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Abstract

We study a scheme from [FV99], which allows to approximate periodic
traveling waves in the nonlinear atomic chain with nearest neighbour inter-
actions. We prove a compactness result for this scheme, and derive some
generalizations. Moreover, we discuss the thermodynamic properties of trav-
eling waves.

1 Introduction

The atomic chain, see Figure 1, consists of identical particles with unit mass. These
are located on the real axis and are labeled by the index a. Let N be the number
of particles, which may be finite (in this case we set « € {1, ..., N}) or infinite (i.e.
a € Z). For any a, let z,(t) and v,(t) = #4(t) denote the position and velocity,

To—1 Tq To+t1 To+2

Ta
Figure 1: The atomic chain with nearest neighbor interaction.

respectively, of the atom « at time ¢. Moreover, let r,(¢) be the distance of atoms
a+1and a, ie.

To(t) = Tar1(t) — za(t). (1.1)

We assume that all particles interact only with their nearest neighbors. In particular,
we do not consider external forces. The dynamics in the chain is governed by
NEWTON’S equations, which read

Fo(t) ::¢'<xa+1@)——xa(0> —-¢'(xa@)-xa,1u)), (1.2)

where ® is the atomic interaction potential. A prominent example for a nonlinear
convex interaction potential is the ToDA-potential ([Tod70, Tod81])

®(r) = exp(1—r)+7r—1, (1.3)

which makes (1.2) completely integrable, cf. [Hén74, VDO91, DKKZ96, DM98].

A traveling wave is an exact solution of (1.2), which satisfies the ansatz

Za(t) :7u+w+x@a+m) (1.4)



Here r, v, k and w are four constant parameters and X is the wave profile. Motivated
by its physical meaning we call r the mean distance, v the mean velocity, k the wave
number, and w the frequency. If we insert the Ansatz (1.4) into NEWTON’s equations
(1.2) we obtain a difference-differential equation for the wave profile X, which reads

WP iX(e) = (r+X(p+k) - X)) -
@(r+xwy—m¢—k», (1.5)

where ¢ = ka + wt denotes the phase. Note that, due to GALILEIan invariance of
(1.2), v does not appear in (1.5), so that it is a free parameter. In this study we
consider solely periodic functions X. Without loss of generality we set ppe, = 1.
Furthermore, we are free to normalize X by

1

/x@mwzo (1.6)

0

Traveling waves in discrete systems were widely studied in the last years, because
they provide a lot of insight into the physics of high dimensional discrete systems.
However, most of the available papers address the (nontrivial) existence problem,
which was tackled by different methods (see for instance [FW94, AG96, FP99, PP00,
IK00, Too00]). Here we concentrate on approximation schemes for travelling waves,
because (%) explicit solutions of (1.5) are almost never available, and (i7) in modula-
tion theory (which is the primary subject of our interest, see [DHMO04, DHO05|) one
needs the information about the thermodynamicsof travelling waves, which can be
gained from numerical computations.

The paper is organized as follows. In Section 2 we summarize some basic facts
about traveling waves in the atomic chain. In particular, we introduce the most
important thermodynamic properties of traveling waves which become important in
the modulation theory. Consequently, we will proceed with an brief overview over
the modulation theory as it is developed in [FV99, DHMO04, Her04], and we give the
link to the Equation of State and the GiBBS-equation. Furthermore, we summarize
the (for our purposes) most important existence result, which goes back to FILIP and
VENAKIDES, see [FV99]. Next, in section 3 we describe a approximation scheme for
periodic traveling waves and prove a compactness result for this scheme. Moreover,
we will discuss some possible modifications of the scheme. Finally, in Section 4 we
present some numerical simulations.



2 Properties of traveling waves - an overview

2.1 Derived quantities

We introduce two further profile functions R and V by setting

V() = j—wxm, R() = X(p + £/2) — X(p — /2). (2.1)

The functions R and V are called traveling distance wave and traveling velocity wave,
respectively, because (1.4) implies the following expressions for the atomic distances
and velocities

ro(t) = r+ R(ka+wt+k/2),

(2.2)
va(t) = v+ wV(ka+wt).

Note that any traveling velocity wave provides the complete information about the
the corresponding traveling wave.

Using the profile functions R and V we can define the following means values, which
all have an immediate physical interpretation.

1

W = /@(7‘ + R(y)) de, specific internal
0 potential energy density,
1
p = — / ®'(r+R(p))dep,  pressure =
) negative specific force density,
1
w? 2 . .
K = — /V((p) dy specific internal
2 lineti .
0 inetic energy density,
T = 2K, kinetic temperature,
r = K-W, specific internal
action density,
U = K+W, specific internal
energy density,
1
E = 51)2 + U, specific energy density.

All these quantities become important, if we pass from the microscopic to the macro-
scopic scale, where we can study the thermodynamic properties of a chain with a
very large particle number. This is explained in more detail within the next section.



For later purposes we define further quantities by

1
1
v o= §/V(90)2d90,
0
S = 2wy, (2.3)
1

(V(p+k/2) + V(e — k/2)) ¢'(r + R(p)) de.

N | —

-]

0

The quantity v has no physical meaning, but it becomes important in the existence
result as well as in the approximation scheme. The quantities S and g have no
atomistic interpretation. However, on the macroscopic scale S and g can be shown
to have all properties of an entropy density and an entropy flux, respectively (cf.
[DHMO04, Her04])

2.2 Summary on modulation theory

In this section we summarize the modulation theory of the nonlinear atomic chain as
it is developed in [FV99, DHMO04, Her04], because it is probably the most important
application of periodic traveling waves and yields therefore a strong motivation
for the investigation of approximation schemes. Furthermore, modulation theory
clarifies the fundamental role of the thermodynamic quantities introduced above.

Modulation theory is a powerful tool which provides an effective description of the
dynamics on the macroscopic scale, which is large in comparison to the microscopic
(i.e. the atomic) scale. Modulation with periodic traveling waves allows to describe
the macroscopic evolution of microscopic oscillations, so that finally there result
some macroscopic evolution equations involving temperature. In our context, the
macroscopic scale results from the hyperbolic scaling which reads

t = et, a = e (2.4)

Here, t and @ are the macroscopic time and particle index, respectively, and € < 1
is the scaling parameter. For finite chains with a particle number N < oo we set
e = 1/N, so that @ takes values in [0, 1].

Since we scale time and particle index in the same way, we end up with hyperbolic
pde’s which describe the macroscopic evolution. We mention that there are other
reasonable scalings for the atomic chain, as for instance the KdV-scaling in [FP99,
SWO00], which leads to a macroscopic KORTEWEG-DE VRIES equations, or the NSE-
scaling in [GM04b, GMO04a], where the macroscopic evolution is governed by the
nonlinear SCHROEDINGER equation.

The main idea behind modulation theory is the construction of approximate so-
lutions of the microscopic system (1.4) by allowing the traveling wave parameter

4



to vary on the macroscopic scale. A modulated traveling waves is an approximate
solution of NEWTONSs equations which satisfies the following ansatz for the atomic
positions

To(t) = éX(st, ea) + X(st, eq; é@(at, 5a)> + O(e), (2.5)

where X and © are two macroscopic functions. The modulated traveling waves
parameters thus become fields depending on ¢ and @. They are determined as
derivatives of X and ©, namely

0X 0X

v(t, @) = W(Z’ a), r(t, @) = ﬁ(Z, a), (2.6)
b8 =220, kD) = oo (i) (2.7)

The function X serves to model the microscopic oscillations and provides the link
to traveling waves. In particular,

Xt o) = X(rt, @), vt @), k(G @), w(t, a); ¢), (2.8)

where X is a family of traveling wave profiles which depends on the parameters r,
v, k, w, as well as on the phase variable ¢. In order to ensure that (2.5) yields
indeed approximate solutions, we can not choose X and © arbitrary, but we have
to satisfy some restrictions. It can be shown, at least formally, that the modulated
parameters have to satisfy the following version of WHITHAM’s equations

r —v

0 e IRV 2N

el G o= | D) = o (2.9)
S +g

These equations determine the functions X and ©, and they can be interpreted as
the macroscopic conservation laws of mass, momentum, wave number and entropy.
Finally, the system (2.9) implies the conservation law of energy

% (%UZ + U) (t, @) + 88—& (vp+wg)(t, @) = o (2.10)
The system (2.9) consists of four equations for seven variables. It is closed by
the equation of state which is closely related to families of travelling waves which
depend on four parameters. We summarize the main results from [DHMO04]. Let
X =X(r, v, k, w; ) a family of traveling waves which depend on the parameters r,
v, k, w and on the phase variable ¢. Then the internal action F' becomes a function
of r, k and w, i.e.

F=F(r k, w) (2.11)



This equation is the equation of state which intimately depends on the atomic inter-
action potential ®. However, independently on ® there holds the GIBBS equation

dFf = Sdw + pdr + gdk, (2.12)

which establishes the closure of (2.9). Unfortunately we do not know the equation
of state explicitly, except for some very special potential (see below). In all cases,
where we do not know the Equations of State explicitly, we cannot characterize the
properties of (2.9), as for instance strict hyperbolicity, RIEMANN-invariants and so
on. Consequently, we are interested in computing the equation of state at least
approximatively, in order to get a better understanding of (2.9). First steps in this
direction are done in [FV99] and [Her04]. Another application of approximation
schemes for traveling waves can be found in [DHO05], where the authors performed
detailed numerical studies on the validity of the modulation system.

Sometimes it is useful to replace the parameter w either by S or by . Doing this,
we shall reformulate the equation of state as well the Gibbs-equation according to
the following table, which is derived in [DHMO04, Her04].

variables equation of state GIBBS-equation

(r, k, 7) W = Wi(r, k,v) dW = w?dy — pdr — gdk
(r, k, S) U = U(rk, S) dU = wdS — pdr — gdk

For illustration we display the Equations of State for two simple cases. For the
harmonic potential

@(d) = Co+Cld+c—22d2, (213)
there result the dispersion relation

w(k) = +/cosin(mk)/m (2.14)

and

W(r, k,v) = co+or+ %cy‘? + w(k)y (2.15)
or, equivalently,

Ulr, k, S) = co+or + %cy«? +w(k)S. (2.16)

Another example is the hard-sphere model of the atomic chain, which corresponds
to

0 for d > 0,
®(d) = { +o00 ford < 0. (217)



Although this potential is not smooth, the notion of traveling waves may be extended
to this model. There result the following Equations of State

152

We mention that for both examples not only the Equations of States are known,
but even explicit expressions for the traveling waves are available, see [DHMO04,
Her04]). Moreover, for both examples the modulation equations (2.9) may be derived
rigorously (again [DHMO04, Her04)).

2.3 Existence of traveling waves

In this section we summarize the variational approach to the existence problem,
because it is closely related to our first approximation scheme. This variational
approach was introduced by FILIP and VENAKIDES in [FV99]. However, the ap-
proach is restricted to convex atomic interaction potentials ®. In order to simplify
some technical arguments, we will assume, that the convex interaction potential ®
satisfies the following regularity assumptions.

Assumption 2.1

1. ® is smooth (at least C*) and it is defined on the whole real axis,

2. the second derivative of ® satisfies
0<m<P"< M < 0. (2.19)

where m and M are two constants.

These assumptions implies, that the operator
0% : L*([0, 1]) — L3([0, 1]), with (8®V)(p) := ®'(V(p)) (2.20)
is well defined, LIPSCHITZ continuous and strongly monotone, i.e.
m||[Vo — Vi |2 < (00(Vy) — 0®(V1), V, — V) < M [V, =V 7. (2.21)

Here, (-, -) and || - || denote the usual scalar product and the usual norm in L?([0, 1]),
respectively. For fixed k& € (0, 1) let Ay and Ay be two integral operators defined by

pt+k/2 1
(AV) (@) := / V(@) de', AV := AV —k /V((p’) dy'. (2.22)
p—k/2 0

The first observation of FiLiP and VENAKIDES regards the difference differential
equations (1.5), which can be transformed into an integral equation containing only
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the traveling velocity wave V as the unknown quantity. In our notations, this integral
equation reads

W2V = A, 90 (7‘ + Akv) . (2.23)

The corresponding traveling distance wave R then follows from
R = AV. (2.24)
This reformulation of (1.5) provides a very elegant approach to the existence prob-

lem. Again following [FV99], we define (for fixed r and k € (0, 1)) a functional W
on L?([0, 1]) as follows

W(r, k, V) = /1 o(r+ AV( ))d. (2.25)

Now we are able to prove existence of traveling waves as solutions of the following
optimization problem.

Problem 2.2 For fizxed r, k € (0, 1) and v > 0 we mazimize the functional
Ve L*[o, 1) — W(r, k, V) (2.26)

under the constraint V € H,, where

H, = {VeL?([o, 1) :

N | =

/V(so)2dso <9} (2.27)

Theorem 2.3 For every r, all k € (0, 1) and arbitrary v > 0 there exists a mazi-
mizer V of Problem 2.2, such that

1. V is element of the boundary of H.
L e
5 [ V@) de = . (2.28)

2. There exists a positive LAGRANGE multiplier @2, so that V is a traveling ve-
locity wave with frequency @, i.e.

52V = A, 00 (7" n AN) . (2.29)



Sketch of the proof. Since the operator Ay is compact, the convex functional (2.26)
is continuous with respect to the weak topology in L?([0, 1]). Knowing this, we
maximize an continuous functional on the compact set H., (compact in the weak
topology), which provides existence of a maximizer. Since the functional is convex,
the maximizer cannot be an inner point of H,,. O

We proceed with two remarks.

1. There is no uniqueness result, neither for the maximizer nor for the LAGRANGE
multiplier.

2. The equation of state is formally given by

W(r k) = W(r, k, v, V(r, k, 7)). (2.30)

For fixed (r, k, ) the profile \7(1", k, ) is a maximizer from Theorem 2.3.

In the next section we derive an approximation scheme for traveling waves, which
is closely related to Problem 2.2. For this reason we summarize some important
properties of the functional W.

Lemma 2.4 Let Vy and Vy be two function in L?([0, 1]), and let Wy, Wy be defined
by Wi =W(r, k, V;), i =1, 2. Then there holds

m ~ ~
Wo—W1 > (OvW(r, k, V1), Vo — V;) + > | ARVy — AV 2. (2.31)

Furthermore, any V € L*([0, 1]) satisfies

W(r, k, V) > % | AV |2 +W(r, k, 0) (2.32)
as well as
0 < W(r k, V) — W(r, k, o)+% | AxV |2
< (OvW(r, k, V), V) . (2.33)

Here, Oy W(r, k, V) denotes the GATEAUX-derivative of W with respect to V.

Sketch of the proof. The estimate (2.31) follows from the convexity of W (with
respect to V) by applying standard methods of convex analysis. (2.32) and (2.33)
then follow from (2.31) by setting Vo =V, V; =0 and V; =V, V5, = 0, respectively.
[



3 Approximation Schemes

3.1 ~-Scheme

We now derive the y-scheme which can be considered as a direct approximation of
the optimization problem 2.2. For simplicity we shall assume that the interaction
potential satisfies the regularity assumption 2.1.

Scheme 3.1 Let k € (0, 1), v > 0 and r be given, and let Vi € H, be an arbitrary
inttial datum with AxVy # 0. Then we define inductively two sequences

(n—V,)CH, and (n+— w,) >0 (3.1)

by the following iteration step

—_

(3.2)

Vn—i—l - fnZn; wn—l—l —

where

L = OW(r, k, V), fo= (3.3)

[

Note that the scheme 3.1 is well defined as long as || Z, || > 0. Furthermore, for all
n we have

1 . .
SIValP=7y and w2, Vi =Z, = A,m(r + AkVn>. (3.4)
This approximation scheme for traveling waves was described by FiLIP and VENAKIDES

in [FV99]. However, they did not prove any convergence or compactness result for
this scheme.

Theorem 3.2 The scheme 3.1 is well defined and has the following properties.

1. The sequence
n — W, = W(rk, V,) (3.5)
increases monotonously with

W, > Wy > &(r). (3.6)

2. The sequence n — wy, 1s strictly positive and bounded.

3. The sequence n — (V,,, wy) is compact in H, X Ry .

10



4. Let (V, w) be an accumulation point of the sequence n +— (V,, w,). Then, V

is a traveling velocity wave with frequency w. Furthermore, V is an element of
the boundary of H,.

Proof.
1. In what follows we write W(V) instead of W(r, k, V). Lemma 2.4 yields
Wit = Wa = 2 [ AVais = AVa [P + (99W(Va), Vasa = Vi)
= 5 1 AVas = AV, | 40741 (Vs Vs = Vo)
> 2 1AV — AV +

W2 (1 Vast P = [ Vasa 11 Ve )
m ~ N
) | ApVing1 — AV [P + w2 1 (27 — 29)

v

m ~ ~
> o 1AV = Vo [P > 0. (3.7)

This estimate implies the monotonicity of the sequence n — W,. Due to
AV, # 0 and since (2.32) there holds W, > W(0) = ®(r).

2. Let us assume that there is an integer n with Z, = 0. ;From (2.33) we then
conclude

0> W, — W(0) + % | AxV,, 2> 0. (3.8)

However, this estimate contradicts W,, > Wy > W(0), and thus the scheme is
well defined. Since V,, € H, and because the operator dyW is bounded, the
sequence n — Z, is bounded. We conclude

Wn127 = | Zn]* < oo, (3.9)
and therefore w, ; < oo.

3. The sequence n — W, is convergent, because it is monotonously increasing
and, according to Theorem 2.3, also bounded. From (3.7) there follows

n—o0

lim (Akvn+1 —A,Nn) = 0. (3.10)

The continuity of 8% and A, now implies

lim (Zni1 — Zy) = O. (3.11)

n—oo

Together with (3.4) we obtain

lim (w2, Vo1 —wlV,) = 0. (3.12)

n
n—ro0

11



Equations (3.4) and (3.12) imply

lim (w)V, — Z,) = lim (w2V, —w} V,41) = 0. (3.13)

n—ro0 n—ro0

Furthermore, from (2.33) there follows

m ~
(Zoy Vo) 2 2 [ AVa | (3.14)

4. Next we prove by contradiction that n — wy, is uniformly positive. Let j — wy,
a subsequence which converges to 0. With (3.13) there then follows

lim (Zn,, V,,,) = lim w2 ||V, [|>=0, (3.15)
j—oo Y 7

J—o0 "
and (3.14) implies

lim AkVn]. =0 and lim W,, =W(r, k, v, 0) = ®(r),

j—o0 j—o0
which contradicts (3.6)

5. Since H, is weakly compact, we can extract subsequences j — n;, such that
the sequence j +— V. converges weakly to a limit V., € H,. Passing to
another subsequence may assume that j — w,, converges to w, > 0. Since
the operator 0yW is compact, there holds in the sense of strong convergence

lim Z,;, = 0yW(Vy) = Z. (3.16)
Jj—00
Furthermore, we find

V, = —pmgmm T (3.17)

The convergence results (3.13) and (3.16) now imply the strong convergence

. Lo,
as well as
wiVe = 0yW(V). (3.19)

In particular, ||V, [|2 = 27.

We conclude this section with some remarks.

12



1. We are not able to prove, that the scheme 3.1 converges, i.e. that there
is exactly one accumulation point. However, numerical simulations indicate
convergence.

2. Let (V1, w1) and (V3, wy) be two accumulation points. Then there holds

W(r, k, Vi) = W(r, k, V). (3.20)

3. The set of accumulation points may depend on Vj.

4. It is easy to show, that the the cone

Hyw = {Ve L2([0, 1)) : V(% - ) :V<%+'> a.e.}.

is invariant under the action of the operators 8® and Aj. Thus, if we choose the
initial datum V; as an element in Hy.,, the whole sequence n — V,, remains in
Hgyr. Since Hgyy, is closed, we have proved the existence of traveling velocity
waves within Hyyp,.

3.2 S-Scheme and 7T-Scheme

The scheme 3.1 allows the numerical computation of traveling wave profiles as well
as of the corresponding equation of state W = W (r, k, v). However, sometimes it is
more convenient (cf. the discussion in Section 2.2 and the applications in [DHO05]) to
replace the parameter v by the entropy S or by the temperature 7. For this reason
we present some modifications of scheme 3.1 which allow to prescribe either S or
T. Unfortunately we could not derive any convergence or compactness result for
these schemes. However, numerical experiments indicate that the modified schemes
converge, at least for reasonable initial data.

Scheme 3.3 Let (r, k, S) or (r, k, T) be given and let Vo € L?([0, 1]) be an ar-
bitrary initial datum with ALV, # 0. Furthermore, let the parameter A € (0, 1)
be fized. Then we define inductively two sequences (n+—V,) C L3([0, 1]) and
(n— wy,) >0 by

1
TV

Here, f, is given either by f, = S*/® || Z, |=*® (if S is prescribed) or by f, =
T\ Zn |72 (if T is prescribed).

Vs = MouZy + (1 — NV, Z, = Ay 8<I>(r + Akvn). (3.21)

Note that the schemes 3.1 and 3.3 are quite similar; they differ mainly in the com-
putation rule for f,. Furthermore, in 3.3 we introduced the additional parameter
A, which improves the convergence in numerical simulations. Applications of the
scheme 3.3 may be found in [Her04] and [DHO5].

13



4 Numerical Simulations

The scheme 3.1 can be applied to the TODA-potential (1.3), although it does not
satisfy the condition (2.19) of the regularity assumption 2.1. However, there holds
an a-priori estimate for the traveling distance wave R = A;V, namely

IRl € V27 = 1y (4.1)

In particular, for fixed , we may change the potential outside the interval [— iy, 4+,
so that the modified potential satisfies all regularity assumptions. The estimate (4.1)
guaranties, that all traveling waves with v < =, can be calculated by means of the
modified potential. The TODA potential has the advantage, that the parameter r
can be eliminated explicitly. In particular, since

W(r,k,v; V) = exp(1—r)W(1, k,v; V) +r—1, (4.2)
we can restrict all considerations to r = 1.
Gamma=0.01, Wave number=0.1 Gamma=50, Wave number=0.1 Gamma=2000, Wave number=0.1
+1.9E-1 +4.6E+0 — — +2.2E+1 Y =
7 ™~ el -~
—9.8E-3 _14g41) ! —8.9E+1f o
—2.1E-1 _33Es1ld A _2.0E+2ted .
0. 0.5 1. 0. 0.5 1. 0. 05 1.
Gamma=0.01, Wave number=0.3 Gamma=50, Wave number=0.3 Gamma=2000, Wave number=0.3
+2.0E-1 +8.1E+0 +4.3E+1 ~ =
-2.3E-3 ~5.0E+0 —2.9E+1 /_\
—2.0E-1 ~1.8E+1 _10E+2 o | W—
0. 0.5 1. 0. 0.5 1. 0. 05 1.
Gamma=0.01, Wave number=0.5 Gamma=50, Wave number=0.5 Gamma=2000, Wave number=0.5
+2.0E-1 +1.2E+1 +6.5E+1 r~ Y
-2.8E-17 A +OE+0 +0E+0 /\
~2.0E-1 ~1.2E+1 ~6.5E+1 J L
0. 05 1. 0. 0.5 1. 0. 05 1.
Gamma=0.01, Wave number=0.7 Gamma=50, Wave number=0.7 Gamma=2000, Wave number=0.7
+2.0E-1 +1.8E+1 +1.0E+2 ~ =
+2.3E-3 +5.0E+0 +2.9E+1 . .
—2.0E-1 ~8.1E+0 ~4.3E+1 J 3
0. 0.5 1. 0. 0.5 1. 0. 05 1.
Gamma=0.01, Wave number=0.9 Gamma=50, Wave number=0.9 Gamma=2000, Wave number=0.9
+2.1E-1 +3.3E+1 A +2.0E+2 ~
+9.8E-3 +1.4E+1 -: -'- +8.9E+1
} 1
~1.9E-1 [ - ~—] 2 % —
0. . .

~4.6E+0 ~2.2E+1 Lo
0. 0.

=

0.5

I
o
o
-

0.5

Figure 2: The profile functions V (blue) and R (red), depicted over ¢ € [0, 1], for
r = 1 and for different values of v and k. The atomic interaction potential ® is the
TobA-Potential.

Since the schemes 3.1 and 3.3 are not discrete in the phase variable ¢, we shall
briefly describe how they can be implemented. We divide the unit interval into 2M
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Potential energy, Gamma=0.01 Potential energy, Gamma=50 Potential energy, Gamma=2000
-,

+1.0E-3 +1.7E+1 /\ +1.1E+12
+5.2E-4 +8.7E+40 +5.7E+11
'."' "-.s s ., “.‘ ‘.“
25651 N +1.9E-1 / \ +8.7E+3 = S
0.05 05 0.95 0.05 0.5 0.95 0.05 05 0.95
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Figure 3: Potential energy W, frequency w, entropy density S and entropy flux g,
all depicted over k € [0, 1], for » = 1 and for different values of ~.

subintervals with equal length 6 = 1/(2M), and approximate any 1-periodic function
V by a 2M-dimensional vector V' = (V;),_; 5, with norm

oM
VI = 6> Vi (4.3)
j=1

Furthermore, for the sake of simplicity we restrict to wave numbers k which can be
written as k = 2K /2M for K € {1, ..., M'}. The operators 9® and Aj, then can be
approximated as follows

(020 (r +V)), = @'(r+Vj), (4.4)
i+K—1 2M
~(8) o V:+ Vi
(A¢ v)i = 523}(%—1«5;\/, (4.5)
J=i— J=

The fully discretized versions of the schemes 3.1 and 3.3, as well as the corresponding
analog of Theorem 3.2, can now be derived immediately. In our simulations we
always use M = 600.

Figure 2 shows for different values of v and k the profile functions V and R as
functions of ¢, where all computations rely on the y-scheme 3.1. In Figure 3 we have
plot, for different values of 7y, various thermodynamic quantities as functions of k.
For small y (in our example v = 0.01) the nonlinear potential may be approximated

by a quadratic one
A ~ / A 1 " 1 2 _ 1 A 2
<I><1+AkV> ~ (1) + O (1)AY + 50 (1)<AkV> — 1+ 2<AkV> (4.6)
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Consequently, all profile functions are close to sine-functions and the dispersion rela-
tion may be approximated by the harmonic one, see (2.14). The data for moderate
v, here v = 50, reveal for V and R a strong dependence on k. For very large v
the shape of the profile V is close to a piecewise constant function with two jump
discontinuities. A similar asymptotic behavior for traveling waves of the LENNARD-
JONEs-Potential was proved in [FM02].
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