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Abstract

Non-asymptotic exponential upper bounds for the deviation probability for a
sum of independent random fields are obtained under Bernstein’s condition and
assumptions formulated in terms of Kolmogorov’s metric entropy. These estimations
are constructive in the sense that all the constants involved are given explicitly.
In the case of moderately large deviations, the upper bounds have optimal log-
asymptotices. The exponential estimations are extended to the local and global
continuity modulus for sums of independent samples of a random field.

1. Introduction

It is well known that the large deviation probability estimations for sums of random fields
play an important role in the theory of empirical functions and measures, see e.g., [1],
in the dependence sampling Monte Carlo technique [15],[14], [13], in the statistical error
estimations when solving PDEs with random coefficients [2].

In this paper we suggest an exponential upper bound for the deviation probability (1.1)
in the metric of the space C(T'), T being an arbitrary parametric set. To derive such
estimations, it is natural to assume exponential decrease of the tales of the one-point
distributions of the random field. The exponential upper bound will be obtained under
additional assumptions formulated in terms of Kolmogorov’s metric entropy. These es-
timations are valid for arbitrary values of z > 0 and n (i.e., they are not asymptotic
estimations), and they are constructive in the sense that all the constants involved are
given explicitly. We note that the rough asymptotics of the estimations is optimal in
the interval of moderate large deviations. The approach used is based on the theory of
subgaussian random variables and fields developed in [6], [9].

Let (2, A, P) be a probability space, F'(¢t) = F(t,w),t € T a random function with an
index set T, such that f(t) = EF(t) = [, F(t,w) P(dw) < oo for each t € T. The aim of
this paper is the estimation of the probability of deviations:

n

P{sup‘f(t) — %ZFZ(t)‘ > az} =P {sup EZ(FZ(t) — E'F(t))‘ > az} (1.1)

n
teT teT =1

Considering the centered random field £(t) = F(¢t) — EF(¢t), t € T, we can reformulate
our problem as the estimation of P{sup,cr |+ Y &(t)| > z} for independent samples

&1(t),E(2), ... En(t) of E(2). i=1



Thus let &(¢), &2(2), ..., €a(t), t € T be independent samples of a centered random field
&(t), t € T, with an arbitrary parametric set 7. Denote

teT

Sa(t) = % D&, pale) = P{ sup | Sa(2)] > az} (1.2)

In this paper we will obtain the following type of exponential inequalities for p,(z):

pu(2) < exp(~da()), @ >0, (1.3)

where ¢, (z) is a convex function of z, parametrically depending on n, such that ¢,(z) —
o0 as ¢ — oo. From the convexity of ¢,(z) it follows that ¢n(z) > co + 1z (¢1 > 0),
for z large enough. Therefore, for validity of an estimation of type (1.3) the following
condition on tails of one point distributions of £(t) should be assumed:

sup P{£(t)] = 2} < ca exp(—caz)

for some positive constants cs, c3 which is, in turn, equivalent to the following
Generalized Kramer’s condition: there exists some positive constant v such that

sup Eexp{7[£(2)[} < oco. (1.4)

The problem of derivation of the exponential estimations of type (1.3) is well studied in
the theory of empirical functions (e.g., see [1] and the review therein). In these stud-
ies, it is assumed that the samples £(t) are uniformly bounded in the following sense:
P{supier|é(t)] < L} = 1 is valid for some constant L. In a more general case when
the generalized Kramer’s condition (1.4) is satisfied, the estimation of type (1.3) can be
obtained using the theory of large deviations for sums of independent random elements in
Banach spaces [16] and theory of subgaussian types of random fields [9]. Here the Banach
space can be chosen as C(T'), the space of continuous functions on a metric space (7', p)
where p is an appropriate metric in 7' which guarantees, with probability 1, the continuity
of samples of the random field. A drawback of this approach is that the assumptions about
the random field £(¢) is formulated in terms of of statistical moments of ||¢]| = supser|€(2)|
rather than using the finite-point distributions of the field. As a consequence, the rough
asymptotics of the estimations of type (1.3) obtained by this approach are not optimal.

In [3] a different approach was suggested which lead to more exact estimation

: z(1—p)\  Co+r|ln(op)|
n <2 f - * , Z y ]_
Pn(z) < ,,éfé,l)eXp{ ne ( —~ )+ - z>0 (1.5)

where ¢*(z) is the Legendre transformation of the function

() = supmax In E exp{zAE(¢)},

teT z=%1

and it is assumed that Kolmogorov’s € entropy H(e) of the metric space (7,d) with
pseudometric



d(t,s) = sup %gb(_l) (sup max In E exp{zA(£(t) — f(s))})

A>0 teT 2= 1
satisfies the condition H(e) < Cy + k|Ine|, € > 0. Here ¢(~1) is the inverse function to ¢.

A remarkable property of the estimation (1.5) is that in the interval of moderate large
deviations (1.7) it has an optimal (i.e., not improvable) rough asymptotics:
lim —2n(22) (1.6)

nooo [ In po(25)|

where {z,}% , is an arbitrary sequence of positive numbers in the interval of moderate

large deviations:

Tn
V/n

and ¢,(z) is an absolute value of the logarithm of the right-hand side of (1.5). Note that
an application of this estimation is difficult since it is hard to evaluate the functions ¢(X)

and H(e).

Summarizing, the present research deals with the construction of proper explicitly de-
fined majorants for the function ¢(A) and metric d(¢, s) so that the obtained estimation
has an optimal rough asymptotics in the interval of moderate large deviations (1.7). In

Z, — 00, and — 0 as n — oo, (1.7)

constructing such majorants, it turns out that the use of Bernstein condition appears to
be more convenient than the equivalent generalized Kramer’s condition.

2. Bernstein’s inequality for sums of random fields

A real-valued random variable £ is said to satisfy Bernstein’s condition if there exist
positive constants o and b such that

k!
E|¢F < Uzbk_zg, k=23, .... (2.1)

In the following assertion the Bernstein’s inequality for probability of deviations of sums
of random variables is given (see, e.g., [16], p. 90). Another form of this type of inequality
can be found, for example, in [11] (see p. 52).

Bernstein’s inequality. Let &1,&,,. .., &, be independent samples of a centered random
variable £ (i.e., E¢ = 0) satisfying Bernstein’s condition (2.1), then

P{\/LﬁgfiZm}Sexp{—%(l%—af\az/ﬁ)_l}, Yz > 0. (2.2)

An immediate consequence of (2.2) is the following inequality:

P{|%i&|2m}SZexp{—%(l—l—(ﬂbj}ﬁ)_}, Ve >0 (2.3)




The aim of this section is the generalization of inequality (2.3) for a sum of independent
samples of a random field. In order to formulate an estimation for p,(z) we need some
definitions. Let £(t), t € T be a centered random field with a parametric set 7. Define a
pseudometric p;(¢, s) (i.e., p1(t,s) = 0 does not necessarily imply ¢t = s) on T by

p(t,s) = [[€(2) = €(s)ll ),

where for a random variable ¢ the norm ||£||(1) is defined by

(2 EIEI’“)”’“
su .
s Kl

Let us denote by H;(€) Kolmogorov’s metric € entropy of (T, p1), i.e. the natural logarithm
of N, the minimal integer such that T can be covered by N, balls of radius €. In what
follows we will assume that the random field £(¢) is separable in the metric space (T, p1).

||f||(1)

We will assume fol H,(€) de < oo, which ensures [9] the sample continuity of the random
field £(¢), t € T, and of the sum S,(t) = ﬁ o, &i(t). Therefore, the function p,(z) =
P{supicr|Sn(t)] > z} is well defined.

Note that if the random field £(¢) is generally non-separable there is an example with
pn(zn) = 1 for z, = v/n, see [4], page 14.

Thus we will further assume that the random field £(¢) is separable in the metric space
(T7 ,01)-

The definition of separable random fields can be found in [7], p. 203.
For a fixed positive constant 3, let 95(u) be a function defined on the interval 0 < p < 1/6
by

2

W
Ya(p) = 21— Bp)’

Denote by 15(z) the Legendre transformation of ¢5(u):

1 2
Yile) = sup (o)) = 5o (VIT 202 1), w20

0<u<1/8

We will need the following estimation:
2

Yg(z) > 20182 ° > 0. (2.4)

which is true since the right-hand side of it equals to zu’ — ¢g(p') for p' = z/(z + fz) €
[0,1/8).
In what follows we will use the notation

[z]1 = maz{l,z}, z > 0.

The following assertion is the main result of this paper. It is a direct generalization of
Bernstein’s inequality (2.3) for a sum of independent samples of a random field.



Theorem 1. Let £(t) be a centered random field on a parametric set 7' such that:

(1) £(t) is separable on the metric space (T, p1);

(ii) there exist positive constants o and b such that for each ¢ € T' the random variable
& = £(t) satisfies Bernstein’s condition (2.1);

(iii) the metric space (T, p1) is precompact and fol Hi(€) de < oo

Then

pa(2) <2 inf exp _mpﬂ( il G ) /H1 (2.5)

p€(0,1)

for each 8 > [b/o]; and z > 0.

The following assertion is an immediate consequence of Theorem 1 and inequality (2.4).

Corollary 1. Let £(¢) be a random field satisfying all the conditions of Theorem 1. Then
for each 8 > [b/o]; and each z >0

pa(z) <2 inf exp _%(1— p)? <1+B(7n> +—/H1 . (26)

p€(0,1)

Remark 1. It is easy to verify (provided b > o, 8 = b/c), that the inequality (2.3) can
be derived by (2.6) if we take into account that a random variable can be considered as a
random field given in a specific one element parametric set. Therefore H;(e) = 0 for each
e > 0 and letting in (2.6) p — 0 one obtains the inequality (2.3).

Remark 2. Note that in the interval of moderate large deviations (1.7) the estimations
(2.5), (2.6) are equivalent since in this interval, the asymptotics in their right-hand sides
coincide. For large z (when Bz >> y/n ) the estimation (2.5) is more exact than the
estimation (2.6) since asymptotics of the logarithm of the right-hand sides differ by factor
2, as z — o0.

The following assertion is an immediate consequence of Theorem 1.

Corollary 2. Let £(¢) be a random field satisfying all the conditions of Theorem 1.
Assume that there exist positive constants C; and & such that

Hi(e) <Ci+k|lng (2.7)

for each € > 0. Then for each 8 > [b/o]; and each z > 0

pa(e) <2 inf exp {—mp;; (%) +C1 + 5| In(op)| + 1]} . (2.8)



Proof of Theorem 1

To prove the theorem we need a result due to Ostrovsky (see [10]). Let ¢ : [0,A) —
R, =10,00) be a convex and continuous function (A < o), such that

um, i PWH) _

0 < lim ——= < oo
p—0  p? p—A-0 L

Let ¢*(z) = sup(pz — ¢ (u)) be the Legendre transformation of ¢. Let (T, p) be a pre-

w20
compact pseudometric space, H(e) is Kolmogorov’s metric € entropy of (7,p). Assume

that fo €)de < .

Ostrovskiy’s Theorem (see [10]). Let 7(¢), t € T be a centered and separable on (7, p)
random field such that

In Eexp{\n(t)} <¥(c|A]), A€ R' teT;

In Eexp {A(n(¢) —n(s))} < ¥ (o|Ap(t,s)), A€ R', t,seT

for some o > 0. Then

P{Té? In(t)| > oz} < 2exp { )+ > (1-p)p* T Hp )} (2.9)

k=1

for each z > 0 and p € (0,1).

Now let us continue the proof of Theorem 1. If 0 < X < 1/b, it follows from (2.1) that

o k fk 1 o PP 0_2)\2 0_2)\2
E {exp(M(t)} = 1 T B I S WL Wy (LA
{exp(X{(2) +Z +2; g o —pny =P (2(1—b>\)>

From this and independency of &;(¢), &(), ..., &n(t) it follows that:

a2 )2 \/_
1—b|A|/ﬁ>}’ A=

Eexp{AS.(t)} <exp {2( b

Taking into account 8 > b/o we have

2)2
Eexp{AS.(t)} <exp {ina} = exp{¢¥n(c|A))}, X € R', (2.10)
2(1-89%)
where 1, (u) = nig(p/+/n). Here and below we assume that g(pu) = co if p > 1/8. By
definition of the norm | - ||(1) and pseudometric p;(t,s) we have

Ble() - g < BAGD g



Therefore

s~ (o G-} < (5 25)

[Alp1 (2, s)

Vo
and taking into account that § > 1 (which implies 91 () < 9g(p) for each p > 0 ) we
have for A € R':

= (14 ()" < exp{ngp ()}, where p =

Bexp{(S,(0) - 5,6} < exp { b V22D | = cplnl a9} - (210)

Thus, if we put n(¢) = Sn(t), ¥(A) = ¥n(A) and p(t,s) = p1(t, s)/o, then it follows from
(2.10)- (2.11) that all the assumptions of Theorem 2 are fulfilled. Therefore it follows
from (2.9) that

pa(e) <2 inf exp {—mpz (m(jjﬁp)) 20— p)pk-lff(pk)} -

From the fact that the Kolmogorov metric € entropy is a monotonically decreasing function
of € it follows that

ia— p" T H(p /H de<— Hl()d

which completes the proof.

3. Random fields with parametric set 7 C R*

Let us consider the case when T C R is a bounded (therefore T is precompact) subset
of the k dimensional Euclidean space R¥. Denote by || - || the norm ||¢|| = max;—1 & |t].
Let F(¢),t € T be a random field, which is assumed to be separable on the metric space
(T, p), where p(t,s) = ||t — s||. Then the following assertion holds

Theorem 2. Let Fi(t), F3(t),..., F,(t) be independent samples of the random field
F(t). Assume that
(i) there exists a positive constant «, such that

A = sup Eexp{v|F(t)|} < o0
teT

(ii) there exist constants 79 > 0, o € (0,1] and a positive random variable 7, satisfying
the condition Ay = E exp{vomo} < oo such that

P{|F(t)— F(s)| <mollt —s||*} =1 foreacht,se T;

7



(iii) there exists positive o such that

sup E(F(t) — EF(¢))? < 0%

teT

then for each £ > 0

{sup|72 >>|>m}s (3.1)

teT

2
. n 25031(1 —P) 1/a k
ZPé%lfl)exp —253 <\/1—|— o/ —1] +kIn(l1+DC,y )—I—a(1—|—|1n(ap)|) ,

where

In Ao 1

2(A% —1) + 1240 - 1)]1/2‘
Yo

720-2

1
o= b/l b= | | o D=swp sl cam
Y 1 t,seT

Proof. First we need in the following assertion:

Lemma 1. Let £ be a random variable such that Eexp{y|¢|} < oo and E|£]? < o? for
some pos1t1ve constants y and o, then

() 1€y < 212(B expfylel} - 1))% and
(ii) Bernsteln s condition (2.1) is valid with

1 [2(E exp{~[¢]} — 1)

b= .
g V2o? .
Proof. Since i |§|k
v*E
k! < EeXp{’Y|€|}_17 k:2737
we have
2B |¢[F\* 2E exp{~[€]} — D\ 1
ey =sup (2265 ) 7 < oup (HEROEE =N Do xpyiey - 1y
k>2 ! k>2 gl v

which completes the proof of (i).
To prove (ii) we note that
1 Ly [ )

sup
Y i3 y2o?

and therefore

1 2ABexplylél} —1) | 2B

21 k—2 2
o°b >0 = g Z

k=23,...



which completes the proof of Lemma 1.
Now let us continue the proof of Theorem 2. Define the centered random field £(¢) =
F(t)— EF(t),t € T. Taking into account |£(t)| < |F(t)| + |EF(t)| we have

Eexp{~[¢(t)]} < Eexp{y(|F(t)| + |[EF(t)])} < A”.

From this inequality and by Lemma 1 it follows that the random field £(t) satisfies Bern-
stein’s condition (2.1) with b = % [%] )
1

Yo

Now let us estimate the € entropy Hi(e) of the metric space (T, p1) where pi(¢,s) =
1£(t) — €(s)|l(r)- From

£(2) = &(s)| < |F(2) — F(s)| + |EF(t) — EF(s)]
and by the assumptions of the Theorem it follows that
1€(2) = €(s)ll ) < (llmollwy + Emo) It — s||*.

Using Lemma 1 and Jensen’s inequality we have
1
Imollay = ~-12(4o - 1))i/* and exp{yoEne} < E exp{yom0} = 4o,
0

respectively. These inequalities show that

pi(t,s) = [1€() — &(s)lla) < Callt — s

Hence for each ¢ > 0
Hi(e) < H(§), whereé = (6/03)1/0‘.
Therefore taking into account H(4) < kln(l + D/§) we have

1/a

Hi(e) < kln (1 +pY ) <k (1n(1 + D0y + l|1ne|) .
a

el/a

Here we applied the following simple inequality In(1 + a/z) < In(1 + a) + |In z| for each
positive a and z.

Hence the inequality (3.1) follows from that of Corollary 1 if we put C; = kIln(1+ D C;/a)
and k = k/a. This completes the proof.

4. Asymptotic behaviour for moderately large devi-
ations

In this section we study asymptotic behaviour of the right- and the left-hand sides of the
inequality (2.8) in the interval of moderately large deviations (1.7).

Remark 4. Let us explain the importance of moderately large deviations. We consider
the equality

P {Sup |£Z (Fz(t) - EF(t)H > En} = pn(mn)a Ln = En\/E-

n
teT =1

9



From one side, it makes a sense to consider such ¢, that satisfies the condition ¢, — 0 as
n — 0o since €, 1s the measure of the error in the approximation

£) ~ %im(t). (4.1)

Therefore €, = z,/+/n — 0 as n — oco. From the other side it is meaningful to consider
such €, which ensures the convergence of the probability p,(z,) to zero since this prob-
ability characterizes the confidence of the approximation (4.1). Therefore it should be
assumed that z, — co as n — oc.

In the domain of moderately large deviations (1.7), the asymptotic behaviour of proba-
bilities of deviations is quite similar to that of Gaussian distributions. In this section we
will use the following known result of the theory of large deviations (e.g., see [12]).

Theorem 3. Let &, &, ... be a sequence of independent identically distributed centered
random variables satisfying Bernstein’s condition (2.1) and z,,n = 1,2,... a sequence
satisfying the condition (1.7). Assume that E£? = o2, then

Sutsn) e}

where 8,,n = 1,2,... is a sequence satisfying the condition §, — 0 as n — oc.

Now let us consider the estimation (2.8). For the brevity of notations let us rewrite the
inequality (2.8) in the form (1.3).

Let £(t),t € T be a random field satisfying all the conditions of Corollary 1, and the
following condition

Jto € T such that o® = E£(to). (4.2)

Then it follows from Theorem 3 that

2

pn(mn) Z P | L zn:&(to) | Z T = €Xp ——2(1 + 5 ) (43)
V/n “ 20

From the definition of 13(z) it follows that

Y e R A (1.0

where ¢/,n =1,2,... is a sequence satisfying the condition ¢/, — 0 as n — oco.
Due to z, — o0 as n — oo we can choose a sequence {p,} C (0,1) such that p, — 0 and
|ln pn|/z2 — 0 as n — oco. Therefore, taking into account (4.4) we have

bulen) > 22 (146D),

10



where 8. ,n = 1,2, ... is a sequence satisfying the condition &, — 0 as n — co. From this
inequality and (4.3) we come to the following conclusion

2

o {2148} < pulen) < xpl-dulen)} < o { - 250450 |

202

Thus we establish that in the range of moderately large deviations under the conditions
of Corollary 2 and the condition (4.2) the asymptotic behaviour of the right-hand side of
(2.8) is optimal in the sense that (1.6) is true.

5. Deviation probability for the continuity modulus

In some applications, there is interest in evaluation of the distribution of sample continuity
modulus for a sum of independent random fields. We mention here for example the study
of the convergence rate in the functional central limit theorem [5], the error estimations
in discrete stochastic procedures of functional Monte Carlo methods [14], [13].

Let us recall that we deal with a sequence of independent samples &;(¢), €a(¢), . .. €n(t) of
a centered random field £(¢), t € T, and S,(t) = = >, &(t); (T, p1) is a metric space

n

with the metric pi(t,s) = [|£(t) — &(s)[|1); Hi(e) is Kolmogorov’s metric e entropy of
(T7 ,01)-

Let us introduce the notations:

Hi(€) = In(1 + exp{H,(€)}), ()= / {%Hl(e) + (2H1(6))1/2 de

0

In the following statement we deal with the local and global sample continuity modulus
of the random field S,(¢) in the metric p;(t, s) defined as

ws,(8;t0) = sup  [Sa(t) — Salto)l,
teT:p1 (t,t0) <8
an(é-) = sup |Sn(t) - Sn(s)|

t,s€T:p1(t,5)<8
Theorem 4. Let £(¢),t € T be a centered random field which is separable on (T, p;),
and fol Hi(€¢)de < co. Then for each n =1,2,..., and z > 0 the following estimations are

true

Plus, (6,0) 2 1860,(8)0) < 2exp {-nbi()}. (5.1)

P{ws, (8) > 54eQ,(8)z} < 2exp{—n¢f(%)}, (5.2)

where 9}(z) = %(\/1 + 2z — 1)2.

Proof. We need some auxiliary results from the theory of random variables of subgaussian
type and random variables in Orlicz spaces [9] .

11



Let ¢ : [0,A) - Ry =[0,00) (A < o) be a continuous convex function such that

0<1im£’l;)<oo, lim M:oo
w0 poA-0 U

If A < oo we prolong the function 9 on the half-axis [A, 00) by ¥(u) = oo for p > A
We denote by ¢*(z) (z > 0), the function ¢*(z) = sup(pz — 1 (u)) which is the Legendre
u>0

transformation of the function ¢. Let us prolong the function 1*(z) on the left half-axis
by ¢¥*(z) = ¢*(—z) if z < 0.

Let us define a norm for a centered random variable £ by

1]l = inf{C > 0:In BEe* < (C|\]), X € R*}.

In [9] it is shown that the class of random variables
By(Q) ={¢:Q— R BE=0,[|€]ly < oo}

is a linear space, and the pair (By(€2),]| - ||4) is a real Banach space.
Let U(z) = exp{¥*(z)} — 1, = € R'. By the definition it follows that the function U(z)

is a Young function i.e., U(z) is a continuous convex function satisfying the conditions
U(0) =0, lim U(z) = oco.

|z| o0

Therefore, for the random variable ¢ the following norm can be defined by
Ly(¢) =inf{r >0, EU(¢/r) < 1},

which is called in the theory of Orlicz spaces as a Luxemburg norm [8].

In [9] it is proven that for £ € B,(Q) it is necessary and sufficient that F{ = 0 and
Ly(€) < oo. In [9] it is shown that the Luxemburg norm and the norm || - ||, are
equivalent in the space By, ().

Further we will use the following statement which is obtained in [9]: For any centered
random variable ¢ the following estimation is true:

Ly(§) < 3|[¢]ly, ( where U(z) = exp{¢*(z)} - 1). (5.3)

To prove Theorem 4, we need the following statement

Lemma 2. For any centered random variable ¢ the following estimation is true:

Ellor < 11El o, (5.4)

where

)\2

H =3y

Proof. By E|¢[F < r¥k!1/2, k =2,3,. .., where 7 = [[{]|(1) we get

T = 201 —r[A]) =

12



From this we get (5.4), by the definition of the norm || - ||y, -

Let us define a sequence of functions U, : R —+ Ry, n=1,2,... by
z
V/n

where ¥1(z) = 1 (vV1+ 2z — 1)2 is the Legendre transformation of the function ;(u).

Un(z) = exp{¢}(z)} — 1, ¢i(z) =ny] ( ) , zER',n=1,2,....

Lemma 3. The following estimation is true

Ly, (Sn(t) — Sn(s)) <3pi(t,s), t,seT;n=1,2,.... (5.5)

Proof. We fix n, and define the function ¥,()) = ny1(A/y/n). Therefore, the Legen-
dre transformation (z) of the function 1,(A) coincides with the function nyi(z/4/n).
Therefore, by the estimation (5.3) we get

Ly, (Sn(t) = Sn(s)) < 3[Sn(t) = Sn(s)llyn- (5.6)

From the independence of the fields & (t), &2(2), ..., &n(t) it follows ||Sn(t) — Sn(8)||w. =
1€(2) — £(s) ]y, -

Hence, in view of Lemma 2, we conclude
|1Sa(t) = Sa(8)llg = 1) = €(s) Il < pu(t, s).

From this and by (5.6) we obtain (5.5). This completes the proof of Lemma.

Proof of Theorem 4. The convexity of ¢} (z) implies that the function
Un(z) = exp{t%(z)} — 1 has the following property

U2(z) < Un(2z), >0, (5.7)

This property in turn implies that (see [8]):

Un(2)Un(y) < Un(zy), =22,y 22 (5.8)
Let
@s,(6;t0) = sup  [Sa(t) — Salto)l,
teT:p(™) (t,t0) <8
(IJS"((S) = sup |Sn(t) - Sn(s)|

t,s€T:p(") (¢,8)<8

be the local and global sample continuity modula of S,(¢) in the metric p™(¢,s) =
Ly, (Sn(t) — Sn(s)), respectively.
From (5.7)-(5.8) and Theorems 2 and 3 of [8] it follows

é
Ly, (@s,(8;t0)) < 6Rn/ Un(N™ (€))de, (5.9)
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Ly, (@s,(8)) < 18R, / 6 U (N (€))de, (5.10)

where (}'n(y) is the inverse function to U,(z), and N(™(¢) is a minimal number of balls of
radius € in the metric p(™ covering the set T', and

$n(2) — 1
R, = max | exp{¢¥,(2)}, ———— | .
( p{¢n(2)} 00}
It is not difficult to derive the equality
. 1
Unly) = \/21n(1—|—y)—|—%1n(1—|—y), y > 0. (5.11)

Therefore, (7”(1) > 4/21n2 is true for each n. Thus since ¥%(2) < 1 for each n, we get
R, < max{e,(e—1)/vV2In2}=e, n=12,... (5.12)

In view of Lemma 3, N (¢) < Ny(¢/3), n=1,2,....

From this, we conclude by (5.9)-(5.12)

Ly, (@, (8;0)) < 18eQn(6/3), Ly, (@s,(8)) < 54eQ,(5/3), 6> 0,n=1,2,... (5.13)

By Lemma 3,
{(t,5): pultis) < 8} C{(t,s): pM(t,5) <36}, n=1,2,...,

hence,

Plws, (;to) < @5,(36;t0)} = 1, P{ws, (6) < s, (36)} = 1

From this we get by (5.13)

Ly, (ws,(6;t0)) < 18e2,(8), Ly, (ws,(8)) < 54eQ2,(8), 6 >0, n=1,2,...

From these estimations we conclude (5.1), (5.2) using the Chebyshev inequality. The
proof of Theorem 4 is complete.

Remark 5. From the inequality H;(e) = In(1 + exp{H,(€)}) < In2 + H,(¢) and by the
definition of €2,,(4) it follows

0. (8) < (1“73 + m) 8 +j (%Hl(e) + (2H1(e))1/2> de = Q. (8).

0

Now we note that the estimations (5.1), (5.2) remain true if we replace Q,(8) with Q! (4).
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6. Conclusions

Exponential upper bounds for the probability of deviations of a sum of independent ran-
dom fields are obtained under Bernstein’s condition and assumptions formulated in terms
of Kolmogorov’s metric entropy. These estimations are not asymptotic estimations, and
they are constructive in the sense that all the constants involved are given explicitly. The
proposed estimation for moderately large deviations has optimal log-asymptotics. The
exponential estimations are extended to the local and global sample continuity modulus.
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