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On convergence rates of suprema in the presence of 
non-negligible trends1 

Valentin Konakov 
Central Economics-Mathematical Institute, 

Academy of Sciences, Russia. , 

To S.A. Aivazyan in his Sixtieth Anniversary 

Abstract 

We investigate the convergence rates for the maximal deviation distribution of 
kernel estimates from the true density. The convergence rates for related Gaussian 
fields are also investigated. We consider the optimal choice of the smoothing para-
meter in the sense of Konakov and Piterbarg (1994) and in doing so we take into 
account a non-negligible trend. It is shown that the convergence rates depend on 
the asymptotic behaviour of the Laplace type integrals over a small neighbourhood 
of the manifold of points at which the trend attains its maximal value. Using in-
tegration over the level sets (Leray-Gel'fand differential forms) it is proved that 
the convergence rates are tipically logarithmically slow, even if the rates are to be 
uniform over as few as three points. Some improved approximations with power 
rates of convergence are also obtained. 

1 Introduction and Main Results 
Throughout the paper 

Y1, Y2, · · · ,yn, · · · 

are independent and identically distributed random vectors with probability law.µ which 
has a density f with respect to Lebesgue measure. We assume that 

D: the density f is strictly positive function on the closed unit cube Jd. 

We recall the Parzen-Rosenblatt estimator of the f 
n 

fn(x) = (nh~t1 L K(h;: 1(x -yi)). 
i=l 

1This research was supported by Russian Foundation of Fundamental Researches grant 93-011-1437. 
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gral, Leray-Gel'fand differential form. 
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Also through.out we assume that the kernel K is twice continuously differentiable with 
compact support and the sequence of smoothing parameters ( hn)n>O satisfies the condi-
tion 

S: 0 < hn < 1 for all n 2:': 1, hn 1 0 and nh~ j oo if n j oo. 

We also introduce Rio (1994) condition: 

R: 0 < lim infn-+oo log h~ 1 / log n ~ lim su Pn-+oo log h~ 1 
/ log n < 1 / d. 

Let us introduce the normalized deviation field of the f n 

t ( ) - CUhd . f n ( x) - f ( x) x E Id, 
C:.n x - ynn-;,_ (]'~ , 

where a 2 = f K 2(y)dy. Recall the condition G from Konakov and Piterbarg (1994). 
Let :J(/3, L ), /3 = p +a, 0 < a ~ 1, p 2:': 0, be the set of functions on Jd, having all 

partial derivatives up to the order p and such that 

1 11 1 = p, 

where D"' = D'{1 ... D~d, 
introduce the function 

D; = 8~ .• Denote :J(/3) = UL>o:l(/3, L ). For f E :J(/3) we 
J 

(1) 

and assume that 

G: G( x) does not identically equal zero and there exists a point of its maximum which 
lies inside the cube Jd: 

G(x) t; 0, :Jx+ E (0, l)d such that IG(x+)I =max IG(x)I. 
[d 

Konakov and Piterbarg (1994) investigated the maximal deviation distribution of kernel 
density estimates fn(x) when the smoothing parameter his chosen in an optimal way, so 
that a "bias term" and a "random error" are balanced. They also studied the maximal 
deviation distribution for related Gaussian fields XT(t), 0 ~ t ~ T. Their results may 
be roughly classified in two types. The results of the first type establish 

(1) the convergence to double exponent exp(-e-z) of the probabilities 

PT(z) = P(a(T)( sup XT(t) - b(T)) ~ z), 
09:5T 

as T ~ oo, where XT(t) is a sequence of Gaussian fields with non-vanishing trends 
in the limit, and 
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(2) the convergence to double exponent exp(-e-.z:) of the probabilities 

Pn(z) = P(an(~~en(x) - bn)::; z), as n ~ oo, 

where en( x) is the normalized deviation field en( x) with an optimally choosen 
smoothing parameter hn. 

Their results of the second type establish a rather simple sequence of approximating 
functions ef>T( z) (resp. ¢n( z) ) such that the difference 

sup IPT(z) - cPT(z)I 
% 

(resp. sup% IPn(z)-ef>n(z)I) has the order r-0 , 8 > 0 (resp. n-0 , 8 > 0). The convergence 
rate to a double exponent exp(-e-.z:) was studied by Konakov and Piterbarg (1982, 1983, 
1984) and later by Hall ( 1991). The first authors considered the case of vanishing trends 
in the limit and established that the rate of convergence of PT( z) and Pn( z) to exp( -e-z) 
has the exact order (log Tt1 and (log n t 1 respectively. Hall (1991) recently proved that 
the supremum of centered kernel density estimator may converge to its limit no faster 
than (log Tt 1 , if the limit is to be achieved uniformly over three or more distinct points. 
But he also restricts himself by the unidimensional case and zero trends. 

The case of non-vanishing trends in the limit being much more complicated reflects 
the essence of the matter. The aim of the present paper is to obtain the exact rates of 
convergence to exp(-e-z) in the situation when a "bias term" and a "random error" are 
balanced. Nonstationarity, expressed by the presence of non-vanishing trend, appears 
analytically as an additional multiplier which is a Laplace type integral (in stationary 
case this integral is equal to 1) over a small neighbourhood of the manifold at which 
the trend attains its maximal value. The asymptotic behavior of this integral may be 
obtained by using integration over the level sets (Leray-Gel'fand differential form). As a 
result we obtain exact rates of convergence to exp(-e-z:) for broad spectrum of different 
cases. 
For any f E C 2([0, T]d) we denote 

11/I lo = max IJ(t)I V l/e( t)I V l/ee( t)I, 
[0 1T]d1{e} 

where the exterior maximum is taken over all t E (0, T]d and all directions e in Rd, and 
fe(t), fee(t) denote the first and second derivatives in the direction e. 

Now we turn our attention to Gaussian fields. Let X(t), t E Rd, be a twice conti-
nuously differentiable Gaussian random field. Let a covariance function of the vector 
field 

where 

be nondegenerated for all t. Following Adler (1981), we shall call such fields suitably 
regular [SR] fields. As in Konakov and Piterbarg (1994) much of our attention will be 
directed to the model 

X(t) = e(t) + µ(t), (2) 
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where e(t) is a homogeneous isotropic Gaussian centered SR field and µ(t) is a nonran-
dom function. Besides, statistical applications of the model lead us to let the trend µ( t) 
depend on some parameter T, which will finally appear as a function of sample size n. 
We assume that 

µT( ·) E C3 ( Id), (3) 
and the correlation function p( T) = p( I !ti I) of the X( t), has the decomposition 

A2T2 A4T4 
p(T) == 1 - -

2
- + 4! + h(T), T -7 0, (4) 

and the derivatives h(k)( T) = o( T5-k) for all k = 0, 1, 2, 3, 4, 5. 
Let us denote M:(s) and Mu(S) to be numbers of local maxima of the fields X(t), 

t E S and IX(t)I, t E S, respectively, above the level u. Assume that for the sequence 
of trends {µT( ·)} and for the sequence of levels {UT} the following conditions M and U 
hold true 
M: for some positive K 

llµT(t) - AT G(T-1t)llo = O(T-K.), as T -7 oo 
where G is defined in (1) and AT -7 oo in such a way that 

ATT-e -7 0 

for any e > 0. 

U: limT-+oo UTT-e = 0 for any e > 0 and 
liminfT-+oo (vT - Go) 2:: 1 where Go= sup1a. IG(x)I, VT= uT/AT· 

and G( x) satisfies the condition G. 
Definition 1. We say that a set A is a maximizing set for a function f defined on 

a set n if 
A = {x : x En, f(x) = maxf(x)} n (5) 

Example: The circumference x~ + x~ = 1 is the maximizing set for the function 
f(x1, x2) = -(x~ + x~ - 1)2 defined on n = R2 • 

We consider two different cases corresponding to different groups of conditions P and 
M, namely 

P • G(x) E C([O,l]d) 
• maximizing set for G(x), x E [O, l]d, consists of a single point x0 

• G( x) E C3 in some neighbourhood of x0 

• x0 is a non-degenerate point of maximum. 

M • G(x) E C([O, l]d) 
• maximizing set for G(x), x E [O, l]d, is a C00 manifold Md-l C [O, l]d 
• G( x) E C00 in some neighbourhood of Md-l 

• G::V( x) f:. 0, x E Md-l' where a I av denote the derivatives in the 
direction of a normal vector to Md-l. 

For convenience of the reader we recall Theorem 2 from Konakov and Piterbarg 
(1994) which we formulate in a suitable form. 
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Theorem A (Konakov and Piterbarg (1994).) 
Consider the model (2) with the sequence of trends {µT(·)} satifying (3) and M and 
with the correlation function satisfying ( 4) and having a bounded support. Then there 
exist positive q < 1, "'{ = 7(q) > 0 and C < oo such that for any a E (0, 1) and all 

µ E {µ : 11µ11 o :::; quT} 

we have 

I
P (max IX(t)I :=:;UT) - exp (-:- EMuT ([O, T]d))I 

[O,T]d 

< C T d ( (uT - mT)
2

) [ d-lT-a + 2d-2 Tad ( (uT - mT) 2
) · · exp - · uT uT · · exp -

2a2 2a2 · 

where 

+ T ad ( ("Yu} - m})) + 2d-1 Tad ( (UT - mT) 2 2 - P) J exp - . uT ·exp - ·--
2a2 2a2 p ' 

mT =max lµT(t)I, a 2 = varX(t), p = max(l - p(t)) < 2. 
(O,T]d 

(6) 

Remark. If (UT - mT) ,...., V2d · ln T then the right-hand side of (6) has an order 
O(T-K.), for some /'i, > 0, as T ~ oo. 

We recall a definition from Konakov and Piterbarg (1994). 
Definition 2. We say that a nonnegative function '11( x), x E (0, 1 ]d, is Laplace 

regular of indexes R > 0 and r :::; 0 , if 

f exp(-z\ll(x))dx = Rzr (1 + o(l)) 
l[o,1]ct 

(7) 

as z ~ +oo. 
Now we formulate our first main result concerning the model (2), index T means 

that the trend µ( t) may depend on some parameter T. Let us introduce a notation 

~(z, a, b) = P(a(max XT(t) - ATGo - b) < z) - exp(-e-z), 
[O,T]d 

where G0 = max1ct G( x) , AT is the same as in the condition M . 
We need also the following definition. 

Definition 3. We say that the function R( x) ~ 0 is the second order Laplace 
regular of indexes R > 0 and r :::; 0 if the condition U holds and 

IR - { (1+ R(xb )d-i · exp(-A~(vT - G0 )R(x) - A}R
2
(x))dx 

}1ct VT - O 2 

- R · >.}' (VT - Go)'(l+ 0( ).~ )) 

asT~oo. 

Example: If R(x) = 0 then R(x) is the second order Laplace regular function of 
indexes R = 1 and r = 0 . More interesting examples follow from Lemmas 3 and 4. 
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Theorem 1. Let :J be any set containing three or more distinct points. Suppose 
that G0 - G( x) is Laplace regular function of some indexes R > 0 and r ~ 0 . Then 

lim inf (log T) inf sup l.6.(z, a, b)I > 0. T-+oo -oo<a,b<oo zE:f 
(8) 

Suppose that G0 - G( x) is the second order Laplace regular function and AT ~ .Ji;T. 
Then there exist aT and bT such that 

c 
sup l.6.(z,aT,bT)I < 

-oo<z<oo log T 
(9) 

for some c < oo . In particular, ( 9) holds if G0 - G( x) satisfies the conditions P or M. 
Analogous results hold for max[o,T]d IX(t)j. The result formulated in terms of Laplace 
regularity of the function max1d I G( x) I - I G( x) I . 

Now we formulate corresponding result for density estimates. Recall that in this case 
our parameter T finally appears as a function of sample size n, namely, T = h-;;_1 , G( x) 
is defined in ( 1), and 

Denote 
5(z, a, b) = P(a(max en(x) - An· Go - b) < z) - exp(-e-z), 

. [O,l]d 

where Go= max[o,i]tt G(x), An= ~ · h~. (nhd) 1/2 

To formulate our second theorem we recall the definition of a weak optimality. 
Definition 4. (Konakov and Piterbarg (1994) ). We say that a choice of h = hn,w 

is weakly optimal if 

0 < Jim inf J mn :::; Jim sup J mn :::; w < oo, 
n-+oo 2d ln __!_ n-+oo 2d ln __!_ 

hn. hn. 

Theorem 2 Let :J be any set containing three or more distinct points. Suppose 
that Go - G( x) is Laplace regular function of some indexes R > 0 and r ::; 0 . Then 

lim inf(logn) inf sup l5(z,a,b)I > 0. n-+oo -oo<a,b<oo zE:f 
(10) 

Suppose that G0 - G( x) is second order Laplace regular function. Then there exists a 
weak optimal choice of hh,w, an, bn such that 

c 
sup l5(z, an, bn)I < 

-oo<z<oo log n 
(11) 

for some c < oo . In particular, ( 11) holds if Go - G( x) satisfies the conditions P or 
M. Analogous results hold for max[o,i]d !en( x) I . 
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2 Auxiliary lemmas 
In this section we collect necessary preliminary results. 

Lemma 1. Consider four sequences of real numbers { aT }, {BT}, { {T} and { 5T} 
depending on some parameter T. Suppose that Ct:T > 0 for all T and 

(12) 

for three distinct points Zi, i = 1, 2, 3. Then aT, /3T, {T and 5T tend to zero as 
T-HXJ. 

Proof. Obviously, that the equation 

az2 + f3z + { = ln(l + 5Tz ), a > 0 

has at most two distinct roots. If 5T ~ 0 then ln(l + 5Tzi) ~ 0, i = 1, 2, 3, and, hence, 
aT, /3T, {T ~ 0 as T ~ oo. If 5T -fa 0 then there exists a subsequence {Tk} for which 
I 5T1e I > 5o for some positive 5o and we obtain that the function ln( 1+5T1e z) has maximal 
oscillation over the set {z1}U{z2}U{z3} separated from zero for all k. By (12) the same 
assertion holds true for the corresponding sequence of parabolas { aT1ez2 + f3T1eZ + !T1e}. 
Suppose that 5T1e -fa oo. Then there exists a subsequence {TH C {Tk}, such that 
5T' ~ 51 > 0 as k ~ oo . It easily follows that aT', f3T' and {T' tend to some limits 

le le le le 

0:1, /31, {1 as k ~ oo and 

a1zi + /31zi + {1 = ln(l + 51zi), i = 1, 2, 3. 

This contradicts our previous conclusion about the maximal number of different roots of 
this equation. The case 5T1e ~ oo may be handled similary. This completes the proof. 

Denote 

where <pd and cp1 are cl-dimensional and 1-dimensional standard Gaussian densities, 
respectively, and .X 2 is the coefficient in expansion ( 4). 

Lemma 2. Let the condition M be fulfilled. Then there exist positive r, K, and 
C such that 

as T~oo 
Proof. The complete proof is rather tedious and we give here only a sketch of the 

proof. 
Step one. Assume that ) 2 = 1. It can be shown analogously to Konakov (1992) (see 
also Hasofer (1976) for the case µT( ·) = 0) that 

EM~T([O, T]d) = (-l)d. r dt 'Pd (grad µT(t)). rXJ <p1(x - µT(t))dx. r 
l[o,T]d luT lu(x,t) 

det IW - (x - µT(t)) ·JI· cp(w)dw, 
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where W = I lwi; 11 and I are symmetric and identity matrices respectively, w = 
( w11 , ••• , w1d, w22 , ••• , w2d, ... , wdd), c.p(w) is a Gaussian density with the covariance ma-
trix Lt not depending on x, and with the mean vector 

(
a2µT(t) a2µT(t) a2µT(t) a2 µT(t) a2 µT(t)) 

at~ ' ... , at1atd ' at~ ' ... , at2atd ' ... , at~ ' 

U(x, t) = {w E Rd(d+i)/2 : W - (x - µT(t))I is negatively definite}. 
Step two. As in Konakov (1992) (and Hasofer (1976) for the case µT(-) = 0) we 

prove that there exists e > 0 such that the set U( x, t) contains the ball of a radius 
e·uT. Hence, integration over U(x, t) may be replaced by the integration over Rd(d+l)/2 

with exponentially small error. 
Step three. Using the condition M and the step two we get 

rJO c.p1(x - µT(t))dx r detlW - (x - µT(t)). II. c.p(w)dw 
luT lu(x,t) 

d 100 =Lai· Yi· c.p1(y)dy + R, 
i=l UT-µT(t) 

(13) 

where 

R = (uT - µT(t))d-l · c.p1(uT - µT(t)) · O(T-K. + e-"fu~), as T ~ oo 

for some / > 0, K > 0, ad = (-l)d, ad-l = 0, ad_2 = (-l)d- 2 x (sum of all main 
minors of the second order of Lt ) . 
Note, that SR-condition imply that (-l)d-2 • an_ 2 is strictly positive for t E [O, T]d. 

Step four. Using Watson's lemma (see e. g. Copson (1965)) for the analysis of 
integrals in (13) we obtain 

(-l)d. f
00 

c.p1(x - µT(t))dx r detlW - (x - µT(t)). II. c.p(w)dw 
luT lu(x,t) 

_ ( (t))d-1 (, (t)) [l+(d-1)+(-l)d-2 ·ad_2 +o(l) - UT - µT · · <.p1 UT - µT · (UT - µT ( t)) 2 

+ 0 (T-K. + e-"fu~) ] , as T ~ oo (14) 

Clearly (14) imply the assertion of the lemma for the case .X2 = 1. To prove the general 
case note, that the field X(t) = X(.X;1l 2t) has covariance matrix of grad X(t) equal 
to I. This completes the proof. 

Repeating arguments from Konakov and Piterbarg (1994), pp. 19 - 21, we obtain 
that 

d/2 ill:. d d . d . .A} 2 = A2 (27rt 2 T ._xT-'·(vT-Go)-'·exp(-2(vT-Go)) 

xIR · (1 + O(T-K.)), as T ~ oo, i = 1, 3, (15) 

where 
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R(x) = G0 - G(x). 
Note that the multiplier IR in (15) reflects the effect of non-stationarity (in statio-

nary case R( x) = 0 and IR = 1 ) . Note also that if the condition U is fulfilled then 
we have the following estimates 

where 
R2(x) S1(x) = -R(x), S2(x) = -R(x) - -- . 

2 
The integrals in (16) are estimated in the following lemma. 

Lemma 3. Let the condition P be fulfilled. Then 

{ (l+ R(x) )d-l·eA~(vT-Go)·Si(x)dx 
J1a. VT - Go 

- -d . ( - )-d/2 . ( bi + 0 ( 1) ) . -- AT VT Go bo + , 2 ( G ) , i - 1, 2, 
AT VT - O 

(16) 

as Ar -+ oo . The coefficients bi, i == 1, 2, depend only on the local structure of G( x) 
in the neighbourhood of x 0 • 

Proof. It is sufficiently to consider our integrals over a small neighbourhood of 
x0 ; We choose this neighbourhood in the form {x : -8T < G(x) - G0 :::; 0}, 8T = 
(A}(vT - G0 )}1-1 , I> 0. Using integration over the level sets we obtain 

0<11 <I, (17) 

where 
~w(c) = { WG(x), 

}G(x)-Go=-c 
wG( x) is the Leray-Gel'fand differential form 

~ j-l 8G(x) I ,-2 w0 (x) = L.J-1) · a . · \i'G(x) dx1 /\ ... dx;-1 /\ dx;+i /\ ... /\ dxd. 
j=l x, 

We suppose that G( x) E C5 in some neighbourhood of x0 , hence D(y) = det cp'(y) E 
C 2 in some neighbourhood of the point y = 0. Here cp(y) is a diffeomorphism in Morse 
lemma (see, e.g., Fedorjuk ( 1977), p.68) and cp'(y) is a corresponding Jacobian. Arguing 
as in Fedorjuk (1977), Proposition 3.3, p. 70, we obtain 

~w(c) = cd/2- 1 · (a0 + a1c + o(c)), as c-+ +O (18) 
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where 

ao = -2
1 r wa(y), 

11111=1 
d 82 D( o) 1. 

al= L a a . YiYjWG(Y) . 
. ·-1 Yi Y1' IYl=l i,1-

Substituting (18) in (17) and using Watson's lemma (Fedorjuk (1977), p. 31) we get 

r e-,q.(vT-Go)R(x)dx - \-d. ( - G )-d/2. ( r(~) + al. r(~ + 1) + 0(1)) J Jd - "'T VT o ao 2 .\}(VT - Go) ' 

as AT--+ +oo. 
The integral 

may be estimated quite analogously if we notice that for c E [O, 8T] 

c2 
A~(vT-Go)·2~0, T--+oo 

and use the decomposition 

e-x = 1 - x + O(x2 ), x--+ 0. 

Using binomial decomposition for 

and estimating the integrals 

(l + R(x) )d-1 
VT-Go 

exactly by the same way as it was discribed for the case k = 0 we easily obtain the 
conclusion of the lemma. 

Lemma 4. Let the conditions M be fulfilled. Then 

r (i+ R(x) )d-1 ·e"~(vT-Go)S,(x)dx 
11<1. VT - Go 

_ (, 2 ( G ))-1/2 ( Ci + 0(1) ) . _ 
- "'T VT - o . Co + A}{ VT - Go) ' i - 1, 2' as AT--+ oo. (19) 

Proof. As usual it is sufficiently to consider integrals in (19) over a small neighbo-
urhood of Md-l . Let Mg- 1 be a connected component of Md-l and x 0 E Mg- 1 • If 
8 > 0 is sufficiently small then a set Mf-1 : -8 < .j-S1 ( x) < 6 contains Mg- 1 and 
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doesn't intersects with the other components of the set Md-l. Arguing as in Fedorjuk 
(1977), Theorem 4.8, p. 89, we reduce our integrals to the form 

where 
WR(t) == f..JRW=t WR, WR is a Leray-Gel'fand differential form, g1(t) == t2 , g2 (t) == 
t2 + t . The function WR( t) E 0 00 

( [-6, 6]) and the conclusion of the lemma follows 
from Theorem 1.3 (Fedorjuk (1977), p. 39). 

We conclude this section by the following simple lemma. Consider a parabola az2 + 
bz + c, a > 0 , and three distinct points z1 , z2 and z3 . 

Lemma 5. There exists e > 0 depending only on z1 , z2 , z3 such that 

for at least one of Zi, i == 1, 2, 3. 
Proof. Obviously, 

b b2 

az2 + bz + c == a(z + -)2 + c - -2a 4a 

and, hence, it is sufficiently to prove that n > e' where n is a maximal oscillation of 
the function (z + ;J2 over the set {z1 } U {z2 } U {z3}. We have 

b b b n == I Z1 - z2 I . I Z1 + Z2 + - I v I Z1 - z3 I . I Z1 + Z3 + - I v I Z2 - Z3 I . I Z2 + Z3 + -I 
a a a 

> (lz1 - z2I /\ lz1 - z3I /\ lz2 - z31)2 == e(z1, z2, z3). 

This completes the proof. 

3 Proofs of Main Results 
Proof of the Theorem 1. 

Take UT== ).TGo + bT + aT1 z, where aT, ~ are choosen so that 

uniformly over z E :! , as T --+ oo. Using Lemma 2 and (15) we obtain after simple 
calculations 
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uniformly over z E :f as T ~ oo, where 

1 -1 b} ( d r ) ( ) ( )-~ , d/2 a.T= -2 'f3T=aT ·hr-1, !T= --ln cT ).T - d-l+r lnbT, c= 27r 2 ·R·A2 
2aT 2 

and PT is a remainder term in the relation 

+ ([ ]d) d r ( )d-l+r ( (uT-ATGo)
2
)( ) ( ) EMuT 0, T = c · T · ).T · UT - .ATGo ·exp - 2 1 +PT 20 

asT~oo. 

Note that we use only that PT ~ 0 as T ~ oo . More precise estimates for PT follow 
from Lemmas 2, 3, 4 and (15). By Lemma 1 et.T, f3T, "YT ~ 0 as T ~ oo. Using the 
expansion 

log( 1 + x) = x + 0( x 2
) as x ~ 0 

for ln(l +PT) and ln(l + aTzbT) = ln(l + 12;{3~ · z), and the expansion ex = 1 + x + 
0( x 2 ) as x ~ 0 we easily obtain 

where 
- ( d - 1 + r) · 2a.T _ 
f3T = f3T - 1 + f3T ' "YT = "YT - PT. 

It follows from (21) and Lemma 5 that 

sup jexp ( - EM:T ([O,T]d)) - exp(-e-z)I ~ £ · a.T 
ze:J 

(22) 

for some positive £ depending only on :I. Taking into account that 

1 + f3T 1 2 ( ) 2 d r ) ( ) ( ) hr = 12== rv Ff:::= ' bT rv UT - ).TGo = 2z + 2 ln( CT ).T + 2 d - 1 + r In hr+ 0 1 ' 
v~a.T y2a.T 

we have 2 ln( CTd ).T) .rv b} ,...., 4
1

2 and hence 
aT 

aT ~ 4 ln(ClTd>.T), u.T - >.TGo ~ J2tn(CTd>.T) (23) 

The first assertion of the Theorem 1 follows from ( 22), ( 23) and Theorem A (see also 
Remark after Theorem A). To prove the second assertion we take UT= ).TGo + lT + i!, 
where ZT is the maximal root of the equation 

It is easy to see that ZT rv V2dln T as T ~ oo. The second assertion of Theorem 1 
follows from Lemma 2, (15) and Definition 3. In particular, if the conditions P and M 
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are fulfilled then by Lemmas 3, 4 and (16) we obtain the second order Laplace regularity 
for R(x) and, hence, (9). This completes the proof. 

Proof of the Theorem 2. 
It follows from the integral representation for EMt([O, T]d) and (13) that 

IEMi1"~ ([O, T]d) - EM:,,n ([O, T]d)I = O(n-K) 

if lu'n - u"nl = O(n-K) as n ~ oo. The proof of Theorem 2 follows now from Theorem 
1 and the Rio's estimate (see Konakov and Piterbarg (1994)) 

P( sup len(x) - µn(x) - u-1 h~df2 Wn(Khn(· - x))I >en-'"() ::; en-'"( 
Jd 

for some G < oo and { > 0 . 
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