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Abstract. We consider the two dimensional inverse scattering problem of determining asound-hard obstacle by the far �eld pattern. We establish the uniqueness within the classof polygonal domains by a single incoming plane wave.x1. Introduction and the main result.Let D � R2 be a bounded domain such that R2 nD is connected, and let k > 0 be thewave number. We consider scattering by the sound-hard obstacle D:(1.1) �u+ k2u = 0 in R2 nD; @�u = 0 on @D;(1.2) u = ui + us; ui(x) = exp(ikx � d); d 2 S1 � fx 2 R2 ; jxj = 1g;and(1.3) limjxj!1pjxj(@jxjus(x)� ikus(x)) = 0:Here we set i = p�1, and d 2 S1 is the direction of the incoming plane wave exp(ikx�d).Throughout this paper, we exclusively assume that an obstacle D under considerationis a polygonal domain, that is, the boundary @D is composed of �nitely many opensegments and points (i.e., vertices).Let k > 0 and d 2 S1 be arbitrarily �xed. There exists a unique solution u(x) =u(D)(x) 2 H1loc(R2 nD) to (1.1) - (1.3) (e.g., Chapter 9 in McLean [17]), and u(D) issmooth on any compact set in R2 nD. Moreover, its far �eld pattern u1(D) is de�nedby(1.4) us(D)(x) = jxj�1=2 exp(ikjxj)fu1(D)(x=jxj) + O(jxj�1)g as jxj �! 1(e.g., Colton and Kress [6]). There is a vast literature on acoustic and electromagneticscattering problems, and we refer the reader to Colton, Coyle and Monk [5], Colton andKress [6], Kirsch [13], Lax and Phillips [15], Potthast [19], for example. In this paper,we will discuss the uniqueness inInverse scattering problem with sound-hard obstacles. Let D1; D2 be boundedpolygonal domains such that R2 nD1 and R2 nD2 are connected. Does(1.5) u1(D1)(x) = u1(D2)(x); x 2 S1imply D1 = D2?Now we state our uniqueness result.Theorem. Let k > 0 and d 2 S1 be arbitrarily �xed. Then (1.5) implies D1 = D2.Cheng and Yamamoto [3] proved the uniqueness by two incoming plane waves underan extra \non-trapping" condition, which could be removed in Elschner and Yamamoto[10]. A similar uniqueness result for the impedance boundary condition was obtained inCheng and Yamamoto [4]. The above theorem asserts that we need not change incomingTypeset by AMS-TEX1



2directions, so that a single choice of d 2 S1 already yields the uniqueness in the inverseNeumann problem. Earlier results in the sound-hard case concern the uniqueness forgeneral C2-domains and in�nitely many incident waves (see Theorem 5.6 in Colton andKress [6]) and the uniqueness for balls with a single incident direction (Yun [22]).In the case of sound-soft obstacles where the boundary condition on @D is replacedby u = 0, Alessandrini and Rondi [1] recently proved that the far �eld pattern for asingle incident direction determines polygonal (and even polyhedral) domains uniquely.Further uniqueness results for the inverse Dirichlet problem in general domains can befound in [6, Theorems 5.1 and 5.2], Colton and Sleeman [7], Kirsch and Kress [14], Liu[16], Sleeman [21]. Moreover, see Chapter 6 in Isakov [12], and Isakov [11], Rondi [20].The proof of our uniqueness result is carried out in Section 3 and combines argu-ments in Cheng and Yamamoto [3] with an idea similar to the proof of Lemma 3.7 inAlessandrini and Rondi [1]. Section 2 is devoted to a sequence of preliminary results,which are needed in the proof of the theorem and are partly taken from [3].x2. Preliminaries.Henceforth, for two distinct points P;Q 2 R2 , let PQ denote the (non-empty) opensegment with the boundary points P and Q. Moreover, for a polygonal domain D anda segment PQ 2 R2 nD with Q 2 @D, by \(PQ; @D) we denote the least angle amongthe two angles in R2 n D formed by PQ and @D at Q. We note that the polygonaldomains under consideration are always the complements of unbounded domains.Lemma 1. Let 
 � R2 be a polygonal domain, and let OA be one of its sides suchthat 
 is located at one side of OA. Let � be the symmetric transform in R2 withrespect to the extended straight line of OA. Let v 2 H1(
) satisfy @�v = 0 on OA and�v + k2v = 0 in 
. We setV (x1; x2) = � v(x1; x2); (x1; x2) 2 
;v(�(x1; x2)); (x1; x2) 2 �(
):Then V 2 H1(
 [ �(
) [ OA) and �V + k2V = 0 in 
 [ �(
) [ OA. Moreover if@�v = 0 on any other side BC of @
, then @�v = 0 on �(BC).The proof is directly done by the de�nition of H1-solutions and the even extensionof v with respect to OA.Lemma 2. Let u satisfy (1.1) - (1.3). Then there do not exist two in�nite straighthalf-lines L1; L2 2 R2 nD such that L1; L2 are not parallel and @�u = 0 on L1 [ L2.Proof of Lemma 2. We set us(x) = u(x)� exp(ikx � d). Then we can provelimjxj!1 jrus(x)j = 0(e.g., Lemma 9 in Cheng and Yamamoto [3]). Now assume contrarily that there existsuch non-parallel in�nite straight half-lines L1; L2 2 R2 nD. Without loss of generality,we can set L1 = f(x1; �1x1);x1 > 0g and L2 = f(x1; �2x1);x1 > 0g with �1 6= �2.Therefore by @�u = 0 on L1 [ L2, we obtainlimjxj!1;x2Lj j@� exp(ikx � d)j = 0; j = 1; 2:



3That is, limjxj!1;x2Lj ����ik�d � ���j1 �� exp(ikx � d)���� = 0; j = 1; 2:Hence, since k 6= 0, we have d � ���j1 � = 0; j = 1; 2:Since �1 6= �2 and jdj = 1, this is impossible. Thus the proof of Lemma 2 is complete.Lemma 3. Let E � R2 be a domain and let v 2 H1loc(E) satisfy �v + k2v = 0 in E.Let L0 � L � E be two segments. Then @�v = 0 on L0 implies @�v = 0 on L.This follows easily from the fact that the solution v to the homogeneous Helmholtzequation is real analytic in E (e.g., [6]).We will further state two lemmas, which are proved similarly to Lemmas 6 and 7 inCheng and Yamamoto [3]. We omit the proofs.Lemma 4. Let A = ("; 0), O = (0; 0), B = (" cos �; " sin �), E = fx 2 R2 ; 0 < argx <�; jxj < "g for " > 0 and 0 < � < 2�. We take P 2 E and set � = \AOP 2 (0; �). Weassume that(2.1) �� 62 Q :Moreover, let bE � R2 be an unbounded domain such that E � bE. If v 2 H1loc( bE)satis�es(2.2) �v + k2v = 0 in bE(2.3) @�v = 0 on OA [OB(2.4) @�v = 0 on OP;then v(x)� exp(ikx � d) does not satisfy the Sommerfeld radiation condition (1.3).Lemma 5. Let the sector E and the points A, B, O be de�ned as in Lemma 4, and letP 2 E and � = \AOP 2 (0; �). Let v 2 H1(E) satisfy (2.2) - (2.4) and let us assumethat �� = nm 2 Q ;where m;n 2 N, 1 � n � m � 1, and the greatest common divisor of m and n is one.Then:(i) There exist m � 1 points P j 2 E, 1 � j � m � 1, such that \AOP j = jm� and@�v = 0 on OP j.(ii) There exists a point Q 2 E such that \AOP = \BOQ and @�v = 0 on OQ.By �2(
) we denote the second smallest eigenvalue of �� in a bounded domain
 with the homogeneous Neumann boundary condition. We note that the smallesteigenvalue is always 0. Now we derive a lower bound for �2(
) for a triangular domain
. Henceforth 4PQR denotes the interior of the triangle with the vertices P;Q;R(which are assumed to be not collinear).



4Lemma 6. Let diam (4PQR) = maxfjPQj; jPRj; jQRjg. Then there exists an abso-lute constant c0 > 0 such that�2(4PQR) � c0jdiam (4PQR)j2for an arbitrary triangle 4PQR.The lower estimate is related with the constant in the Poincar�e inequality, and thereare many papers on this topic. Two relevant papers are Payne and Weinberger [18] andBebendorf [2], where an explicit expression for the constant c0 is given for a generalconvex domain, and a gap in the proof in [18] is �xed in [2]. For completeness, wewill give an easy proof for triangles which does not specify the contant c0 > 0, but issuÆcient for our purpose.Proof of Lemma 6. Without loss of generality, let PQ be the longest side, andwe choose P as the origin O = (0; 0) and take the x1x2-coordinates such that Q =(q; 0) with q > 0 and R = (r; h) with h > 0. Since PQ is the longest side, we havediam (4PQR) = q and 0 � r � q. In fact, if r > q, then jPRj = pr2 + h2 > q, whichis impossible because diam (4PQR) = q.By the maximum-minimum principle (e.g., Courant and Hilbert [8]), we have�2(4PQR) = inf(R4PQR���� @u@x1 ���2 + ��� @u@x2 ���2� dx1dx2R4PQR u2dx1dx2 ;u 6= 0;2 H1(4PQR); Z4PQR udx1dx2 = 0):Introducing the new independent variables y1 = x1=q and y2 = x2=h, we set v(y1; y2) =u(x1; x2), Q1 = (1; 0), R1 = (�; 1), � = r=q 2 [0; 1]. Then, by q2h2 � 1 and the maximum-minimum principle, we obtain�2(4PQR) = 1q2 inf(R4OQ1R1 ���� @v@y1 ���2 + q2h2 ��� @v@y2 ���2� dy1dy2R4OQ1R1 v2dy1dy2 ;v 6= 0;2 H1(4OQ1R1); Z4OQ1R1 vdy1dy2 = 0)� 1q2 inf(R4OQ1R1 ���� @v@y1 ���2 + ��� @v@y2 ���2� dy1dy2R4OQ1R1 v2dy1dy2 ;v 6= 0;2 H1(4OQ1R1); Z4OQ1R1 vdy1dy2 = 0)= 1q2�2(4OQ1R1):



5Since 4OQ1R1 is parametrized by � 2 [0; 1], we denote �2(4OQ1R1) by �2(�). ByCourant and Hilbert [8, Chapter VI.2.6], we see that �2(�) is a continuous function in� and �2(�) > 0 for � 2 [0; 1]. Therefore c0 � min0���1 �2(�) > 0, which completes theproof of Lemma 6.We conclude this section with the following fundamental property of a connected set;see Theorem 3.19.9 in Dieudonn�e [9, p.70] for the proof.Lemma 7. Let E be a metric space, A � E a subset, B � E a connected set such thatA \B 6= ; and (E nA) \ B 6= ;. Then @A \B 6= ;.x3. Proof of Theorem.First Step. Assume contrarily that D1 6= D2. For simplicity, we setuj = u(Dj); j = 1; 2:By the Rellich theorem (e.g., Lemma 2.11 in [6]), we see from u1(D1) � u1(D2) that(e.g., Theorem 2.13 in [6])(3.1) u1 = u2 in the unbounded connected component of R2 n (D1 [D2);which is denoted by 
. Moreover, we note that if @
 � D1[D2, then D1 = D2 = R2 n
.This follows from the fact that both R2 n D1 and R2 n D2 are connected. Indeed, weobviously have 
 � R2 n (D1 [D2) � R2 nDj , j = 1; 2, and if there exists xj 2 R2 nDjsuch that xj 62 
, we obtain @
 \ (R2 nDj) 6= ; by Lemma 7.Hence, by D1 6= D2, there exists an open segment PQ which is on @
\ (R2 nD1) oron @
 \ (R2 nD2). Without loss of generality, we may assume the former case and so(3.2) there is an open segment PQ � @
 \ (R2 nD1) with @�u1 = 0 on PQ;in view of (3.1) and @�u2 = 0 on @D2. Then, by Lemma 3, we have @�u1 = 0 on themaximum extension of PQ, provided that the extension is in R2 nD1.Henceforth we set(3.3) 8>>>><>>>>:G1 = fS; S is a �nite open segment extended to maximum lengthin R2 nD1 such that @�u1 = 0 on Sg;G2 = fS; S is an in�nite open segment in R2 nD1 such that@�u1 = 0 on Sg:We now prove the following crucialLemma 8. The set G1 is non-empty and consists of �nitely many segments.Proof of Lemma 8. If the segment PQ from (3.2) cannot be extended to an in�nitehalf-line in R2 n D1, then Lemma 3 implies that the extension of PQ is in G1, henceG1 6= ;.If PQ can be extended to an in�nite open segment in R2 n D1, then by PQ � @
 \(R2 nD1), it follows that there exists a vertex R of @
 such that R 2 R2 nD1. In fact,any side of @
 is a �nite segment, and so the side containing PQ has to be separatedfrom the in�nite extended line of PQ at some point R. Then R is a vertex of @
.



6 Hence there exists another point R1 such that the segment RR1 � @
\ (R2 nD1) isnot parallel to PQ, and by (3.1) and @�u2 = 0 on @D2, we have @�u1 = 0 on RR1. IfRR1 can be extended to an in�nite open segment in R2 nD1, then Lemma 3 yields twonon-parallel in�nite half-lines in R2 nD1 where @�u1 = 0. This contradicts Lemma 2.Consequently, RR1 cannot be extended to an in�nite open segment in R2 nD1, so thatG1 6= ;.Next we will prove the �niteness of G1. The proof is similar to [3]. Assume on thecontrary that G1 contains in�nitely many segments. Then we can choose sequences ofpoints fPjgj2N and fQjgj2N such that(3.4) Pj 6= Pj0 if j 6= j0; Pj ; Qj 2 @D1; PjQj 2 R2 nD1and(3.5) @�u1 = 0 on PjQj ; j 2 N .Here we note that fQjgj2N may not be mutually distinct.Since the length of the curve @D1 is �nite and Pj 6= Pj0 if j 6= j0, we can choosesubsequences fPjgj2N and fQjgj2N, which are denoted by the same letters, such that(3.6) limj!1Pj = P1; limj!1Qj = Q1:Without loss of generality, by further taking subsequences of fPjgj2N and fQjgj2N, wemay assume thatPj , Qj , j 2 N , are located at one side of P1, Q1 respectivelyand Pj are not vertices of D1.(3.7)Then we note that(3.8) PjPj+1; QjQj+1 � @D1 for suÆciently large j 2 N :Moreover, we can verify that(3.9) \(QjPj ; @D1)� 6= 12 ;2 Q ; j 2 N ;provided that we extract subsequences if necessary.In fact, let \(QjPj ;@D1)� 62 Q for some j 2 N . Then, by Lemma 4, the scattered �eldu1(x)� exp(ikx � d) cannot satisfy (1.3), which is a contradiction. Next let us assumewithout loss of generality that \(QmPm;@D1)� = �2 for m 2 N. Then, since @�u1 = 0 onPmQm for m 2 N , and limm!1 jPm+1Pmj = 0, we repeat applications of Lemma 1 withrespect to the symmetry axes PmQm, m 2 N , so that we can prove the following: Thereis a family f`jgj2N of segments with @�u1 = 0 on `j , `j k PmQm for all j;m 2 N , andsuch that [j2N`j is dense in the set U � fP ; jPP1j < Æg \ (R2 nD1) with suÆcientlysmall Æ > 0. Since the Laplace operator is invariant with respect to a rotation, we maytake `j , j 2 N , parallel to the x2-axis, and may assume that, near P1, the boundary



7@D1 is on the x1-axis. Then j@�u1j = ���@u1@x1 ��� = 0 on `j for all j 2 N . Hence, since @u1@x1is continuous in R2 n D1, we have that @u1@x1 = 0 in the open set U � R2 n D1 de�nedabove. Since ��@u1@x1 � + k2 �@u1@x1 � = 0 in U , by the classical unique continuation, wethen see that u1(x1; x2) = v(x2) for (x1; x2) 2 R2 n D1. Moreover, from (1.2) weobtain @v@x2 (0) = 0. Therefore, by (1.1), v(x2) = � cos kx2 for some � 2 C . On theother hand, condition (1.4) yields that limjxj!1 ju1(x1; x2)� exp(ikx � d)j = 0, that is,limjxj!1 j� cos kx2 � exp(ikx � d)j = 0. In particular, we can set x = �x1; �2k � and letx1 ! 1. Then limx1!1 ��exp �ik �x1d1 + �2kd2���� = 0, which is impossible. Thus theproof of (3.9) is complete.By [3], under condition (3.9), we can construct triangles 4PjPj+1Rj � R2 n D1,j 2 N , which satisfy(3.10) �u1 + k2u1 = 0 in 4PjPj+1Rj ;(3.11) @�u1 = 0 on @(4PjPj+1Rj)and(3.12) limj!1 diam (4PjPj+1Rj) = 0:For completeness, we will give the construction of the triangles at the end of the proofof Lemma 8.Then we can yield a contradiction as follows, which completes the proof of Lemma8. If u1 identically vanishes in 4PjPj+1Rj for some j 2 N , then the classical uniquecontinuation yields that u1 = 0 in R2 n D1. On the other hand, (1.4) means thatlimjxj!1 ju1(x1; x2)�exp(ikx �d)j = 0, which is not compatible with u1 � 0. Thereforeu1 does not vanish identically in 4PjPj+1Rj for any j 2 N. Hence k2 > 0 is aneigenvalue of �� in 4PjPj+1Rj with the homogeneous Neumann boundary condition.By Lemma 6, we have�2(4PjPj+1Rj) � c0jdiam (4PjPj+1Rj)j�2;where c0 > 0 does not depend on j. In terms of (3.12), we then obtain(3.13) limj!1 �2(4PjPj+1Rj) =1:Since k 6= 0 and �2(4PjPj+1Rj) is the smallest positive eigenvalue of �� with theboundary condition @�u = 0, we see that k2 � �2(4PjPj+1Rj), j 2 N , in terms of(3.10) and (3.11). This is impossible by (3.13). To complete the proof of Lemma 8, wenow giveConstruction of 4PjPj+1Rj satisfying (3.10) - (3.12).We consider the following two cases separately.Case a. P1 = Q1.Case b. P1 6= Q1.



8 Case a. By extracting a subsequence if necessary, we can assume that Qj 6= Qj0 ifj 6= j0. Otherwise Qj = Q1 for j 2 N , which is impossible because PjP1 = PjQj �R2 n D1. By Qj 6= Qj0 if j 6= j0, we may assume that Qj are not vertices of @D1,by extracting a subsequence if necessary. Hence, by (3.7) and (3.8), we have PjP1,QjQ1 � @D1. Hence, since PjQj � R2 nD1 by (3.4), we see that the three points Pj ,Qj , P1 are not collinear, that is, they form a triangle. Moreover 4PjQjP1 � R2 nD1.Therefore, setting Rj = P1 for j 2 N , we see that 4PjQjP1 satis�es (3.10), (3.11)and (3.12). In fact, (3.10) and (3.11) are straightforward from (3.4) - (3.6). Finally,since limj!1 jPjP1j = limj!1 jQjP1j = 0 by (3.6), the lengths of all the sides of4PjQjP1 tend to 0 as j !1, so that (3.12) follows.Case b. Let L be the side of D1 including P1Pj , j 2 N . With (3.6) and (3.7), byfurther taking subsequences, we can assume that(3.14) jPjP1j and jQjQ1j are monotonically decreasing in j 2 N .In terms of (3.6), if we choose the minor angle or the major angle suitably, then(3.15) limj!1\(QjPj ; L) = \(Q1P1; L):By (3.9), there exist mj ; nj 2 N such that the greatest common divisor of mj and nj isone, nj=mj 6= 1=2, 1 � nj � mj � 1 and(3.16) \(QjPj ; L) = njmj �; j 2 N :In view of (3.15), the sequence nj=mj , j 2 N , converges. We have the two cases:Case b-(i). supj2Nmj =1.Case b-(ii). supj2Nmj <1.Case b-(i). We choose a subsequence if necessary, so that mj > 2 and mj !1 asj !1 . Since D1 is a polygon, we can choose a point A such that 4P1AP1 � R2 nD1.Henceforth j 2 N are arbitrary but suÆciently large. We can apply Lemma 5 twice,choosing (O;A;B; P ) = (Pj ; P1; P1; Qj), (Pj+1; P1; P1; Qj+1). Then there exist pointsRj 2 R2 n D1 such that \RjPj+1Pj = 1mj+1�, \RjPjPj+1 = 1mj � and @�u1 = 0 onRjPj+1 [ RjPj . Since PjPj+1 � P1P1 and \RjPj+1Pj ! 0, \RjPjPj+1 ! 0 asj ! 1, we see that 4PjPj+1Rj � 4P1AP1 � R2 n D1 for large j 2 N . Therefore(3.10) and (3.11) follow. Since \RjPjPj+1 ! 0 and \RjPj+1Pj ! 0 as j !1, we seethat PjPj+1 is the longest side for large j. Therefore (3.12) also follows.Case b - (ii). If necessary, we can again choose subsequences, so that we can assumethat for some m;n 2 N ,(3.17) \(QjPj ; L) = nm�; j 2 N ; nm 6= 12in terms of (3.9) and (3.15).In this case, PjQjQj+1Pj+1 forms a quadrilateral, because PjQj k Pj+1Qj+1. Hence-forth PjQjQj+1Pj+1 means the interior of the quadrilateral. Then we can prove that,for all j suÆciently large,(3.18) PjQjQj+1Pj+1 � R2 nD1:



9In fact, we may assume that Pj and Qj are on one side of the polygonal boundary @D1respectively. Then the trapezoidal domain Tj = PjQjQ1P1 lies entirely in R2 nD1 ifj is large enough. This follows from the fact that Tj cannot contain an open segmentof @D1 with one end point on the closed segment P1Q1. Otherwise P1Q1 cannot beapproached by the segments PmQm � R2 nD1 as m!1. Thus (3.18) follows.Let Lj be the in�nite half-line starting at Pj such that Lj is not parallel to PjQj andthe angle between Lj and L is nm�. Since \(QjPj ; @D1) = nm�; 6= �2 by (3.9), such astraight line Lj exists. Then Lj+1, PjPj+1 and the half-line passing Qj and starting atPj , or Lj, PjPj+1 and the half-line passing Qj+1 and starting at Pj+1 form a triangle4PjPj+1Rj . By (3.6) and P1 6= Q1, we have(3.19) infj2N jPjQj j > 0:Moreover, we see that \RjPj+1Pj = \RjPjPj+1 = nm�, so that jPjRj j = jPj+1Rjj and(3.20) limj!1 jPjRj j = limj!1 jPjPj+1j2 �cos nm���1 = 0by limj!1 jPjPj+1j = 0.It follows from (3.19) and (3.20) that Rj is on the segment PjQj or Pj+1Qj+1.Therefore (3.18) implies that 4PjPj+1Rj � R2 n D1, j 2 N . Then Lemma 5 yields@�u1 = 0 on Pj+1Rj , and so (3.10) and (3.11) follow. Finally, by (3.6) and (3.20),condition (3.12) is seen. Thus the construction of 4PjPj+1Rj satisfying (3.10) - (3.12)is complete.Second Step. In this step, we will prove that the set G2 de�ned in (3.3) is not empty.More precisely, we will �nd an in�nite straight half-line � such that � � R2 nD1 and@�u1 = 0 on �. We will use an idea similar to the proof of Lemma 3.7 in Alessandriniand Rondi [1]. By Lemma 8, we can set G1 = fS1; :::; SNg, where Sj , 1 � j � N , are�nite segments. We note that, recalling (3.3),Sj � R2 nD1, the both end points are on @D1 and@�u1 = 0 on Sj , 1 � j � N .(3.21)Let 
1 be the unbounded connected component of (R2 nD1) n [Nj=1Sj . Note thatthe latter set has only one unbounded component since its boundary is a bounded set.In fact, outside a suÆciently large disk, there cannot be a continuous curve connectingpoints from two di�erent components, which would intersect the boundary of (R2 nD1)n[Nj=1Sj in view of Lemma 7.We obviously have(3.22) 
1 \ N[j=1Sj = ;:Choose a point P 2 @
1 lying on a segment S of G1. We note that P 2 R2 nD1. LetG+ be the unbounded connected component of (R2 nD1)nS, and let G� be its boundedconnected component. Here the bounded component G� is also uniquely determined.



10In fact, the segment S cannot divide the connected open set R2 nD1 into more than twoconnected components; compare the �rst steps in the proof of Jordan's curve theoremin [9, Chap. 9, Appendix 4].Let � be the symmetric transform with respect to the extended straight line eS ofS, and let us de�ne E+ as the connneced component of G+ \ �(G�) and E� as theconnected component ofG�\�(G+) whose closures contain P . We set E = E+[E�[S.Then @E consists of segments of @D1, �(@D1) and their end points, and since u1 issymmetric with respect to eS, by Lemma 1 we have @�u1 = 0 on @E. Since G� isbounded and E+ = �(E�), we see that E+ is also bounded. Therefore, since 
1 isthe complement of some closed bounded connected set, it follows that R2 nE+ and 
1contain fx; jxj > �g for suÆciently large � > 0, that is, (R2 nE+) \ 
1 6= ;.Moreover, we have E+ \ 
1 6= ;. In fact, for suÆciently small " > 0, we see thatB"(P ) � fx 2 R2 ; jx�P j < "g\E+ 6= ; by the de�nition of E+, because P 2 S � @G�and � is the symmetric transform with respect to eS. Furthermore, by P 2 @
1, wehave B"(P ) \ 
1 6= ;.Consequently, by Lemma 7, we obtain(3.23) @E+ \ 
1 6= ;:Moreover, since @E+ is composed of �nitely many segments and points, there exists anopen segment ` � 
1 \ @E+ such that @�u1 = 0 on `. Henceforth by a ray we meanan in�nite open straight half-line. Using Lemma 3 and (3.22), it is now easy to see thatthe segment ` can be extended to a ray � � R2 nD1 belonging to the set G2. In fact,assume contrarily that the extension of ` to maximum length in R2 nD1 belongs to G1,so that ` � [Nj=1Sj . Then ` � 
1 \ ([Nj=1Sj), which contradicts (3.22).Third Step. In this step, we will �nd a ray �1 2 G2 which is not parallel to �.Case 1. Let the ray � � ` lie entirely in 
1. Then, since @E+ is bounded andforms the boundary of a polygonal domain, there exist a point P0 2 � and a segment`0 � 
1 \ @E+ starting at P0, which is not on �. Again, by Lemma 3 and (3.22), theextension �1 of `0 belongs to G2. Note that �1 is not parallel to �.Case 2. Let � 6� 
1. Then there exists an intersection point of the ray � with[Nj=1Sj . Since G1 consists of �nitely many segments, the set of the intersection pointsof � and [Nj=1Sj is also �nite. Hence there is a "last" intersection point P0, so thatthe subray �0 � � starting at P0 lies entirely in 
1. In fact, �0 \ [Nj=1Sj = ;, andso �0 � (R2 n D1) n [Nj=1Sj . Since 
1 is the unbounded connected component of(R2 nD1) n [Nj=1Sj , we have that �0 � 
1. Let S0 2 G1 be a segment with P0 2 S0.We now repeat the re
ection argument in the second step with S0 in place of S,and obtain the corresponding bounded polygonal domains: E�0 , E+0 = �0(E�0 ) andE0 = E�0 [E+0 [S0, where �0 is the symmetric transform with respect to the extendedstraight line of S0. Arguing as in the proof of (3.23), with replacing P by P0 and 
1by �0, we have that E+0 \ �0 6= ; and (R2 n E+0 ) \ �0 6= ;. Since �0 is connected,Lemma 7 yields that @E+0 \ �0 6= ;.Since @E+0 is the boundary of a bounded polygonal domain, there exist a pointQ0 2 @E+0 \ �0 and a segment `0 � 
1 \ @E+0 which starts at Q0 and is not on �0.Again by Lemma 3 and (3.22), similarly to the second step, we can conclude that thesegment `0 can be extended to a ray �1 2 G2, which is not parallel to �.
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