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AbstractAsymptotic local equivalence in the sense of Le Cam is established for inference on the drift inmultidimensional ergodic di�usions and an accompanying sequence of Gaussian shift experiments.The nonparametric local neighbourhoods can be attained for any dimension, provided the regularityof the drift is suÆciently large. In addition, a heteroskedastic Gaussian regression experiment isgiven, which is also locally asymptotically equivalent and which does not depend on the centre oflocalisation. For one direction of the equivalence an explicit Markov kernel is constructed.1 IntroductionAsymptotic equivalence is a powerful concept for analysing statistical inference problems by a transfer tothe analogous problem in a simpler statistical experiment. A breakthrough were the results by Brown andLow [5] and Nussbaum [18] who established asymptotic equivalence of the two classical experiments, one-dimensionalGaussian regression and density estimation, with an accompanying sequence of Gaussian shiftexperiments. In this paper we consider the statistical inference for the drift in a multidimensional di�usionexperiment under stationarity assumptions and prove the asymptotic equivalence with correspondingmultidimensional Gaussian shift and regression experiments.Asymptotic equivalence results for dependent data are not very numerous, see Dalalyan and Rei� [10] foran overview. Even for simple experiments, as the classical ones described above, results for asymptoticequivalence in the multidimensional case are very scarce. We only know of the recent work by Carter [8]who proves asymptotic equivalence for two-dimensional Gaussian regression, but argues that his methodfails for higher dimensions. One of the main reasons for the diÆculties in transferring methods to higherdimensions is that piecewise constant approximations of the unknown functional parameter usually do notsuÆce anymore and higher order approximations have to be used, which creates unexpected problems.Brown and Zhang [6] remark that the two classical experiments and their accompanying Gaussian shiftexperiments are not asymptotically equivalent in the case of nonparametric classes of H�older regularity� � d=2, where d denotes the dimension.The methodology we applied in [10] to establish asymptotic equivalence for scalar di�usions relied heavilyon the concept of local time. For multidimensional di�usions local time does not exist. This might explainwhy the statistical theory for scalar di�usions is very well developed (see Kutoyants [15]), while inferenceproblems for multidimensional di�usions are more involved and much less studied. We refer to Bandi andMoloche [2] for the analysis of kernel estimators for the drift vector and the di�usion matrix and to A��t-Sahalia [1] for a recent discussion of applications for multidimensional di�usion processes in econometrics.In Section 2 we review results for multidimensional di�usions and construct estimators for the invariantdensity and the drift vector. Interestingly, the estimator of the invariant density converges for d � 2with a rate which is slower than parametric, but faster than in classical d-dimensional density estimationproblems. The local equivalence result of the multidimensional di�usion experiment with an accompany-ing Gaussian shift experiment is formulated and described in Section 3. The local neighbourhoods canbe attained for drift functions in a nonparametric class of regularity � > (d � 1 +p2(d� 1)2 � 1)=2for any dimension d � 2. In Section 4 the corresponding equivalence with a heteroskedastic regressionexperiment, which does not depend on the centre of localisation, is treated. This can be used to establishglobal equivalence with a single experiment, which even in the one-dimensional case cannot be obtainedfor the Gaussian shift experiment due to the absence of a variance stabilising transform, as was �rst notedby Delattre and Ho�mann [11]. The explicit construction of a Markov kernel establishing the importantpart of the asymptotic equivalence is presented in Section 5. The proof of the main local equivalenceresult is deferred to Section 6. 1



2 Preliminaries2.1 Di�usion processesWe assume that a continuous record XT = fXt; 0 � t � Tg of a d-dimensional di�usion process Xis observed up to time instant T . This di�usion process is supposed to be given as a solution of thestochastic di�erential equationdXt = b(Xt) dt+ dWt; X0 = �; t 2 [0; T ]; (1)where b : Rd ! Rd, W = (Wt; t � 0) is a d-dimensional Brownian motion and � is a random vectorindependent of W . We denote by bi : Rd! R, i = 1; : : : ; d, the components of the vector valued functionb. In what follows, we assume that the drift is of the form b = �rV , where V 2 C2(Rd) is referred toas potential. This restriction permits to use strong analytical results for the Markov semigroup of thedi�usion on the L2-space generated by the invariant measure.For positive constants M1 and M2, we de�ne �(M1;M2) as the set of all functions b = �rV : Rd! Rdsatisfying for any x; y 2 Rd jb(x)j �M1(1 + jxj); (2)(b(x) � b(y))T (x� y) � �M2jx� yj2; (3)where j�j denotes the Euclidian norm inRd. Any such function b is locally Lipschitz-continuous. Thereforeequation (1) has a unique strong solution, which is a homogeneous continuous Markov process, cf. Rogersand Williams [22], Thm. 12.1. Set Cb = RRd e�2V (u) du and�b(x) = C�1b e�2V (x); x 2 Rd:Under condition (3) we have Cb < 1 and the process X is ergodic with unique invariant probabilitymeasure (Bhattacharya [3, Thm. 3.5]). Moreover, the invariant probability measure of X is absolutelycontinuous with respect to the Lebesgue measure and its density is �b. From now on, we assume that theinitial value � in (1) follows the invariant law such that the process X is strictly stationary. We denoteby PTb the law of this process induced on the canonical space �C([0; T ];Rd);BC([0;T ];Rd)� and by Eb theexpectation operator with respect to this law. We write �b(f) := Eb[f(X0)] = R f�b. Let Pb;t be thetransition semigroup of this process on L2(�b), that isPb;tf(x) = Eb[f(Xt)jX0 = x]; f 2 L2(�b) = nf : Rd! R : Z jf j2�b <1o:The transition density is denoted by pb;t: Pb;tf(x) = R f(y)pb;t(x; y) dy.2.2 Estimators of drift and invariant densitySome notation.We write A(p) . B(p) when A(p) is bounded by a constant multiple of B(p) uniformly over the parametervalues p, that is A(p) = O(B(p)) using the Landau symbol. Similarly, A(p) s B(p) means that A(p) .B(p) as well as B(p) . A(p). We denote by jAj the Lebesgue measure and by diam(A) the diameter ofa Borel set A � Rd.For any multi-index � 2 Nd and x 2 Rd we set j�j = �1 + : : : + �d and x� = x�11 � : : : � x�dd . Let usintroduce the H�older classH(�; L) = �f 2 Cb�c(Rd;R) : jD�f(x) �D�f(y)j � Ljx� yj��b�cfor any � such that j�j = b�c �where b�c is the largest integer strictly smaller than � and D�f := @j�jf@x�11 :::@x�dd .2



The construction.Let us assume that the potential V lies in H(� + 1; L) for some �; L > 0, which implies bi 2 H(�; L).Furthermore, if for some constant C1 > 0 we havemaxi=1;:::;d max�:j�j�b�c jD�bi(0)j � C1 (4)then the function �b is H�older continuous of order � + 1 in any bounded set A � Rd, that isjD��b(x) �D��b(y)j � L�jx� yj��b�c; 8� 2 Nd : j�j = b�c + 1for all x; y 2 A and for some constant L�. We denote by eH(�; L;C1) the set of all functions b such thatbi 2 H(�; L) and (4) is ful�lled.A natural kernel estimator for the invariant density based on the observation XT is given by�̂h;T (x) = 1T Z T0 Kh(x�Xt) dt; x 2 R: (5)Here, Kh(x) = h�dK(h�1x) and K : Rd! R is a smooth kernel function of compact support, satisfyingR K(x) dx = 1 and R K(x)x� dx = 0 whenever 1 � j�j � b�c+ 1. The usual bias-variance decompositionand approximation inequality yield (Efromovich [12], x 8.9)Eb�j�̂h;T (x)� �b(x)j2� . h2(�+1) + T�2Varh Z T0 Kh(x�Xt) dti: (6)By analogy with the model of regression with random design, a reasonable estimator of b is obtained bysetting b̂h;T (x) = R T0 Kh(x�Xt) dXtT max(�̂h;T (x); ��(x)) ; x 2 R; (7)where ��(x) > 0 is some a priori lower bound on �b(x), see Remark 2.10 below. A similar risk analysisgives for i = 1; : : : ; d:Eb�jb̂i;h;T (x)� bi(x)j2� . h2� + 1Thd + 1T 2 Var hZ T0 Kh(x�Xt)bi(Xt) dti+Eb�j�̂h;T (x)� �b(x)j2�: (8)Asymptotic results.In order to determine the asymptotic behaviour for T ! 1, we study the variance of general additivefunctionals of X in d dimensions. To do so, we assume that the semigroup Pb;t enjoys the followingproperties.Assumption 2.1 (spectral gap inequality). There exists a � > 0 such that for any f 2 L2(�b) andfor any t > 0 kPb;tf � �b(f)k�b � e�t�kfk�b :Assumption 2.2. There is a C0 > 0 such that for any t > 0 and for any pair of points x; y 2 Rd,satisfying jx� yj2 < t, we have pb;t(x; y) � C0(t�d=2 + t3d=2):Remark 2.3. Due to Remark 4.14 in Chen and Wang [9] Assumption 2.1 is ful�lled with � = M2,whenever (3) holds.Remark 2.4. If b ful�lls (2), then Assumption 2.2 can be deduced from Qian and Zheng [20, Thm. 3.2].Indeed, taking in that inequality q = 1+ t and bounding the terms �q and �q respectively by Cq3=2 and Cq,we get the desired inequality. If moreover b is bounded, Assumption 2.2 is satis�ed for every (x; y) 2 Rdand without the term t3d=2 at the right-hand side, cf. Qian et al. [19, inequality (5)].3



Proposition 2.5. Let r be a positive number and f : Rd ! R be a bounded, measurable function withsupport S satisfying diam(jSj)d < rdjSj and jSj < 1. Under Assumptions 2.1 and 2.2 there exists aconstant C depending only on r, d � 2 and on C0 and � from Assumptions 2.1 and 2.2 such thatVarb�Z T0 f(Xt) dt� � CTkfk21�b(S)jSj 2d(jSj);where kfk1 = supx2Rd jf(x)j and d(x) = (max(1; (log(1=x))2); d = 2;x1=d�1=2; d � 3:Proof. Set fc = f � �b(f). Symmetry and stationarity yieldVarb�Z T0 f(Xt) dt� = 2 Z T0 Z s0 Eb�fc(Xt)fc(Xs)�dt ds= 2 Z T0 Z s0 Eb�fc(X0)fc(Xs�t)�dt ds= 2 Z T0 (T � u)Eb�fc(X0)fc(Xu)� du� 2T Z T0 
fc; Pb;ufc��b du:Let 0 < Æ < D � T where the speci�c choice of Æ; D is given later. ThenZ[0;Æ][[D;T ] 
fc; Pb;ufc��b du � (Æ + ��1e��D)kfk2�b . (Æ + e��D)�b(S)kfk21 (9)follows from kPb;ufck�b � e��ukfk�b given by Assumption 2.1. For moderate values u 2 [Æ;D] we usehfc; Pb;ufci�b � hf; Pb;ufi�b � Z jf(x)j�Z pb;u(x; y) jf(y)j dy� �b(x) dx:For Æ > diam(S)2 we infer from Assumption 2.2hf; Pb;ufi�b � C(u�d=2 + u3d=2)�b(jf j) Z jf(y)j dy 8u � Æ: (10)Combining (9) and (10) and assuming diam(S) < Æ1=2, for d > 2 we �ndZ T0 
fc; Pb;ufc��b du . �Æ + e��D + Æ1�d=2jSj+D1+3d=2jSj��b(S)kfk21:Balancing the terms, we choose D = max(���1 log(jSj); r2) and Æ = r2jSj2=d. This gives the assertedestimate because we had assumed diam(S) < rjSj1=d. The case d = 2 can be treated similarly.Remark 2.6. In the case d = 1 the bound holds with  1(x) = 1, cf. Proposition 5.1 in Dalalyan andRei� [10].Remark 2.7. The dimensional e�ect is due to the singular behaviour of pb;t(x; y) for t ! 0. However,if the term t3d=2 is absent in Assumption 2.2, then in the de�nition of  2 the term (log(1=jSj))2 can bereplaced by (log(1=jSj))1=2. This is the case when the drift is bounded.Corollary 2.8. If b 2 eH(�; L;C1) \�(M1;M2), the estimators given in (5) and (7) satisfy for h suÆ-ciently small the following risk estimates:Eb�(�̂h;T (x)� �b(x))2� . h2(�+1) + T�1 2d(hd);Eb�jb̂h;T (x) � b(x)j2� . h2� + T�1h�d + h2(�+1) + T�1 2d(hd):4



The rate-optimal choice h = h(T ) s T�1=(2�+d) yields the ratesEb�(�̂h(T );T (x) � �b(x))2�1=2 . (T�1=2(logT )2; d = 2;T�(�+1)=(2�+d); d � 3;Eb�jb̂h(T );T (x)� b(x)j2�1=2 . T��=(2�+d):Proof. The risk bound for �̂h;T follows from j supp(Kh)j s hd, k�bk1 . 1 and an application of Propo-sition 2.5 to the bias-variance decomposition (6) for any h suÆciently small. In the same way, we obtainthe estimate for each b̂i;T;h and the rates follow by simple substitution.Remark 2.9. The convergence rates for the risk of �̂ are to be compared with the one-dimensional case,where the parametric rate T�1=2 is obtained, and with standard multivariate density estimation, wherethe corresponding rate is n��=(2�+d) for n observations, which is considerably larger. In contrast, the ratefor b̂ corresponds exactly to the classical rate n��=(2�+d) in regression or density estimation.Remark 2.10. Using conditions (2), (3) and the equality V (x) = V (0)� R 10 b(tx)Tx dt; we �nd�M1jxj+ 12M2jxj2 � V (x)� V (0) � 12M1jxj2 +M1jxj:Therefore, we can take ��(x) = e�M1 jxj2�2M1jxj= R e2M1jyj�M2jyj2dy as an a priori lower bound for �b(x).Moreover, due to assumption (4) the function �b is H�older continuous in AÆ = fx 2 Rd : infy2A jx�yj �Æg for any Æ > 0 and for any bounded set A � Rd. Therefore we do not need to modify the kernelestimators at the boundaries of A and the inequalities of Corollary 2.8 hold uniformly in b and in x 2 A.Remark 2.11. Corollary 2.8 describes the rates of convergence of estimators for the local risk, that isfor a pointwise loss function. To attain the local neighbourhood de�ned in the next section, the risk givenby the sup-norm loss must be studied. In the classical problems of nonparametric estimation, the ratesof convergence for the sup-norm loss on a compact set coincide up to a logarithmic factor with the localrates of convergence (Korostelev and Nussbaum [14], Gin�e, Koltchinskii and Zinn [13]). The extensionfrom the pointwise to the uniform loss result is usually fairly standard, but more involved and lies out ofthe scope of this paper.3 Equivalence with the Gaussian shift model3.1 Statement of the resultLet ��(L;M1;M2) be the set of functions b 2 �(M1;M2) such that all d components bi of b are inH(�; L).We �x a function bÆ 2 ��(L;M1;M2). Our main result establishes a local asymptotic equivalence betweendi�usion and Gaussian shift models in the local setting, that is when the parameter set is a shrinkingneighbourhood of bÆ. BE always denotes the Borel �-algebra of a topological space E.De�nition 3.1 (di�usion experiment). Suppose � � �(M1;M2) for some M1;M2 > 0. For anyT > 0 let E(�; T ) be the statistical experiment of observing the di�usion de�ned by (1) with b 2 �, thatis E(�; T ) = �C([0; T ];Rd);BC([0;T ];Rd); (PTb )b2��:For any function b 2 L2(�bÆ ;Rd) = ff : Rd ! Rd : R jf j2�bÆ < 1g we denote by Qb;T the Gaussianmeasure on (C(Rd;Rd);BC(Rd;Rd)) induced by the d-dimensional process Z satisfyingdZ(x) = b(x)p�bÆ(x) dx+ T�1=2 dB(x); Z(0) = 0; x 2 Rd; (11)where B(x) = (B1(x); : : : ; Bd(x)) and B1(x); : : : ; Bd(x) are independent d-variate Brownian sheets, thatis zero mean Gaussian processes with Cov(Bi(x); Bi(y)) = jRx \Ryj where Rx = fu 2 Rd : ui 2 [0; xi]g.5



De�nition 3.2 (Gaussian shift experiment). For � � L2(�bÆ ;Rd) and T > 0 let F(�; T ) be theGaussian shift experiment (11) with b 2 �, that isF(�; T ) = �C(Rd;Rd);BC(Rd;Rd); (Qb;T )b2��:For any positive numbers ", � and for any hypercube A � Rd, we de�ne the local neighbourhood of bÆ�(bÆ; "; �; A) = �b 2 ��(L;M1;M2) : jb(x)� bÆ(x)j � "1lA(x); x 2 Rd;j�b(x)� �bÆ(x)j � ��bÆ(x); x 2 A�;where 1lA is the indicator function of the set A. We state the main local equivalence result, which willbe proved in Section 6. The main ideas of the proof are explained in the next subsection. For the exactde�nition of statistical equivalence and the Le Cam distance � we refer to Le Cam and Yang [16].Theorem 3.3. If "T and �T satisfy the conditionslimT!1T��"2�dT = limT!1T 14+ d�28� "T (log(T"�1T ))1l(d=2) = limT!1T�T "2T = 0;then the di�usion model (1) is asymptotically equivalent to the Gaussian shift model (11) over the pa-rameter set �0;T = �(bÆ; "T ; �T ; A), that islimT!1 supbÆ2�� (L;M1;M2)��E(�0;T ; T );F(�0;T ; T )� = 0:Let us see for which H�older regularity � on the drift an estimator can attain the local neighbourhood,that is jb̂h(T );T (x)� b(x)j � "T and j�̂h(T );T (x)� �(x)j � �T hold with a probability tending to one (cf.Nussbaum [18] for this concept). By the rates obtained in Corollary 2.8, with a glance at Remark 2.11and the condition in Theorem 3.3, this is the case if�� � (2� d)�=(2� + d) < 0;1=4 + (d� 2)=(8�)� �=(2� + d) < 0;1� (� + 1)=(2� + d)� 2�=(2� + d) < 0:It turns out that the second condition is most binding and all three conditions are satis�ed if � >(d�1+p2(d� 1)2 � 1)=2. The critical regularity thus grows like (1=2+1=p2)d for d!1. In dimension2 we obtain the condition � > 1 as in the result by Carter [8] for Gaussian regression. Whether for H�olderclasses of smaller regularity asymptotic equivalence fails, remains a challenging open problem.3.2 Method of proofThe general idea of the proof of Theorem 3.3 consists in discretising (in space) the di�usion process suchthat the design regularisation technique we introduced in [10] is applicable in spirit, even though the localtime does not exist.Space discretisation.For any multi-index � 2 Nd set �! = �1! � : : : � �d!. Let us denote by fvigi=1;:::;K the elements of the setfv 2 R[x] : v(x) = x� with j�j � b�cg somehow enumerated: vi(x) = x�1(i)1 � : : : � x�d(i)d = x�(i). Weassume that A = [�a; a[d is a hypercube and for some h > 0 with a=h 2 Nwe denote by famgm=1;:::;M theelements of the grid (hZd)\A. We introduce the subcubes Cm = Qdj=1[amj; amj+h[� A, m = 1; : : : ;M ,where amj is the jth coordinate of am. Let us de�nev(x) = 0B@ v1(x)=�(1)!...vK(x)=�(K)!1CA ; (12)6



which gives rise to the de�nition �b of the Taylor approximation for b�b(x) = KXi=1D�(i)b(am)vi(x� am) for x 2 Cm; m = 1; : : : ;Mand �b(x) = bÆ(x) for x 2 Rd n A (D�(i) is applied coordinate-wise). Using this notation, the Taylorformula can be written asb(x) = �b(x) + Xi:j�(i)j=b�c�D�(i)b(�)�D�(i)b(am)� vi(x� am)�(i)! ; x 2 Cm; (13)where � 2 Rd satis�es j� � amj � jx � amj. This implies that for V 2 H(� + 1; L), the estimatejb(x)� �b(x)j . h� holds. We write#(x) = b(x)� bÆ(x); �#(x) = �b(x) � �bÆ(x) and �j(x) = 0B@D�(1)#j(x)...D�(K)#j(x)1CAfor j = 1; : : : ; d and we shall use equivalently � and b for referring to the parameter in the local neigh-bourhood. The log-likelihood of the experiment de�ned via PT�b is given by (see Liptser and Shiryaev [17,p. 271, (7.62)]) log dPT�bdPT�bÆ (XT ) = MXm=1 dXj=1 h�j(am)T �̂mj(T ) � 12 �j(am)T Ĵm(T ) �j(am)i; (14)where �̂mj(T ) = Z T0 1lCm(Xt)v(Xt � am) dWt;j 2 RK;Ĵm(T ) = Z T0 1lCm(Xt)v(Xt � am)v(Xt � am)T dt 2 RK�K; (15)and Wt;j denotes the jth component of Wt 2 Rd.Design modi�cation.Due to the ergodicity of X the law of the log-likelihood (14) will for large T be well approximated byMXm=1 dXj=1 �pT �j(am)T�mj � T2 �j(am)TJm�j(am)� (16)where �mj � N (0;Jm) i.i.d. andJm = ZCm v(x� am)v(x� am)T�bÆ(x) dx: (17)Since �j(am)TJm�j(am) = ZCm (�bj(x)� �bÆj (x))2�bÆ(x) dx; (18)the process (16) (indexed by �) has exactly the same law as the log-likelihood of the Gaussian shiftdZ(x) = �b(x)p�bÆ(x) dx+ T�1=2dB(x); Z(0) = 0; x 2 Rd:Under suitable assumptions on the smoothness of b, this last experiment is asymptotically equivalent to(11). 7



It remains to construct the random variables (�mj) on some enlargement of the probability space(C([0; T ];Rd);BC([0;T ];Rd);PTb ) such that T�1=2�̂mj(T ) and �mj are close as random variables. We de�nethe stopping time �m = inf �t 2 [0; T ] : kJ �1=2m Ĵm(t)J �1=2m k � T	 ^ T; (19)where the norm of a matrix A is given by kAk = supx(jAxj=jxj).Let " = ("mj)m;j be a family of independent standard normal random vectors in RK, de�ned on anenlarged probability space such that " and X are independent. We set�mj = 1pT �̂mj(�m) + (Jm � T�1Ĵm(�m))1=2"mj :By de�nition of �m the matrixJm�T�1Ĵm(�m) is nonnegative de�nite and its square root is well de�ned.Proposition 3.4. Under the probability measure PTbÆ the random vectors (�mj)m;j � RK are independentand each �mj is centred Gaussian with covariance matrix Jm.Proof. It suÆces to show that for any sequence (�mj)m;j � RK we haveE� exp�Xm;j �Tmj�mj�� = exp�12Xm;j �TmjJm�mj�;where the expectation is taken with respect to X following the law PTbÆ and "mj being i.i.d. standardnormal in RK, independent of X.The veri�cation of this equality is very similar to the proof of Proposition 2.13 in Dalalyan and Rei� [10]and is omitted.4 Equivalence with heteroskedastic Gaussian regressionThe Gaussian experiment in Theorem 3.3 depends on the centre bÆ of the neighbourhood via �bÆ . Thisfact makes the passage from the local equivalence to a global equivalence diÆcult, especially, becauseeven in the one-dimensional case there is no known variance stabilising transform for (11), cf. Dalalyanand Rei� [10].We propose here a method of deriving an asymptotically equivalent experiment independent of bÆ withoutusing the variance stabilising transform. The idea is to discretise the Gaussian shift experiment with a\step of discretisation" larger than 1=T . This method has already been used in Brown and Zhao [7] forproving the asymptotic equivalence between regression models with random and deterministic designs.We adopt the notation from Section 3.2. In addition, we introduce the K � K-matrix V =R[0;1]d v(x)v(x)T dx; where v(x) is de�ned by (12). Since V is strictly positive and symmetric, thematrix V�1=2 is well de�ned.De�nition 4.1 (heteroskedastic Gaussian regression). Let � be a subset of Cb�c(Rd;Rd). For anyT; h > 0 we de�ne G(�; h; T ) as the experiment of observingYim = 0B@ hj�(1)jD�(1)bi...hj�(K)jD�(K)bi1CA (am) +V�1=2 �impThd�b(am) (20)for i = 1; : : : ; d; m = 1; : : : ;M , where (�im)i;m is a family of independent standard Gaussian randomvectors in RK and b 2 �.Note that the observations in this experiment are chosen from RKMd according to a Gaussian measure.Both the mean and the variance of this measure depend on the parameter b such that the experiment isheteroskedastic. 8



Theorem 4.2. If the assumptions of Theorem 3.3 are ful�lled and h = hT satis�eslimT!1 Th2�T = limT!1Th2T "2T = limT!1 �2Th�dT = 0;then the di�usion experiments and the heteroskedastic Gaussian regression experiments are asymptoticallyequivalent, that is limT!1 supbÆ2�� (L;M1;M2)��E(�0;T ; T );G(�0;T ; hT ; T )� = 0:Proof. Theorem 3.3 yields the asymptotic equivalence of the experiment E with the (translated) Gaussianshift experiment d eZ(x) = (b� bÆ)(x)p�bÆ(x) dx+ T�1=2dB(x); x 2 Rd:Let us introduce a new Gaussian shift:d bZ(x) = MXm=1�(�b� bÆ)(x)p�bÆ(am)�1lCm(x) dx+ T�1=2dB(x); x 2 Rd:Since jr�b(x)j and j�b(x)j are uniformly bounded, the di�erence between the drifts of eZ and bZ can beestimated as follows:��(b� bÆ)(x)p�bÆ(x)� (�b� bÆ)(x)p�bÆ(am)��� ��(b� �b)(x)p�bÆ(am)��+ ��(b� bÆ)(x)�p�bÆ (x)�p�bÆ(am)���. h� + "h 8x 2 Cm:Therefore, the Hellinger distance between the measures induced by eZ and bZ tends to zero as T ! 1(Strasser [23, Rem. 69.8.(2)]), provided that T"2h2 ! 0 and Th2� ! 0. The log-likelihood of theexperiment given by bZ has exactly the same law as the log-likelihood of the Gaussian regressionYim = 0B@ hj�(1)jD�(1)bi...hj�(K)jD�(K)bi1CA (am) +V�1=2 �impThd�bÆ(am) (21)for i = 1; : : : ; d; m = 1; : : : ;M , where (�im)i;m is a family of independent standard Gaussian randomvectors in RK and b 2 �. By Lemma 3 from Brown et al. [4] the square of the Hellinger distance betweenthe measures induced by the observations (20) and (21), respectively, is up to a constant bounded byPMm=1(�b(am)��bÆ(am))2=�bÆ(am)2 .M�2T . Because ofMhd = jAjwe inferM s h�d and the conditionh�dT �2T ! 0 as T ! 1 implies that the Hellinger distance tends to zero uniformly in b 2 �0;T . Finally,the desired result follows by bounding the Le Cam distance between experiments by the supremum ofthe Hellinger distance between the corresponding measures, see e.g. Nussbaum [18, Eq. (12)].Remark 4.3. The experiment given by (20) is more informative than the experiment generated by theobservations (eT1 Yim)i;m, where e1 = (1; 0; : : :; 0)T 2 RK. If we enumerate f�(i)gi so that �(1) = 0 2 Rdthen eYm := (eT1 Y1m; : : : ; eT1 Ydm)T satis�es eYm = b(am)+�m=pThd�b(am) with �m=p(V�1)11 � N (0; Id)i.i.d. Therefore the di�usion experiment E(�0;T ; T ) is asymptotically more informative than the regressionexperiment: eYm = b(am) + �mpThd�b(am) ; m = 1; : : : ;M:If we choose hT = T��, "T = T��=(2�+d) and �T = T�(�+1)=(2�+d) (in view of Corollary 2.8), thecondition of Theorem 4.2 takes the formmax� 1� ; d2� + d� < 2� < 4(� + 1)d(2� + d) :Such a value � exists if and only if� > max�d24 � 1; d� 2 +p(d� 2)2 + 4d24 �:9



For d = 2 this inequality reduces to � > 1. For d � 4 it is equivalent to � > (d=2)2 � 1. Note also thatthe logarithmic factors in "T and �T do not a�ect this bound on the minimal regularity.As mentioned in the introduction, the result of Theorem 4.2 is new already in the one-dimensional case.When d = 1, using a pT -consistent estimator of �b (Kutoyants [15], x 4.2), the local neighbourhood canbe attained as soon as � > 1=2. Taking K = 1 and using the globalisation method developed in [10], weobtain the global asymptotic equivalence of the di�usion experiment and the regressionYm = b(am) + �mpTh�b(am) ; m = 1; : : : ;M;provided that h = hT = T�� with (2�)�1 < � < 1 and the assumptions of [10, Thm. 3.5] are ful�lled.5 Equivalence mappingThe result of Theorem 3.3 implies in particular that there exists a Markov kernel K from(C([0; T ];Rd);BC([0;T ];Rd)) to (C(Rd;Rd);BC(Rd;Rd)) such thatlimT!1 supb2�0;T kPTbK �Qb;TkTV = 0;where PTb K(A) = RC([0;T ];Rd)K(x;A)PTb (dx) for A 2 BC(Rd;Rd) and k � kTV denotes the total variationnorm. The aim of this section is to construct this Markov kernel explicitly. The construction is dividedinto two steps. First, we give the Markov kernel from the di�usion experiment to a suitable multivariateGaussian regression. Then we give the Markov kernel from the Gaussian regression to the Gaussian shiftexperiment. An explicit Markov kernel in the other direction is not known, but seems also less useful.Assume that we have a path XT of the di�usion process (1) at our disposal. In what follows we use thenotation introduced in Section 3.2 with h verifying (27) below. For any i = 1; : : : ; d we denote by Xt;ithe ith coordinate of Xt and de�ne the randomisation�(1)im(XT ; ") = 1T Z �m0 1lCm(Xt)v(Xt � am) (dXt;i � �bÆi (Xt) dt)+ 1pT (Jm � T�1Ĵm(�m))1=2"im; m = 1; : : : ;M;where Ĵm(t), Jm and �m are de�ned by (15), (17) and (19) and " = ("im)i;m is a family of independent(and independent of XT ) standard Gaussian vectors in RK. As is easily checked, the random vectorJ �1m �(1)im(XT ; ~") with ~"im = (TJm�Ĵm(�m))1=2�i(am)+"im has the same law as the Gaussian regressionYim = �i(am) + (TJm)�1=2"im: (22)We prove in Section 6.1 that the total variation between the laws of " and ~" tends to zero as T ! 1.Consequently, if we denote by K(1)(x; �) the law of fJ �1m �(1)im(x; "); i = 1; : : : ; d; m = 1; : : : ;Mg, weobtain a Markov kernel realising the asymptotic equivalence between the di�usion (1) and the Gaussianregression (22).For any x 2 Cm and for any i 2 f1; : : : ; dg, we de�ne the randomisation of the regression (22) by�(2)i;x (Y; ~B) = ZR(am;x)��bÆi (u) + v(u)TYim�p�bÆ(u) du+ 1pT ZR(am;x)p�bÆ(u) d ~Bi(u)� 1pT �ZR(am;x)v(u)T�bÆ(u) du�J �1m �ZCmv(u)p�bÆ (u)d ~Bi(u)�; (23)10



where R(am; x) = Qdi=1[ami; xi[, ~B = ( ~B1; : : : ; ~Bd) and ~B1; : : : ; ~Bd are independent d-variate Browniansheets independent of (Yim)i;m. Let us show that �(2)(y; ~B) = (�(2)i;x(y; ~B); i 2 f1; : : : ; dg; x 2 A) is anequivalence mapping from the Gaussian regression model (22) to the Gaussian shift model (11).For any x 2 Cm and for any i = 1; : : : ; d de�ne the multivariate analogue of a Brownian bridgeVi(x) = ZR(am;x) v(u)p�bÆ(u) d ~Bi(u)� �ZR(am;x) v(u)v(u)T�bÆ(u) du�J �1m �ZCm v(u)p�bÆ(u) d ~Bi(u)�and set ~Vi(x) = �ZR(am;x) v(u)v(u)T�bÆ(u) du�Yim + T�1=2Vi(x):The process ~Vi takes values in RK and can be rewritten in the form ~Vi(x) = RR(am;x) v(u)(�bi(u) ��bÆi (u))�bÆ(u) du+ T�1=2cWi(x) wherecWi(x) = �ZR(am;x) v(u)v(u)T�bÆ(u) du�J �1=2m "im + Vi(x):By construction, the process cWi is centred Gaussian with covariance matrix E[cWi(x)cWi(�x)T ] =RR(am;x)\R(am;�x) v(u)v(u)T�bÆ(u) du. Assuming that v1; : : : ; vK are enumerated in such a way thatv1(u) � 1, one checks that bBi(x) = RR(am;x) �bÆ (u)�1=2dcWi;1(u) is a d-variate Brownian sheet, wherecWi;1 is the �rst coordinate of cWi. Therefore, the randomisation�(2)i;x(Y; ~B) = ZR(am;x) �bÆi (u)p�bÆ(u) du+ ZR(am;x) �bÆ(u)�1=2d~Vi;1(u) (24)satis�es d�(2)i;x = �bi(x)p�bÆ(x) dx+ T�1=2d bBi(x); x 2 Cm; i = 1; : : :d: (25)The total variation between the measures induced by (25) and (11) is up to a constant bounded by pTh�,which tends to zero because of our choice of h and the assumptions of Theorem 3.3. Moreover, the d-variate Brownian sheets bB1; : : : ; bBd are independent. Simple algebra shows that the two de�nitions (24)and (23) coincide. Hence the law K(2)(y; �) of �(2)(y; ~B) provides a Markov kernel from the Gaussianregression (22) to the Gaussian shift (11) realising the asymptotic equivalence.6 Proof of Theorem 3.36.1 Main partAs we have seen in Section 3.2, the construction of the Gaussian experiment makes use of an i.i.d. family" = ("mj)m=1;:::;M; j=1;:::;d of standard Gaussian vectors with values in RK. The canonical version of "is de�ned on the measurable space �RKMd;BRKMd�. We prove the asymptotic equivalence by a suitablecoupling, which consists in constructing probability measures ~PTb and ~QTb on the product space(E ;BE) := �C([0; T ];Rd) �RKMd;BC([0;T ];Rd) 
 BRKMd�such thata) E(�0;T ; T ) is equivalent to ~E (�0;T ; T ) = �E ;BE ; ( ~PTb )b2�0;T �,b) ~E(�0;T ; T ) and ~F(�0;T ; T ) = �E ;BE ; ( ~QTb )b2�0;T � are asymptotically equivalent,c) F(�0;T ; T ) is asymptotically equivalent to ~F(�0;T ; T ).11



a) De�ne ~PTb to be the measure induced by the pair (XT ; "), where XT is given by (1) and " is a standardGaussian vector independent of XT , that is ~PTb = PTb 
NKMd with N k denoting the standard normallaw on Rk. Then the equivalence E � ~E follows from the equality in law of the respective likelihoodprocesses, cf. Strasser [23, Cor. 25.9].b) The measure ~QTb is de�ned via~QTb (A� B) = ZA�B efb(XT ;")PTbÆ(dXT )NKMd(d")for A 2 BC([0;T ];Rd) and B 2 BRKMd withfb(XT ; ") = MXm=1 dXj=1 �pT�j(am)T�mj(XT ; ")� T2 �j(am)TJm �j(am)�and �mj(XT ; ") = 1pT Z �m0 1lCm(Xt)v(Xt � am) (dXt;j � bÆj (Xt) dt)+ (Jm � T�1Ĵm(�m))1=2"mj :Because of fbÆ(XT ; ") = 0 these de�nitions yield ~QTbÆ = ~PTbÆ and therefore log � d ~QTbd ~QTbÆ (XT ; ")� = fb(XT ; ").Proposition 3.4 combined with the classical formula of the characteristic function of a Gaussian vectorimplies that ~QTb is a probability measure.To prove the asymptotic equivalence of ~E and ~F, it suÆces to show that the Kullback-Leibler divergencebetween the measures ~PTb and ~QTb tends to zero uniformly in b 2 �0;T (see the proof of Thm. 2.16in [10]). The Fubini theorem yieldsKL( ~PTb ; ~QTb ) = Z log� d~PTbd ~QTb (XT ; ")�PTb (dXT )NKMd(d")= Ebh log� dPTbdPTbÆ (XT )� � Z fb(XT ; ")NKMd(d")i:The Girsanov formula (Liptser and Shiryaev [17]) and the fact that the expectation of the stochasticintegral is zero giveEbh log� dPTbdPTbÆ (XT )�i = Ebh log� �b(X0)�bÆ(X0)�i+ 12Ebh Z T0 j#(Xt)j2 dti= Ebh log� �b(X0)�bÆ(X0)�i+ T2 ZA ��#(x)� �#(x)��2 �b(x) dx+ T2 ZA j�#(x)j2�b(x) dx+ T ZA �#(x)T �#(x)� �#(x)��b(x) dx:Similarly, we �nd Ebh Z fb(XT ; ")NKMd(d")i = MXm=1 dXj=1�� T2 �j(am)TJm �j(am)+Ebh�j(am)T Z �m0 1lCm(Xt)v(Xt � am)#j(Xt) dti�= �T2 ZA j�#(x)j2�bÆ(x) dx+ MXm=1Ebh Z �m0 1lCm(Xt)j�#(Xt)j2 dti+ MXm=1EbhZ �m0 1lCm(Xt)�#(Xt)T (#(Xt) � �#(Xt)) dti:12



Using for f(x) = j�#(x)j2 and f(x) = �#(x)T �#(x)� �#(x)� the general identityT ZA f(x)�b(x) dx = MXm=1Ebh Z T0 1lCm(Xt) f(Xt) dti;we obtain KL(~PTb ; ~QTb ) =P5i=1 Ti(#) withT1(#) = Eb� log�b(X0)� log�bÆ(X0)�;T2(#) = T2 ZA j�#(x)j2��bÆ(x)� �b(x)� dx;T3(#) = MXm=1EbhZ T�m j�#(Xt)j21lCm(Xt) dti;T4(#) = T2 ZA ��#(x)� �#(x)��2 �b(x) dx;T5(#) = MXm=1EbhZ T�m 1lCm(Xt) �#(Xt)T (#(Xt)� �#(Xt)) dti:The Cauchy-Schwarz inequality implies that T5(#) � T3(#) + T4(#). The explicit form of the invariantdensity �b implies that sup# T1(#) . ". The H�older assumption implies that supx j�#(x)� #(x)j . h� andwe infer sup# T2(#) . T (h2� + "2)�; sup# T4(#) . Th2�:In Section 6.2 below we prove that T3(#) . (T� +  d(hd)pT ) k�#k21 (26)holds if h = hT tends to zero for T !1. Hence, we obtainKL( ~PTb ; ~QTb ) . " + Th2� + T ("2 + h2�)� +  d(hd)pT ("2 + h2�):Consequently, the rate-optimal choice of h ish = hT = ("4T�1)1=(4�+d�2); (27)provided that h2� = o("2), so thatKL( ~PTb ; ~QTb ) . " + ("2T 12+ d�24� )4�=(4�+d�2)(log(T"�1))21l(d=2) + T"2�;given "d�2T � ! 1. Under the assumptions of the theorem we thus conclude that ~E and ~F are asymp-totically equivalent.c) It remains to verify that the statistical experiment F de�ned via QTb is asymptotically equivalent tothe experiment ~F de�ned via ~QTb . We have already seen thatlog� d ~QTbd ~QTbÆ� =Xm;j �pT�j(am)T �mj � T2 �j(am)TJm �j(am)�:Recall that according to Proposition 3.4 the random vectors (�mj)m;j are independent Gaussian withcovariance matrix Jm. Therefore, the law of the log-likelihood process �d ~QTb =d ~QTbÆ�b2�0 coincides withthe law of the process �d ~QT�b =d ~QT�bÆ�b2�0 . This gives the equivalence of the experiments ~F and bF, wherethe latter experiment is de�ned by the observationdZ(x) = �b(x)p�bÆ(x) dx+ T�1=2 dB(x); Z(0) = 0; x 2 Rd: (28)To conclude, we remark that the Kullback-Leibler divergence between the Gaussian experiments F andbF is bounded by T RRd(�b� b)2�bÆ � Th2�T and in view of (27) tends to zero for T !1.13



6.2 Evaluation of T3We start by sketching how the estimate could be reduced to a purely analytical problem, usingT3(#) � k�b� �b0k21Xm EbhZ T�m 1lCm(Xt) dti (29)� k�b� �b0k21� supm Eb[T � �m] +Xm �EbhZ T�m (1lCm(Xt)�Pb(Cm)) dti�:If f is a function in the domain of the generator Lb of the semigroup (Pb;t)t�0 with Lbf = 1lCm(Xt) �Pb(Cm), then Dynkin's formula and the fact that 1lCm(Xt)� Pb(Cm) is centred yieldEbhZ T�m (1lCm(Xt) �Pb(Cm)) dti = Eb[f(X�m )] � supx2Cm f(x):Unfortunately, a suitably tight supremum norm estimate for f = L�1b (1lCm�Pb(Cm)) could not be foundin the literature.We therefore proceed di�erently and make use of the mixing properties of X. Fix some � = �(T ) > 0.Since for �m > T �� the integral over [�m; T ] is smaller than the integral over [T ��; T ], we haveEbhZ T�m 1lfXt2Cmg dti � ��b(Cm) + Ebh1lf�m�T��g Z T�m 1lfXt2Cmg dti: (30)Lemma 6.1. Under the assumptions of Proposition 2.5 we obtainEbh1lf�m�T��g Z �m+��m 1lfXt2Cmg dti . ��b(Cm) + h d2 d(hd)pT�b(Cm):Proof. Because of [�m; �m +�] � [(i� 1)�; (i+ 1)�] for some 1 � i � T=� we getZ �m+��m 1lCm(Xs) ds � maxi=1;:::;[T=�] Z (i+1)�(i�1)� 1lCm(Xs) ds:Set Ui = R (i+1)�(i�1)� 1lCm(Xs) ds� 2��b(Cm). By separating the bias from the stochastic term, we �ndZ �m+��m 1lCm(Xs) ds � 2��b(Cm) + maxi=1;:::;[T=�] jUij;and by the Cauchy-Schwarz inequalityEb�maxi jUij� � � bT=�cXi=1 Eb(U2i )� 12 = bT=�c1=2Var�Z 2�0 1lCm(Xs) ds�12 :We conclude by an application of Proposition 2.5.Lemma 6.2. If Assumption 2.1 is satis�ed, thenEbh1lf�m�T��g Z T�m+� 1lfXt2Cmg dti � �b(Cm) Z T��0 PTb (�m � t) dt+ Te���p�b(Cm):Proof. We have Ebh1lf�m�T��g Z T�m+�1lfXt2Cmg dti = EbhZ T� 1lfXt2Cmg 1lf�m�t��g dti= �b(Cm) Z T� PTb (�m � t��) dt+ Z T� Eb��1lCm(Xt) � �b(Cm)� 1lf�m�t��g� dt:14



Using the Markov property of the process (Xt) and the spectral gap inequality from Assumption 2.1, weinfer that Eb��1lCm(Xt)� �b(Cm)� 1lf�m�t��g�= Eb�Pb;�(1lCm � �b(Cm))(Xt��) 1lf�m�t��g��qEb��Pb;�(1lCm � �b(Cm))(Xt��)�2�= kPb;�1lCm � �b(Cm)k�b � e���p�b(Cm):This inequality completes the proof of the lemma.Lemma 6.3. We have uniformly over m = 1; : : : ;M :Pb(�m � t) . t2�2 + t 2d(hd)(T � t)2 :Proof. Note that Mt := J �1=2m �̂mj(t) 2 RK is a martingale with quadratic variation matrix hM it =J �1=2m Ĵm(t)J �1=2m . We obtain that Eb[hM it] = tIK with the K �K-unit matrix IK andPb(�m � t) = Pb(khM itk � T ) = Pb(khM it � tIKk � T � t)� Eb[khM it � tIKk2](T � t)2 :Let Jh 2 RK�K be the diagonal matrix with Jh;ii = hj�(i)j, i = 1; : : : ;K, thenkhM it � tIKk = kJ �1=2m (Ĵm(t)� tJm)J �1=2m k� kJ �1=2m Jhk2kJ�1h (Ĵm(t)� tJm)J�1h k:Simple algebra shows that kJ �1=2m Jhk2 = k(J�1h JmJ�1h )�1k, J�1h = Jh�1 andJ�1h JmJ�1h = hd Z[0;1]d v(u)v(u)T�bÆ(am + uh) du:This matrix is strictly positive de�nite and kh�d�bÆ(am)�1J�1h JmJ�1h � Vk tends to zero as h ! 0.Hence, by the continuity of the matrix inversion we obtain for h small enoughkhd�bÆ(am)JhJ �1m Jhk � 2kV�1k:We conclude that kJ �1=2m Jhk2 . �bÆ(Cm)�1. Set now Ht = J�1h (Ĵm(t)� tJm)J�1h . It is easily checkedthat Ht = Z t0 1lCm(Xs)v�Xs � amh �v�Xs � amh �Tds� t ZCm v�x� amh �v�x� amh �T�bÆ(x) dx:Each entry Ht;ij can be written as R t0 f(Xs) ds� t RCm f(x)�bÆ (x) dx, where f is a function bounded by1 and supported by Cm. Thus, a bias-variance decomposition combined with Proposition 2.5 yieldsEb[H2t;ij] . t2�ZCm j�b(x) � �bÆ(x)j dx�2 + thd 2d(hd)�b(Cm):Since in view of Remark 2.10 �b(Cm) and �bÆ(Cm) are both of order hd and all norms in RK�K areequivalent, we arrive at the desired estimate. 15
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