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ABSTRACT. In the present paper we consider the numerical solution of shape optimiza-
tion problems which arise from shape functionals of integral type over a compact region
of the unknown shape, especially L?-tracking type functionals. The underlying state
equation is assumed to satisfy a Poisson equation with Dirichlet boundary conditions.
We proof that the shape Hessian is not strictly H/2-coercive at the optimal domain
which implies ill-posedness of the optimization problem under consideration. Since the
adjoint state depends directly on the state, we propose a coupling of finite element
methods (FEM) and boundary element methods (BEM) to realize an efficient first order
shape optimization algorithm. FEM is applied in the compact region while the rest is
treated by BEM. The coupling of FEM and BEM essentially retains all the structural and
computational advantages of treating the free boundary by boundary integral equations.

INTRODUCTION

Throughout the last 25-30 years, optimal shape design has become more and more impor-
tant in engineering applications. On the one hand, many problems that arise in structural
mechanics, fluid dynamics and electromagnetics lead to the minimization of functionals
defined over a class of admissible domains. On the other hand, free boundary problems
can be formulated as shape optimization problems as well. Therefore, shape optimiza-
tion has been intensively studied in the literature, see [22, 27, 30, 33], and the references
therein. Especially, the development of efficient algorithms in shape optimization is of
growing interest.

In [10]-[16], the authors considered the numerical solution of several elliptic shape opti-
mization problems. A boundary variational approach was proposed in combination with
boundary integral representations of the shape gradient and the shape Hessian. The con-
sidered class of model problems allowed the use of boundary integral methods to compute
all ingredients of the functional, the gradient, and the Hessian, which arise from the state
equation. In combination with a fast wavelet Galerkin method to solve the boundary
integral equations, we gained very efficient first and second order algorithms for shape
problems in two and three space dimensions. In particular, the use of boundary element
methods requires only a discretization of the free boundary. To our opinion this is very
advantageous since on the one hand, boundary integral methods reduce the complex-
ity, on the other hand, arbitrary deformations of the domains are realizable without any
remeshing. Nevertheless, pure boundary integral methods are limited to a small class of
shape optimization problems, see [11] for details. Therefore, the present paper is intended
to extend our ideas to more general shape functionals.

1. MOTIVATION AND BACKGROUND

Let 2 € R™, n = 2,3, be a simply connected domain with boundary I' := 0 and assume
a compact set B C (1, see also Figure 1.1. In the present paper we shall consider the



following shape optimization problem

(1.1) J(Q) = / 7 (u(x),x)dx — min,
B
where the state u satisfies the boundary value problem
—Au=f in Q,
(1.2) u=g onl.

We suppose 7 € C*(R x B) and f € C%*(D),g € C**(D) for some a € (0,1), where
D D 2 denotes the hold all.

Following [8, 9], the directional derivative with respect to a sufficiently smooth domain
or boundary perturbation field V reads as

0(g —u) Op
1.3 VJQ)|V]= | (V,n)—————doy.
(1.3 @V = [V, P s
Herein, the function p indicates the adjoint state which satisfies the boundary value prob-
lem
07 )

(14) —Ap = XB" a_u(u’()7 ) n Q;

p=0 on I,

where xp denotes the characteristic function of B, i.e. xg = 1 on B and xg = 0 on R™\ B.
Especially in the important case of L?(B)-tracking type functionals, that is

1

j(u(x),x) = §(u(x) - uo(x))2 on B,

where ug is a given function, we observe that the adjoint state depends on the actual state
u because of
9;
Ou

Consequently, a numerical method for solving the state equation (1.2) should provide a

(u(), ) =u—1ug on B.

fast access to u in the set B, like finite element methods. However, we like to preserve
the advantages of boundary integral methods to treat the free boundary I'. This suggests
to couple finite element methods and boundary integral methods in order to compute the
state and its adjoint.

The paper is organized as follows. In Section 2 we analyze the problem under consider-
ation. In particular, we prove that the shape Hessian of the functional (1.1) is compact,
which shows that the shape optimization problem is ill-posed. According to [17], we
cannot expect convergence of a Ritz-Galerkin solution to the optimal domain since local
convexity is missing. In Section 3 we consider the efficient solution of the state equation
(1.2) and its adjoint (1.4) by the coupling of FEM and BEM. Finally, in Section 4 we carry
out numerical tests which confirm that we succeeded in finding a fast method to solve the
considered class of shape optimization problems. However, the results also indicate the
ill-posedness of the optimization problem under consideration.



FIGURE 1.1. The domain {2, the compact set B, and the boundaries I' and .

In the following, in order to avoid the repeated use of generic but unspecified constants, by
C < D we mean that C can be bounded by a multiple of D, independently of parameters
which C' and D may depend on. Obviously, C 2 D is defined as D < C, and C ~ D as
C<Dand C2D.

2. ANALYSING THE SHAPE OPTIMIZATION PROBLEM

2.1. Shape Calculus. We shall focus first on the shape calculus via boundary variations.
For a general overview on shape calculus, mainly based on the perturbation of identity
(Murat and Simon) or the speed method (Sokolowski and Zolesio), we refer the reader
for example to Murat and Simon [29, 32], Pironneau [30], Sokolowski and Zolesio [33],
Delfour and Zolesio [7], and the references therein.

We introduce the following notation. The unit sphere in R™ will be denoted by
S:={xeR": |x]| =1}

Here and in the sequel, X indicates always a point on the unit sphere. In particluar, for
a point x € R™ the notion X has to be understood as X := x/||x||.

Next, we adopt the shape calculus from [8, 9] to our model problem. Note that we have
to assume ) € C** for some fixed o € (0,1) for the second order boundary perturbation
calculus, in contrast to ) € C? for the first order calculus. For sake of simplicity, we
suppose the domain ) to be star-shaped. Then, we can identify it with a function, that
describes its boundary T', i.e., we have

I:={r(X)-x:X €8S},

where r € C**(S) is a positive function with r > § > 0. We introduce the function dr €
C?*(S) as standard variation for perturbed domains {2, and boundaries I',, respectively,

defined via
re(X) = r(X) + edr(X).



The main advantage of this approach is a complete embedding of the shape problem into
a Banach space setting. That is, both the shapes and their increments, can be viewed as
elements of C%*(S). We like to mention that, instead of the unit sphere and variations
in radial direction, one may use other reference manifolds and variation fields to derive a
second order Fréchet calculus.

In accordance with Section 1, we find for our particular setting the identities V(x) =
dr(X) - X and

(2.5) (V,n)do, = dr(X)(X,n)doy = dr(X)r(X)" 'dox

for all x € I". Consequently, the shape gradient (1.3) becomes in spherical coordinates
1 9p8(g —u)

2. Ndr] = [ drr™ ' =27 —dog.

(2.6) VJ(Q)[dr] /g T e an

Therefore, the boundary integral representation of the shape Hessian is given by

V2J(Q)[dry,drs] = /Sdrldrg{(n _ 1)7,71—2@6(9 —u) Lt 0 [@ ‘ (g — u)]}

on Jn 8% Lon On
Op Oduld Odp[d d(g —
(27) 4 d’f’l ,rn—l [ . 6_:; . 7(;[117'2] + Z(;[nr2] . (gan u)] dO’ﬁ.

Herein, the notion 8/0X has to be understood in the sense of Ou/0X = (Vu,X). Moreover,
du = du[dr,] and dp = dp[dr,| denote the local shape derivatives of the state function and
the adjoint state function, which satisfy the boundary value problems

Adu =0 in 2,

2.8 _
(2:8) du = drg(in)w on I,
n
and
%5 :
2.9 —Adp = xpduldrs] - %(u(), ) in Q,
2.9
dp = —dr2(§,n>§—p on I,
n

respectively, where the inhomogenity in (2.9) reduces further to xpdu[dr;] in the particular
case of the L*-tracking objective. Note that the shape Hessian (2.7) defines a continuous
bilinear form on H/?(T') x H/?(T).

Remark 2.1. Fquivalent domain integral representations for the shape gradient and shape
Hesstan can be directly derived from the differentiation of (1.1). Precisely, we have

]

VJ(Q)[dr] = : 6—u(u(x), x) du[dr](x) dx,
(2.10) V2J(Q)[dry,drs] = : % (u(x), x) du[dr,](x) du[dr,](x) dx
+ : g—i(u(x), x) d’uldry, drs](x) dx,



where the second local derivative d?u = d?u[dr;,drs] of the state u satisfies a characteri-
zation equation similar to the first derivative

Ad?u =0 wn (2,
2(g — duld duld
d?y = drlde gp, dldra] _ , Oduldr]

= —ari——(p~— —ara—F~— O
ox? ox ox ’

see [8]. Especially, symmetry of the shape Hessian can be seen clearly. Moreover, in case

(2.11)

of compactly supported objectives, the local derivatives du provide a complete functional
analytical tool for proving Fréchet differentiability, cf. [32]. Nevertheless, we like to stress
that (2.6) and (2.7) are more efficient to compute an appropriate descent direction.

2.2. Compactness of the Hessian at the Optimal Domain. Next, we will investigate
the shape Hessian at a stationary domain {2*, that is, the first order necessary condition
VJ(Q*)[dr] = 0 holds for all dr € C?*(S). Consequently, all quantities arising in the
considerations below are related to the domain *. In particular, the functions u, du,
etc. are the solutions of the boundary value problems (1.2), (2.8) with respect to *.
Note that the necessary condition implies
Op O(u—g)
On On
Lemma 2.2. Equation (2.12) is satisfied if and only if O(u — g)/0n = 0 or Op/On = 0
on I'. In the latter case it follows p =0 in Q* \ B.

(2.12) =0 onTl.

Proof. Assume O(u — g)/0n # 0 on a subset ® C I' with nontrivial measure. Then, it
must hold dp/0n = 0 on ®. Since p is harmonic in O* \ B according to (1.4) and due to
the homogeneous Dirichlet boundary conditions at T', the unique continuation property
for C%-boundaries (cf. Hormander [25]) implies immediately p = 0 in Q*\ B. In particular,
we conclude 0p/On = 0 on whole T'. O

The solution 0(u — g)/0n = 0 corresponds to a degeneration of the data and of the whole
shape problem, respectively, and makes no sense. Especially, it would imply du[dr] = 0
for all admissible dr according to (2.8). Thus, we suppose Op/0n = 0. Then, since p =0
in 9*\ B, the shape Hessian simplifies to

Odpldr;] 0(g — u
(2.13) V2J(Q)[dry, drs] = /§ dry 7! ’(;[n 2] (9an ) dorg,
where the adjoint local shape derivative dp = dp[dr,| satisfies
%5 o
(2.14) —Adp = xpduldrs] - %(u(), ) in Q*,
dp=0 on I'.

The next result is derived as an immediate consequence of the identities (2.10).

Lemma 2.3. Suppose O(u— g)/0n # 0 almost everywhere on I' and 0%;/0u? (u(), ) #0
nonnegative on B. Then, the shape Hessian V2J(Q*) is a positive bilinear form, i.e.,

V2J(Q4)[dr, dr] > 0

5



for all admaissible dr.

Proof. We show first that the second term of the domain representation of the shape
Hessian in (2.10) vanishes at Q*, that is

95
Bau

for all admissible dr. Using (1.4), the following transformation is obvious

(2.15) (u(x),x) d*uldr, dr]dx = 0

[ %(u(x),X) dzu[dr, dr](x)dx = — /B Ap dzu[dr, dr](x) dx
(9p 2
8n d*u[dr, dr](x) dox.

Hence, (2.15) follows immediately from Op/On in accordance with Lemma 2.2. Conse-
quently, we arrive at the identity

0?
V2J(QY)[dr, dr] = | 5 9 > (u(x), %) (duldr](x))” dx.
U
Observing that du[dr| is a harmonic function, we conclude that du[dr] # 0 almost every-
where in B provided that dr £ 0 on ['. This implies the assertion. 0

We emphasize that the domain Q* is only a regular strict minimizer of second order
if the shape Hessian is strictly H*/?(T')-coercive, that is V2J(Q*)[dr, dr] > c||al7‘||H1/2

cf. [3,4, 17]. Consequently, the positivity of V2J(2*) in the case of the quadratic tracklng
objective (if O(u — g)/On # 0 almost everywhere on I') is only a necessary but not a
sufficient second order condition. We will show next that the shape Hessian is compact
which immediately implies that strict H/2(T')-coercivity cannot be satisfied for the general
class of objectives under consideration.

Lemma 2.4. The multiplication operator

(2.16) M: HY*T) —» HY*T),  Mdr:=dr- (&,@W
n

18 continuous.

Proof. Abbreviating w := (X, n)0(g—u)/0n we may write Mdr = dr-w. Due to results of
Triebel [34] or Mazja and Shaposhnikova [28], the multiplication operator M is continuous
from HY?(T) to HY*(T") if w € C%*(T') for some a > 1/2. Due to our assumptions on
the data and the regularity of the admissible domains the latter condition holds. O

Lemma 2.5. The mapping

A HYXT) - H-YXT), A(Mdr) = ‘9‘%’[‘”],

n

that maps Mdr € H'Y?(T) via (2.8) and (2.14) onto the Neumann data Odpldr]/dn €
H~Y2(T) of the adjoint local shape derivative, is compact.



Proof. Tt is well known, that the Dirichlet-to-Neumann map A : HY?(T') — H~'/*(T)
maps the given Dirichlet data du[dr]|r = Mdr € H*/?(T') continuously to the Neumann
data ddu[dr]/On = A(Mdr) € H=*/?(T"). Green’s representation formula yields

far(x) = [ By 5 (¥)doy — [ LB y)duldr](y)day, x €

where the fundamental solution E(x,y) is given by

(2.17) Bx,y)={ = ® Ix =yl ifn=2,
P ) ifn=23.
4n||x—y||?
We denote by a = (e, . . ., @, ) multi-indices of dimension n and define |a| := a;+. . .+ a,.

Since dist(B, ') > 0, one readily infers that differentiation gives

02 duldr|( /8"‘ X,Y) 6du dr y)doy — /—8"‘ x,y)duldr|(y)doy,

where the kernel 92E(x,-) keeps still bounded in H'/?(T) for all x € B and |a| € N.

Hence, we arrive at
|65 duldr] (s < mae |0 B, ) aosgey (| AC ) ooy + ([ M o)
S ||Md7‘||H1/2(r)

which immediately implies the compactness of
5 -

B:HYXT) — H Y(Q), B(Mdr) = xpduldr]- g J (u( ), )

u?
Next, since the solution operator C : H~}(*) — H'(Q*) of the Poisson equation Agq = f
in * with homogeneous Dirichlet data g|r = 0, that maps the inhomogenity f € H~(Q*)
onto the solution g € H'(2*), is continuous, one readily infers that the mapping

D: @) » HO(T), D(f) = 9
is continuous. Using now the identity
A(Mdr) = (D o B)(Mdr)
leads to the desired result. O

Invoking (2.5), the shape Hessian (2.13) defines the following continuous bilinear form on
H'Y?(T) x HY?(T)

(218) V2J(Q*)[dr1, d’f‘g] == (Md’f‘l, A(Md’f‘g))LZ(F).
According to the Lemmata 2.4 and 2.5 we conclude the final result.

Proposition 2.6. The shape Hessian
H: HY*(T) - HY3(T), H=MAM: HY¥T) - HY*T),

18 compact at the optimal domain Q*.



Remark 2.7. Assuming the boundaries I' and OB as well as all data to be arbitrary
smooth, one readily infers that the shape Hessian is even compact as mapping H : H*(T') —
H~=*(T) for all s > 1/2. In this case, the eigenvalues of the Hessian decrease ezponentially,
as observed in the numerical ezample presented in Section 4.

Proposition 2.6 implies the ill-posedness of the optimization problem itself, which is com-
pletely characterized by the nature of the shape Hessian at the critical domain.

2.3. Ritz-Galerkin Approximation of the Shape Problem. In order to solve the
minimization problem defined by (1.1) and (1.2), we are looking for the stationary points
0 satisfying

(2.19) VJ(Q*)[dr] =0 for all dr € C**(8).

In accordance with [17] we shall introduce a Ritz-Galerkin method for the nonlinear
equation (2.19). To this end, we restrict ourselves again to star-shaped domains and
consider the gradient in terms of sphericals coordinates (2.6). Nevertheless, one can
consider any fixed variation field with respect to a smooth reference manifold as well, see

[17] for the details.

Let ¢, ¢a,...,dn denote the first N spherical harmonics in R™ and consider the ansatz
space

Vi = span{¢1, ds,...,on} C C**(S).
We identify the (finite dimensional) domain Qx with the radial function

N

rn(R) = ) anga(X), RES.

n=0

Then, we can replace (2.19) by its finite dimensional counterpart:
(2.20) seek ry € Vy such that VJ(ry)[dr] =0 for all dr € Vy.

Note that this is the necessary condition associated with the finite dimensional optimiza-
tion problem

(2.21) J(’I‘N) — min, 7y € V.

According to [17] we obtain an approximation error that stays in the energy norm H*/%(S)
proportional to the best approximation in Vi, that is

||'r‘fv — 7‘*||H1/2(S) 5 ”\ijIeléN ||7’N - r*||H1/2(§)7

provided that the shape Hessian is strictly H*/?(T')-coercive at the optimal domain Q*.
Since this is not the case as proven in the previous subsection, we cannot guarantee
convergence of the solution of (2.21) to the solution r* of the original shape optimization
problem (1.1). This will be confirmed by our numerical results, see Section 4.



3. NUMERICAL METHOD TO COMPUTE THE STATE AND ITS ADJOINT

3.1. Reformulation of the State Equation. During an iterative optimization process,
we have to solve the boundary value problems (1.2) and (1.4) in each step. We emphasize
that the underlying domains are always different. Finite element methods suffer from
generating a suitable triangulation for each new domain. One way out is to reformulate
the given boundary value problems as coupled problems involving only boundary integral
equations on the free boundary. In order to perform this reformulation, we introduce a
Newton potential Ny satisfying

(3.22) ~AN;=f inQ,

to resolve the inhomogenity in the state equation (1.2). Herein, Qisa sufficiently large
domain containing all domains from the iteration process. This Newton potential is
supposed to be explicitly known like in our numerical example (see Section 4) or computed
with sufficiently high accuracy. Such an idea has been proposed for example by Jung and
Steinbach [26]. We emphasize that the Newton potential has to be computed only once
in advance.

For a first order optimization method, we require the Newton potential itself as well as its
gradient. Therefore, one can compute it by usual lowest order finite elements. However,
since the domain {) can be chosen fairly simple, one can also use e.g. finite elements based
on tensor products of higher order B-splines (in [— R, R]™) or dual reciprocity methods.
The ansatz

(3.23) u= N;+v

yields then the problem of seeking a harmonic function v satisfying the following Dirichlet
problem for the Laplacian

Av =0 in 2,

(3.24) v=g— Ny on I'.

Now, we are able to compute both, the state and the adjoint state, by the method proposed
in the next subsection.

3.2. The Coupling of FEM and BEM. In view of (1.4) and (3.24) we shall provide a

method to solve

—Au=f in B,
(3.25) Au=0 inQ)\ B,
U =g on I'.

We set ¥ := 0B and assume the normal vectors n at [' and ¥ to point into Q \ B,
cf. Figure 1.1 for the topological situation. Then, (3.25) can be split in two coupled



boundary value problems

—Au=f in B,
Au = in Q\ B,
(3.26) }}_I)I)l{ u(y) = }1,1_1;1;1( u(y) forall x € ¥,
YEB yeEQ\B
. Ou . Ou
}}_I)I)l{ 8_n(Y) = }1,1_1;1;1( —n(y) for all x € %,
YEB yeEQ\B
u = on I'.

We introduce the single layer operator Ve, the double layer operator Ksg, the adjoint
double layer operator K} 4 and the hypersingular operator Wag with respect to the bound-
aries &, ¥ € {I', %} by

(Vegu)(x) ::/E(X,y)u(y)day,

@

(Kegu)(x) := / %E(X,y)u(y)day,

] 6}' X C \IJ,
( E)‘Ilu’)(x) = 611 E(X7Y)u(Y)de7

"9 8
(W‘}‘I’u)(x) - —E(X7Y)u(Y)dUY7

where the fundamental solution E(x,y) is defined as in (2.17). We shall denote by L?(®)
the function space of all squared integrable functions on ® with respect to the canonical
inner product

(u,v)2(9) = Au(x)v(x)dax

and by H*(®) (s € R) the corresponding Sobolev spaces. Then, in this context, the
operators with respect to one boundary are continuous mappings in the spaces

Veg : H/?(®) — H'*(®),  Wae : H/?(®) — H'/*(®),

Kss : H/*(®) — H'*(®), se s HTV2(2) — HTV2(D),
while in the case of mixed boundaries the operators are arbitrarily smoothing compact
operators.

Finally, introducing the variables oy := (Ou/0n)|y and or := (0u/On)|r, the coupled
system (3.26) yields the following nonlocal boundary value problem:

10



Find (u, 0%, 0r) such that

—Au=f in B,
Au =10 on 2\ B,

1
(3.27) —Wssu — Wrsg + (5 — K%E)Uz — Kfgor = ox on %,
1
(§_KEE)'UI_ICFEQ‘|‘VEEUE‘|‘V1"EUI" =0 on X,

1
—Ksru + (5 — Krr)g + Vsros + Vrror =0 on I'.

This system is the so-called two integral formulation, which is equivalent to our original
model problem (3.25), see for example [5, 23].

3.3. The Variational Formulation. Next, we introduce the product space H := H'(B)x
H~'2(%) x H~'/?(T") equipped by the product norm

1(w, o5, 003 = el ) + 10wl z-2r2(5) + ol 22y

for all (u,ox,0r) € H. Further, let a : H x H — R, be bilinear form defined by

a((u,ag,ap),(v,)\g,)\p)) :/VqudX
B

v Wss Kis—1/2 Kis] [u
(3.28) + As |, |1/2 — Ksx Vrsy Vry s
Ar —Ksr Vsr Vrr | |or

L2(B)xL2(Z)x L2(T)

where the integral operators Vsg, Kaw, K5y, Waege are given as above. For sake of sim-
plicity in representation, we omitted the trace operator in expressions like (v, Wenu)r2(x)
etc.

Introducing the linear functional F : H — R,

v —Wrs
F(v, s, Ar) = (f;U)LZ(B) + As |, Krs g

Ar Krr — 1/2 L2(Z)x L2 (Z)x L2 ()

the variational formulation is given by:

Seek (u, 0w, Xr) € H such that

(3.29) a((u, 0%, or), (v, Ax, Ar)) = F(v, A, Ar)

for all (v, Ax, Ar) € H.

Lemma 3.1. The bilinear form a(-,-) from (3.28) satisfies the Garding inequality
(3.30) a((u,05,01), (v,05,01)) + [[ul2(5) 2 [I(u, o5, 01) I3,

provided that Q) has a conformal radius < 1 ifn = 2.

11



Proof. From Kgy = Kjg we conclude (Kew0s,0v)2(0) = (K§s0w,04)12(s). Hence, we

arrive at
a((u,ag,ap), (u,ag,ap)) = |u|12111(B + (Wssu, u)r2s)
(b el )
Vsr Vrr| |or 12 () x LT ’
where |u|125[1 = [5 || Vu||?dx denotes the H'(B)-seminorm. Observing that the operator

V:H Y2 x HVYYI) — HY*(2) x HY*(T), V:= {V“ V“} ,
Ver Vrr
is positive definite, we deduce the assertion since ||u||12r{1(B) = ||u||%2(B) + |u|12r{1(B) and

(WZE’U,,’U,)LZ(E) Z 0 |:|

Lemma 3.2. The bilinear form a(-,-) from (3.28) is injective, provided that Q has a
conformal radius < 1 if n = 2.

Proof. Assume that (ui,0x%1,0r1), (U2,052,0r2) € H solve both the coupled problem
(3.26). Then, setting (v, As, Ar) := (u1 — u2,0m1 — Ox2,0r1 — 0r2) € H, the Garding
inequality (3.1) implies v = const. and Ay = Ar = 0. Since the underlying function is
harmonic in ) and satisfies homogeneous Dirichlet boundary conditions at T', it follows
that const. = 0. 0

Combining Lemmata 3.1 and 3.2 yields the following theorem.

Theorem 3.3. The variational formulation (3.29) admits a unique solution (u,ox,or) €
H for all F € H', provided that §) has a conformal radius < 1 if n = 2.

Proof. The bilinear form a(-,-) is obviously continuous on H x H and in accordance
with Lemmata 3.1 and 3.2 H-coercive and injective. Hence, one concludes existence and
uniqueness of the solution by the Riesz-Schauder theory. 0

3.4. The Galerkin Scheme. Since the variational formulation is stable without further
restrictions, the discretization is along the lines of [20, 21]. It suffices to exploit glob-
ally continuous lowest order finite elements to discretize u and piecewise constant ansatz
functions to discretize ox and or.

We first introduce a uniform triangulation of B which induces a uniform triangulation of
Y. Moreover, we need a uniform triangulation of the free boundary I', which we suppose
to have the same mesh size as the triangulation of the domain B. For the FEM part we
consider lowest order ansatz functions {¢2 : k € AP} with respect to the given domain
mesh. For the BEM part we introduce canonical piecewise constant ansatz functions
{1 : k € V®} on the underlying triangulations of the boundaries ® (® € {%,T}). For
sake of simplicity in representation, we define ¢7 := ¢P|s (k € A®), which is mostly
identical to zero and coincides with canonical piecewise linear (or bilinear) functions
on Y if the trace of the finite element function ¢f is nontrivial. Moreover, we shall
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introduce further the set of canonical globally continuous piecewise linear (or bilinear)
Lagrange ansatz functions on the triangulation of I, which we indicate by {#L : k € AT}

(#AT ~ FVF).

Then, introducing the system matrices

A= [(WE, Riw), 0 Wew = [Wewdl o),
(3.31) o= [J60vhrm], . Kew = [(Kesdl o],
Go = |6 diw)|, . Vev = |Vewdd )],

where again ®, ¥ € {3, T'}, and the data vectors
f= [(f) ¢E)L2(B)]k7 g = |:(ga ¢£)L2(F)] B

we obtain the following linear system of equations

A+Wss Kiz—Bf Kir] [u f —Wss
(3.32) Bs — Ks»x Vs Vrs ox| = (0] + Krs Gflg
—Ksr Vsr Vrr] Lor 0 Krr — Br

We mention that Gr'g corresponds to the L?(T')-othogonal projection of the given Dirich-
let data g € H'/?(T") onto the space of the piecewise (bi-) linears on I'. That way, we can
also apply fast boundary element techniques to the boundary integral operators on the
right hand side of the linear system of equations (3.32).

Applying standard error estimates for the Galerkin scheme and employing the Aubin
Nitsche trick leads to the following error estimate concerning the present discretization.

Proposition 3.4. Let h denote the mesh size of the triangulations of B and T, re-
spectively. We denote the solution of (3.29) by (u,ox,0x%) and the Galerkin solution
by (un, osh,orn). Then, we have the error estimate

|(u, 0%, 01) — (W*, o5h, oTh) || L2(B)x H-2(2) x HF-2(%)
< B2l a2y + Bllos || ry + AP llor

untformly in h.

Finally, we shall encounter some issues on the efficient solution of the linear system of
equations (3.32). The complexity is governed by the BEM part since the boundary element
matrices are densely populated. On the one hand, following for example [20, 21] in case
of wavelet matrix compression, one can apply fast boundary element techniques to reduce
this complexity such that the over-all complexity is governed by the FEM part. On
the other hand, according to [21, 24], the Bramble-Pasciak-CG ([1]) provides a fast and
robust iterative solver for the above saddle point system. In particular, combining a
nested iteration with the Bramble-Pasciak-Xu preconditioner ([2]) for the FEM and a
wavelet preconditioning ([6, 31]) for the BEM part, we derive an asymptotical optimal
solver for the above system, see [21] for the details. We refer the reader to [21] for
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the implementational details of a similar coupling formulation in case of wavelet matrix
compression for the boundary element part.

3.5. Error Estimates for L?(B)-Tracking Type Functionals. Recall that, in a single
iteration step of the shape optimization algorithm, we use the present method in order to
solve both, the state (3.24) via the ansatz (3.23) and the adjoint state (1.4). Now, we shall
specify the approximation errors to the shape functional and its gradient in the important
case of L?(B)-tracking type functionals. For sake of simplicity we neglect approximation
errors of the Newton potential Ny (3.22), i.e., we assume that it is known analytically.

Corollary 3.5. Assume that the Newton potential Ny from (3.22) is given ezactly. Then,
in case of L*(B)-tracking type functionals both, the shape functional and the shape gradi-
ent, are approzimated quadratically, that 1s, the approzimation error behaves like O(h?).

Proof. The rate of convergence with respect of the shape functional follows from

/ u? —uldx
B

< (u —un,u —un)r2(B) + 2|(v, v — un)r2 ()| S h2||u||121p(3).

J(2) = J(Q)al| =

In case of the shape gradient we abbreviate or := 0(u — ¢g)/0n and Ar := Op/0n, while
ory and Arp denote the numerical approximations. Since the inhomogenity of the adjoint
state equation (1.4) is computed consistent to the present the formulation, we obtain the
same rate of convergence rate for the unknowns of the adjoint state as of the primal state.
From

IV I(R)dr] — VI(Q)[dr]] =

/(V, n){ap)\p — O'FhAFh}dO'
r

/F<V, n){(ap — UI"h)(AF — >\1"h) — 0'1*()\1* — >\1"h) — )\1"(0'1" — O'Fh)}dO'

< KV, n)||ze(ry(lor — oral, [Ar — Aral) 2@y + ((V,n)or, Ar — Ara) 2 ()
+ ((V,n)Ar,or — orn)r2(r)

Herein, the first term is estimated by

(lor = oral, [Ar = Are|)r2ry < |lov — oral|z2m)||Ar — Aral|z2(n)

S R¥lorll g oy Il (n)-
The second term yields
((V,n)or, A\r — Arw)z2r) < |(V,m)or|| gy || Ar — Arallg-1) S h2||>‘1"||H1(1")

and likewise the third term, which finishes the proof. O
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FIGURE 4.2. Degrees of freedom versus approximation error.

4. NUMERICAL RESULTS

The numerical example will be carried out in two space dimensions where B = {(z,y) :
z? + y* < 0.2}. We consider the minimization of a L?(B)-tracking type functional,

precisely

J(Q) = / |lu — uo||*dx — min,
B

where u satisfies the Poisson equation —Au = 10-(2/h2 4 2/h2) in Q with homogeneous
Dirichlet data u|r = 0. Herein, h,, h, > 0 are some fixed constants to be specified below.

The function ug is chosen as

22y
uo(z,y) =10 (1 T h ﬁ) )

Yy

Since —Awuo = 20 - (1/h2 + 1/h2) and uo = 0 on the boundary of ellipse E with semi-axes
hy and hy, that is

22y
E::{(m,y)ERz:h—z—l—ﬁzl},
x y

one infers that the minimizer of the considered shape problem is the ellipse E. For the

present state equation we will exploit the Newton potential
1 1
Niy=-5- (h_z—l_ﬁ) '($2+y2).
z y
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First, we want to check the orders of convergence predicted in Corollary 3.5. We choose
hy = 0.4 and h, = 0.6 and compute the shape functional and its discretized gradient
for a randomly chosen boundary I' on a very fine discretization. Then, we compute
on lower levels the approximate solutions und measure the absolute (£2-) errors to our
reference values. The results are depicted in Figure 4.2. In fact, one observes quadratic
approximation orders (indicated by the dashed lines) of both, the functional and its

gradient.

0
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" l:l. .-:-:'
e
%0 ala e
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:.:l ]
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60
1-15
10 20 30 40 50 60

FIGURE 4.3. Logarithmic moduli of the coefficients of the discrete Hessian
dzj(Q*)[d’f‘l, d’f‘g].

Next, we consider the shape Hessian (2.13) at the optimal domain ©* in case of h, = 0.4
and hy = 0.3. It holds O(u — g)/0n > 0 on ' which implies in fact V2J(Q*)[dr,dr] > 0
for all directions dr, see Lemma 2.3. We discretize the Hessian V2J(Q*)[dry, dr,] via the
first 65 H'/?-normalized Fourier frequencies, 115201 finite elements and 1024 boundary
elements each on the boundaries 3 and I'. The underlying triangulation of B on level 2,
based on Zldmal’s curved finite elements [36], can be found in Figure 4.5. In Figure 4.3
we visualized the Hessian where we used the numbering ¢; = cos(32 - 27)//32, ¢ =
cos(31 - 27)/V/31, ..., 3z = cos(27), daz = 1/~/(27), baa = sin(27),..., des = sin(31 -
21)/+/31, des = sin(32 - 27)/+/32. A plot of its eigenvalue distribution can be found in
Figure 4.4. The plot exhibits clearly an exponential decay of the first 25 eigenvalues. The
moduli of the other eigenvalues are than 107!! and are not reliable due to round-off erros.
Note that the £2-condition number of this discrete Hessian is about 10*°.

Finally, we compute the free boundary I' in case of hy, = 0.4 and h, = 0.4,0.5,...,1.0
using like above the first 65 Fourier frequencies, 115201 finite elements and 1024 boundary
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he | hy | HY/?(S)-shape error | cpu-time
0404 8.4e-b 618
0.5(04 3.8e-2 696
0.6 04 1.6e-1 706
0.7]0.4 2.9e-1 687
0.804 5.2e-1 697
0904 7.5e-1 680
1.0]0.4 1.0 708

TABLE 4.1. Approximation errors of the shape and over-all computing times.

elements each on the boundaries > and I'. We employ a quasi-Newton method with
quadratic line search, updated by the inverse BFGS-rule without damping, to solve the
necessary condition (2.20), see e.g. [18, 19] for the details. We choose always the circle
centered in (z,y) = (0,0) with radius 0.75 as initial guess and perform 50 quasi-Newton
iterations.

In Table 4.1 we listed the H'/?(S)-error of the final shape and the over-all cpu-times
(measured in seconds), which is always about 10 minutes. From the increasing shape
errors we conclude that the shape problem becomes more and more ill-posed when h,
increases. This is quite obvious since the domain {} becomes larger.

The resulting free boundaries are plotted in Figure 4.5. The boundary increases when h,
increases. Therefore, the inner boundary corresponds to the problem with A, = 0.4 while
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FIGURE 4.6. Histories of the shape functional.

the outer boundary corresponds to h, = 1.0. Especially, we see that the computed free
boundaries are only approximately ellipses.
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The histories of the shape functional are plotted in Figure 4.6. For the initial gues we
have J(ry) = 6.79519. Except in the case of a circle (h, = h, = 0.4), where the shape
optimization algorithm finds the optimal solution quite exact, seen by J(r}) < le — 9,
the curves are similar. After 50 iteration steps we have reduced the shape functional in
all cases by at least five magnitudes, i.e., by a factor greater than 100 000.
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