for a divergent sequence of exponents p. D 

Let us note that (3.25) and (2.35) entail 

1 
Be ;::: Cg a.e. in Q, 

whereas (3.25) and (3.17) ensure that (cf. Remark 2.3 and especially (2.22)) 

lluelrllL00 (E) :::; Cg 

(3.26) 

(3.27) 

for any e E (0, 1]. Owing still to (3.25), we can finally derive a bound for the time derivatives 
of Ue and Be. 

Lemma 3.6. There is a constant C10 such that 

(3.28) 

Proof. Since at Ue = ut: 8t(ln( ue))' by (3.17) and (3.25) we infer that ll8t Uell :::; cgvc;. 
Hence, recalling also (2.2), (2.5), (3.27), and (2.25), the estimate (3.28) follows from (2.41 ). 

D 
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Now, we are in the position to pass. to the limit, at least for a subsequence, in the problem 
(P e) when £ tends to 0. In the next section, we will show that any weak-star limit of 
(Be, Xe) yields a weak solution of (P), thus proving Theorem 2.6. 

4. PASSAGE TO THE LIMIT 

Lemmas 3.2 to 3.6 imply the existence of functions e, u, x, e such that, possibly taking 
subsequences, 

Be----> fJ weakly star in W1
•
00 (0, T; V') n 1 00 (0, T; L 2(n)), ( 4.1) 

Xe ----> X weakly star in W1
•
00 (0, T; L2(n)), (4.3) 

ee ----> ~ weakly star in 1 00 (0, T; L 2(n)) ( 4.4) 

as £ ~ 0. Moreover, it turns out that ( cf. (3.17) and (3.22)) 

c Xe ----> 0 strongly in H 1(0, T; H 1(n)) 
and weakly star in 1 00 (0, T; H 2(n)). ( 4.5) 

Thanks to ( 4.2), by standard compactness arguments, including the Aubin lemma (see, e.g., 
[10, p.58]), we deduce that 

Ue ----> u strongly in C0([0, T]; L 2(n)) n 1 2 (0, T; H 1
-

0(n))' for any 5 > 0. ( 4.6) 

In order to verify that the quadruple ( (), u, x, e) solves the problem (P), we note that the 
initial conditions (2.21) result easily from (2.40), (2.30), ( 4.1 ), and ( 4.3) ( cf. also Remark 2.3). 
In addition, due to (3.26) and (2.36), the properties (2.15) are satisfied. The relationship 
u = B-1 holds a.e. in Q by virtue of (2.35), ( 4.1 ), and ( 4.6). Indeed, Be Ue = 1 for any c > 
0 and Be: Ue ----> () u weakly in L1( Q) as c "\, 0. To complete the proof of (2.18) and to prove 
(2.19)-(2.20), we need to state some strong convergence for the sequence {xe}. 

Lemma 4.1. For £ ~ 0 I we have Xt:----> x strongly in C0 ([0, T]; L2(n)). (4.7) 

Proof. We multiply (2.38) by Xe - x and integrate in space and time. On account of 
(2.39)-(2.40) and (2.21), we obtain 

~ll(x.-x)(·,t)l1 2 + e fo'11vx.(-,r)l1 2 dr + fo'loe.(x.-x) 

= R.(t) + fa' lo ( s'(x.) - s'(x)) (x. - x) + fa' lo ( >.'(x.) - >.'(x)) u. (x. - x), ( 4.8) 

where 

R.(t) : = ~ llxo. - xo[[ 2 
- fa' lo (e t>x.) x + fa' lo (s'(x) + >.'(x)u. - Xt) (x. - x), 

for any t E [O, T] . Observe that 

et: (xe - x) ~ 0 a.e. in Q 
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because of (2.36), (2.1 ), and (2.15), 
ls'(xe:) - s'(x)I ::; lls"llL00 (0,l}!xe: - xl a.e. in Q 

because of (2.2), and 

ue:(.\'(xe:) - .\'(x)) (xe: - x) ::; O a.e. in Q 

because of (2.3) and (2.35). Therefore, it follows from ( 4.8) that 

( 4.9) 

with Cu= 2lls"llL=(o,1)/µ. But, owing to (2.30), (4.5), (4.3), and (4.6), Re:(t) tends to 
zero, as e ~ 0, for any t E [O, T], and llRe:llw1,oo(o,T) is bounded independently of e. Then, 
by compactness, 

llRe:llco([o,T]) ~ 0 as e ~ 0. 
On the other hand, ( 4.9) and Gron.wall's lemma yield 

2 
ll(Xe: - x) ( ·, t)ll ::; - llRe:llco([o,T]) exp( Cut), µ 

for any t E [O, T] . Thus ( 4. 7) is completely proved. D 

As a first consequence, ( 4. 7) and ( 4.4) imply that ee: Xe: ----+ ex weakly in L 1 ( Q) , whence ( cf. 
(2.36) and (2.1)) 

e(x,t)(x(x,t)-r) 2 0 VrE(0,1], fora.e. (x,t)EQ, 

that is, e E f3(x) a.e. in Q (one may see Remark 2.5). Also, using just the continuity of 
A', s' in [O, 1] and the Lebesgue dominated convergence theorem, from ( 4. 7) we deduce that, 
at least for subsequences, 

.\'(xe:)----+ .\'(x) and s'(xe:)----+ s'(x) a.e. in Q and strongly in LP(Q), 

for any p E [1, oo). ( 4.10) 
Thanks to ( 4.10) and ( 4.3)-( 4.6), a passage to the limit in (2.42) yields (2.20). It remains to 
show (2.19). Note that ( 4.6) (with 8 < 1/2) and (3.27) entail 

Ue:lr ----+ u1r strongly in LP(~), for any p E [1, oo). (4.11) 

Now, it suffices to recall (2.41), ( 4.1)-( 4.3), ( 4.10), (2.5), and (2.26) for realizing that (), x, u 
fulfil (2.19). This concludes the proof of Theorem 2.6. D 

Remark 4.2. Let us point out that the assumption (2.2) can be replaced by the weaker 
conditions 

.:\ E C1([0,1]), s E C1•1([0, 1]) ( =: W2•00 (0, 1)) , ( 4.12) 

without affecting the existence result. Indeed, in our argumentation we have only exploited 
the properties ( 4.12) and (2 .. 3) of ,:\ and s ( cf., in particular, Lemma 3.2 and Lemma 
4.1). However, in this setting one should take regularizing sequences {.\e:} and {se:} in the 
approximation procedure ( cf. Proposition 2. 7). 
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Remark 4.3. In the case when the initial datum Xo lies in H 1(f2), the solution component 
x belongs to L00 (0, T; H 1 (f2)), besides (2.14). This additional regularity can be proved by 
working on the inequality (3.10) written for Xt:. One checks that llXot:llH1(n) is bounded 
independently of e and makes use of ( 4.12), (2.3), (3.16), and (3.17), to estimate the right-
hand side, finally applying Gronwall's lemma. Observe also that this further a priori bound 
would allo~ to skip the details of Lemma 4.1, the convergence ( 4. 7) being easily established 
by compactness. 

5. REMARKS ON THE BOUNDARY CONDITION 

The boundary condition considered in our approach, 

ae 
- k an = a ( B - Br) in ~ , (5.1) 

is quite usual in the framework of the Fourier heat flux law. In fact, if one assumes that 
q = -k \l (), then ( 5.1) says that the heat flux is directly proportional to the difference 
between inside and outside temperatures at the boundary. But, if one takes another heat 
flux law, then the meaning of (5.1) is no longer the same. In our framework q is defined as 

_. = k\l (~) q () ' (5.2) 

so that ( 5.1) reads 

if· ii = ; ( B - Br) , 

and the rate factor has become a decreasing function of the absolute temperature, namely 
a/82 • In this connection, one could think of a general boundary condition of the form 

if· ii = a ( B )( 8 - Br) in ~ , (5.3) 

where q is prescribed once and for all by (5.2) and where a denotes some given fup.ction. 
Now, one expects that a is non-negative and possibly decr~asing. Some existence (and 
regularity) results have been shown for the regularized problem (Pt:) with (5.1) replaced by 
(5.3), for alternative choices of a. The case a(B) = a/B has been examined by Kenmochi 
and Niezg6dka in [7] and is particularly interesting, since it can be proved that there is a 
unique solution (cf. also the later Theorem 5.1). The model with the natural condi,tion 
a( B) = a (constant) is discussed in [5], but there the existence of solutions relies on the 
additional (and somehow unphysical) requirement that the source term g be non-negative. 
We also quote another investigation by Laurenc;ot, [9] dealing with the situation a( B) = 
a/Bm + 1 (with 0 < m < 1), though it came from (5.1) via the heat flux law q = k \1(1/Bm). 

Next, taking again (5.2) into consideration, we claim that our analysis of the actual problem 
(P), as well as the related existence result (i.e., Theorem 2.6), can be extended to functions 
a of the following type 

a(B)=;, p ~ 1, 

in the boundary condition (5.3). More precisely, arguing in terms of u = 1/B ( cf. (2.18)) 
and following the same technique, it is possible to treat the following set of conditions 

au - k - = '"V uP1 - r uP2 in ~ an ' ~ ' (5.4) 
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where the data r, ( : ~ ~ 1R and p1 , P2 E 1R satisfy ( cf. (2.5)-(2.6)) 

r E L00 (~), [ > 0 a.e. in ~, _!_ E L00 (~), 
' 

( E L00 (~), ( ~ 0 a.e. in~, 

!ti(t E L00 (~), 

(5.5) 

(5.6) 

(5.7) 

P1 ~ 1 , P2 ~ 0 , P1 > P2 . ( 5. 8) 

Note that (5.4) is a generalization of (5.1). Regarding the formulation, the variational 
equality (2.19) changes into 

( 8, (Co B - A (x)) ( ., t), v) = k in \7 u( · , t) · \7 v + frl r uP' - ( u"" )( · , t) v 

+(g(-,t),v) Vv E H1(fl), for a.e. t E (O,T), (5.9) 

and the approximating solution Ue needs to satisfy (5.4). The suitable modifications of the 
proof are left to the interested reader. 

Instead, we want to show here that in the case p1 = 1 , p2 = 0 a uniqueness result can 
be deduced for problem (P). This case corresponds to the choice made in [7] and has the 
advantage that the boundary condition is linear with respect to u. 

Theorem 5.1. Assume that (2.1), {2.3)-(2.4), (2. 7)-(2.9), (4.12), and {5.5)-(5. 7) hold. 
Let p1 = 1, p2 = 0, and consider the problem (P) with {2.19) replaced by (5.9). Then, 
there exists a unique weak solution. 

Proof. Suppose that there are two solutions ( B1 'X1) and ( 82 'x2). Take Ui and ei 'i = 
1, 2, as in (2.18), in order that (5.9) and (2.20) are satisfied. In view of (2.16), we set 

(5.10) 

First we integrate the difference of the two equations (5.9) from 0 to T E [O, T]. Thanks to 
(2.21) (same initial values for both solutions), we obtain 

= k in \7 ;: ( U1 - U2 )( · , t) dt · \7 V + fr ;: ( f ( U1 - U2)) ( · , t) dt V , ( 5 .11) 

for any v E H 1(fl). Next, we choose v = (u1 - u 2 ) ( ·, r) as test function in (5.11). Since 

(B B )( ) - lu1 -u2!2 > lu1 -u2!2 . Q - 1 - 2 u1 - u2 - _ a.e. 1n , 
U1 U2 M 2 

because of (2.18), (2.15), and (5.10), accounting also for (5.5) and (4.12), from (5.11) we 
infer that 
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+ £ 2,/, r) Or I{ (1(u1 - u2)) ( ·, t) dtl
2 

< ll-"1 llL 00 (0,1) ll(x1-x2)(·,r)ll ll(u1-u2)(·,r)ll VrE [O,T]. (5.12) 
On the other hand, due to (2.15), (2.18), and to the monotonicity of the graph f3, we have 

µ (X1 - X2)t (X1 - X2) ::; ( s'(xi) - s'(x2)) (X1 - X2) 

+ (-"'(x1) - -"'(x2)) U1 (x1 - x2) + ,,\'(x2) (u1 - u2) (x1 - X2), 
with ( cf. (2.3)) 

(-"'(x1)- A1(x2)) ui(x1 - X2) ::; 0 
· a.e. in Q. Hence, integrating over n and recalling ( 4.12) again, we easily find that 

~ 8Tll(x1 - X2) (-, r)ll 2 ::; lls"llL00 (0,1) ll(x1 - x2)( ·, r)ll 2 

+ !IA'llL00 (0,1) ll(u1 - u2) ( ·, r)ll ll(x1 - X2) ( ·, r)ll for a.e. TE (0, T). (5.13) 

Therefore, adding (5.12) and (5.13), integrating in time, and setting 

S(t): = ~2 fo' ll(u1 - u2)( ·, r)ll 2 dr + ~ llv fo\u1 - u2)( ·, r) drll
2 

+ £ 21/, t) Ila' ( 1(u1 - u2)) (-, r) drl
2 

+ ~ ll(x1 - x2)( ·, t)ll 2, 

we see that 

S(t) s - la'£ ~r·: ;; 21( ~' r) If ( 1(u1 - u2)) (.,er) dcrl
2 

dr 

+ lls"llL 00 (0,1) la' II (x1 - X2) ( ·, T )11 2 dr 

+ 2 lfA' lfL00 co.1) la' II( U1 - u2)(. 'T) 1111 (x1 - x2)(. 'T) II dr ' 

for any t E (0, T]. Using Young's inequality, with the help of (5~5) and (5.7) we deduce that 

S(t) s c12 fo' S( T) dr Vt E [D, T]' (5.14) 

where 012 depends only on µ, M, !IA'llLoo(o,1), lls"llLoo(o,1) and ll1t/1llLoo(E). Now, (5.14) 
and Gronwall's lemma imply that S(t) = 0 for any t E (0, T], whence u 1 = u 2 , x1 = x2 , 

and the uniqueness result is completely proved. D 

Remark 5.2. Under the assumptions of Theorem 5.1. the convergence properties stated 
in ( 4.i )-( 4. 7) are valid for the whole sequence {(Be' Ue) Xe 'ee )}, and not only for some 
subsequence. At the same time, the uniqueness result implies that there are no other solutions 
to the relaxed Stefan problem (P) besides the one which arises as limit for c ~ 0 of 
solutions to the Penrose-Fife ~ystem (P e). In this sense, the relaxed Stefan problem (P) is 
the natural asymptotic limit of the Penrose-Fife model if the contribution of the interfacial 
energy density to the total free energy density tends to zero. 

17 



REFERENCES 

[1] H. W. Alt and I. Pawlow, Ezistence of solutions for non-isothermal phase separation, Adv. Math. Sci. 
Appl. 1 (1992), 319-409. 

[2] H. Amann, N onhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, to 
appear fo "Function spaces, differential operators and nonlinear analysis", H. Triebel and H. J. Schmeisser 
eds., Teubner, Stuttgart, 1993. 

[3] V. Barbu, "Nonlinear semigroups and differential equations in Banach spaces", Noordhoff International 
Publishing, Leyden, 1976. 

[4] M. Fremond and A. Visintin, Dissipation dans le changement de phase. Surfusion. Changement de phase 
irreversible, C. R. Acad. Sci. Paris Ser. II Mee. Phys. Chim. Sci. Univers Sci. Terre 301 (1985), 1265-
1268. 

[5] W. Horn, Ph. Laurenc;ot, and J. Sprekels, Global solutions to a Penrose-Fife phase-field model under 
fiuz boundary conditions for the inverse temperature, submitted. 

[6] W. Horn, J. Sprekels, and S. Zheng, Global ezistence of smooth solutions to the Penrose-Fife model for 
Ising ferromagnets, submitted. 

[7) N. Kenmochi and M. Niezg6dka, Systems of nonlinear parabolic equations for phase change problems, 
Tech. Report Math. Sci. Chiba University 9, No. 2, Chiba, Japan 1993. 

[8) Ph. Laurenc;ot, Solutions to a Penrose-Fife model of phase-field type, J. Math. Anal. Appl., to appear. 
[9] Ph. Laurenc;ot, Weak solutions to a Penrose-Fife model for phase transitions, Adv. Math. Sci. Appl., to 

appear. 
[10] J. L. Lions, "Quelques methodes de resolution des problemes aux limites non lineaires", Dun9d 

Gauthier-Villars, Paris, 1969. 
[11] J. L. Lions, "Perturbations singulieres clans les problemes aux limites et en controle optimal", Springer, 

Berlin, 1973. 
[12] 0. Penrose and P. C. Fife, Thermodynamically consistent models of phase field type, Physica D 43 

(1990), 44-62. 
[13] J. Sprekels and S. Zheng, Global smooth solutions to a thermodynamically consistent model of phase-field 

type in higher space dimensions, J. Math. Anal. Appl. 176 (1993), 200-223. 
[14] S. Zheng, Global ezistence for a thermodynamically consistent model of phase field type, Differential 

Integral Equations 5 (1992), 241-253. 

18 



Recent publications of the 
Institut fiir Angewandte Analysis und Stochastik 

Preprints 1993 

75. Annegret Glitzky, Konrad Groger, Rolf Hunlich: Rothe's method for equa-
tions modelling transport of dopants in semiconductors. 

76. Wolfgang Dahmen, Bernd Kleemann, Siegfried ProBdorf, Reinhold Schne~
der: A multiscale method for the double layer potential equation on a poly-
hedron. 

77. Hans-Gunter Bothe: Attractors of non invertible maps. 

78. Grigori Milstein, Michael Nussbaum: Autoregression approximation of a 
nonparametric diffusion model. 

Preprints 1994 

79. Anton Bovier, Veronique Gayrard, Pierre Picco: Gibbs states of the Hop:field 
model in the regime of perfect memory. 

80. Roland Duduchava, Siegfried ProBdorf: On the approximation of singular 
integral equations by equations with smooth kernels. 

81. Klaus Fleischmann, Jean-Fran~ois Le Gall: A new approach to the single 
point catalytic super-Brownian motion. 

82. Anton Bovier, Jean-Michel Ghez: Remarks on the spectral properties of 
tight binding and Kronig-Penney models with substitution sequences. 

83. Klaus Matthes, Rainer Siegmund-Schultze, Anton Wakolbinger: Recurrence 
of ancestral lines and offspring trees in time stationary branching popula-
tions. 

84. Karmeshu, Henri Schurz: Moment evolution of the outflow-rate from non-
linear conceptual reservoirs. 

85. Wolfdietrich Muller, Klaus R. Schneider: Feedback stabilization of nonlinear 
discrete-time systems. 

86. Gennadii A. Leonov: A method of constructing of dynamical systems with 
bounded nonperiodic trajectories. 

87. Gennadii A. Leonov: Pendulum with positive and negative dry friction. Con-
tinuum of homoclinic orbits. 



88. Reiner Lauterbach, Jan A. Sanders: Bifurcation analysis for spherically sym-
metric systems using invariant theory. 

89. Milan Kucera: Stability of bifurcating periodic solutions of differential in-
equalities in IR3. 

90. Peter Knabner, Cornelius J. van Duijn, Sabine Hengst: An analysis of crystal 
dissolution fronts in flows through porous media Part I: Homogeneous charge 
distribution. 

91. Werner Horn, Philippe Lauren~ot, Jurgen Sprekels: Global solutions to a 
Penrose-Fife phase-field model under flux boundary conditions for the in-
verse temperature. 

92. Oleg V. Lepskii, Vladimir G. Spokoiny: Local adaptivity to inhomogeneous 
smoothness. 1. Resolution level. 

93. Wolfgang Wagner: A functional law of large numbers for Boltzmann type 
stochastic particle systems. 

94. Hermann Haaf: Existence of periodic travelling waves to reaction-diffusion 
equations with excitable-oscillatory kinetics. 

95. Anton Bovier, Veronique Gayrard, Pierre Picco: Large deviation principles 
for the Hopfield model and the Kac-Hopfield model. 

96. Wolfgang Wagner: Approximation of the Boltzmann equation by discrete 
velocity models. 

97. Anton Bovier, Veronique Gayrard, Pierre Picco: Gibbs states of the Hopfield 
model with extensively many patterns. 

98. Lev D. Pustyl'nikov, Jorg Schmeling: On some estimations of Weyl sums. 

99. Michael H. Neumann: Spectral density estimation via nonlinear wavelet 
methods for stationary non-Gaussian time series. 

100. Karmeshu, Henri Schurz: Effects of distributed delays on the stability of 
structures under seismic excitation and multiplicative noise. 

101. Jorg Schmeling: Estimates of Weyl sums over subsequences of natural num-
bers. 

102. Grigori N. Milstein, Michael V. Tret'yakov: Mean-square approximation for 
stochastic differential equations with small noises. 

103. Valentin Konakov: On convergence rates of suprema in the presence of non-
negligible trends. 


