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ABSTRACT. We consider the two dimensional inverse scattering problem of determining a
sound-hard obstacle by the far field pattern. We establish the uniqueness within the class
of polygonal domains by a single incoming plane wave.

§1. Introduction and the main result.
Let D C R? be a bounded domain such that R? \ D is connected, and let k > 0 be the
wave number. We consider scattering by the sound-hard obstacle D:

(1.1) Au+Ek*u=0 inR*\D, d,u=0 on dD,

(1.2) u=1u'+u®, u'(z)=exp(ikz-d), de S'={r c R |z| =1},
and

(1.3) lim \/H(amus(m) —iku®(z)) = 0.

|z|— o0

Here we set i = v/—1, and d € S! is the direction of the incoming plane wave exp(ikz-d).
Throughout this paper, we exclusively assume that an obstacle D under consideration
is a polygonal domain, that is, the boundary 0D is composed of finitely many open
segments and points (i.e., vertices).

Let £ > 0 and d € S! be arbitrarily fixed. There exists a unique solution u(z) =
u(D)(z) € HL _(R* \ D) to (1.1) - (1.3) (e.g., Chapter 9 in McLean [17]), and u(D) is

smooth on any compact set in R? \ D. Moreover, its far field pattern u., (D) is defined
by

(14)  w*(D)(z) = |z| /2 exp(ik|z|){uce (D)(z/|z]) + O(lz| 1)} as 2] — oo

(e.g., Colton and Kress [6]). There is a vast literature on acoustic and electromagnetic
scattering problems, and we refer the reader to Colton, Coyle and Monk [5], Colton and
Kress [6], Kirsch [13], Lax and Phillips [15], Potthast [19], for example. In this paper,
we will discuss the uniqueness in

Inverse scattering problem witisound-har_d obstacles. Let D, Dy be bounded
polygonal domains such that R? \ D; and R? \ D, are connected. Does
(1.5) Uoo(D1)(2) = U (D) (2), @€ S
Now we state our uniqueness result.
Theorem. Let k > 0 and d € S' be arbitrarily fired. Then (1.5) implies Dy = D.

Cheng and Yamamoto [3] proved the uniqueness by two incoming plane waves under
an extra “non-trapping” condition, which could be removed in Elschner and Yamamoto
[10]. A similar uniqueness result for the impedance boundary condition was obtained in
Cheng and Yamamoto [4]. The above theorem asserts that we need not change incoming
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directions, so that a single choice of d € S! already yields the uniqueness in the inverse
Neumann problem. Earlier results in the sound-hard case concern the uniqueness for
general C2-domains and infinitely many incident waves (see Theorem 5.6 in Colton and
Kress [6]) and the uniqueness for balls with a single incident direction (Yun [22]).

In the case of sound-soft obstacles where the boundary condition on 0D is replaced
by u = 0, Alessandrini and Rondi [1] recently proved that the far field pattern for a
single incident direction determines polygonal (and even polyhedral) domains uniquely.
Further uniqueness results for the inverse Dirichlet problem in general domains can be
found in [6, Theorems 5.1 and 5.2], Colton and Sleeman [7], Kirsch and Kress [14], Liu
[16], Sleeman [21]. Moreover, see Chapter 6 in Isakov [12], and Isakov [11], Rondi [20].

The proof of our uniqueness result is carried out in Section 3 and combines argu-
ments in Cheng and Yamamoto [3] with an idea similar to the proof of Lemma 3.7 in
Alessandrini and Rondi [1]. Section 2 is devoted to a sequence of preliminary results,
which are needed in the proof of the theorem and are partly taken from [3].

§2. Preliminaries.

Henceforth, for two distinct points P,Q € R2%, let PQ denote the (non-empty) open
segment with the boundary points P and ). Moreover, for a polygonal domain D and
a segment PQ € R? \ D with Q € 8D, by Z/(PQ,8D) we denote the least angle among
the two angles in R? \ D formed by PQ and 4D at Q. We note that the polygonal
domains under consideration are always the complements of unbounded domains.

Lemma 1. Let Q C R? be a polygonal domain, and let OA be one of its sides such
that Q is located at one side of OA. Let II be the symmetric transform in R? with
respect to the extended straight line of OA. Let v € HY(Q) satisfy ,v = 0 on OA and
Av+ k%0 =0 in Q. We set

'U(ﬂ'/'l,ﬂ'/'z), ($17$2) € Q:
V(l‘l, $2) -

v(I(z1, x32)), (z1,z2) € II(Q).
Then V. € H'(QUII(Q) UOA) and AV + k?*V = 0 in QU II(Q) U OA. Moreover if
0,v =0 on any other side BC of 9, then 0,v = 0 on II(BC).

The proof is directly done by the definition of H'-solutions and the even extension
of v with respect to OA.

Lemma 2. Let u satisfy (1.1) - (1.3). Then there do not exist two infinite straight
half-lines L1, Ly € R? \E such that Lq, Ly are not parallel and d,u = 0 on L, U Ls.

Proof of Lemma 2. We set u®(z) = u(z) — exp(ikz - d). Then we can prove

lim |Vu®(z)|=0

|z|— o0

(e.g., Lemma 9 in Cheng and Yamamoto [3]). Now assume contrarily that there exist
such non-parallel infinite straight half-lines L, L, € R? \ D. Without loss of generality,
we can set Ly = {(z1,a121);21 > 0} and Lo = {(z1, asz1);z; > 0} with a3 # as.
Therefore by 0,u = 0 on L, U Ly, we obtain

lim |9, exp(ikz - d)| = 0, j=1,2.

|z|—o0,zEL;



That is,

lim
|| —o0,zE€L;

ik <d- <_f‘ﬂ>> exp(ikm-d)‘ =0, j=1,2.

Hence, since k& # 0, we have
d- <_1O‘j> —0, j=1,2.

Since a; # ay and |d| = 1, this is impossible. Thus the proof of Lemma 2 is complete.
Lemma 3. Let E C R? be a domain and let v € H. (F) satisfy Av + k*v =0 in E.
Let Lo C L C E be two segments. Then 0,v = 0 on Lqy implies 0,v =0 on L.

This follows easily from the fact that the solution v to the homogeneous Helmholtz
equation is real analytic in E (e.g., [6]).

We will further state two lemmas, which are proved similarly to Lemmas 6 and 7 in
Cheng and Yamamoto [3]. We omit the proofs.

Lemma 4. Let A= (¢,0), O = (0,0), B = (ecosf,esinf), B = {z € R%;0 < argz <
0, |x) <e} fore >0 and 0 < 0 <2mw. We take P € E and set ¢ = ZAOP € (0,6). We
assume that

(2.1) % Z Q.

Moreover, let E C R? be an unbounded domain such that E C E. Ifv € H!

loc(E)
satisfies

(2.2) Av + k*v =0 in B
(2.3) d,v=0 onOAUOB
(2.4) d,v=0 onOP,

then v(z) — exp(ikz - d) does not satisfy the Sommerfeld radiation condition (1.3).

Lemma 5. Let the sector E and the points A, B, O be defined as in Lemma 4, and let
PcFE and ¢ = ZAOP € (0,0). Let v € H(E) satisfy (2.2) - (2.4) and let us assume
that

o n

- m Y

where m,n € N, 1 <n < m — 1, and the greatest common divisor of m and n is one.
Then:

(i) There exist m — 1 points P7 € E, 1 < j < m — 1, such that ZAOPJ = %9 and
d,v =0 on OP7.

(ii) There ezists a point Q € E such that ZAOP = ZBOQ and d,v =0 on OQ.

By A2(€2) we denote the second smallest eigenvalue of —A in a bounded domain
) with the homogeneous Neumann boundary condition. We note that the smallest
eigenvalue is always 0. Now we derive a lower bound for A2(Q2) for a triangular domain
Q). Henceforth APQR denotes the interior of the triangle with the vertices P, Q, R
(which are assumed to be not collinear).
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Lemma 6. Let diam (APQR) = max{|PQ|, |PR|,|QR|}. Then there exists an abso-
lute constant cg > 0 such that

Co
Ao (APQR) > |diam (APQR)|?

for an arbitrary triangle APQR.

The lower estimate is related with the constant in the Poincaré inequality, and there
are many papers on this topic. Two relevant papers are Payne and Weinberger [18] and
Bebendorf [2], where an explicit expression for the constant ¢q is given for a general
convex domain, and a gap in the proof in [18] is fixed in [2]. For completeness, we
will give an easy proof for triangles which does not specify the contant ¢y > 0, but is
sufficient for our purpose.

Proof of Lemma 6. Without loss of generality, let PQ be the longest side, and
we choose P as the origin O = (0,0) and take the zjzs-coordinates such that Q =
(¢,0) with ¢ > 0 and R = (r,h) with A > 0. Since PQ is the longest side, we have
diam (APQR) = g and 0 < r < q. In fact, if » > ¢, then |PR| = /72 + h2? > q, which
is impossible because diam (APQR) = q.

By the maximum-minimum principle (e.g., Courant and Hilbert [8]), we have

2
ou

ou
le +

amg

2
fAPQR < ) dmldibz

fAPQR u2dxdzo

)

Ao(APQR) = inf{
u#0,€ H(APQR), / udzidze = 0 5.
APQR

Introducing the new independent variables y; = x1/q and yo = x5 /h, we set v(y1,y2) =

u(zy,z9), @1 = (1,0), Ry = (p,1), p=r/q € [0,1]. Then, by Z—Z > 1 and the maximum-
minimum principle, we obtain

v

2 2
q | Ov
T 72 | By,

2
> dy1dys

)

ov
1 {fAOQlRl (a_yl

A2 (APQR) = — inf
( ) q2 fAOQlRl vzdyldy2

v#0,€ H(AOQ:Ry), / vdy1dys = 0
AOQ:1 R,

2

dv +

Ov Ov
Oy1 Oys

2
) dy1dys

)

1 fAOQlRl <

q fAOQlRl U2dy1dy2
v#0,e H(AOQ:1Ry), / vdyi1dys =0
AOQ1R.

1
:q—2A2(AOQ1R1).



Since AOQ1R; is parametrized by p € [0,1], we denote A\y(AOQ1R;1) by A2(p). By
Courant and Hilbert [8, Chapter VI.2.6], we see that As(p) is a continuous function in
p and Az(p) > 0 for p € [0, 1]. Therefore ¢y = ming<,<1 A2(p) > 0, which completes the
proof of Lemma 6.

We conclude this section with the following fundamental property of a connected set;
see Theorem 3.19.9 in Dieudonné [9, p.70] for the proof.

Lemma 7. Let E be a metric space, A C E a subset, B C E a connected set such that
ANB#0 and (E\A)NB#0. Then AN B # 0.

§3. Proof of Theorem.
First Step. Assume contrarily that D, # Ds. For simplicity, we set

Uj = U(Dj), j = 1,2.

By the Rellich theorem (e.g., Lemma 2.11 in [6]), we see from ueo(D1) = ueo(D2) that
(e.g., Theorem 2.13 in [6])

(3.1) Uy = Usg in the unbounded connected component of R? \ (D; U D),

which is denoted by €. Moreover, we note that if Q0 C D;UD,, then D; = Dy = R? \ Q.
This follows from the fact that both R? \ D; and R? \ D, are connected. Indeed, we
obviously have Q C R? \ (D; U D,) C R?\ Dj, j = 1,2, and if there exists z; € R? \ D;
such that z; € Q, we obtain 9Q N (R? \ D;) # 0 by Lemma 7.

Hence, by Dy # D», there exists an open segment PQ which is on 90N (R? \ D;) or
on QN (R? \ Dy). Without loss of generality, we may assume the former case and so

(3.2) there is an open segment PQ C QN (R? \ D;) with d,u; = 0 on PQ,

in view of (3.1) and d,us = 0 on dD5. Then, by Lemma 3, we have d,u; = 0 on the
maximum extension of PQ, provided that the extension is in R? \ D;.
Henceforth we set

G1 = {S; S is a finite open segment extended to maximum length

(3.3 in R? \ D; such that 8,u; = 0 on S},
- Go = {S; S is an infinite open segment in R? \ D; such that

d,u; =0 on S}.

We now prove the following crucial
Lemma 8. The set Gy is non-empty and consists of finitely many segments.

Proof of Lemma 8. If the segment PQ from (3.2) cannot be extended to an infinite
half-line in R? \D—l, then Lemma 3 implies that the extension of P( is in G, hence
G1 # 0.

If PQ can be extended to an infinite open segment in R? \ Dy, then by PQ C 892N
(R? \ Dy), it follows that there exists a vertex R of 82 such that R € R? \ D;. In fact,
any side of 02 is a finite segment, and so the side containing P(Q has to be separated
from the infinite extended line of PQ at some point R. Then R is a vertex of 0.



Hence there exists another point R; such that the segment RR; C QN (R? \ Dy) is
not parallel to PQ, and by (3.1) and 0,uy = 0 on 0Dy, we have d,u; = 0 on RR;. If
RR; can be extended to an infinite open segment in R? \ Dy, then Lemma 3 yields two
non-parallel infinite half-lines in R? \D—1 where 0,u7; = 0. This contradicts Lemma 2.
Consequently, RR; cannot be extended to an infinite open segment in R? \ Dy, so that
G # 0.

Next we will prove the finiteness of G;. The proof is similar to [3]. Assume on the
contrary that G; contains infinitely many segments. Then we can choose sequences of
points {P;}jen and {Q;};en such that

(3.4) P # Py ifj#j', P;,Q;€08Dy, P;Q; e R\ Dy
and
(3.5) d,ur =0 on P;jQ;, jeN

Here we note that {Q;};en may not be mutually distinct.
Since the length of the curve 0D, is finite and P; # Pj if j # j', we can choose
subsequences {P;};en and {Q;} en, which are denoted by the same letters, such that

j—o0

Without loss of generality, by further taking subsequences of {P;},;en and {Q;} en, we
may assume that

P;, Q;, j € N, are located at one side of P, Q. respectively
(3.7) and P; are not vertices of D;.

Then we note that
(3.8) PjP;1, QjQj+1 C 0Dy for sufficiently large j € N.

Moreover, we can verify that

Z(Q;P;,0D)

(3.9) # %,EQ, jeN,
provided that we extract subsequences if necessary.

In fact, let w ¢ Q for some j € N. Then, by Lemma 4, the scattered field
ui(z) — exp(ikz - d) cannot satisfy (1.3), which is a contradiction. Next let us assume
without loss of generality that £(QmPm,8D1) _ 5 for m € N. Then, since d,u; = 0 on
P,Q., form € N, and lim,,, yoo |Prny1Pm| = 0, we repeat applications of Lemma 1 with
respect to the symmetry axes P,,,Q,., m € N, so that we can prove the following: There
is a family {{;};en of segments with d,u; = 0 on ¢;, ¢; || PpQm for all j,m € N, and
such that Ujen/; is dense in the set U = {P; |PPy| < §} N (R? \ D;) with sufficiently
small § > 0. Since the Laplace operator is invariant with respect to a rotation, we may
take £;, 7 € N, parallel to the z,-axis, and may assume that, near P,,, the boundary
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8u1

9ui| — 0 on ¢; for all j € N. Hence, since Z*

821
is continuous in R? \ D;, we have that g—’;i = 0 in the open set U C R? \ D; defined

0D is on the zq-axis. Then |0, uq| =

above. Since A (%) + k2 (%) = 0 in U, by the classical unique continuation, we

then see that ui(zy,z3) = v(z) for (z1,z3) € R? \ D;. Moreover, from (1.2) we
obtain g—;’z(O) = 0. Therefore, by (1.1), v(z2) = acoskzs for some o« € C. On the
other hand, condition (1.4) yields that lim,_, |u1(21,22) — exp(ikz - d)| = 0, that is,
lim|;| o | cos kzy — exp(ikz - d)| = 0. In particular, we can set z = (:cl, ;—k) and let
zy — 00. Then limg, o exp (ik (z1dy + 7-d2))| = 0, which is impossible. Thus the
proof of (3.9) is complete.

By [3], under condition (3.9), we can construct triangles AP;P;;1R; C R? \ Dy,
j € N, which satisfy

(3.10) Auy + k*u; =0 in APjPj Ry,
(311) (9,,’11,1 =0 on 8(APij+1RJ’)
and

(3.12) Jlggo diam (AP;P; 1 R;) = 0.

For completeness, we will give the construction of the triangles at the end of the proof
of Lemma 8.

Then we can yield a contradiction as follows, which completes the proof of Lemma
8. If u; identically vanishes in AP;P;,1R; for some j € N, then the classical unique
continuation yields that u; = 0 in R2 \ D;. On the other hand, (1.4) means that
lim, o0 (U1 (21, T2) —exp(ikz - d)| = 0, which is not compatible with u; = 0. Therefore
u; does not vanish identically in AP;P;1R; for any j € N. Hence k? > 0 is an
eigenvalue of —A in AP;P;,1R; with the homogeneous Neumann boundary condition.

By Lemma 6, we have

)\Q(AP]PJ+1RJ) Z co|diam (APij+1Rj)|72,
where ¢y > 0 does not depend on j. In terms of (3.12), we then obtain

j—o0
Since k£ # 0 and A2(AP;jP;1R;) is the smallest positive eigenvalue of —A with the
boundary condition d,u = 0, we see that k? > \(AP;P;j11R;), j € N, in terms of
(3.10) and (3.11). This is impossible by (3.13). To complete the proof of Lemma 8, we
now give

Construction of AP;P;,1R; satisfying (3.10) - (3.12).
We consider the following two cases separately.

Case a. Py = Q-

Case b. Py # Q-



Case a. By extracting a subsequence if necessary, we can assume that Q; # Q;: if
j # j'. Otherwise Q; = Qo for j € N, which is impossible because P; Py, = P;Q; C
R? \ D;. By Q; # Qj if j # j', we may assume that @; are not vertices of D1,
by extracting a subsequence if necessary. Hence, by (3.7) and (3.8), we have P;P.,
Q;Qo C 0D;. Hence, since P;Q; C R? \ D; by (3.4), we see that the three points P;,
Q;, P are not collinear, that is, they form a triangle. Moreover AP;Q;Po, C R?\ Dj.
Therefore, setting R; = Py, for j € N, we see that AP;Q; P satisfies (3.10), (3.11)
and (3.12). In fact, (3.10) and (3.11) are straightforward from (3.4) - (3.6). Finally,
since lim;_ o |PjPoo| = lim;_,o |Q;Px| = 0 by (3.6), the lengths of all the sides of
AP;Q;P tend to 0 as j — oo, so that (3.12) follows.

Case b. Let L be the side of D; including P, P;, j € N. With (3.6) and (3.7), by
further taking subsequences, we can assume that

(3.14) |P; Pso| and |Q;Q| are monotonically decreasing in j € IN.
In terms of (3.6), if we choose the minor angle or the major angle suitably, then

(3.15) lim Z£(Q;P;j,L) = Z(QooPoo, L).

J—00
By (3.9), there exist m;,n; € N such that the greatest common divisor of m; and n; is
one, nj/mj; #1/2,1<n; <mj; —1 and

(3.16) /(Q;P;,L) = ~Lr, jeN
m;

In view of (3.15), the sequence n;/m;, j € N, converges. We have the two cases:
Case b-(i). sup,ym; = oo.
Case b-(ii). sup,cym; < oo.

Case b-(i). We choose a subsequence if necessary, so that m; > 2 and m; — oo as
j — oo . Since D, is a polygon, we can choose a point A such that AP, AP, C R?\ D;.

Henceforth 5 € N are arbitrary but sufficiently large. We can apply Lemma 5 twice,
choosing (O, A, B, P) = (P}, Pi, Poo, Q;j), (Pj+1, Pi, P, Qj+1). Then there exist points
Rj € R2 \Dl such that ZRij_{_le = ﬁﬂ', ZRijPj_{_l = ijﬂ' and al,ul =0 on
Rij+1 U Rij. Since Pij+1 C PP; and LRij_{_l_ljj — 0, ZRijPj_}_l — 0 as
j — oo, we see that AP;Pj1R; C APxAP; C R? \ D; for large j € N. Therefore
(3.10) and (3.11) follow. Since ZR;P;P;+; — 0 and ZR;Pj;1P; — 0 as j — 0o, we see
that P;Pj;, is the longest side for large j. Therefore (3.12) also follows.

Case b - (ii). If necessary, we can again choose subsequences, so that we can assume
that for some m,n € N,

(3.17) /(Q;P;,L) = —r, jeN,
m

N | —

e
m
in terms of (3.9) and (3.15).

In this case, P;Q;Q;+1P;+1 forms a quadrilateral, because P;Q; || Pj4+1Q;+1. Hence-
forth P;Q;Q;+1P;4+1 means the interior of the quadrilateral. Then we can prove that,
for all 7 sufficiently large,

(3.18) P;Q;Qj+1Pjr1 € R*\ Di.



In fact, we may assume that P; and @); are on one side of the polygonal boundary 6D,
respectively. Then the trapezoidal domain T; = P;Q;Q oo Peo lies entirely in R? \ Dy if
J is large enough. This follows from the fact that 7; cannot contain an open segment
of 0D, with one end point on the closed segment P, ()~ . Otherwise P, () cannot be
approached by the segments P,,Q,, C R? \ D; as m — oco. Thus (3.18) follows.

Let L; be the infinite half-line starting at P; such that L; is not parallel to P;@Q; and
the angle between L; and L is Z7. Since Z(Q;P;,0D:) = Zm,# % by (3.9), such a
straight line L; exists. Then L;;1, P;P;;+1 and the half-line passing @); and starting at
P;, or L;, P;P;;1 and the half-line passing ;1 and starting at P;;; form a triangle
APJP]+1RJ By (36) and Poo §£ Qoo; we have

3.19 inf |P;Q;| > 0.
( ) gl'IElN| Q]
Moreover, we see that ZR;P; 1 P; = ZR;P;P; 1 = -, so that |P;R;| = |P; 11 R;| and

(3.20) lim |[P;R;| = Tim 2To+1l (cos ﬁw) R
j—oo j—oo 2 m
It follows from (3.19) and (3.20) that R; is on the segment P;Q; or Pj1Qjy1.
Therefore (3.18) implies that AP;P; 1 R; C R? \ Dy, j € N. Then Lemma 5 yields
dyu; = 0 on Pj1R;, and so (3.10) and (3.11) follow. Finally, by (3.6) and (3.20),
condition (3.12) is seen. Thus the construction of AP;P; ., R; satisfying (3.10) - (3.12)
is complete.

Second Step. In this step, we will prove that the set G, defined in (3.3) is not empty.
More precisely, we will find an infinite straight half-line ¥ such that ¥ c R? \ D; and
O,u1 = 0 on X. We will use an idea similar to the proof of Lemma 3.7 in Alessandrini
and Rondi [1]. By Lemma 8, we can set G; = {S1,..., Sy}, where S;, 1 < j < N, are
finite segments. We note that, recalling (3.3),

S; € R?* \ Dy, the both end points are on dD; and
(321) al,ul =0 on Sj, 1 S ] S N.

Let Qo be the unbounded connected component of (R? \ D)\ UX_,S;. Note that
the latter set has only one unbounded component since its boundary is a bounded set.
In fact, outside a sufficiently large disk, there cannot be a continuous curve connecting
points from two different components, which would intersect the boundary of (R?\ Dy)\
Uj-vzlSj in view of Lemma 7.

We obviously have

N
(3.22) Qo n | S =0
7j=1

Choose a point P € 8§ lying on a segment S of G;. We note that P € R? \ D;. Let
G be the unbounded connected component of (R?\ D;)\ S, and let G~ be its bounded
connected component. Here the bounded component G~ is also uniquely determined.
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In fact, the segment S cannot divide the connected open set R? \ D; into more than two
connected components; compare the first steps in the proof of Jordan’s curve theorem
in [9, Chap. 9, Appendix 4].

Let IT be the symmetric transform with respect to the extended straight line S of
S, and let us define ET as the connneced component of Gt NII(G~) and E~ as the
connected component of G~ NII(G*) whose closures contain P. Weset E = ETUE~US.
Then OF consists of segments of 9Dy, II(0D;) and their end points, and since u; is
symmetric with respect to §, by Lemma 1 we have d,u; = 0 on OF. Since G~ is
bounded and Et = II(E ), we see that ET is also bounded. Therefore, since 2, is
the complement of some closed bounded connected set, it follows that R? \ E+ and Q.
contain {z; |z| > p} for sufficiently large p > 0, that is, (R? \ ET) N Q. # 0.

Moreover, we have ET N Qo # 0. In fact, for sufficiently small € > 0, we see that
B.(P) = {r € R?;|z— P| < e}NE™ # 0 by the definition of E*, because P € S C G~
and II is the symmetric transform with respect to S. Furthermore, by P € 0, we
have B.(P) N Q. # 0.

Consequently, by Lemma 7, we obtain
(3.23) OET N Qe # 0.

Moreover, since OE T is composed of finitely many segments and points, there exists an
open segment £ C Qo N OE™T such that ,u; = 0 on £. Henceforth by a ray we mean
an infinite open straight half-line. Using Lemma 3 and (3.22), it is now easy to see that
the segment £ can be extended to a ray ¥ C R? \ D; belonging to the set Gy. In fact,
assume contrarily that the extension of £ to maximum length in R? \ D; belongs to G,
so that £ C uj.‘lesj. Then £ C Qo N (U;\[:lSj), which contradicts (3.22).

Third Step. In this step, we will find a ray ¥, € G5 which is not parallel to X.

Case 1. Let the ray ¥ D / lie entirely in Q4. Then, since 8ET is bounded and
forms the boundary of a polygonal domain, there exist a point Py € ¥ and a segment
Ly C Qoo NOET starting at Py, which is not on X. Again, by Lemma 3 and (3.22), the
extension X, of £y belongs to G,. Note that ¥, is not parallel to X.

Case 2. Let ¥ ¢ Q.. Then there exists an intersection point of the ray ¥ with
Uj-vzlSj. Since G; consists of finitely many segments, the set of the intersection points
of ¥ and U;-Vzlsj is also finite. Hence there is a ”last” intersection point P, so that
the subray ¥y C ¥ starting at Py lies entirely in Q.. In fact, 3g N uj.‘lesj = 0, and
so Yy C (R?\ Dy) \ U;-VzlSj. Since Q4 is the unbounded connected component of
(R? \ D,) \U;-VzlSj, we have that Xy C Q.. Let Sy € G; be a segment with Py € S.

We now repeat the reflection argument in the second step with Sy in place of S,
and obtain the corresponding bounded polygonal domains: Ej, E'S' = IIy(E, ) and
Ey=E; U Eg’ U Sy, where Il is the symmetric transform with respect to the extended
straight line of Sy. Arguing as in the proof of (3.23), with replacing P by Py and Q.
by Xo, we have that Ef Ny # 0 and (R? \ EJ) N Xy # 0. Since X is connected,
Lemma 7 yields that EF N g # 0.

Since GEJ' is the boundary of a bounded polygonal domain, there exist a point
Qo € 8Ed’ N Yo and a segment £y C Qo N 8Ed’ which starts at Qg and is not on .
Again by Lemma 3 and (3.22), similarly to the second step, we can conclude that the
segment £y can be extended to a ray ¥; € Go, which is not parallel to .
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Thus, in terms of Lemma 2, the assumption D; # D, yields a contradiction. Hence,
by the reduction to absurdity, the proof of the theorem is complete.
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