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Abstract. In the present paper we consider the numerical solution of shape optimiza-

tion problems which arise from shape functionals of integral type over a compact region

of the unknown shape, especially L2-tracking type functionals. The underlying state

equation is assumed to satisfy a Poisson equation with Dirichlet boundary conditions.

We proof that the shape Hessian is not strictly H1=2-coercive at the optimal domain

which implies ill-posedness of the optimization problem under consideration. Since the

adjoint state depends directly on the state, we propose a coupling of �nite element

methods (FEM) and boundary element methods (BEM) to realize an eÆcient �rst order

shape optimization algorithm. FEM is applied in the compact region while the rest is

treated by BEM. The coupling of FEM and BEM essentially retains all the structural and

computational advantages of treating the free boundary by boundary integral equations.

Introduction

Throughout the last 25{30 years, optimal shape design has become more and more impor-

tant in engineering applications. On the one hand, many problems that arise in structural

mechanics, uid dynamics and electromagnetics lead to the minimization of functionals

de�ned over a class of admissible domains. On the other hand, free boundary problems

can be formulated as shape optimization problems as well. Therefore, shape optimiza-

tion has been intensively studied in the literature, see [22, 27, 30, 33], and the references

therein. Especially, the development of eÆcient algorithms in shape optimization is of

growing interest.

In [10]{[16], the authors considered the numerical solution of several elliptic shape opti-

mization problems. A boundary variational approach was proposed in combination with

boundary integral representations of the shape gradient and the shape Hessian. The con-

sidered class of model problems allowed the use of boundary integral methods to compute

all ingredients of the functional, the gradient, and the Hessian, which arise from the state

equation. In combination with a fast wavelet Galerkin method to solve the boundary

integral equations, we gained very eÆcient �rst and second order algorithms for shape

problems in two and three space dimensions. In particular, the use of boundary element

methods requires only a discretization of the free boundary. To our opinion this is very

advantageous since on the one hand, boundary integral methods reduce the complex-

ity, on the other hand, arbitrary deformations of the domains are realizable without any

remeshing. Nevertheless, pure boundary integral methods are limited to a small class of

shape optimization problems, see [11] for details. Therefore, the present paper is intended

to extend our ideas to more general shape functionals.

1. Motivation and Background

Let 
 2 Rn, n = 2; 3, be a simply connected domain with boundary � := @
 and assume

a compact set B � 
, see also Figure 1.1. In the present paper we shall consider the
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following shape optimization problem

(1.1) J(
) =

Z
B

j
�
u(x);x

�
dx! min;

where the state u satis�es the boundary value problem

(1.2)
��u = f in 
;

u = g on �:

We suppose j 2 C
2(R� B) and f 2 C

0;�(D); g 2 C
2;�(D) for some � 2 (0; 1), where

D � 
 denotes the hold all.

Following [8, 9], the directional derivative with respect to a suÆciently smooth domain

or boundary perturbation �eld V reads as

(1.3) rJ(
)[V] =

Z
�

hV;ni@(g � u)

@n

@p

@n
d�x:

Herein, the function p indicates the adjoint state which satis�es the boundary value prob-

lem

(1.4)
��p = �B �

@j

@u

�
u(�); �

�
in 
;

p = 0 on �;

where �B denotes the characteristic function of B, i.e. �B = 1 on B and �B = 0 on RnnB.
Especially in the important case of L2(B)-tracking type functionals, that is

j
�
u(x);x

�
� 1

2

�
u(x)� u0(x)

�2
on B;

where u0 is a given function, we observe that the adjoint state depends on the actual state

u because of
@j

@u

�
u(�); �

�
= u� u0 on B:

Consequently, a numerical method for solving the state equation (1.2) should provide a

fast access to u in the set B, like �nite element methods. However, we like to preserve

the advantages of boundary integral methods to treat the free boundary �. This suggests

to couple �nite element methods and boundary integral methods in order to compute the

state and its adjoint.

The paper is organized as follows. In Section 2 we analyze the problem under consider-

ation. In particular, we prove that the shape Hessian of the functional (1.1) is compact,

which shows that the shape optimization problem is ill-posed. According to [17], we

cannot expect convergence of a Ritz-Galerkin solution to the optimal domain since local

convexity is missing. In Section 3 we consider the eÆcient solution of the state equation

(1.2) and its adjoint (1.4) by the coupling of FEM and BEM. Finally, in Section 4 we carry

out numerical tests which con�rm that we succeeded in �nding a fast method to solve the

considered class of shape optimization problems. However, the results also indicate the

ill-posedness of the optimization problem under consideration.
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B Σ Γ

Figure 1.1. The domain 
, the compact set B, and the boundaries � and �.

In the following, in order to avoid the repeated use of generic but unspeci�ed constants, by

C . D we mean that C can be bounded by a multiple of D, independently of parameters

which C and D may depend on. Obviously, C & D is de�ned as D . C, and C � D as

C . D and C & D.

2. Analysing the Shape Optimization Problem

2.1. Shape Calculus. We shall focus �rst on the shape calculus via boundary variations.

For a general overview on shape calculus, mainly based on the perturbation of identity

(Murat and Simon) or the speed method (Sokolowski and Zolesio), we refer the reader

for example to Murat and Simon [29, 32], Pironneau [30], Sokolowski and Zolesio [33],

Delfour and Zolesio [7], and the references therein.

We introduce the following notation. The unit sphere in Rn will be denoted by

S:= fbx 2 Rn : kbxk = 1g:
Here and in the sequel, bx indicates always a point on the unit sphere. In particluar, for

a point x 2 Rn the notion bx has to be understood as bx := x=kxk.
Next, we adopt the shape calculus from [8, 9] to our model problem. Note that we have

to assume 
 2 C2;� for some �xed � 2 (0; 1) for the second order boundary perturbation

calculus, in contrast to 
 2 C
2 for the �rst order calculus. For sake of simplicity, we

suppose the domain 
 to be star-shaped. Then, we can identify it with a function, that

describes its boundary �, i.e., we have

� := fr(bx) � bx : bx 2 Sg;
where r 2 C2;�(S) is a positive function with r � Æ > 0. We introduce the function dr 2
C
2;�(S) as standard variation for perturbed domains 
" and boundaries �", respectively,

de�ned via

r"(bx) = r(bx) + "dr(bx):
3



The main advantage of this approach is a complete embedding of the shape problem into

a Banach space setting. That is, both the shapes and their increments, can be viewed as

elements of C2;�(S). We like to mention that, instead of the unit sphere and variations

in radial direction, one may use other reference manifolds and variation �elds to derive a

second order Fr�echet calculus.

In accordance with Section 1, we �nd for our particular setting the identities V(x) =

dr(bx) � bx and

(2.5) hV;nid�x = dr(bx)hbx;nid�x = dr(bx)r(bx)n�1d�
bx

for all x 2 �. Consequently, the shape gradient (1.3) becomes in spherical coordinates

(2.6) rJ(
)[dr] =
Z
S

dr r
n�1 @p

@n

@(g � u)

@n
d�

bx:

Therefore, the boundary integral representation of the shape Hessian is given by

r2
J(
)[dr1; dr2] =

Z
S

dr1dr2

(
(n � 1)rn�2

@p

@n

@(g � u)

@n
+ r

n�1 @

@bxh @p@n � @(g � u)

@n

i)

+ dr1 r
n�1

h
� @p

@n
� @du[dr2]

@n
+
@dp[dr2]

@n
� @(g � u)

@n

i
d�

bx:(2.7)

Herein, the notion @=@bx has to be understood in the sense of @u=@bx = hru; bxi. Moreover,

du = du[dr2] and dp = dp[dr2] denote the local shape derivatives of the state function and

the adjoint state function, which satisfy the boundary value problems

(2.8)
�du = 0 in 
;

du = dr2hbx;ni@(g � u)

@n
on �;

and

(2.9)
��dp = �Bdu[dr2] �

@
2
j

@u2

�
u(�); �

�
in 
;

dp = �dr2hbx;ni @p
@n

on �;

respectively, where the inhomogenity in (2.9) reduces further to �Bdu[dr2] in the particular

case of the L2-tracking objective. Note that the shape Hessian (2.7) de�nes a continuous

bilinear form on H1=2(�)�H
1=2(�).

Remark 2.1. Equivalent domain integral representations for the shape gradient and shape

Hessian can be directly derived from the di�erentiation of (1.1). Precisely, we have

rJ(
)[dr] =
Z
B

@j

@u

�
u(x);x

�
du[dr](x) dx;

r2
J(
)[dr1; dr2] =

Z
B

@
2
j

@u2

�
u(x);x

�
du[dr1](x) du[dr2](x) dx(2.10)

+

Z
B

@j

@u

�
u(x);x

�
d
2
u[dr1; dr2](x) dx;
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where the second local derivative d2u = d
2
u[dr1; dr2] of the state u satis�es a characteri-

zation equation similar to the �rst derivative

(2.11)
�d2u = 0 in 
;

d
2
u = dr1dr2

@
2(g � u)

@bx2 � dr1
@du[dr2]

@bx � dr2
@du[dr1]

@bx on �;

see [8]. Especially, symmetry of the shape Hessian can be seen clearly. Moreover, in case

of compactly supported objectives, the local derivatives du provide a complete functional

analytical tool for proving Fr�echet di�erentiability, cf. [32]. Nevertheless, we like to stress

that (2.6) and (2.7) are more eÆcient to compute an appropriate descent direction.

2.2. Compactness of the Hessian at the Optimal Domain. Next, we will investigate

the shape Hessian at a stationary domain 
?, that is, the �rst order necessary condition

rJ(
?)[dr] = 0 holds for all dr 2 C
2;�(S). Consequently, all quantities arising in the

considerations below are related to the domain 
?. In particular, the functions u, du,

etc. are the solutions of the boundary value problems (1.2), (2.8) with respect to 
?.

Note that the necessary condition implies

(2.12)
@p

@n

@(u� g)

@n
� 0 on �:

Lemma 2.2. Equation (2.12) is satis�ed if and only if @(u � g)=@n � 0 or @p=@n � 0

on �. In the latter case it follows p � 0 in 
? nB.

Proof. Assume @(u � g)=@n 6= 0 on a subset � � � with nontrivial measure. Then, it

must hold @p=@n � 0 on �. Since p is harmonic in 
? n B according to (1.4) and due to

the homogeneous Dirichlet boundary conditions at �, the unique continuation property

for C2-boundaries (cf. H�ormander [25]) implies immediately p � 0 in 
?nB. In particular,
we conclude @p=@n � 0 on whole �. �

The solution @(u� g)=@n � 0 corresponds to a degeneration of the data and of the whole

shape problem, respectively, and makes no sense. Especially, it would imply du[dr] � 0

for all admissible dr according to (2.8). Thus, we suppose @p=@n � 0. Then, since p � 0

in 
? nB, the shape Hessian simpli�es to

r2
J(
?)[dr1; dr2] =

Z
S

dr1 r
n�1 @dp[dr2]

@n
� @(g � u)

@n
d�

bx;(2.13)

where the adjoint local shape derivative dp = dp[dr2] satis�es

(2.14)
��dp = �Bdu[dr2] �

@
2
j

@u2

�
u(�); �

�
in 
?

;

dp = 0 on �:

The next result is derived as an immediate consequence of the identities (2.10).

Lemma 2.3. Suppose @(u� g)=@n 6= 0 almost everywhere on � and @2j=@u2
�
u(�); �

�
6= 0

nonnegative on B. Then, the shape Hessian r2
J(
?) is a positive bilinear form, i.e.,

r2
J(
?)[dr; dr] > 0

5



for all admissible dr.

Proof. We show �rst that the second term of the domain representation of the shape

Hessian in (2.10) vanishes at 
?, that is

(2.15)

Z
B

@j

@u

�
u(x);x

�
d
2
u[dr; dr] dx = 0

for all admissible dr. Using (1.4), the following transformation is obviousZ
B

@j

@u

�
u(x);x

�
d
2
u[dr; dr](x) dx = �

Z
B

�p d2u[dr; dr](x) dx

=

Z
�

@p

@n
d
2
u[dr; dr](x) d�x:

Hence, (2.15) follows immediately from @p=@n in accordance with Lemma 2.2. Conse-

quently, we arrive at the identity

r2
J(
?)[dr; dr] =

Z
B

@
2
j

@u2

�
u(x);x

� �
du[dr](x)

�2
dx:

Observing that du[dr] is a harmonic function, we conclude that du[dr] 6= 0 almost every-

where in B provided that dr 6� 0 on �. This implies the assertion. �

We emphasize that the domain 
? is only a regular strict minimizer of second order

if the shape Hessian is strictly H1=2(�)-coercive, that is r2
J(
?)[dr; dr] � ckdrk2

H1=2(�)
,

cf. [3, 4, 17]. Consequently, the positivity of r2
J(
?) in the case of the quadratic tracking

objective (if @(u � g)=@n 6= 0 almost everywhere on �) is only a necessary but not a

suÆcient second order condition. We will show next that the shape Hessian is compact

which immediately implies that strictH1=2(�)-coercivity cannot be satis�ed for the general

class of objectives under consideration.

Lemma 2.4. The multiplication operator

(2.16) M : H1=2(�)! H
1=2(�); Mdr := dr � hbx;ni@(g � u)

@n

is continuous.

Proof. Abbreviating ! := hbx;ni@(g�u)=@n we may writeMdr = dr �!. Due to results of
Triebel [34] or Mazja and Shaposhnikova [28], the multiplication operatorM is continuous

from H
1=2(�) to H1=2(�) if ! 2 C

0;�(�) for some � > 1=2. Due to our assumptions on

the data and the regularity of the admissible domains the latter condition holds. �

Lemma 2.5. The mapping

� : H1=2(�)! H
�1=2(�); �(Mdr) =

@dp[dr]

@n
;

that maps Mdr 2 H
1=2(�) via (2.8) and (2.14) onto the Neumann data @dp[dr]=@n 2

H
�1=2(�) of the adjoint local shape derivative, is compact.

6



Proof. It is well known, that the Dirichlet-to-Neumann map A : H1=2(�) ! H
�1=2(�)

maps the given Dirichlet data du[dr]j� = Mdr 2 H
1=2(�) continuously to the Neumann

data @du[dr]=@n = A(Mdr) 2 H�1=2(�). Green's representation formula yields

du[dr](x) =

Z
�

E(x;y)
@du[dr]

@n
(y)d�y �

Z
�

@

@n
E(x;y)du[dr](y)d�y; x 2 
?

;

where the fundamental solution E(x;y) is given by

(2.17) E(x;y) =

(
� 1

2�
log kx� yk; if n = 2;

1
4�kx�yk

; if n = 3:

We denote by � = (�1; : : : ; �n) multi-indices of dimension n and de�ne j�j := �1+: : :+�n.

Since dist(B;�) > 0, one readily infers that di�erentiation gives

@
�

x
du[dr](x) =

Z
�

@
�

x
E(x;y)

@du[dr]

@n
(y)d�y �

Z
�

@

@ny
@
�

x
E(x;y)du[dr](y)d�y;

where the kernel @�
x
E(x; �) keeps still bounded in H

1=2(�) for all x 2 B and j�j 2 N.
Hence, we arrive at

k@�
x
du[dr]kL1(B) . max

x2B

k@�
x
E(x; �)kH1=2(�)

�
kA(Mdr)kH�1=2(�) + kMdrkH1=2(�)

�
. kMdrk

H1=2(�);

which immediately implies the compactness of

B : H1=2(�)! H
�1(
?); B(Mdr) = �Bdu[dr] �

@
2
j

@u2

�
u(�); �

�
:

Next, since the solution operator C : H�1(
?)! H
1(
?) of the Poisson equation �q = f

in 
? with homogeneous Dirichlet data qj� = 0, that maps the inhomogenity f 2 H�1(
?)

onto the solution q 2 H1(
?), is continuous, one readily infers that the mapping

D : H�1(
?)! H
�1=2(�); D(f) = @q

@n

is continuous. Using now the identity

�(Mdr) = (D Æ B)(Mdr)

leads to the desired result. �

Invoking (2.5), the shape Hessian (2.13) de�nes the following continuous bilinear form on

H
1=2(�)�H

1=2(�)

(2.18) r2
J(
?)[dr1; dr2] =

�
Mdr1;�(Mdr2)

�
L2(�)

:

According to the Lemmata 2.4 and 2.5 we conclude the �nal result.

Proposition 2.6. The shape Hessian

H : H1=2(�)! H
�1=2(�); H =M

?�M : H1=2(�)! H
�1=2(�);

is compact at the optimal domain 
?.

7



Remark 2.7. Assuming the boundaries � and @B as well as all data to be arbitrary

smooth, one readily infers that the shape Hessian is even compact as mapping H : Hs(�)!
H
�s(�) for all s > 1=2. In this case, the eigenvalues of the Hessian decrease exponentially,

as observed in the numerical example presented in Section 4.

Proposition 2.6 implies the ill-posedness of the optimization problem itself, which is com-

pletely characterized by the nature of the shape Hessian at the critical domain.

2.3. Ritz-Galerkin Approximation of the Shape Problem. In order to solve the

minimization problem de�ned by (1.1) and (1.2), we are looking for the stationary points


? satisfying

(2.19) rJ(
?)[dr] = 0 for all dr 2 C2;�(S):

In accordance with [17] we shall introduce a Ritz-Galerkin method for the nonlinear

equation (2.19). To this end, we restrict ourselves again to star-shaped domains and

consider the gradient in terms of sphericals coordinates (2.6). Nevertheless, one can

consider any �xed variation �eld with respect to a smooth reference manifold as well, see

[17] for the details.

Let �1; �2; : : : ; �N denote the �rst N spherical harmonics in Rn and consider the ansatz

space

VN = spanf�1; �2; : : : ; �Ng � C
2;�(S):

We identify the (�nite dimensional) domain 
N with the radial function

rN (bx) = NX
n=0

an�n(bx); bx 2 S:
Then, we can replace (2.19) by its �nite dimensional counterpart:

(2.20) seek r?
N
2 VN such that rJ(r?

N
)[dr] = 0 for all dr 2 VN :

Note that this is the necessary condition associated with the �nite dimensional optimiza-

tion problem

(2.21) J(rN)! min; rN 2 VN :

According to [17] we obtain an approximation error that stays in the energy norm H
1=2(S)

proportional to the best approximation in VN , that is

kr?
N
� r

?kH1=2(S) . inf
rN2VN

krN � r
?kH1=2(S);

provided that the shape Hessian is strictly H1=2(�)-coercive at the optimal domain 
?.

Since this is not the case as proven in the previous subsection, we cannot guarantee

convergence of the solution of (2.21) to the solution r? of the original shape optimization

problem (1.1). This will be con�rmed by our numerical results, see Section 4.

8



3. Numerical Method to compute the State and its Adjoint

3.1. Reformulation of the State Equation. During an iterative optimization process,

we have to solve the boundary value problems (1.2) and (1.4) in each step. We emphasize

that the underlying domains are always di�erent. Finite element methods su�er from

generating a suitable triangulation for each new domain. One way out is to reformulate

the given boundary value problems as coupled problems involving only boundary integral

equations on the free boundary. In order to perform this reformulation, we introduce a

Newton potential Nf satisfying

(3.22) ��Nf = f in b
;
to resolve the inhomogenity in the state equation (1.2). Herein, b
 is a suÆciently large

domain containing all domains from the iteration process. This Newton potential is

supposed to be explicitly known like in our numerical example (see Section 4) or computed

with suÆciently high accuracy. Such an idea has been proposed for example by Jung and

Steinbach [26]. We emphasize that the Newton potential has to be computed only once

in advance.

For a �rst order optimization method, we require the Newton potential itself as well as its

gradient. Therefore, one can compute it by usual lowest order �nite elements. However,

since the domain b
 can be chosen fairly simple, one can also use e.g. �nite elements based

on tensor products of higher order B-splines (in [�R;R]n) or dual reciprocity methods.

The ansatz

(3.23) u = Nf + v

yields then the problem of seeking a harmonic function v satisfying the following Dirichlet

problem for the Laplacian

(3.24)
�v = 0 in 
;

v = g �Nf on �:

Now, we are able to compute both, the state and the adjoint state, by the method proposed

in the next subsection.

3.2. The Coupling of FEM and BEM. In view of (1.4) and (3.24) we shall provide a

method to solve

(3.25)

��u = f in B;

�u = 0 in 
 nB;
u = g on �:

We set � := @B and assume the normal vectors n at � and � to point into 
 n B,
cf. Figure 1.1 for the topological situation. Then, (3.25) can be split in two coupled

9



boundary value problems

��u = f in B;

�u = 0 in 
 nB;
lim
y!x

y2B

u(y) = lim
y!x

y2
nB

u(y) for all x 2 �;(3.26)

lim
y!x

y2B

@u

@n
(y) = lim

y!x

y2
nB

@u

@n
(y) for all x 2 �;

u = g on �:

We introduce the single layer operator V�	, the double layer operator K�	, the adjoint

double layer operatorK?

	� and the hypersingular operatorW�	 with respect to the bound-

aries �;	 2 f�;�g by

(V�	u)(x) :=
Z
�

E(x;y)u(y)d�y;

(K�	u)(x) :=

Z
�

@

@ny
E(x;y)u(y)d�y;

(K?

�	u)(x) :=

Z
�

@

@nx
E(x;y)u(y)d�y;

(W�	u)(x) := � @

@nx

Z
�

@

@ny
E(x;y)u(y)d�y;

x 2 	;

where the fundamental solution E(x;y) is de�ned as in (2.17). We shall denote by L2(�)

the function space of all squared integrable functions on � with respect to the canonical

inner product

(u; v)L2(�) =

Z
�

u(x)v(x)d�x

and by H
s(�) (s 2 R) the corresponding Sobolev spaces. Then, in this context, the

operators with respect to one boundary are continuous mappings in the spaces

V�� : H�1=2(�)! H
1=2(�); W�� : H1=2(�)! H

�1=2(�);

K�� : H1=2(�)! H
1=2(�); K?

�� : H�1=2(�)! H
�1=2(�);

while in the case of mixed boundaries the operators are arbitrarily smoothing compact

operators.

Finally, introducing the variables �� := (@u=@n)j� and �� := (@u=@n)j�, the coupled

system (3.26) yields the following nonlocal boundary value problem:

10



Find (u; ��; ��) such that

��u = f in B;

�u = 0 on 
 nB;

�W��u�W��g +
�1
2
�K?

��

�
�� �K?

���� = �� on �;(3.27) �1
2
�K��

�
u�K��g + V���� + V���� = 0 on �;

�K��u+
�1
2
�K��

�
g + V���� + V���� = 0 on �:

This system is the so-called two integral formulation, which is equivalent to our original

model problem (3.25), see for example [5, 23].

3.3. The Variational Formulation. Next, we introduce the product spaceH := H
1(B)�

H
�1=2(�)�H

�1=2(�) equipped by the product norm

k(u; ��; ��)k2H := kuk2
H1(B)+ k��k2H�1=2(�)

+ k��k2H�1=2(�)

for all (u; ��; ��) 2 H. Further, let a : H�H ! R, be bilinear form de�ned by

a
�
(u; ��; ��); (v; ��; ��)

�
=

Z
B

rurvdx

+

0@24 v

��

��

35 ;
24 W�� K?

�� � 1=2 K?

��

1=2 �K�� V�� V��
�K�� V�� V��

3524 u��
��

351A
L2(�)�L2(�)�L2(�)

(3.28)

where the integral operators V�	;K�	;K?

�	;W�	 are given as above. For sake of sim-

plicity in representation, we omitted the trace operator in expressions like (v;W��u)L2(�)

etc.

Introducing the linear functional F : H ! R,

F (v; ��; ��) = (f; v)L2(B)+

0@24 v

��

��

35 ;
24 �W��

K��

K�� � 1=2

35 g
1A

L2(�)�L2(�)�L2(�)

the variational formulation is given by:

Seek (u; ��;��) 2 H such that

(3.29) a((u; ��; ��); (v; ��; ��)) = F (v; ��; ��)

for all (v; ��; ��) 2 H.

Lemma 3.1. The bilinear form a(�; �) from (3.28) satis�es the G�arding inequality

(3.30) a
�
(u; ��; ��); (v; ��; ��)

�
+ kuk2

L2(B) & k(u; ��; ��)k2H;

provided that 
 has a conformal radius < 1 if n = 2.

11



Proof. From K�	 = K?

	� we conclude (K�	��; �	)L2(	) = (K?

	��	; ��)L2(�). Hence, we

arrive at

a
�
(u; ��; ��); (u; ��; ��)

�
= juj2

H1(B) + (W��u; u)L2(�)

+

��
��

��

�
;

�
V�� V��
V�� V��

� �
��

��

��
L2(�)�L(�)

;

where juj2
H1(B)

=
R
B
kruk2dx denotes the H1(B)-semi norm. Observing that the operator

V : H�1=2(�)�H
�1=2(�)! H

1=2(�)�H
1=2(�); V :=

�
V�� V��
V�� V��

�
;

is positive de�nite, we deduce the assertion since kuk2
H1(B) = kuk2

L2(B) + juj2
H1(B) and

(W��u; u)L2(�) � 0. �

Lemma 3.2. The bilinear form a(�; �) from (3.28) is injective, provided that 
 has a

conformal radius < 1 if n = 2.

Proof. Assume that (u1; ��1; ��1); (u2; ��2; ��2) 2 H solve both the coupled problem

(3.26). Then, setting (v; ��; ��) := (u1 � u2; ��1 � ��2; ��1 � ��2) 2 H, the G�arding

inequality (3.1) implies v = const: and �� = �� = 0. Since the underlying function is

harmonic in 
 and satis�es homogeneous Dirichlet boundary conditions at �, it follows

that const: = 0. �

Combining Lemmata 3.1 and 3.2 yields the following theorem.

Theorem 3.3. The variational formulation (3.29) admits a unique solution (u; ��; ��) 2
H for all F 2 H0, provided that 
 has a conformal radius < 1 if n = 2.

Proof. The bilinear form a(�; �) is obviously continuous on H � H and in accordance

with Lemmata 3.1 and 3.2 H-coercive and injective. Hence, one concludes existence and

uniqueness of the solution by the Riesz-Schauder theory. �

3.4. The Galerkin Scheme. Since the variational formulation is stable without further

restrictions, the discretization is along the lines of [20, 21]. It suÆces to exploit glob-

ally continuous lowest order �nite elements to discretize u and piecewise constant ansatz

functions to discretize �� and ��.

We �rst introduce a uniform triangulation of B which induces a uniform triangulation of

�. Moreover, we need a uniform triangulation of the free boundary �, which we suppose

to have the same mesh size as the triangulation of the domain B. For the FEM part we

consider lowest order ansatz functions f�B
k
: k 2 �Bg with respect to the given domain

mesh. For the BEM part we introduce canonical piecewise constant ansatz functions

f �
k
: k 2 r�g on the underlying triangulations of the boundaries � (� 2 f�;�g). For

sake of simplicity in representation, we de�ne ��
k
:= �

B

k
j� (k 2 �B), which is mostly

identical to zero and coincides with canonical piecewise linear (or bilinear) functions

on � if the trace of the �nite element function �
B

k
is nontrivial. Moreover, we shall

12



introduce further the set of canonical globally continuous piecewise linear (or bilinear)

Lagrange ansatz functions on the triangulation of �, which we indicate by f��
k
: k 2 ��g

(#�� � #r�).

Then, introducing the system matrices

A =
h
(r�B

k0
; �

B

k
)L2(B)

i
k;k0
; W�	 =

h
(W�	�

�
k0
; �

	
k
)L2(	)

i
k;k0
;

B� =
h
1
2
(��

k0
;  

�
j;k
)L2(�)

i
k;k0
; K�	 =

h
(K�	�

�
k0
; �

	
k
)L2(	)

i
k;k0
;(3.31)

G� =
h
(��

k0
; �

�
j;k
)L2(�)

i
k;k0
; V�	 =

h
(V�	��k0 ; �	j;k)L2(	)

i
k;k0
;

where again �;	 2 f�;�g, and the data vectors

f =
h
(f; �B

k
)L2(B)

i
k

; g =
h
(g; ��

k
)L2(�)

i
k

;

we obtain the following linear system of equations

(3.32)

24A+W�� K
T

�� �B
T

� K
T

��

B� �K�� V�� V��

�K�� V�� V��

3524 u

��

��

35 =

24f0
0

35 +

24 �W��

K��

K�� �B�

35G�1
� g

We mention thatG�1
� g corresponds to the L2(�)-othogonal projection of the given Dirich-

let data g 2 H1=2(�) onto the space of the piecewise (bi-) linears on �. That way, we can

also apply fast boundary element techniques to the boundary integral operators on the

right hand side of the linear system of equations (3.32).

Applying standard error estimates for the Galerkin scheme and employing the Aubin

Nitsche trick leads to the following error estimate concerning the present discretization.

Proposition 3.4. Let h denote the mesh size of the triangulations of B and �, re-

spectively. We denote the solution of (3.29) by (u; ��; ��) and the Galerkin solution

by (uh; ��h; ��h). Then, we have the error estimate

k(u; ��; ��)� (uh; ��h; ��h)kL2(B)�H�2(�)�H�2(�)

. h
2kukH2(B) + h

3k��kH1(�) + h
3k��kH1(�)

uniformly in h.

Finally, we shall encounter some issues on the eÆcient solution of the linear system of

equations (3.32). The complexity is governed by the BEM part since the boundary element

matrices are densely populated. On the one hand, following for example [20, 21] in case

of wavelet matrix compression, one can apply fast boundary element techniques to reduce

this complexity such that the over-all complexity is governed by the FEM part. On

the other hand, according to [21, 24], the Bramble-Pasciak-CG ([1]) provides a fast and

robust iterative solver for the above saddle point system. In particular, combining a

nested iteration with the Bramble-Pasciak-Xu preconditioner ([2]) for the FEM and a

wavelet preconditioning ([6, 31]) for the BEM part, we derive an asymptotical optimal

solver for the above system, see [21] for the details. We refer the reader to [21] for

13



the implementational details of a similar coupling formulation in case of wavelet matrix

compression for the boundary element part.

3.5. Error Estimates for L2(B)-Tracking Type Functionals. Recall that, in a single

iteration step of the shape optimization algorithm, we use the present method in order to

solve both, the state (3.24) via the ansatz (3.23) and the adjoint state (1.4). Now, we shall

specify the approximation errors to the shape functional and its gradient in the important

case of L2(B)-tracking type functionals. For sake of simplicity we neglect approximation

errors of the Newton potential Nf (3.22), i.e., we assume that it is known analytically.

Corollary 3.5. Assume that the Newton potential Nf from (3.22) is given exactly. Then,

in case of L2(B)-tracking type functionals both, the shape functional and the shape gradi-

ent, are approximated quadratically, that is, the approximation error behaves like O(h2).

Proof. The rate of convergence with respect of the shape functional follows from

jJ(
)� J(
)hj =
����Z

B

u
2 � u

2
h
dx

����
� (u� uh; u� uh)L2(B) + 2j(u; u� uh)L2(B)j . h

2kuk2
H2(B):

In case of the shape gradient we abbreviate �� := @(u� g)=@n and �� := @p=@n, while

��h and ��h denote the numerical approximations. Since the inhomogenity of the adjoint

state equation (1.4) is computed consistent to the present the formulation, we obtain the

same rate of convergence rate for the unknowns of the adjoint state as of the primal state.

From

jrJ(
)[dr]�rJ(
)[dr]j =
����Z

�

hV;nif���� � ��h��hgd�
����

=

����Z
�

hV;nif(�� � ��h)(�� � ��h)� ��(�� � ��h)� ��(�� � ��h)gd�
����

� khV;nikL1(�)(j�� � ��hj; j�� � ��hj)L2(�) + (hV;ni��; �� � ��h)L2(�)

+ (hV;ni��; �� � ��h)L2(�)

Herein, the �rst term is estimated by

(j�� � ��hj; j�� � ��hj)L2(�) � k�� � ��hkL2(�)k�� � ��hkL2(�)

. h
2k��kH1(�)k��kH1(�):

The second term yields

(hV;ni��; �� � ��h)L2(�) � khV;ni��kH1(�)k�� � ��hkH�1(�) . h
2k��kH1(�)

and likewise the third term, which �nishes the proof. �
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Figure 4.2. Degrees of freedom versus approximation error.

4. Numerical Results

The numerical example will be carried out in two space dimensions where B = f(x; y) :
x
2 + y

2
< 0:2g. We consider the minimization of a L

2(B)-tracking type functional,

precisely

J(
) =

Z
B

ku� u0k2dx! min;

where u satis�es the Poisson equation ��u = 10 � (2=h2
x
+ 2=h2

y
) in 
 with homogeneous

Dirichlet data uj� = 0. Herein, hx; hy > 0 are some �xed constants to be speci�ed below.

The function u0 is chosen as

u0(x; y) := 10 �
�
1� x

2

h2
x

� y
2

h2
y

�
;

Since ��u0 = 20 � (1=h2
x
+ 1=h2

y
) and u0 � 0 on the boundary of ellipse E with semi-axes

hx and hy, that is

E :=

�
(x; y) 2 R2 :

x
2

h2
x

+
y
2

h2
y

= 1

�
;

one infers that the minimizer of the considered shape problem is the ellipse E. For the

present state equation we will exploit the Newton potential

Nf = �5 �
�
1

h2
x

+
1

h2
y

�
� (x2 + y

2):
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First, we want to check the orders of convergence predicted in Corollary 3.5. We choose

hy = 0:4 and hx = 0:6 and compute the shape functional and its discretized gradient

for a randomly chosen boundary � on a very �ne discretization. Then, we compute

on lower levels the approximate solutions und measure the absolute (`2-) errors to our

reference values. The results are depicted in Figure 4.2. In fact, one observes quadratic

approximation orders (indicated by the dashed lines) of both, the functional and its

gradient.
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Figure 4.3. Logarithmic moduli of the coeÆcients of the discrete Hessian

d
2
J(
?)[dr1; dr2].

Next, we consider the shape Hessian (2.13) at the optimal domain 
? in case of hx = 0:4

and hy = 0:3. It holds @(u� g)=@n > 0 on � which implies in fact r2
J(
?)[dr; dr] > 0

for all directions dr, see Lemma 2.3. We discretize the Hessian r2
J(
?)[dr1; dr2] via the

�rst 65 H1=2-normalized Fourier frequencies, 115201 �nite elements and 1024 boundary

elements each on the boundaries � and �. The underlying triangulation of B on level 2,

based on Zl�amal's curved �nite elements [36], can be found in Figure 4.5. In Figure 4.3

we visualized the Hessian where we used the numbering �1 = cos(32 � 2�)=
p
32; �2 =

cos(31 � 2�)=
p
31; : : : ; �32 = cos(2�); �33 = 1=

p
(2�); �34 = sin(2�); : : : ; �64 = sin(31 �

2�)=
p
31; �65 = sin(32 � 2�)=

p
32. A plot of its eigenvalue distribution can be found in

Figure 4.4. The plot exhibits clearly an exponential decay of the �rst 25 eigenvalues. The

moduli of the other eigenvalues are than 10�11 and are not reliable due to round-o� erros.

Note that the `2-condition number of this discrete Hessian is about 1015.

Finally, we compute the free boundary � in case of hy = 0:4 and hx = 0:4; 0:5; : : : ; 1:0

using like above the �rst 65 Fourier frequencies, 115201 �nite elements and 1024 boundary

16



0 10 20 30 40 50 60 70
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

index of eigenvalue

m
od

ul
us

 o
f e

ig
en

va
lu

e

Figure 4.4. The eigenvalues of the discrete Hessian.

hx hy H
1=2(S)-shape error cpu-time

0.4 0.4 8.4e-5 618

0.5 0.4 3.8e-2 696

0.6 0.4 1.6e-1 706

0.7 0.4 2.9e-1 687

0.8 0.4 5.2e-1 697

0.9 0.4 7.5e-1 680

1.0 0.4 1.0 708

Table 4.1. Approximation errors of the shape and over-all computing times.

elements each on the boundaries � and �. We employ a quasi-Newton method with

quadratic line search, updated by the inverse BFGS-rule without damping, to solve the

necessary condition (2.20), see e.g. [18, 19] for the details. We choose always the circle

centered in (x; y) = (0; 0) with radius 0.75 as initial guess and perform 50 quasi-Newton

iterations.

In Table 4.1 we listed the H1=2(S)-error of the �nal shape and the over-all cpu-times

(measured in seconds), which is always about 10 minutes. From the increasing shape

errors we conclude that the shape problem becomes more and more ill-posed when hx

increases. This is quite obvious since the domain 
 becomes larger.

The resulting free boundaries are plotted in Figure 4.5. The boundary increases when hx
increases. Therefore, the inner boundary corresponds to the problem with hx = 0:4 while
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the outer boundary corresponds to hx = 1:0. Especially, we see that the computed free

boundaries are only approximately ellipses.
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The histories of the shape functional are plotted in Figure 4.6. For the initial gues we

have J(rN) = 6:79519. Except in the case of a circle (hx = hy = 0:4), where the shape

optimization algorithm �nds the optimal solution quite exact, seen by J(r?
N
) � 1e � 9,

the curves are similar. After 50 iteration steps we have reduced the shape functional in

all cases by at least �ve magnitudes, i.e., by a factor greater than 100 000.
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