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Abstract

Asymptotic local equivalence in the sense of Le Cam is established for inference on the drift in
multidimensional ergodic diffusions and an accompanying sequence of Gaussian shift experiments.
The nonparametric local neighbourhoods can be attained for any dimension, provided the regularity
of the drift is sufficiently large. In addition, a heteroskedastic Gaussian regression experiment is
given, which is also locally asymptotically equivalent and which does not depend on the centre of
localisation. For one direction of the equivalence an explicit Markov kernel is constructed.

1 Introduction

Asymptotic equivalence is a powerful concept for analysing statistical inference problems by a transfer to
the analogous problem in a simpler statistical experiment. A breakthrough were the results by Brown and
Low [5] and Nussbaum [18] who established asymptotic equivalence of the two classical experiments, one-
dimensional Gaussian regression and density estimation, with an accompanying sequence of Gaussian shift
experiments. In this paper we consider the statistical inference for the drift in a multidimensional diffusion
experiment under stationarity assumptions and prove the asymptotic equivalence with corresponding
multidimensional Gaussian shift and regression experiments.

Asymptotic equivalence results for dependent data are not very numerous, see Dalalyan and Reif} [10] for
an overview. Even for simple experiments, as the classical ones described above, results for asymptotic
equivalence in the multidimensional case are very scarce. We only know of the recent work by Carter [8]
who proves asymptotic equivalence for two-dimensional Gaussian regression, but argues that his method
fails for higher dimensions. One of the main reasons for the difficulties in transferring methods to higher
dimensions is that piecewise constant approximations of the unknown functional parameter usually do not
suffice anymore and higher order approximations have to be used, which creates unexpected problems.
Brown and Zhang [6] remark that the two classical experiments and their accompanying Gaussian shift
experiments are not asymptotically equivalent in the case of nonparametric classes of Holder regularity
B < d/2, where d denotes the dimension.

The methodology we applied in [10] to establish asymptotic equivalence for scalar diffusions relied heavily
on the concept of local time. For multidimensional diffusions local time does not exist. This might explain
why the statistical theory for scalar diffusions is very well developed (see Kutoyants [15]), while inference
problems for multidimensional diffusions are more involved and much less studied. We refer to Bandi and
Moloche [2] for the analysis of kernel estimators for the drift vector and the diffusion matrix and to Ait-
Sahalia [1] for a recent discussion of applications for multidimensional diffusion processes in econometrics.

In Section 2 we review results for multidimensional diffusions and construct estimators for the invariant
density and the drift vector. Interestingly, the estimator of the invariant density converges for d > 2
with a rate which is slower than parametric, but faster than in classical d-dimensional density estimation
problems. The local equivalence result of the multidimensional diffusion experiment with an accompany-
ing Gaussian shift experiment is formulated and described in Section 3. The local neighbourhoods can
be attained for drift functions in a nonparametric class of regularity 8 > (d — 1+ /2(d —1)2 — 1)/2
for any dimension d > 2. In Section 4 the corresponding equivalence with a heteroskedastic regression
experiment, which does not depend on the centre of localisation, is treated. This can be used to establish
global equivalence with a single experiment, which even in the one-dimensional case cannot be obtained
for the Gaussian shift experiment due to the absence of a variance stabilising transform, as was first noted
by Delattre and Hoffmann [11]. The explicit construction of a Markov kernel establishing the important
part of the asymptotic equivalence is presented in Section 5. The proof of the main local equivalence
result is deferred to Section 6.



2 Preliminaries

2.1 Diffusion processes

We assume that a continuous record X7 = {X;, 0 < ¢t < T} of a d-dimensional diffusion process X
is observed up to time instant 7. This diffusion process is supposed to be given as a solution of the
stochastic differential equation

dXt = b(Xt) dt —|— th, XO = E, i € [O,T], (1)

where b : R — Re W = (W, ¢t > 0) is a d-dimensional Brownian motion and £ is a random vector
independent of W. We denote by b; : R 5 R, =1,...,d, the components of the vector valued function
b. In what follows, we assume that the drift is of the form b6 = —VV, where V € C%(RY) is referred to
as potential. This restriction permits to use strong analytical results for the Markov semigroup of the
diffusion on the L?-space generated by the invariant measure.

For positive constants My and M3, we define X (M1, M3) as the set of all functions b = —VV : RY — R
satisfying for any =,y € R¢

1b(z)] < Mi(1+ |z]), (2)
(b(z) — b(y)T (& — y) < —Malz - y|?, (3)

where |-| denotes the Euclidian norm in R%. Any such function b is locally Lipschitz-continuous. Therefore
equation (1) has a unique strong solution, which is a homogeneous continuous Markov process, cf. Rogers
and Williams [22], Thm. 12.1. Set C} = fmde_zv(“) du and

() = Cb_le_zv(m), r € RS,

Under condition (3) we have C, < oo and the process X is ergodic with unique invariant probability
measure (Bhattacharya [3, Thm. 3.5]). Moreover, the invariant probability measure of X is absolutely
continuous with respect to the Lebesgue measure and its density is pp. From now on, we assume that the
initial value £ in (1) follows the invariant law such that the process X is strictly stationary. We denote
by P{ the law of this process induced on the canonical space (C([O, T]; R9), BC([QT];RGL)) and by E; the
expectation operator with respect to this law. We write ps(f) := Eu[f(Xo)] = [ fue. Let Py, be the
transition semigroup of this process on LZ(u3), that is

Poif(z) = Eo[f(X:)| Xo = 2], f € L (1) = {f ‘R R: /|f|2ub < oo}.

The transition density is denoted by pes: Poef(2) = [ f(y)ps,: (2, y) dy.

2.2 Estimators of drift and invariant density
Some notation.

We write A(p) < B(p) when A(p) is bounded by a constant multiple of B(p) uniformly over the parameter
values p, that is A(p) = O(B(p)) using the Landau symbol. Similarly, A(p) ~ B(p) means that A(p) <
B(p) as well as B(p) < A(p). We denote by |A| the Lebesgue measure and by diam(A) the diameter of
a Borel set A C R4

For any multi-index @ € N% and z € R% we set |a| = a1 +...+ aq and 2% = of* - ... - 25 Let us
introduce the Holder class

1D f(2) = DS ()] < Llz ~ y|o-18] }

= 18] (2.
(8. L) = {f € CTIRAR) for any « such that |a| = [8]

where | 3] is the largest integer strictly smaller than 8 and D*f := 32 olely

e 5 %4 -
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The construction.
Let us assume that the potential V' lies in H(8 + 1, L) for some 8, L > 0, which implies b; € H(3, L).
Furthermore, if for some constant C; > 0 we have

max max |D%b;(0)| < Cy @
i=1,...,d a:|a| < | 8]

then the function us is H5lder continuous of order 8+ 1 in any bounded set A C R, that is
|D% () — D¥po(y)| < Lulz —ylP~ P, VaeN?:|a| =[] +1

for all z,y € A and for some constant L,. We denote by ﬁ(,@, L, C4q) the set of all functions b such that
b; € H(B, L) and (4) is fulfilled.

A natural kernel estimator for the invariant density based on the observation X7 is given by
1 T
fin,7 () = f/ Kp(z — X)dt, = eR. (5)
0

Here, Ky (z) = h"¢K(h™1z) and K : R¢ — R is a smooth kernel function of compact support, satisfying
JK(#z)de =1 and [ K(z)z*dz = 0 whenever 1 < |a| < |3] + 1. The usual bias-variance decomposition
and approximation inequality yield (Efromovich [12], § 8.9)

Ep [|fin,r(2) — po(2)]?] < B2ET) 4 772 Var [/0 Kn(z — X;) dt|. (6)

By analogy with the model of regression with random design, a reasonable estimator of b is obtained by
setting

. [T Kn(z - X,)dX, i
) Tt (o), () 7 o

where . () > 0 is some a priori lower bound on (), see Remark 2.10 below. A similar risk analysis
givesfor i =1,...,d:

T
— TzVar[/O Kz — Xo)bi(X,) dt

+E[|fin,7 () — p ()|?]. (8)

A 1 1
Ep[|bs,n,7 () — bi(2) ] < R 4 — 4 —

Asymptotic results.

In order to determine the asymptotic behaviour for 7 — oo, we study the variance of general additive
functionals of X in d dimensions. To do so, we assume that the semigroup P, : enjoys the following
properties.

Assumption 2.1 (spectral gap inequality). There ezists a p > 0 such that for any f € L?(u) and
foranyt>0
1Po,ef =t (f)ws < €™ PI1f] -

Assumption 2.2. There is a Co > 0 such that for any t > 0 and for any pair of points x,y € RY,
satisfying |z — y|? < t, we have
Poi(,y) < Co(t™%2 +£3%2),

Remark 2.3. Due to Remark 4.1} in Chen and Wang [9] Assumption 2.1 is fulfilled with p = Ma,
whenever (3) holds.

Remark 2.4. If b fulfills (2), then Assumption 2.2 can be deduced from Qian and Zheng [20, Thm. 3.2].
Indeed, taking in that inequality ¢ = 1+1 and bounding the terms (, and p, respectively by Cq®'? and Cy,
we get the desired inequality. If moreover b is bounded, Assumption 2.2 is satisfied for every (z,y) € R¢
and without the term 13%2 at the right-hand side, cf. Qian et al. [19, inequality (5)].



Proposition 2.5. Let r be a positive number and f : R¢ = R be a bounded, measurable function with
support S satisfying diam(|S|)¢ < r¢|S| and |S| < 1. Under Assumptions 2.1 and 2.2 there ezists a
constant C depending only on r, d > 2 and on Cy and p from Assumptions 2.1 and 2.2 such that

T
Vare ([ 10x) i) < et m()sIvA(S),
where || f||lc = supgega|f(z)| and

max(1, (log(1/2))?), d=2,
pal) = {Wg  (os0/F), =2

Proof. Set fo = f — ps(f). Symmetry and stationarity yield

Varp (/OT f(Xt)dt) = z/OT /OsEb[fc(Xt)fc(Xs)]dtds
zz/oT /OsEb[fc(Xo)fc(Xs_t)]dtds
= 2/0T(T — w)Ep [ fo(Xo) fo(Xu)] du

T
S 2T/ <fcan,ufc>lub du
0

Let 0 < 6 < D < T where the specific choice of 8, D is given later. Then
/[ o ](fc,Pb,ufc> du< (8+p7 e D) IANE, S (047" P)u(S)IIAI% (9)
0, T

follows from || Py ufe||us < €7 7%||fllus given by Assumption 2.1. For moderate values u € [6, D] we use

(fer PosSbin < (s Pos s < [ @I( [ o2, 170) ) o) o

For § > diam(S)? we infer from Assumption 2.2
(s Poad ) < C w17 [ 1 dy Va2, (10)

Combining (9) and (10) and assuming diam(S) < 6*/2, for d > 2 we find
T
[ e Pt du S (5727 4+ 514015+ D421 ()
0

Balancing the terms, we choose D = max(—p~!log(|S|),r?) and § = r?|S|?/¢. This gives the asserted
estimate because we had assumed diam(8) < 7S]}, The case d = 2 can be treated similarly. O

O

Remark 2.6. In the case d = 1 the bound holds with ¥1(x) = 1, cf. Proposition 5.1 in Dalalyan and
Reif [10].

Remark 2.7. The dimensional effect is due to the singular behaviour of py:(x,y) for t — 0. However,
if the term 1342 is absent in Assumption 2.2, then in the definition of 1y the term (log(1/|S|))? can be
replaced by (log(1/|S]))Y/2. This is the case when the drift is bounded.

Corollary 2.8. Ifb ¢ ﬁ(,@, L,C1) NE(Mq, My), the estimators given in (5) and (7) satisfy for h suffi-
ctently small the following risk estimates:

Ey [(iin,7(2) — mo(2))?] < RAEHD) 4 T 193 (h?),
Ep [|bn,z(2) — b(2)[?] < A2 + T R4 4 p2BF) L 712 (h9).



The rate-optimal choice h = h(T) ~ T~1/(26+9) yields the rates

X 1/2 T-Y2(logT)?, d=2,
By [(n(r),r (2) — 1(2))*] " < {T‘(ﬁ+1)/(2ﬁ+d)’ d>3,

Eo[|bary 7 () — b(x)[2]/? < TR0 +d),

Proof. The risk bound for i 7 follows from |supp(K4)| ~ h%, ||ts|]co <1 and an application of Propo-
sition 2.5 to the bias-variance decomposition (6) for any h sufficiently small. In the same way, we obtain
the estimate for each b; 7, and the rates follow by simple substitution. O O

Remark 2.9. The convergence rates for the risk of i are to be compared with the one-dimensional case,
where the parametric rate T~'/? is obtained, and with standard multivariate density estimation, where
the corresponding rate is n=P/(26+94) for n observations, which is considerably larger. In contrast, the rate
for b corresponds ezactly to the classical rate n=PF/(26+9) in regression or density estimation.

Remark 2.10. Using conditions (2), (3) and the equality V (z) = V(0) — fol b(tz)T x dt, we find
1 2 1 2
—M1|x|—|—§M2|x| <Viz)-V(0) < §M1|x| + Mq|z|.

Therefore, we can take p. () |y|2dy as an a priori lower bound for py(x).
Moreover, due to assumption (4) the function py is Holder continuous in As = {z € R%:infyca |z —y| <
8} for any 6 > 0 and for any bounded set A C R%. Therefore we do not need to modify the kernel
estimators at the boundaries of A and the inequalities of Corollary 2.8 hold uniformly in b and in x € A.

= e—M1|$|2—2M1|$|/ f62M1|y|—M2

Remark 2.11. Corollary 2.8 describes the rates of convergence of estimators for the local risk, that is
for a pointwise loss function. To attain the local neighbourhood defined in the next section, the risk given
by the sup-norm loss must be studied. In the classical problems of nonparametric estimation, the rates
of convergence for the sup-norm loss on a compact set coincide up to a logarithmic factor with the local
rates of convergence (Korostelev and Nussbaum [14], Giné, Koltchinskii and Zinn [13]). The eztension
from the pointwise to the uniform loss result is usually fairly standard, but more involved and lies out of
the scope of this paper.

3 Equivalence with the Gaussian shift model

3.1 Statement of the result

Let Xg(L, M1, M>) be the set of functions b € X (M7, M3) such that all d components b; of b are in #(8, L).
We fix a function b° € Xg(L, M1, M3). Our main result establishes a local asymptotic equivalence between
diffusion and Gaussian shift models in the local setting, that is when the parameter set is a shrinking
neighbourhood of 4°. Bg always denotes the Borel o-algebra of a topological space E.

Definition 3.1 (diffusion experiment). Suppose ¥ C X(My, M3) for some M1, Mz > 0. For any
T > 0 let B(X,T) be the statistical ezperiment of observing the diffusion defined by (1) with b € X, that
1s

EX,T) = (C([OvT];Rd)vBC([O,T];IRid)a (PT)ses)-

For any function b € L?(ppe; R%) = {f : R — R% : [|f|?upe < 0o} we denote by Qs the Gaussian
measure on (C(R%RY), Be(r4gr4) induced by the d-dimensional process Z satisfying

dZ(z) = b(z)\/pee (z) dz + T~ 2 dB(x), Z(0) =0, z € RY, (11)

where B(x) = (B1(2), ..., Ba(z)) and Bi(z),..., B4(z) are independent d-variate Brownian sheets, that
is zero mean Gaussian processes with Cov(B;(z), B;(y)) = | Rz N Ry| where R, = {u € R%: u; € [0, z;]}.



Definition 3.2 (Gaussian shift experiment). For X C L?(up;R%) and T > 0 let F(X,T) be the
Gaussian shift ezperiment (11) with b € X, that is

F(E,T) = (C(R%RY), Boragre), (Qb,1)bex)-

For any positive numbers ¢, 5 and for any hypercube A C R¢, we define the local neighbourhood of 5°

Co(x) — 80 (z)] < ely(z), x € R4, }’

) —
E(b = nvA) = {b € Eﬁ(L’Ml’Mz) ) |,Uzb($) - ,Ube(l?)| < 77:“’b°($)7 r €A

where 14 is the indicator function of the set A. We state the main local equivalence result, which will
be proved in Section 6. The main ideas of the proof are explained in the next subsection. For the exact
definition of statistical equivalence and the Le Cam distance A we refer to Le Cam and Yang [16].

Theorem 3.3. If er and nr satisfy the conditions

. -8.2-d _ 7 1p4-2 —1\\1(d=2) _ 7 2 _
Th_)ngoT eq ¢ = Tli)ngo T+7 e ep(log(Tez™)) = Th_)ng0 Tyreq =0,

then the diffusion model (1) is asymptotically equivalent to the Gaussian shift model (11) over the pa-
rameter set Yo = X(b°, e7, nr, A), that is

lim sup A(E(Zo,r, T),F(Zo,r,T)) = 0.
T—o0 b°eXg(L,M1,M3)

Let us see for which Holder regularity 8 on the drift an estimator can attain the local neighbourhood,
that is |I;h(T),T(x) —b(z)| < er and |fin(r),r(z) — pu(z)| < nr hold with a probability tending to one (cf.
Nussbaum [18] for this concept). By the rates obtained in Corollary 2.8, with a glance at Remark 2.11
and the condition in Theorem 3.3, this is the case if

—B—(2-d)B/(28+d) <0,
1/44(d—2)/(88) — 8/(28 +d) <0,
1—(8+1)/(28+d) —28/(28 +d) <0.

It turns out that the second condition is most binding and all three conditions are satisfied if § >

(d—1++/2(d — 1)% — 1)/2. The critical regularity thus grows like (1/24-1/4/2)d for d — co. In dimension
2 we obtain the condition 8 > 1 as in the result by Carter [8] for Gaussian regression. Whether for Holder
classes of smaller regularity asymptotic equivalence fails, remains a challenging open problem.

3.2 Method of proof

The general idea of the proof of Theorem 3.3 consists in discretising (in space) the diffusion process such
that the design regularisation technique we introduced in [10] is applicable in spirit, even though the local
time does not exist.

Space discretisation.

For any multi-index o € N% set a! = a1! - ...  ag!. Let us denote by {vi}ti=1,..,x the elements of the set
{v e R[z] : v(x) = x* with |a| < |B]} somehow enumerated: v;(z) = x‘fl(z) . ...-xgd(l) = z2(), We
assume that A = [—a, a[? is a hypercube and for some h > 0 with a/h € N we denote by {am}m=1,...,m the

elements of the grid (hZ%) N A. We introduce the subcubes C,, = szl[amj, amj+h[C A, m=1,..., M,
where a,,; is the jth coordinate of a,,. Let us define

vi(z)/a(1)!
v(z) = : ; (12)
vk (#)/a(K)!



which gives rise to the definition b of the Taylor approximation for b

K
b(z) = ZD“(i)b(am)vi(x —Gp) forzeCy,, m=1,.... M

=1
and b(z) = b°(z) for z € R4\ A (D*() is applied coordinate-wise). Using this notation, the Taylor
formula can be written as

vi(z — am)
a(@!

be)=b()+ > (D*Db(C) - D Db(anm))
ixla(i)|= 1)

z € Cpp, (13)

where ¢ € R¢ satisfies | — @m| < |# — am|. This implies that for V € H(B + 1, L), the estimate
b(z) — b(x)| < hP holds. We write

DM (x)
I(z) = b(z) — b°(z), dI(z) =b(z)—b°(z) and 8;(z) =
D)y (z)
for j = 1,...,d and we shall use equivalently 8 and b for referring to the parameter in the local neigh-

bourhood. The log-likelihood of the experiment defined via P;:: is given by (see Liptser and Shiryaev [17,
p. 271, (7.62)])

log :llff:’i’;' (XT) = Z : [0]- (am)Tﬁmj (1) - % aj(am)ij(T) 0;(am)|, (14)

where
T
T (T) :/ e, (X)v(Xs — am)dW;; € RE
0
. T
Im(T) = / le,, (Xe)v(X: — am)V(X: — am)T dt € REXE (15)
0

and W; ; denotes the jth component of W; € R4,

Design modification.

Due to the ergodicity of X the law of the log-likelihood (14) will for large T be well approximated by

,,: : (VT 0;(am) s % 6;(am)” Ton;(arm) ) (16)
where fjmj ~ N (0, Tom) i.i.d._alz;
T = /Cm V(2 — )V (@ — am)T e () do (17)
Since
O " T ar) = | by (o) = B5 (o) (o), (18)

the process (16) (indexed by 8) has exactly the same law as the log-likelihood of the Gaussian shift

dZ(x) = b(z)/pee (2) do + T~Y%dB(z),  Z(0)=0, =zeR%

Under suitable assumptions on the smoothness of b, this last experiment is asymptotically equivalent to

(11).



It remains to construct the random variables (1,;) on some enlargement of the probability space
(C([0, T); RY), Be (o, 11k 45 PT) such that T_l/zﬁmj (T) and 7, are close as random variables. We define
the stopping time

T = 4L € [0, 7] [T 2T (D) T2 > TY AT, (19)
where the norm of a matrix A is given by ||A|| = sup, (JAz|/|x]).
Let € = (emj)m,; be a family of independent standard normal random vectors in RX, defined on an
enlarged probability space such that € and X are independent. We set
1 P
NMmj = —F7= NImj (Tm) + (jm -T 1jm(7—m))1/25m]

VT

By definition of 7,,, the matrix J,, —T_ljm(rm) is nonnegative definite and its square root is well defined.

Proposition 3.4. Under the probability measure PZ:, the random vectors (Nm; )m,; C RX are independent
and each n,,; is centred Gaussian with covariance matriz Jp, .

Proof. Tt suffices to show that for any sequence (Am;)m,j C R we have

1
E[exp { Z /\ﬁjnmj}] = exp {5 Z /\ﬁjjm/\mj}a
m’j

m7j

where the expectation is taken with respect to X following the law PZ, and e,,; being i.i.d. standard
normal in R¥, independent of X.

The verification of this equality is very similar to the proof of Proposition 2.13 in Dalalyan and Reif} [10]
and is omitted. O |

4 Equivalence with heteroskedastic Gaussian regression

The Gaussian experiment in Theorem 3.3 depends on the centre 4° of the neighbourhood via ppo. This
fact makes the passage from the local equivalence to a global equivalence difficult, especially, because
even in the one-dimensional case there is no known variance stabilising transform for (11), cf. Dalalyan
and Reif3 [10].

We propose here a method of deriving an asymptotically equivalent experiment independent of ° without
using the variance stabilising transform. The idea is to discretise the Gaussian shift experiment with a
“step of discretisation” larger than 1/7T. This method has already been used in Brown and Zhao [7] for
proving the asymptotic equivalence between regression models with random and deterministic designs.

We adopt the notation from Section 3.2. In addition, we introduce the K x K-matrix V =
f[o’l]dv(x)v(x)T dz, where v(z) is defined by (12). Since V is strictly positive and symmetric, the

matrix V=12 is well defined.

Definition 4.1 (heteroskedastic Gaussian regression). Let . be a subset of C1P! (R%RY). For any
T,h > 0 we define G(X, h,T) as the ezperiment of observing

Rle@) pall)p,

Yim = : (am) + V2 _Sm (20)
. Thd,“fb(am)
Rla(K) pa(K)p,
fori=1,...,d, m =1,..., M, where (im)i,m is a family of independent standard Gaussian random

vectors in R¥ gnd be T.

Note that the observations in this experiment are chosen from REM? according to a Gaussian measure.
Both the mean and the variance of this measure depend on the parameter b such that the experiment is
heteroskedastic.



Theorem 4.2. If the assumptions of Theorem 3.3 are fulfilled and h = hr satisfies
lim Th¥ = lim ThZek = lim ndhz%=0
i, TP = i Tk = i nkha =0,

then the diffusion experiments and the heteroskedastic Gaussian regression erperiments are asymptotically
equivalent, that is

lim sup A(E(So,r, T), G(Zo,1, hr, T)) = 0.
T =00 poexg(L, M1, M)

Proof. Theorem 3.3 yields the asymptotic equivalence of the experiment [E with the (translated) Gaussian
shift experiment

dZ(z) = (b—6°)(z)/ oo (2) dz + T-Y/2dB(z), = €R%

Let us introduce a new Gaussian shift:

dZ(z) = 3 (b= 1) () v/ (am) ) N, (v) dis + T~ /2B (z), = € R

Since |Vus(x)| and |ps(z)| are uniformly bounded, the difference between the drifts of Z and Z can be
estimated as follows:

(6= ) (@) Vit (@) = (6= °) (@) /e (am)|
| (b— b)( m|+| b—b°)(2) (Ve (2 \/Mb°(am))|

ghﬁ+sh Vz € Cp,

Therefore, the Hellinger distance between the measures induced by Z and Z tends to zero as T — oo
(Strasser [23, Rem. 69.8.(2)]), provided that Te2h%? — 0 and Th?) — 0. The log-likelihood of the
experiment given by Z has exactly the same law as the log-likelihood of the Gaussian regression

Rle@) pall)p,

Yim = s (am) + V2GS 21)
Bl patE)y, The e (am)
fori=1,...,d; m =1,..., M, where ({im)i,m is a family of independent standard Gaussian random

vectors in R¥ and b € ¥. By Lemma 3 from Brown et al. [4] the square of the Hellinger distance between
the measures induced by the observations (20) and (21), respectively, is up to a constant bounded by
anl:l(ub(am) — tipo (@ )2 / oo (A )2 < Mn?2. Because of Mh? = |A| we infer M ~ h~% and the condition
h;dn;f’,, — 0 as T' — oo implies that the Hellinger distance tends to zero uniformly in b € o 7. Finally,
the desired result follows by bounding the Le Cam distance between experiments by the supremum of
the Hellinger distance between the corresponding measures, see e.g. Nussbaum [18, Eq. (12)]. O O

Remark 4.3. The ezperiment given by (20) is more informative than the ezperiment generated by the
observations (erinm)i,m, where e; = (1,0,...,0)T € RE. If we enumerate {a(i)}; so that a(1) = 0 € R¢

thenY,, := (€T Yim,...,eTYy,)T satisfies Y,, = b(am ) +em [/ Theup(am) with €m [/ (V)11 ~ N (0, I4)
i.i.d. Therefore the diffusion ezperiment (Yo 7, T) is asymptotically more informative than the regression
experiment:

Ym =blam) + ——, m=1,..., M.
( ) Thd,“*b(am)

If we choose hy = T~% ep = T-F/(2A+d) and np = T-F+1/(2644) (in view of Corollary 2.8), the
condition of Theorem 4.2 takes the form

1 d 4(B+1)
max(ﬂ 2,8—|—d) <2a<m.

Such a value «a exists if and only if

d? d—2++/(d—2)?+ 4d?
ﬂ>max(Z—1, 1 .




For d = 2 this inequality reduces to 8 > 1. For d > 4 it is equivalent to 8 > (d/2)% — 1. Note also that
the logarithmic factors in er and nr do not affect this bound on the minimal regularity.

As mentioned in the introduction, the result of Theorem 4.2 is new already in the one-dimensional case.
When d = 1, using a v/T-consistent estimator of up (Kutoyants [15], § 4.2), the local neighbourhood can
be attained as soon as 8 > 1/2. Taking K = 1 and using the globalisation method developed in [10], we
obtain the global asymptotic equivalence of the diffusion experiment and the regression

Y = blam) + —— . m=1,..., M,

VThp(am)’

provided that h = hy = T~%* with (28)~! < @ < 1 and the assumptions of [10, Thm. 3.5] are fulfilled.

5 Equivalence mapping

The result of Theorem 3.3 implies in particular that there exists a Markov kernel K from
(C([O,T];Rd),Bc([O’T];Rd)) to (C(Rd;Rd),Bc(Rd;Rd)) such that

lim sup ||P;‘,FK - Qurllrv =0,

T— 00 bESo, T

where PT K (A) = fc([o,T];]Rid) K(z, A)PT(dz) for A € Beregey and || - [[7v denotes the total variation
norm. The aim of this section is to construct this Markov kernel explicitly. The construction is divided
into two steps. First, we give the Markov kernel from the diffusion experiment to a suitable multivariate
Gaussian regression. Then we give the Markov kernel from the Gaussian regression to the Gaussian shift
experiment. An explicit Markov kernel in the other direction is not known, but seems also less useful.

Assume that we have a path X7 of the diffusion process (1) at our disposal. In what follows we use the
notation introduced in Section 3.2 with A verifying (27) below. For any ¢ = 1,...,d we denote by X, ;
the ith coordinate of X; and define the randomisation

l /OTm ]]cm(Xt)V(Xt — am) (dXt,i _ [32 (Xt) dt)

W/ vT 5\ _
<I)'L’m()( 76) - T

1 .
+——=(TIm = T () 2€im, m=1,..., M,

VT

where J,n, (t), Jm and 7, are defined by (15), (17) and (19) and € = (€im)i,m is a family of independent
(and independent of XT) standard Gaussian vectors in R¥. As is easily checked, the random vector
j;lq)giz(XT, €) with &, = (T Tm — jm(rm))l/"’ai(am) +&im has the same law as the Gaussian regression

Yim = 0i(am) + (TTm) " 2cipm. (22)

We prove in Section 6.1 that the total variation between the laws of € and € tends to zero as T — oo.
Consequently, if we denote by K()(z,-) the law of {(]7;1@1(7173(23,6); i=1,...,d; m=1,...,M}, we
obtain a Markov kernel realising the asymptotic equivalence between the diffusion (1) and the Gaussian
regression (22).

For any z € C,, and for any ¢ € {1,...,d}, we define the randomisation of the regression (22) by

o) (v,

9
I
S
&
i
B~
—
*’o
E
+
=
E
N
o<
3
~—
=
%
=
QU
e

1 .
+_T/R(amm;lbo(u) dB;(u)
7 (e ) du) 22 )i ) dBe). 23)



where R(am,z) = Hle[ami, zi[, B = (Bl, cer, Bd) and By,..., By are independent d-variate Brownian
sheets independent of (Yip)im. Let us show that ®(3)(y, B) = (q)l(?m)(y,é); ied{l,....,d},z € A) is an
equivalence mapping from the Gaussian regression model (22) to the Gaussian shift model (11).

For any z € C,, and for any i = 1,...,d define the multivariate analogue of a Brownian bridge

Vi(z) = /R(am E)V(U)\/,ubo—(u)déi(u)
- (/R(am m)v(“)v(“)T“’”(“) d“)jﬁl(/cmV(U)\/;m—(u)déi(u))

and set

Vi(z) = (/R(amm)v(u)v(u)T,ubo(u) du) Yim + T~ Y2Vi(2).

The process ‘N/Z takes values in RX and can be rewritten in the form XN/Z(x) = fR(a m)v(u)(gi(u) _
b2 (u)) po (u) du + T_l/zﬁ/\i(x) where

Wi(z) = (/R(amm) V(u)v(u)T,ubo(u) du) (]ﬂ;l/zsim + Vi(z).

o~

By construction, the process W, is centred Gaussian with covariance matrix E[VVZ(x)/W\Z(f)
(w)v(u)T ppo (u) du.  Assuming that vi,...,vx are enumerated in such a way that

T]_

fR(am,m)nR(am,a‘:) v
v1(u) = 1, one checks that B;(z) = fR(a m)ubo(u)_l/deI/i’]_(U) is a d-variate Brownian sheet, where

/Wz,l is the first coordinate of ﬁ/\l Therefore, the randomisation

2, 5) = |

R(am,z)

b2 ) (@) dut [ o) 2T () (24)

R(am,z)

satisfies

d0%) = b;(z) \/ 1o () dw + T~Y2dBi(z), € Cm, i=1,...d. (25)

The total variation between the measures induced by (25) and (11) is up to a constant bounded by VThP,
which tends to zero because of our choice of A and the assumptions of Theorem 3.3. Moreover, the d-
variate Brownian sheets El, ceny By are independent. Simple algebra shows that the two definitions (24)
and (23) coincide. Hence the law K3 (y,.) of ®(2)(y, B) provides a Markov kernel from the Gaussian
regression (22) to the Gaussian shift (11) realising the asymptotic equivalence.

6 Proof of Theorem 3.3

6.1 Main part

As we have seen in Section 3.2, the construction of the Gaussian experiment makes use of an i.i.d. family
€ = (Emj)m=1,..,M, j=1,...,d of standard Gaussian vectors with values in REX. The canonical version of &
is defined on the measurable space (]RKMd, B]RKMd). We prove the asymptotic equivalence by a suitable

coupling, which consists in constructing probability measures f’;‘: and Q;‘: on the product space
(€, Be) := (C([0,T],RY x REM By (o 1 ey ® Brraa)

such that
a) E(Xo,7,T) is equivalent to INE(EO,T, T) = (5, Be, (f’;‘:)begom),

b) INE(EO,T, T) and H}(EO,T, T) = (5, Be, (Q;‘:)begoﬂ,) are asymptotically equivalent,

c) F(Xo,r,T) is asymptotically equivalent to H}(EO,T, T).

11



a) Define f’;‘: to be the measure induced by the pair (X7, &), where X7 is given by (1) and ¢ is a standard
Gaussian vector independent of X7, that is f’;‘: = Pg' ® N kg with A, denoting the standard normal
law on IR*. Then the equivalence E ~ [E follows from the equality in law of the respective likelihood
processes, cf. Strasser [23, Cor. 25.9].

b) The measure Q;‘: is defined via
QfaxB)= [ POTOPLEXT) N karalde)
AxB

for A € Be(jo,r,r%) and B € Bgxua with

Jo(XT =ZZ[W0 (1) g (X7 ) = 5 05 (0m) T O )
and
T —L " v —a . — b2
g (Y7,8) = / o, (Xa)v (X — am) (dXaj — 2(X,) di)
(T = T o (7)) Y2y

Because of fyo (X7T,¢) = 0 these definitions yield Qb° = P and therefore log ( (XT )) = fo(XT,€).

Proposition 3.4 combined with the classical formula of the characteristic functlon of a Gaussian vector
implies that Q;‘: is a probability measure.

To prove the asymptotic equivalence of E and T, it suffices to show that the Kullback-Leibler divergence
between the measures Pg' and Q;‘: tends to zero uniformly in & € Xo 7 (see the proof of Thm. 2.16
n [10]). The Fubini theorem yields

KL(PT,Qf) = /log (325 (XT,e))PbT(dXT)A/KMd(de)
b
= Eb{log (d T /fb NKMd(dE)}
bO

The Girsanov formula (Liptser and Shiryaev [17]) and the fact that the expectation of the stochastic
integral is zero give

e o (2 ) = <::@%n ] [ gt
=E, {log (:bi );)0 / |19 | py(T) dz

Similarly, we find

m=1j=1

[l
|
|
—
=X
=
3
QU
8
+
=
o
S~
=
Q
s
=
s
=
QU
M
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Using for f(z) = |[9(z)|? and f(z) = J(z)T (19(33) - ﬁ(x)) the general identity

T/Af(x),ub(x)dx: f: Eb{/OT g, (Xt) f(Xi)dt],

we obtain KL(PT,QT) = 3°0_, 7i(9) with
T1(9) = Es[log ps(Xo) — log ppe (Xo)],
9(2)|? (oo (2) — po(=)) dz,

LS

2

W) = 3 Eb[/ Lo, (X:) 9(X,)T (9(X:) — 9(X:)) dt].

The Cauchy-Schwarz inequality implies that 75(J) < T3(9) + Ta(¥). The explicit form of the invariant
density pp implies that supg 71(9) < e. The Holder assumption implies that sup, |9(z) — I(z)] < hP and
we infer
sup T2(9) < T(h%* + )y, sup T4(9) < Th?f,
8 8

In Section 6.2 below we prove that

Ta(9) < (Tn + $a(h)VT) 1915 (26)
holds if A = Ay tends to zero for T — oo. Hence, we obtain

KL(PY,QY) S &+ Th* + T(e* + h*)n + pa(h")VT(e* + h*F).
Consequently, the rate-optimal choice of h is
h=hyp = (54T_1)1/(4ﬁ+d_2), (27)
provided that h% = o(e?), so that
KL(PY,QF) S e+ (2T ) /(0442 log(T~1)?29=2) 4 T2y,

given e72TP — oco. Under the assumptions of the theorem we thus conclude that [E and [F are asymp-
totically equivalent.

c) Tt remains to verify that the statistical experiment F defined via Q;‘: is asymptotically equivalent to
the experiment FF defined via Q;‘:. We have already seen that

o5 (528 ) = 37 [VT03 (0710 ~ 5 03(0m)7 5030

[ m,j

Recall that according to Proposition 3.4 the random vectors (#m;)m,; are independent Gaussian with
covariance matrix J,,. Therefore, the law of the log-likelihood process (dQ;‘:/dQ ) coincides with

beXg
the law of the process (dQ;{/dQ;{o)bez This gives the equivalence of the experiments F and F where
the latter experiment is defined by the observation

2) = b(z)\/peo (2) dz + T~Y2dB(z),  Z(0)=0, zcR% (28)
To conclude, we remark that the Kullback-Leibler divergence between the Gaussian experiments I and
IF is bounded by T [za(b— b)%pee < Th?,,ﬁ and in view of (27) tends to zero for T — oo. O

13



6.2 FEvaluation of 73

We start by sketching how the estimate could be reduced to a purely analytical problem, using

Ta(9) < ||b_b0||§oZEbuT ]]Cm(Xt)dt} (29)

< |[b - bo|2, (Sip Eo[T — 7] + 3 (Es [/T:(]lcm(Xt) — Py (Cp)) ] ).

If f is a function in the domain of the generator Ly of the semigroup (Py:)s>0 with Ly f = Ig,, (X¢) —
Py(Cn), then Dynkin’s formula and the fact that lg,, (X:) — Ps(Cp) is centred yield

E, [/TT(]lcm(Xt) —Py(Cni)) dt} = Ep[f(X5,,)] < Sup f(z).

Unfortunately, a suitably tight supremum norm estimate for f = Lb_l(]lcm —P4(Cp)) could not be found
in the literature.

We therefore proceed differently and make use of the mixing properties of X. Fix some A = A(T) > 0.
Since for 7, > T — A the integral over [y, T] is smaller than the integral over [T — A, T], we have

T T
Es {/ Iix,ecm) dt} < App(Cr) + Ep |:]1{TmST—A}/ Iix,ecm) dt}- (30)

m

Lemma 6.1. Under the assumptions of Proposition 2.5 we obtain

Ey [H{ngT—A} / Iix,ecom} dt} < Apip(Crm) + h31Pa(h?)/Tias(Cor).

Tm

T +4A

Proof. Because of [Tp, Tm + Al C [(¢ — 1)A, (i + 1)A] for some 1 < i < T/A we get

Tm+A (+1)A
/ le, (Xs)ds < max / le,, (X;)ds.
T i=1,...,[T/A] (i-1)Aa

m

Set U; = ((Z.i_-l_ll))AA le,, (Xs)ds — 2App(Cr). By separating the bias from the stochastic term, we find

Tm+A
1 Xs ds < 2A Cm UZ ’
/T Cm (Xs) ds < 2Ap5(Crr) + i:l,l-l}fl[’i"(/AH |

m

and by the Cauchy-Schwarz inequality

[T/A] 1 2A 2
E,[max |Uj]] < ( Z Eb(Uiz)) = |T/A]Y? Var (/ ]lcm(Xs)ds)
’ =1 0
We conclude by an application of Proposition 2.5. O [l

Lemma 6.2. If Assumption 2.1 is satisfied, then

T
Es {]I{TMST—A} /

m

T—-A
]I{XtECm} dt:| S ,Ufb(Cm)/ PZ‘(Tm S t) di
0

+ Te=Ar (Com).

Proof. We have
T

T
]I{Xtecm} dt} =E L/A ]I{Xtecm} ]I{ngt—A} dt}

Es {]I{TMST—A} /

Tm+

T
= ub(cm)/ Pl (1 <t — A)dt

+/ Es[(lc,.(X:) = 16(Cm)) U, <t—n}] di.
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Using the Markov property of the process (X:) and the spectral gap inequality from Assumption 2.1, we
infer that

Ey[(lc,,(Xt) — #6(Cm)) Vir<t—n} ]
= Ep[Po,a(lc,, — 1#6(Cm)) (Xi-a) Uir,<t-ay]
< VE[(Poa(lc, — m5(Cm))(Xe-a))?]
= [|Ps,allc,, — #6(Com)llws < €2/ 16(C).

This inequality completes the proof of the lemma. O O

Lemma 6.3. We have uniformly overm=1,...,M:

Py(rm <t) < t—znz + 15 (h7)
mSUS T e

Proof. Note that M; := Jﬁl/zﬁmj (t) € R¥ is a martingale with quadratic variation matrix (M), =

jﬁl/zjm(t)jﬁl/z. We obtain that E,[(M);] = tIx with the K x K-unit matrix Ix and

Py (1 < 1) = Py([(M)el| 2 T) = Po(|[{M). — tIxl| > T ~ 1)
< Blll(M). — x|
= (T — 1) '

Let J, € REXX be the diagonal matrix with Jj ;; = Rle@l i =1,..., K, then

(M)e — k|| = 1T (T (t) — tTn) T 2|
< NI 2l 1T  (Fon () = 1) T3 -

Simple algebra shows that ||(]7;1/2Jh||2 = |(J5 P T )|, It = Jp-: and
I Imd = hd/ v(u)v(u)T pye (am + uh) du.
[0,1]¢

This matrix is strictly positive definite and ||h~%upo (am)_th_ljth_l — V|| tends to zero as h — 0.
Hence, by the continuity of the matrix inversion we obtain for A small enough

15 b (@m) In T Jnll < 2|V

We conclude that ||j7;1/2

that

Jul|? < poo(Cm) ™. Set now Hy = Jh_l(jm(t) — t(]m)Jh_l. It is easily checked

o= [ tenxay (K () s

_t/cmv(x _ham)v(x _ham)Tubo(x) dz.

Each entry H,,; can be written as fot f(Xs)ds—1t fc f(®)pvo () dz, where f is a function bounded by
1 and supported by C,,. Thus, a bias-variance decomposition combined with Proposition 2.5 yields

Bult2) S ([ Inoe) = (o) do ) -+ th G0 Con).

m

Since in view of Remark 2.10 py(Cp,) and ppe(C,) are both of order A% and all norms in REXX are
equivalent, we arrive at the desired estimate. [l O
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Using the last lemma we obtain

o
N
h
=
z
=
—~
\.)—‘
o
[ V)
=
[ V)
+
-
v
Pl
o
=
~—
QU
o

T-—A
/ Pb(Tm St)d
0

T 2,2 T 2(pd
S/o min (l,qt_int)z) dt—i—/o min (1,%) dt.

Setting ey = T~ Y24 4(h?), we get

T HGL v
/0 min (1, %) dt = T/O min(1, c& (1 — v)v™2) dv

ST/ ldv—i—T/ c;f’,,v_zdv
0 cr

= 2TCT = 2T1/2¢d(hd).

In the same way we obtain fOT min (1,t2172/(T - t)z) dt < 2Tn. Substituting all estimates into (30) and
(29), we obtain

Ta(9) <||b— %1% (A + T + $a(h4)VT + Th™42e=27).

Thus choosing A(T) = ta(h®)VT we get

Ta(9) S 16— 813 (T +a(h)VT),

provided that A = h(T) tends to zero as T — oo.
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