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Abstract

We introduce a forward scheme to simulate backward SDEs and analyze

the error of the scheme. Finally, we demonstrate the strength of the new

algorithm by solving some �nancial problems numerically.

1 Introduction

The study of nonlinear backward stochastic di�erential equations (BSDEs) was ini-

tiated by Pardoux and Peng (1990). Mainly motivated by �nancial problems (see

e.g. the survey article by El Karoui et al. (1997)) the theory of BSDEs was devel-

oped at high speed during the 1990s. Comparably slow progress has been made on

the numerics of BSDEs.

Up to now basically two types of schemes have been considered. Based on the

theoretical 4-step-scheme from Ma et al. (1994), numerical algorithms for BSDEs

have been developed by Douglas et al. (1996) and more recently by Milstein and

Tretyakov (2004). The main focus of these algorithms is the numerical solution of

a parabolic PDE which is related to the BSDE.

A second type of algorithms works backwards through time and tries to tackle the

stochastic problem directly. Bally (1997) and Chevance (1997) were the �rst to

study this type of algorithm with a (hardly implementable) random time partition

respectively under strong regularity assumptions. The work of Ma et al. (2002) is

in the same spirit, replacing, however, the Brownian motion by a binary random

walk in the approximative equation. Only recently, a new notion of L2-regularity

on the control part of the solution was introduced in Zhang (2004), which allowed

to prove convergence of this backward approach with deterministic partitions under

rather weak regularity assumptions, see Zhang (2004), Bouchard and Touzi (2004),

and Gobet et al. (2004) for slightly di�erent algorithms.

A main drawback of the backward schemes is, that nestings of conditional expec-

tations backwards through the time steps have to been evaluated. For a practical

implementation the conditional expectations must be replaced by some estimator.

A generic result of Bouchard and Touzi (2004) shows that the error due to the ap-

proximation of the conditional expectation explodes linearly, when the number of
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time steps goes to in�nity. This leads to high computational costs, when a �ne mesh

of the time discretization is required.

In this paper we propose a new forward scheme, which avoids nestings of conditional

expectations backwards through the time steps. Instead it mimics the Picard type

iteration for BSDEs and, consequently, has nestings of conditional expectation along

the Picard iterations.

In Section 2 we prove convergence of the discretized Picard iteration under quite

general assumptions. In particular, we show that the additional error (compared to

the backward scheme) due to the Picard iteration converges to zero at a geometric

rate.

The error due to a generic approximation of the conditional expectation is analyzed

in Section 3. We show that this error does neither explode when the number of time

steps nor when the number of iterations tends to in�nity. We believe that this is a

striking advantage compared to the backward scheme.

Section 4 is devoted to the development of a practically implementable numerical

scheme. In particular, we use the regression-based least squares Monte-Carlo method

to approximate the conditional expectation as was suggested by Gobet et al. (2004)

in the context of the backward scheme. We analyze the error, when replacing the

conditional expectation by the orthogonal projections on subspaces, and prove con-

vergence when the projection coeÆcients are substituted by their simulation-based

analogues.

Finally, in Section 5, we present some simulations related to �nancial problems.

2 A Discretization of the Picard Iteration

In this section we introduce a discretized Picard iteration and prove its convergence

for the following type of BSDE:

dXt = b(t;Xt)dt+ �(t;Xt)dWt

dYt = f(t;Xt; Yt; Zt)dt+ ZtdWt

X0 = x

YT = �

Here Wt = (W1;t; : : : ;WD;t)
� is a D-dimensional Brownian motion on [0; T ] and

Zt = (Z1;t; : : : ; ZD;t). The process X is RM-valued and the process Y is R-valued.

Throughout the paper we assume
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Assumption 2.1 There is a constant K such that

jb(t; x)� b(t0; x0)j+ j�(t; x)� �(t0; x0)j+ jf(t; x; y; z)� f(t0; x0; y0; z0)j
� K(

p
jt� t0j+ jx� x0j+ jy � y0j+ jz � z0j)

for all (t; x; y; z); (t0; x0; y0; z0) 2 [0; T ]�RM �R�RD,

� = �(X)

where � is a functional on the space of RCLL-functions on [0; T ] satisfying the

L1-Lipschitz condition,

j�(x)� �(x0)j � K sup
0�t�T

jx(t)� x0(t)j

for all RCLL-functions x; x0. Moreover,

sup
0�t�T

(jb(t; 0)j+ j�(t; 0)j+ jf(t; 0; 0; 0)j) + j�(0)j � K

where 0 denotes the constant function taking value 0 on [0; T ].

Note, that we do neither assume that the matrix � is quadratic nor that ��� is

invertible.

Remark 2.2 We shall say that a constant depends on the data, if it depends on

K, T , x0 and the dimensions M and D only. Throughout the paper C denotes a

generic constant depending on the data which may vary from line to line.

Theoretically, the backward part (Y;Z) can be obtained as the limit of a Picard

type iteration (Y (n); Z(n)), see e.g. Yong and Zhou (2000), theorem 7.3.4. Here

(Y (0); Z(0)) � (0; 0), and (Y (n); Z(n)) is the solution of the simple BSDE

dY
(n)
t = f(t;Xt; Y

(n�1)
t ; Z

(n�1)
t )dt+ Z

(n)
t dWt

Y
(n)

T = �

with X as above.

The solution is given by

Y
(n)
t = E

�
� �

Z T

t

f(s;Xs; Y
(n�1)
s ; Z(n�1)

s )ds

����Ft

�
and Z(n) is obtained via the martingale representation theorem. As is emphasized

in Yong and Zhou (2000), ch. 7, the above Picard iteration is still implicit due to

the use of the martingale representation theorem.
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We will now introduce a time discretization of the above Picard iteration, which is

explicit but for the occurrence of conditional expectations.

Suppose a partition � = ft0; t1; : : : ; tNg of [0; T ] is given and a corresponding dis-

cretization X(�) of X as well as some approximation �(�) of �. Let (Y (0;�); Z(0;�)) �
(0; 0). Then de�ne iteratively, with �i = ti+1 � ti and �Wd;i = Wd;ti+1 �Wd;ti,

Y
(n;�)
ti

= E

"
�(�) �

N�1X
j=i

f(tj;X
(�)
tj
; Y

(n�1;�)
tj

; Z
(n�1;�)
tj

)�j

�����Fti

#

Z
(n;�)

d;ti
= E

"
�Wd;i

�i

 
�(�) �

N�1X
j=i+1

f(tj;X
(�)
tj

; Y
(n�1;�)
tj

; Z
(n�1;�)
tj

)�j

!�����Fti

#

The processes Y (n;�) and Z(n;�) are extended to RCLL processes by constant inter-

polation. Note that the discretized Picard iteration has no nestings of conditional

expectations backward in time, but forward in the number of Picard iterations. This

turns out to be an advantage from the numerical point of view (see section 3 below).

We can now state convergence of the discretized Picard iteration:

Theorem 2.3 Suppose Assumption 2.1 holds, and for some constant C depending

on the data

sup
0�t�T

E
h
jXt �X

(�)
t j2

i
� Cj�j

sup
j�j�1

E
�j�(�)j2� � C

Then there is a constant C depending on the data such that

sup
0�t�T

E

����Yt � Y
(n;�)
t

���2�+ E

Z T

0

jZt � Z
(n;�)
t j2dt

� C

�
j�j+ E[j� � �(�)j2] +

�
1

2
+ Cj�j

�n�
provided j�j is suÆciently small.

Remark 2.4 (i) Note, the condition on the discretization X(�) of X is, for instance,

satis�ed by the Euler scheme.

(ii) The condition on �(�) is satis�ed, whenever for j�j � 1

E[j� � �(�)j2] � Cj�j�

with some constant C depending on the data and some � > 0. Indeed,

E[j� � �(�)j2] � 2E[j�j2] + 2E[j� � �(�)j2];
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and, thanks to the L1-Lipschitz condition and a classical estimate for SDEs,

E[j�j2] � 2K2E[ sup
0�t�T

jXtj2] + 2j�(0)j2

� C

�
x2 +

Z T

0

jb(t; 0)j2 + j�(t; 0)j2dt
�
+ 2K2 � C

The proof of theorem 2.3 is split into two parts. Given the partition � and a

corresponding discretization X(�) of X we de�ne (Y (1;�); Z(1;�)) as the solution of

Y
(1;�)
tN

= �(�)

Z
(1;�)

d;ti
= E

�
�Wd;i

�i

Y
(1;�)
ti+1

����Fti

�
Y

(1;�)
ti

= E[Y
(1;�)
ti+1

jFti]� f(ti;X
(�)
ti
; Y

(1;�)
ti

; Z
(1;�)
ti

)�i:

It exists, when the mesh j�j of the partition � is suÆciently �ne. Again, the processes
Y (1;�) and Z(1;�) are extended to RCLL processes by constant interpolation. Note,

(Y (1;�); Z(1;�)) is (up to the interpolation of the Z-part) the backward scheme

considered in Bouchard and Touzi (2004).

We shall separately consider the convergence of (Y (n;�); Z(n;�)) to (Y (1;�); Z(1;�))

and of (Y (1;�); Z(1;�)) to (Y;Z).

Concerning the backward scheme we need an extension of the results by Bouchard

and Touzi (2004). The following variant of theorem 3.1 in Bouchard and Touzi (2004)

is a slight generalization concerning the assumptions on the coeÆcients. Moreover,

it allows for path-depending terminal data and the approximating processes are

piecewise constant.

Theorem 2.5 Suppose Assumption 2.1 holds, and the discretization X(�) of X sat-

is�es

sup
0�t�T

E
h
jXt �X

(�)
t j2

i
� Cj�j (1)

for some constant C depending on the data. Then there is a constant C depending

on the data such that

sup
0�t�T

E

����Yt � Y
(1;�)
t

���2�+ E

Z T

0

jZt � Z
(1;�)
t j2dt

� C
�j�j+ E[j� � �(�)j2]�

provided j�j is suÆciently small.

The proof combines ideas of Bouchard and Touzi (2004) and Zhang (2004), who

suggests a di�erent time discretization. For the reader's convenience we sketch the

proof of Theorem 2.5 in the Appendix.
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We now investigate the Picard iteration for a �xed partition. Our aim is to derive

rates of convergence uniform in �.

Theorem 2.6 Under the assumptions of theorem 2.3 there are constants C1 and

C2 depending on the data such that

max
0�i�N

E

����Y (1;�)
ti

� Y
(n;�)
ti

���2�+ N�1X
i=0

E

����Z(1;�)
ti

� Z
(n;�)
ti

���2��i

� C1

����12 + C2j�j
����n

provided j�j is suÆciently small.

Clearly, Theorem 2.3 follows from a straightforward combination of Theorems 2.5

and 2.6.

Remark 2.7 Let K denote the Lipschitz constant of f . Then Theorem 2.6 holds,

for instance, for j�j � � with

C2 =
�

4

where

� = 16T (T + 1)2D2K4 + 4K(T + 1)K2

We prepare the proof with a technical lemma.

Lemma 2.8 Suppose � and 
 are positive real numbers, ~y(�), ~z(�), � = 1; 2 are

adapted processes and

~Y
(�)
ti

= E

"
�(�) �

N�1X
j=i

f(tj;X
(�)
tj
; ~y

(�)
tj
; ~z

(�)
tj
)�j

�����Fti

#

~Z
(�)

d;ti
= E

"
�Wd;i

�i

 
�(�) �

N�1X
j=i+1

f(tj;X
(�)
tj

; ~y
(�)
tj
; ~z

(�)
tj
)�j

!�����Fti

#
Moreover, assume that f is Lipschitz in (y; z) uniformly in (t; x) with constant K.

Then:

max
0�i�N

�iE
h
j~Y (1)

ti
� ~Y

(2)
ti
j2
i
+

N�1X
i=0

�iE
h
j ~Z(1)

ti
� ~Z

(2)
ti
j2
i
�i

� K2(T + 1)

��j�j+ ��1
�
(
DT + 1) +

D




�
�
 
1

T

N�1X
i=0

�iE
h
j~y(1)ti

� ~y
(2)
ti
j2
i
+

N�1X
i=0

�iE
h
j~z(1)ti

� ~z
(2)
ti
j2
i
�i

!
:

where �0 = 1 and �i = (1 + ��i�1)�i�1.
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Proof. The proof goes through several steps. For notational convenience let us

introduce

yti = ~y
(1)
ti
� ~y

(2)
ti

zd;ti = ~z
(1)

d;ti
� ~z

(2)

d;ti

�fi = f(ti;X
(�)
ti
; ~y

(1)
ti
; ~z

(1)
ti
)� f(ti;X

(�)
ti
; ~y

(2)
ti
; ~z

(2)
ti
):

First note that
~Y
(�)
ti

= E[ ~Y
(�)
ti+1
jFti]� f(ti;X

(�)
ti
; ~y

(�)
ti
; ~z

(�)
ti
)�i (2)

and, for the dth component of ~Z(�),

~Z
(�)

d;ti
= E

�
�Wd;i

�i

~Y
(�)
ti+1

����Fti

�
(3)

Step 1: For any 1 � d � D

N�1X
i=0

�iE

���� ~Z(1)

d;ti
� ~Z

(2)

d;ti

���2��i

� 


N�1X
i=0

�iE

����~Y (1)
ti

� ~Y
(2)
ti

���2��i +
(1 + T )K2




N�1X
i=0

�iE
�jztij2��i

+
(1 + T )K2

T


N�1X
i=0

�iE
�jytij2��i (4)

First note that by (3) and H�older's inequality,

~Z
(1)

d;ti
� ~Z

(2)

d;ti
= E

�
�Wd;i

�i

�
~Y
(1)
ti+1

� ~Y
(2)
ti+1

�����Fti

�
= E

�
�Wd;i

�i

�
~Y
(1)
ti+1

� ~Y
(2)
ti+1

� E[ ~Y
(1)
ti+1

� ~Y
(2)
ti+1
jFti]

�����Fti

�
�

r
1

�i

E

��
~Y
(1)
ti+1

� ~Y
(2)
ti+1

� E[ ~Y
(1)
ti+1

� ~Y
(2)
ti+1
jFti]

�2����Fti

�1=2
:

Thus, by (2),

E
h
j ~Z(1)

d;ti
� ~Z

(2)

d;ti
j2
i

� 1

�i

E
h
j~Y (1)

ti+1
� ~Y

(2)
ti+1
j2 � E[ ~Y

(1)
ti+1

� ~Y
(2)
ti+1
jFti]

2
i

=
1

�i

E
h
j~Y (1)

ti+1
� ~Y

(2)
ti+1
j2 � j~Y (1)

ti
� ~Y

(2)
ti

+�fi�ij2
i

� 1

�i

E
h
j~Y (1)

ti+1
� ~Y

(2)
ti+1
j2 � j~Y (1)

ti
� ~Y

(2)
ti
j2 � 2( ~Y

(1)
ti

� ~Y
(2)
ti

)�fi�i

i
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Multiplying both sides with the weights �i�i and summing from 0 to N � 1 yields

for 
 > 0,

N�1X
i=0

�iE
h
j ~Z(1)

ti
� ~Z

(2)
ti
j2
i
�i + �0E

h
j~Y (1)

t0
� ~Y

(2)
t0
j2
i

� �NE
h
j~Y (1)

tN
� ~Y

(2)
tN
j2
i
� 2

N�1X
i=0

�iE
h
( ~Y

(1)
ti

� ~Y
(2)
ti

)�fi�i

i
� 


N�1X
i=0

�iE
h
j~Y (1)

ti
� ~Y

(2)
ti
j2�i

i
+
K2




N�1X
i=0

�iE
�
(jytij+ jztij)2�i

�
:

Here we used ~Y
(1)
tN

� ~Y
(2)
tN

= 0 and Young's inequality. (4) may now be obtained by

another application of Young's inequality.

Step 2: We show

max
0�i�N

�iE
h
j~Y (1)

ti
� ~Y

(2)
ti
j2
i

� K2(T + 1)

�
j�j+ 1

�

� N�1X
i=0

�iE
�jztij2�i

�
+
1

T

N�1X
i=0

�iE
�jytij2�i

�!
(5)

By (2), Jensen's inequality, and Young's inequality we get

E
h
j~Y (1)

tj
� ~Y

(2)
tj
j2
i

� (1 + ��j)E
h
j~Y (1)

tj+1
� ~Y

(2)
tj+1

j2
i
+ (�j + ��1)(�fj)

2�j

� (1 + ��j)E
h
j~Y (1)

tj+1
� ~Y

(2)
tj+1

j2
i
+
�j�j+ ��1

�
K2(T + 1)jztj j2�j

+
�j�j+ ��1

�
K2T + 1

T
jytj j2�j

Multiplying with �j and summing from j = i to N � 1 easily yields (5), since
~Y
(1)
tN

� ~Y
(2)
tN

= 0.

Final Step: The assertion follows from a straightforward combination of (4) and

(5).

Proof of theorem 2.6. Denote,

y
(n+1;�)
ti

= Y
(n+1;�)
ti

� Y
(n;�)
ti

z
(n+1;�)

d;ti
= Z

(n+1;�)

d;ti
� Z

(n;�)

d;ti
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By Lemma 2.8,

max
0�i�N

�iE
h
jy(n+1;�)ti

j2
i
+

N�1X
i=0

�iE
h
jz(n+1;�)ti

j2
i
�i

� K2(T + 1)

��j�j+ ��1
�
(
DT + 1) +

D




�
�
 
max
0�i�N

�iE
h
jy(n;�)ti

j2
i
+

N�1X
i=0

�iE
h
jz(n;�)ti

j2
i
�i

!
:

We now choose 
 = 4DK2(T + 1) and � = 4K2(T + 1)(
DT + 1) and iterate the

above inequality to obtain,

max
0�i�N

�iE
h
jy(n+1;�)ti

j2
i
+

N�1X
i=0

�iE
h
jz(n+1;�)ti

j2
i
�i

�
�
�j�j
4

+
1

2

�n
 
max
0�i�N

�iE
h
jY (1;�)

ti
j2
i
+

N�1X
i=0

�iE
h
jZ(1;�)

ti
j2
i
�i

!
:

Recalling the de�nition of �i from Lemma 2.8 we have,

max
0�i�N

E
h
jy(n+1;�)ti

j2
i
+

N�1X
i=0

E
h
jz(n+1;�)ti

j2
i
�i

� e�T
�
�j�j
4

+
1

2

�n
 
max
0�i�N

E
h
jY (1;�)

ti
j2
i
+

N�1X
i=0

E
h
jZ(1;�)

ti
j2
i
�i

!
:

Denote the square root of the right-hand side byA(�; n). Clearly the series
P

nA(�; n)

converges, when j�j is suÆciently small. This shows, that (Y (n;�); Z(n;�)) is Cauchy

and thus converges to (Y (1;�); Z(1;�)) (when j�j is suÆciently small) by means of

(2){(3). Moreover, for n 2 N,

max
0�i�N

E

����Y (1;�)
ti

� Y
(n;�)
ti

���2� + N�1X
i=0

E

����Z(1;�)
ti

� Z
(n;�)
ti

���2��i

�
 1X

�=n

A(�; �)

!2

� e�T

 
max
0�i�N

E
h
jY (1;�)

ti
j2
i
+

N�1X
i=0

E
h
jZ(1;�)

ti
j2
i
�i

! 
1�

r
�j�j
4

+
1

2

!�2

�
�
�j�j
4

+
1

2

�n

It remains to prove a uniform bound for 
max
0�i�N

E
h
jY (1;�)

ti
j2
i
+

N�1X
i=0

E
h
jZ(1;�)

ti
j2
i
�i

!
which is given in the following lemma.
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Lemma 2.9 Under the assumptions of theorem 2.3, there is a constant C depending

on the data only such that

max
0�i�N

E
h
jY (1;�)

ti
j2
i
+

N�1X
i=0

E
h
jZ(1;�)

ti
j2
i
�i � C

provided j�j � 1 .

Proof. By Young's and H�older's inequality we have

max
0�i�N

E
h
jY (1;�)

ti
j2
i
� 2E[j�(�)j2] + 2T

N�1X
j=0

E
h
jf(tj;X(�)

tj
; 0; 0)j2

i
�j

The �rst term on the right hand side is bounded by a constant depending on the

data for j�j � 1 by assumption. For the second we observe

E
h
jf(tj;X(�)

tj
; 0; 0)j2

i
� 2E

h
jf(tj;X(�)

tj
; 0; 0)� f(tj; 0; 0; 0)j2

i
+ 2jf(tj ; 0; 0; 0)j2

� 2K2

�
sup

0�t�T
E[jX(�)

t j2] + 1

�
Now, by assumption and a classical result on SDEs

sup
0�t�T

E[jX(�)
t j2] � 2 sup

0�t�T
E[jX(�)

t �Xtj2] + 2 sup
0�t�T

E[jXtj2]

� Cj�j+ C

�
x2 +

Z T

0

jb(t; 0)j2 + j�(t; 0)j2dt
�
� C(1 + j�j)

We have thus shown that for j�j � 1,

max
0�i�N

E
h
jY (1;�)

ti
j2
i
+ max

0�i�N
E
h
jf(tj;X(�)

tj
; 0; 0)j2

i
� C (6)

Analogously to step 1 in Lemma 2.8 we obtain,

E
h
jZ(1;�)

d;ti
j2
i2
� 1

�i

E
h
jY (1;�)

ti+1
j2 � jY (1;�)

ti
j2 � 2Y

(1;�)
ti

f(ti;X
(�)
ti

; 0; 0)�i

i
Multiplying with �i and summing i from 0 to N � 1 easily gives the L2-bound for

Z(1;�) in view of (6).

As a corollary we obtain a uniform bound for the L2-norms:

Corollary 2.10 Under the assumptions of Theorem 2.3, there is a constant C

depending on the data only such that

max
0�i�N

E
h
jY (n;�)

ti
j2
i
+

N�1X
i=0

E
h
jZ(n;�)

ti
j2
i
�i � C

provided j�j is suÆciently small.

10



Proof. With the notation from the proof of theorem 2.6 we get for suÆciently small

j�j,

max
0�i�N

E
h
jY (n;�)

ti
j2
i
+

N�1X
i=0

E
h
jZ(n;�)

ti
j2
i
�i

� max
0�i�N

nX
�=1

 
E

����y(n;�)ti

���2� + N�1X
i=0

E

����z(n;�)ti

���2��i

!

�
 1X

�=1

A(�; �)

!2

� C

 
max
0�i�N

E
h
jY (1;�)

ti
j2
i
+

N�1X
i=0

E
h
jZ(1;�)

ti
j2
i
�i

!

with a constant C depending on the data only. Lemma 2.9 concludes.

3 Generic Analysis of the Error Propagation

To numerically implement the discretized Picard iteration proposed in the previous

section, one has to approximate the conditional expectations. This section is devoted

to an analysis of the error due to the replacement of the conditional expectation by

a generic estimator. It turns out that the error grows moderately when the mesh of

the partition goes to zero and the number of Picard iterations tends to in�nity. We

believe, this is an important advantage over the backward scheme, where the error

explodes when the mesh tends to zero.

Suppose a generic estimator bE�[�jFt] of the conditional expectation is given. We

consider �rst the corresponding approximation of the backward scheme of Bouchard

and Touzi (2004).

bY (1;�)
tN

= �(�)

bZ(1;�)

d;ti
= bE�

�
�Wd;i

�i

bY (1;�)
ti+1

����Fti

�
bY (1;�)
ti

= bE�[bY (1;�)
ti+1

jFti]� f(ti;X
(�)
ti
; bY (1;�)

ti
; bZ(1;�)

ti
)�i (7)

Bouchard and Touzi (2004), Theorem 4.1, prove, under slightly stronger assump-

11



tions than Assumption 2.1, that

max
0�i�N

E[jbY (1;�)
ti

� Y
(1;�)
ti

j2]

� C

j�j max
0�j�N

E

 
j bE�[bY (1;�)

ti+1
jFti]� E[bY (1;�)

ti+1
jFti]j2

+

���� bE�

�
Wti+1 �Wti

ti+1 � ti
bY (1;�)
ti+1

����Fti

�
� E

�
Wti+1 �Wti

ti+1 � ti
bY (1;�)
ti+1

����Fti

�����2
!

for some constant C depending on the data.

This means, given the same accuracy of the conditional expectation estimator the

error due to the approximation of the conditional expectation explodes when the

mesh of the partition tends to zero. Put di�erently, due to the numerical approxi-

mation of the conditional expectation by a Monte-Carlo based estimator one has to

simulate the more paths the �ner the partition. This increases the computational

costs. This e�ect is particularly unfavorable when the constant in Theorem 2.5 is

large (e.g. due to a large Lipschitz constant or time horizon) and, thus, a �ne mesh

is needed for Y
(1;�)
t to be a good approximation of Yt. We note that the described

e�ect has also been observed in the numerical examples by Gobet et al. (2004).

We shall now show that the error due to the approximation of the conditional

expectation by its generic estimator does not explode for the discretized Picard

iteration. We de�ne

bb(n;�)i = �(�) �
N�1X
j=i

f(tj;X
(�)
tj
; bY (n�1;�)

tj
; bZ(n�1;�)

tj
)�j

bY (n;�)
ti

= bE[bb(n;�)i jFti]bZ(n;�)

d;ti
= bE ��Wd;i

�i
bb(n;�)i+1

����Fti

�
initialized at (bY (0;�); bZ(0;�)) = (0; 0).

Theorem 3.1 Under Assumption 2.1 there is a constant C depending on the data

such that for any suÆciently �ne partition �,

max
0�i�N

E[jbY (n;�)
ti

� Y
(n;�)
ti

j2] +
N�1X
i=0

E[jbZ(n;�)
ti

� Z
(n;�)
ti

j2]�i

� C max
1���n

 
max
0�i�N

E
h
j bE�[bb(�;�)i jFti]� E[bb(�;�)i jFti]j2

i
+E

N�1X
i=0

���� bE�

�
�Wi

�i

bb(�;�)i+1

����Fti

�
� E

�
�Wi

�i

bb(�;�)i+1

����Fti

�����2�i

!

12



Proof. De�ne,

b
(n;�)

i = �(�) �
N�1X
j=i

f(tj;X
(�)
tj
; Y

(n�1;�)
tj

; Z
(n�1;�)
tj

)�j:

Then, by Young's inequality, and with the notation from Lemma 2.9,

max
0�i�N

�iE[jbY (n;�)
ti

� Y
(n;�)
ti

j2] +
N�1X
i=0

�iE[jbZ(n;�)
ti

� Z
(n;�)
ti

j2]�i

� 2

 
max
0�i�N

�iE
h
j bE�[bb(n;�)i jFti]� E[bb(n;�)i jFti]j2

i
+E

N�1X
i=0

�i

���� bE ��Wi

�i

bb(n;�)i+1

����Fti

�
� E

�
�Wi

�i

bb(n;�)i+1

����Fti

�����2�i

!

+2

 
max
0�i�N

�iE
h
jE[bb(n;�)i � b

(n;�)

i jFti]j2
i

+

N�1X
i=0

�iE

"����E ��Wi

�i

bb(n;�)i+1 � �Wi

�i

b
(n;�)

i+1

����Fti

�����2
#
�i

!

Lemma 2.9 can be applied to the second term. Hence, with a suitable choice of �

and 
,

max
0�i�N

�iE[jbY (n;�)
ti

� Y
(n;�)
ti

j2] +
N�1X
i=0

�iE[jbZ(n;�)
ti

� Z
(n;�)
ti

j2]�i

� 2

 
max
0�i�N

�iE
h
j bE�[bb(n;�)i jFti]� E[bb(n;�)i jFti]j2

i
+E

N�1X
i=0

�i

���� bE�

�
�Wi

�i

bb(n;�)i+1

����Fti

�
� E

�
�Wi

�i

bb(n;�)i+1

����Fti

�����2�i

!

+

�
1

4
+ �j�j

��
max
0�i�N

�iE[jbY (n�1;�)
ti

� Y
(n�1;�)
ti

j2]

+

N�1X
i=0

�iE[jbZ(n�1;�)
ti

� Z
(n�1;�)
ti

j2]�i

�
Now for j�j suÆciently small (e.g. less or equal (4�)�1) the above estimate can

be iterated to obtain the theorem. Note, 1 � �i � e�T . Thus, we can choose

C = 2e�T _ �.
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4 A Numerical Forward Scheme

In this section we specify an estimator for the conditional expectation. We shall

utilize the so-called least-squares Monte-Carlo regression method, which was intro-

duced in Longsta� and Schwartz (2001) in the context of American options and is

also applied to the backward scheme in Gobet et al. (2004). The approximation

takes place in two steps. First, the conditional expectation is replaced by an or-

thogonal projection on �nite dimensional subspaces. Then, the coeÆcients of the

orthogonal projections are estimated from a sample of independent simulations by

the least squares method. Convergence of these two steps will be analyzed in the

following subsections. Subsection 4.3 summarizes the results in a Markovian setting

relevant for the practical implementation of the numerical scheme.

4.1 Orthogonal Projection on Subspaces of L2(Fti
)

We will �rst replace the conditional expectations E[�jFti] by orthogonal projections

on subspaces of L2(Fti). Precisely, we �x D + 1 subspaces �d;i, 0 � d � D, of

L2(Fti) for each 0 � i � k. The orthogonal projection on �d;i is denoted by Pd;i.

We now consider the algorithm

bY (n;�)
ti

= P0;i

"
�(�) �

N�1X
j=i

f(tj;X
(�)
tj

; bY (n�1;�)
tj

; bZ(n�1;�)
tj

)�j

#

bZ(n;�)

d;ti
= Pd;i

"
�Wd;i

�i

 
�(�) �

N�1X
j=i+1

f(tj;X
(�)
tj

; bY (n�1;�)
tj

; bZ(n�1;�)
tj

)�j

!#

initiated at (bY (0;�); bZ(0;�)) = 0.

Our aim is to analyze the error of (bY (n;�); bZ(n;�)) as compared to (Y (n;�); Z(n;�)) in

terms of the projection errors jY (n;�)
ti

� P0;i[Y
(n;�)
ti

]j and jZ(n;�)

d;ti
� Pd;i[Z

(n;�)

d;ti
]j. The

main feature of the algorithm { as can be expected in view of Theorem 3.1 { is that

the error does not propagate backwards in time. Neither does it explode, when the

number of iteration tends to in�nity. This is an important advantage compared

to the scheme proposed in Gobet et al. (2004) where the projection errors sum

up over the time steps. Roughly speaking, in the Gobet et al. (2004)-scheme the

L2-error is bounded by N times a constant times the worst L2-projection error (see

their Theorem 2). The following theorem states that in our scheme the L2-error is

bounded by a constant times the worst L2-projection error.
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Theorem 4.1 Suppose f is Lipschitz in (y; z) uniformly in (t; x) with constant K.

Then there is a constant C depending on the data such that

max
0�i�N

E
h
jbY (n;�)

ti
� Y

(n;�)
ti

j2
i
+

N�1X
i=0

E
h
j bZ(n;�)

ti
� Z

(n;�)
ti

j2
i
�i

� C

nX
�=0

�
1

2
+ Cj�j

�n��
 

N�1X
i=0

E
h
jY (�;�)

ti
� P0;i[Y

(�;�)
ti

]j2
i
�i

+

DX
d=1

N�1X
i=0

E
h
jZ(�;�)

d;ti
� Pd;i[Z

(�;�)

d;ti
]j2
i
�i

!

for suÆciently small j�j. In particular, with a possibly di�erent constant C,

max
0�i�N

E
h
jbY (n;�)

ti
� Y

(n;�)
ti

j2
i
+

N�1X
i=0

E
h
j bZ(n;�)

ti
� Z

(n;�)
ti

j2
i
�i

� C max
0���n

max
0�i�N

 
E
h
jY (�;�)

ti
� P0;i[Y

(�;�)
ti

]j2
i

+

DX
d=1

E
h
jZ(�;�)

d;ti
� Pd;i[Z

(�;�)

d;ti
]j2
i!

:

Proof. We de�ne

Y
(n;�)

ti
= E

"
�(�) �

N�1X
j=i

f(tj;X
(�)
tj
; bY (n�1;�)

tj
; bZ(n�1;�)

tj
)�j

�����Fti

#

Z
(n;�)

d;ti
= E

"
�Wd;i

�i

 
�(�) �

N�1X
j=i

f(tj;X
(�)
tj

; bY (n�1;�)
tj

; bZ(n�1;�)
tj

)�j

!�����Fti

#
:

Notice, that

P0;i

�
Y

(n;�)

ti
� Y

(n;�)
ti

�
= bY (n;�)

ti
� P0;i

�
Y

(n;�)
ti

�
Pd;i

�
Z
(n;�)

d;ti
� Z

(n;�)

d;ti

�
= bZ(n;�)

d;ti
� Pd;i

�
Z
(n;�)

d;ti

�
Since the orthogonal projection is norm contracting and applying Lemma 2.8 with
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~Y (1) = Y
(n;�)

, ~Z(1) = Z
(n;�)

, ~Y (2) = Y (n;�), and ~Z(2) = Z(n;�), we obtain:

max
0�i�N

�iE
h
jbY (n;�)

ti
� P0;i(Y

(n;�)
ti

)j2
i
+

DX
d=1

N�1X
i=0

�iE
h
jbZ(n;�)

d;ti
� Pd;i(Z

(n;�)

d;ti
)j2
i
�i

� max
0�i�N

�iE
h
jY (n;�)

ti
� Y

(n;�)
ti

j2
i
+

N�1X
i=0

�iE
h
jZ(n;�)

ti
� Z

(n;�)
ti

j2
i
�i

� K2(T + 1)

��j�j+ ��1
�
(
DT + 1) +

D




�
�
 
1

T

N�1X
i=0

�iE
h
jbY (n;�)

ti
� Y

(n;�)
ti

j2
i
+

N�1X
i=0

�iE
h
j bZ(n;�)

ti
� Z

(n;�)
ti

j2
i
�i

!
for any 
; � > 0 with �0 = 1 and �i = (1 + ��i�1)�i�1. We choose 
 = 4DK2(T +

1)(1+1=T ) and � = 4K2(T+1)(
DT +1)(1+1=T ). Since, due to the orthogonality

of the orthogonal projection,

E
h
jbY (�;�)

ti
� Y

(�;�)
ti

j2
i
= E

h
jbY (�;�)

ti
� P0;i[Y

(�;�)
ti

]j2
i
+ E

h
jY (�;�)

ti
� P0;i[Y

(�;�)
ti

]j2
i
;

we get

max
0�i�N

�iE
h
jbY (n;�)

ti
� P0;i[Y

(n;�)
ti

]j2
i
+

DX
d=1

N�1X
i=0

�iE
h
jbZ(n;�)

d;ti
� Pd;i[Z

(n;�)

d;ti
]j2
i
�i

�
�
1

2
+ �j�j

� DX
d=1

N�1X
i=0

�iE
h
j bZ(n�1;�)

d;ti
� Pd;i[Z

(n�1;�)
d;ti

]j2
i
�i

+

�
1

2
+ �j�j

�
max
0�i�N

�iE
h
jbY (n�1;�)

ti
� P0;i[Y

(n�1;�)
ti

]j2
i

+

�
1

2
+ �j�j

� DX
d=1

N�1X
i=0

�iE
h
jZ(n�1;�)

d;ti
� Pd;i[Z

(n�1;�)
d;ti

]j2
i
�i

+

�
1

2
+ �j�j

�N�1X
i=0

�iE
h
jY (n�1;�)

ti
� P0;i[Y

(n�1;�)
ti

]j2
i
�i

Iterating this inequality and applying the orthogonality of the orthogonal projection

once more (with � = n) gives the claim. (Note, 1 � �i � e�T . Thus, we can choose

C = e�T _ �.)

We also get uniform L2-bounds for bY (n;�) and bZ(n;�).

Corollary 4.2 Under the assumptions of Theorem 2.3, there is a constant C de-

pending on the data only such that

max
0�i�N

E
h
jbY (n;�)

ti
j2
i
+

N�1X
i=0

E
h
jbZ(n;�)

ti
j2
i
�i � C

provided j�j is suÆciently small.
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Proof. This assertion directly follows from Corollary 2.10 and Theorem 4.1, because

the orthogonal projection is norm-contracting.

4.2 A Monte-Carlo Least-Squares Method to Approximate

Conditional Expectations

In a next step we replace the projection on subspaces by a simulation based least-

squares estimator.

To avoid an overload in notation and since the generalization is plain, we shall

consider the case D = 1 only.

We now assume that the projection spaces from the previous section are all �nite-

dimensional and denote by

f�i1; : : : ; �iK(i)g; resp. f~�i1; : : : ; ~�i~K(i)
g

a basis of �0;i and �1;i, respectively. The inner-product-matrices associated to these

bases are denoted by

Bi =
�
E[�ik�

i
l ]
�
k;l=0;���K(i)

; resp. eBi =
�
E[~�ik~�

i
l ]
�
k;l=0;��� ~K(i)

In this situation the processes bY (n;�) and bZ(n;�) may be rewritten as

bY (n;�)
ti

=

K(i)X
k=1

�
(n;�)

i;k
�ik (8)

bZ(n;�)
ti

=

~K(i)X
k=1

e�(n;�)

i;k
~�ik

where (with componentwise evaluation of the expectation and an obvious notation)

�
(n;�)

i;k = B�1i E

"
�i

 
�(�) �

N�1X
j=i

f(tj;X
(�)
tj
; bY (n�1;�)

tj
; bZ(n�1;�)

tj
)�j

!#
(9)

e�(n;�)

i;k = eBi

�1
E

"
~�i
�Wi

�i

 
�(�) �

N�1X
j=i+1

f(tj;X
(�)
tj
; bY (n�1;�)

tj
; bZ(n�1;�)

tj
)�j

!#

The expectations in (9) will be replaced by their simulation based estimators. We

shall therefore assume that we have L � maxifK(i) _ ~K(i)g independent samples

(�W
(�)

i ; �(�;�);X
(�;�)
ti

; �
(i;�)

k ; ~�
(i;�)

k ), � = 1; : : : ; L, of (�Wi; �
(�);X

(�)
ti

; �ik; ~�
i
k). We de-

�ne

AL
i =

1p
L

�
�
(i;�)

k

�
�=1;:::;L;k=1;:::;K(i)
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and eAL
i similarly. Note that

BL
i = (AL

i )
�AL

i =
1

L

 
LX

�=1

�
(i;�)

k �
(i;�)

l

!
k;l=1;:::;K(i)

is the simulation based analogue of Bi. Since the inverse of BL
i need not exist,

we shall make use of the pseudo-inverses (AL
i )

+, ( eAL
i )

+ to de�ne simulation-based

analogues of (9) recursively by:

�
(0;�;L)

i;k = e�(0;�;L)

i;k = 0

Y
(n�1;�;�)
ti

=

K(i)X
k=1

�
(n�1;�;L)
i;k �

(i;�)

k

Z
(n�1;�;�)
ti

=

~K(i)X
k=1

e�(n�1;�;L)
i;k ~�

(i;�)

k

�
(n;�;L)

i;� =
1p
L
(AL

i )
+

 
�(�;�) �

N�1X
j=i

f(tj;X
(�;�)
tj

; Y
(n�1;�;�)
tj

; Z
(n�1;�;�)
tj

)�j

!

e�(n;�;L)

i;� =
1p
L
( eAL

i )
+

�
 
�W

(�)
i

�i

 
�(�;�) �

N�1X
j=i+1

f(tj;X
(�;�)
tj

; Y
(n�1;�;�)
tj

; Z
(n�1;�;�)
tj

)�j

!!

The simulation based estimators are now de�ned by,

Y
(n;�;L;�)
ti

=

K(i)X
k=1

�
(n;�;L)

i;k
�ik

Z
(n;�;L;�)
ti

=

~K(i)X
k=1

e�(n;�;L)

i;k
~�ik

Remark 4.3 For ti = t0 = 0 the only choice of the projection space is �0;0 =

R. Taking f1g as basis we observe that Y
(n;�;L;�)
t0

reduces to the plain Monte-Carlo

estimator

Y
(n;�;L;�)
t0

=
1

L

LX
�=1

 
�(�;�) �

N�1X
j=0

f(tj;X
(�;�)
tj

; Y
(n�1;�;�)
tj

; Z
(n�1;�;�)
tj

)�j

!

Of course, the same remark applies to Z
(n;�;L;�)
t0

.

We will next prove almost sure convergence of the simulation-based estimators. To

this end we �rst derive a lemma.
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Lemma 4.4 Under the Lipschitz condition of Theorem 4.1 (�
(n;�;L)

i;k ; e�(n;�;L)

i;k ) con-

verges P -almost surely to (�
(n;�)

i;k ; e�(n;�)

i;k ), when L tends to in�nity.

Proof. We prove the claim by induction over n. The case n = 0 is trivial. Suppose

now the convergence is already proved for some n�1 2 N. We show the convergence

of e�(n;�;L)

i;k , the argument for �
(n;�;L)

i;k is similar. First observe that by the law of large

numbers

lim
L!0

eBL
i = eBi; P -a.s. (10)

Since eBi is invertible, the same holds for eBL
i provided L is suÆciently large (which

we assume for the rest of the proof). In particular, eAL
i then has full rank, and

consequently the pseudo-inverse may be rewritten as� eAL
i

�+
=
� eBL

i

��1 � eAL
i

��
Hence,

e�(n;�;L)

i;� = ( eBL
i )

�1

 
1

L

LX
�=1

e�(i;�)�W (�)

i

�i

 
�(�;�)

�
N�1X
j=i+1

f(tj;X
(�;�)
tj

; Y
(n�1;�;�)
tj

; Z
(n�1;�;�)
tj

)�j

!!

By (10) it suÆces to prove that for all 1 � l � ~K(i),

1

L

LX
�=1

e�(i;�)
l

�W
(�)

i

�i

0@�(�;�) � N�1X
j=i+1

f(tj ; X
(�;�)
tj

; Y
(n�1;�;�)
tj

; Z
(n�1;�;�)
tj

)�j

1A
! E

24~�il�Wi

�i

0@�(�) � N�1X
j=i+1

f(tj ; X
(�)
tj
; bY (n�1;�)

tj
; bZ(n�1;�)

tj
)�j

1A35 ; P -a.s. (11)

De�ne

bY (n�1;�;�)
ti

=

K(i)X
k=1

�
(n�1;�)
i;k �

(i;�)

k

bZ(n�1;�;�)
ti

=

~K(i)X
k=1

e�(n�1;�)
i;k ~�

(i;�)

k

By the law of large numbers,

1

L

LX
�=1

e�(i;�)
l

�W
(�)
i

�i

0@�(�;�) � N�1X
j=i+1

f(tj ; X
(�;�)
tj

; bY (n�1;�;�)
tj

; bZ(n�1;�;�)
tj

)�j

1A
! E

24~�il�Wi

�i

0@�(�) � N�1X
j=i+1

f(tj ; X
(�)
tj
; bY (n�1;�)

tj
; bZ(n�1;�)

tj
)�j

1A35 ;P -a.s. (12)
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Moreover,������ 1L
LX

�=1

e�(i;�)
l

�W
(�)
i

�i

0@�(�;�) � N�1X
j=i+1

f(tj ; X
(�;�)
tj

; Y
(n�1;�;�)
tj

; Z
(n�1;�;�)
tj

)�j

1A
�

1

L

LX
�=1

e�(i;�)
l

�W
(�)
i

�i

0@�(�;�) � N�1X
j=i+1

f(tj ; X
(�;�)
tj

; bY (n�1;�;�)
tj

; bZ(n�1;�;�)
tj

)�j

1A
������

� K
1

L

LX
�=1

�����e�(i;�)l

�W
(�)

i

�i

�����
�

N�1X
j=i+1

jY
(n�1;�;�)
tj

� bY (n�1;�;�)
tj

j+ jZ
(n�1;�;�)
tj

� bZ(n�1;�;�)
tj

j

� K
1

L

LX
�=1

�����e�(i;�)l

�W
(�)
i

�i

�����
N�1X
j=i+1

 
K(j)X
k=1

j�
(j;�)

k jj�
(n�1;�;L)
j;k � �

(n�1;�)
j;k j

+

~K(j)X
k=1

je�(j;�)
k

jje�(n�1;�;L)
j;k

� e�(n�1;�)
j;k

j

!

� max
0�j�N�1

 
max

1�k�K(j)
j�

(n�1;�;L)
j;k

� �
(n�1;�)
j;k

j+ max
1�k0� ~K(j)

je�(n�1;�;L)
j;k0

� e�(n�1;�)
j;k0

j

!

�K
1

L

LX
�=1

�����e�(i;�)l

�W
(�)

i

�i

�����
N�1X
j=i+1

 
K(j)X
k=1

j�
(j;�)

k
j+

~K(j)X
k=1

je�(j;�)
k

j

!
:

The right hand side tends to zero, since the �rst factor tends to zero by induction

hypothesis and the second converges to a �nite number by the law of large numbers.

In view of (11){(12) the proof is complete.

An immediate consequence is the convergence of the simulation-based estimators:

Theorem 4.5 Under the Lipschitz condition of Theorem 4.1 (Y
(n;�;L;�)
ti

; Z
(n;�;L;�)
ti

)

converges P -almost surely to (bY (n;�)
ti

; bZ(n;�)
ti

), when L tends to in�nity.

To obtain L2-convergence we will introduce truncations of the estimators (Y
(n;�;L;�)
ti

;

Z
(n;�;L;�)
ti

). The following lemma prepares the construction. Here, �min(M) denotes

the minimal eigenvalue of a symmetric matrixM.

Lemma 4.6 Under the conditions of Theorem 2.3 there is a positive constant c

depending on the data such that for suÆciently small j�j

jbY (n;�)
ti

j � c�min(Bi)
�1=2j�ijp

�ijbZ(n;�)
ti

j � c�min( eBi)
�1=2je�ij
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Proof. As in Gobet et al. (2004), by the Cauchy-Schwarz inequality, and since the

symmetric matrix Bi satis�es Bi � �min(Bi),

jbY (n;�)
ti

j2 � j�(n;�)

i j2j�ij2 � �min(Bi)
�1h�(n;�)

i ;Bi�
(n;�)

i ij�ij2

= �min(Bi)
�1E

h
jbY (n;�)

ti
j2
i
j�ij2

A similar estimate holds for jbZ(n;�)
ti

j2�i. Hence, in view of Corollary 4.2, the proof

is complete.

De�nition 4.7 We call a pair (c; �) a truncation pair, if c satis�es the estimates

of Lemma 4.6, and � : R ! R is a Lipschitz continuous function with constant 1,

bounded by 2, which coincides with the identity on [�1; 1].

By Lemma 4.6 we have for every truncation pair,

bY (n;�)
ti

= c�min(Bi)
�1=2j�ij�

 bY (n;�)
ti

c�min(Bi)�1=2j�ij

!

bZ(n;�)
ti

=
1p
�i

c�min( eBi)
�1=2je�ij� p

�i
bZ(n;�)
ti

c�min( eBi)�1=2je�ij
!

(13)

This motivates to de�ne (c; �)-truncations of (Y
(n;�;L;�)
ti

; Z
(n;�;L;�)
ti

) by

Y
(n;�;L;�)
ti

= c�min(Bi)
�1=2j�ij�

 
Y

(n;�;L;�)
ti

c�min(Bi)�1=2j�ij

!

Z
(n;�;L;�)
ti

=
1p
�i

c�min( eBi)
�1=2je�ij� �iZ

(n;�;L;�)
ti

)

c�min( eBi)�1=2je�ij
!

(14)

An immediate consequence of the dominated convergence theorem is the L2-convergence

of the truncated estimators.

Theorem 4.8 Under the assumptions of Theorem 2.3 (Y
(n;�;L;�)
ti

; Z
(n;�;L;�)
ti

) con-

verges P -almost surely to (bY (n;�)
ti

; bZ(n;�)
ti

), when L tends to in�nity. Moreover,

lim
L!1

 
max
0�i�N

E
h
jbY (n;�;L;�)

ti
� bY (n;�)

ti
j2
i
+

N�1X
i=0

E
h
jbZ(n;�;L;�)

ti
� bZ(n;�)

ti
j2
i
�i

!
= 0

Remark 4.9 We conjecture that, possibly with a more sophisticated truncation, 1p
L

can be derived as rate of convergence in the above theorem. This issue will be ad-

dressed in our future research.
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4.3 A Markovian Setting

Now the results from the previous sections can be put together and made more

explicit in a Markovian setting.

1. Discretization of X: We discretize X by the Euler scheme

X
(�)

0 = x

X
(�)
ti

= X
(�)
ti�1

+ b(ti�1;X
(�)
ti�1

)�i�1 + �(ti�1;X
(�)
ti�1

)�Wi�1

and extend X(�) to an RCLL process by piecewise constant interpolation.

When X is known to be strictly positive, it can be more convenient to apply

the Euler scheme to ln(X) instead of X, see Gobet et al. (2004). Note that

(X
(�)
ti

;Fti) forms a Markov chain.

2. Terminal Condition �(�): The terminal condition �(�) is supposed to be of

the form

�(�) = �(�)(�
(�)
tN
)

where (�
(�)
ti
;Fti) is an M 0-dimensional Markov chain with X

(�)
ti

as its �rst M

components and �(�) is a deterministic function

Typical extensions for the last components of �
(�)
ti

are max0�j�iX
(�)
tj

,

min0�j�iX
(�)
tj

, or
Pi�1

j=0X
(�)
tj

. These extensions are of crucial importance for

�nancial problems related to exotic options such as Asian options and look-

back options. We now give some convergence results for terminal conditions

�(�) of the above type, which are simple consequences of Corollary 4.4 in Zhang

(2004).

Example 4.10 (i) Suppose � : R2M ! R is Lipschitz-continuous. Then

E

24������
�
XT ;

Z T

0

Xsds

�
� �

 
X

(�)

T ;

N�1X
i=0

X�
ti
�i

!�����
2
35 � Cj�j

(ii) Suppose � : R4M ! R is Lipschitz-continuous. Then

E

�������XT ;

Z T

0

Xsds; max
0�t�T

Xt; min
0�t�T

Xt

�
� �

 
X

(�)

T ;

N�1X
i=0

X�
ti
�i; max

0�j�i
X

(�)
tj
; min
0�j�i

X
(�)
tj

!����2� � Cj�j ln
�

1

j�j
�

22



3. Choice of the basis: As for the basis on may choose a set of functions

fe1(x); : : : ; e�(x)g and de�ne the basis via

�ik = ek(�
(�)
ti
):

Typical choices are indicator functions or (exponentially damped) polynomials

such as Hermite functions. In principle the basis functions ek may depend on

d, but for simulations it might be more convenient to work with one set of

functions only.

In the situation described above it is easily checked, that

Y
(n;�)
ti

= E

"
�(�) �

N�1X
j=i

f(tj;X
(�)
tj
; Y

(n�1;�)
tj

; Z
(n�1;�)
tj

)�j

������(�)
ti

#

Z
(n;�)

d;ti
= E

"
�Wd;i

�i

 
�(�) �

N�1X
j=i+1

f(tj;X
(�)
tj

; Y
(n�1;�)
tj

; Z
(n�1;�)
tj

)�j

!������(�)
ti

#

Hence, if fe1(x); : : : ; e�(x)g are the initial elements of a sequence (ek)k2N such that

(ek(�
(�)
ti
))k2N

is total in L2(�(�
(�)
ti
)) and are linearly independent for all 0 � i � N � 1, then,

by virtue of Theorem 4.1, (bY (n;�); bZ(n;�)) converges (in the L2-sense of Theorem

4.1) to (Y (n;�); Z(n;�)) as � tends to in�nity. Hence, Theorems 2.3 and 4.8 provide

L2-convergence of the truncated algorithm (14) in this situation.

5 Simulations

In this section we present some simulations of �nancial problems.

Throughout the section the process X is one-dimensional representing a stock in the

standard Black-Scholes model, i.e.

Xt = X0 expf�Wt + �t� 1=2�2tg

It is discretized by the log-Euler scheme. In all cases we will apply an equidistant

partition of the interval [0; T ] with N + 1 points denoted by �N .

5.1 Di�erent Interest Rate for Borrowing

In the �rst example we numerically evaluate a straddle, i.e. the sum of a call and a

put option, under di�erent rates for borrowing and investing in the money market
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account. The rate for borrowing is denoted by R, the one for investing by r. The

fair price of a straddle in this model is given by Y0, where (Y;Z) is the solution of

the nonlinear BSDE

dYt =

�
rYt +

�� r

�
Zt � (R � r)

�
Yt � Zt

�

�
�

�
dt+ ZtdWt

YT = jXT �Kj;

see Bergman (1995). In the following we �x the parameters X0 = 100, � = 0:2,

� = 0:05, r = 0:01, R = 0:06, and the straddle is supposed to be at the money,

i.e. K = 100. In the �gures below this situation is the `nonlinear case', which will

be compared with the standard `linear case' where R = 0:01, i.e. the same interest

rate is applied for borrowing and investing. We stop the Picard iteration, when the

distance of two subsequent time-zero-values is less than 0.0001. The total number

of calculated iterations is denoted by nstop. We compare two di�erent bases. The

�rst basis consists of monomials and the straddle payo�, the second of characteristic

functions. Precisely,

e
(1)
1 (x) = jx�Kj; e

(1)

k
(x) = (x�X0)

k�2; 2 � k � �

e
(2)

1 (x) = 1[0;l)(x); e
(2)

2 (x) = 1[u;1)(x);

e
(2)

k (x) = 1[l+(k�3)(u�l)=(��2));l+(k�2)(u�l)=(��2))(x); 3 � k � �

Here, the lower bound l and the upper bound u depend on i and the simulations.

They are calculated as the empirical mean of X
(�N ;�)
ti

minus (resp. plus) two times

their empirical standard deviation. Figure 1 shows the simulated price of the straddle

for a maturity of T = 2 years as a function of the number of partition points for both

bases. We choose � = 7 for the basis (e
(1)

k )k, respectively � = 21 for (e
(2)

k )k. In both

cases we simulate L = 100000 paths. The relative standard error in the calculation

of Y
(nstop;�N ;100000;�)
0 is about 0:28% for the nonlinear case and 0:29% for the linear

case for both bases. The relative standard error does not change signi�cantly in the

number of partition points N . Thus, the simulation complements the assertion of

Theorem 3.1.

Figure 2 shows the empirical mean and the empirical standard deviation of the

simulated price calculated from 100 launches of the algorithm as a function of the

number of simulated paths L per launch. HereN = 20 and T = 0:5. The simulations

have been performed with the monomial basis and � = 5 for the nonlinear case.
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0 as a function of N for T = 2.
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Figure 2: Empirical mean and standard deviation of 100 launches as function of L

for T = 0:5.
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5.2 Constraints on Borrowing

The second example concerns borrowing constraints. Suppose an investor must not

borrow an arbitrary amount of money from the money market account but a given

fraction of his total wealth only. His goal is to super-replicate a given contingent

claim (in our case a call option) with minimal initial wealth. This problem is known

as superhedging problem. It is shown in Bender and Kohlmann (2004), extending

results of El Karoui et al. (1997), that for quite general constraints the solution

of the superhedging problem can be obtained as a limit of a sequence of nonlinear

BSDEs. This sequence has an intuitive meaning: The investor is bound to yield an

increasing penalization payment when he fails to meet the constraint. In the simple

borrowing constraint under consideration the optimal superhedging price can be

obtained as the limit of Y �
0 (as � tends to zero), where

dY �
t =

�
rY �

t +
� � r

�
Z�
t �

1

�

�
Z�
t

�
� �Y �

t

�
+

�
dt+ Z�

tdWt

Y �
T = (XT �K)+:

Here � � 1 is the fraction of his total wealth, which the investor is allowed to

borrow. We consider the case � = 10 with the parameters � = 0:2, � = r = 0:05,

and X0 = K = 100. The maturity is T = 0:5 years. Note, in this example

the superhedging price can be determined analytically by calculating an equivalent

dominating, but unconstrained, claim, see Broadie et al. (1998). It is 8:058.

We compute numerical approximations for di�erent values of �. The stopping cri-

terion for the Picard iteration is 0.001 and we choose N = 40 and the monomial

basis with � = 5, but the straddle payo� replaced by the call payo�. Figure 3

shows the corresponding approximation of Y �
0 as function of � for di�erent numbers

of simulated paths.

Figure 3 indicates that, due to the nonlinearity, the estimator for the conditional

expectation has a positive bias. Indeed, the simulated �-approximation tend to

merge into a straight line (as function of ��1), when � (depending on the number

of paths) is suÆcient small. Since the curves for 100000 paths and 200000 paths

are almost parallel this e�ect can not be mended by solely enlarging the number

of simulations. Preliminary simulations suggest that a larger number of partition

points, an enlarged basis, and the simulation of more paths are needed to obtain

accurate approximations of the �-price, the higher the penalization. To achieve this

with reasonable computational cost, variance reduction techniques are called for.

This issue is left to future research.
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Figure 3: �-approximation of the superhedging price as function of ��1.

Appendix: Proof of Theorem 2.5

To ease the notation we only consider the case D = 1. The extension to the general

case is straightforward.

Proof of Theorem 2.5 . We recall that C denotes a constant depending on the

data, which may vary from line to line.

Step 1: Preliminary estimates:

We �rst introduce a process ~Z(�) by

Y
(1;�)
ti+1

= E
h
Y

(1;�)
ti+1

���Fti

i
+

Z ti+1

ti

~Z(�)
s dWs (15)

via the martingale representation theorem. Then,

Y
(1;�)
ti

� Yti +

Z ti+1

ti

( ~Z(�)
s � Zs)dWs

= Y
(1;�)
ti+1

� Yti+1 �
Z ti+1

ti

�
f(ti;X

(�)
ti

; Y
(1;�)
ti

; Z
(1;�)
ti

)� f(s;Xs; Ys; Zs)
�
ds
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Squaring and taking expectation yields,

E
h
jY (1;�)

ti
� Ytij2

i
+ E

Z ti+1

ti

j ~Z(�)
s � Zsj2ds

= E

"�
�
Z ti+1

ti

�
f(ti;X

(�)
ti
; Y

(1;�)
ti

; Z
(1;�)
ti

)� f(s;Xs; Ys; Zs)
�
ds

+Y
(1;�)
ti+1

� Yti+1

�2#

� E

"�
jY (1;�)

ti+1
� Yti+1j+�

3=2

i +K�i

�
jXti �X

(�)
ti
j+ sup

ti�t�ti+1
jXt �Xti j

�
+K�i

�
jYti � Y

(1;�)
ti

j+ sup
ti�t�ti+1

jYt � Yti j
�

+K

Z ti+1

ti

jZs � Z
(1;�)
ti

jds
�2#

We can now apply Young's inequality, (1), and Theorem 3.4.3 of Zhang (2001), (see

also Lemma 3.2 in Zhang (2004) and observe that no additional path regularity of

Z is required for the proof), to get,

E
h
jY (1;�)

ti
� Ytij2

i
+ E

Z ti+1

ti

j ~Z(�)
s � Zsj2ds

� (1 +
�i

�
)E
h
jY (1;�)

ti+1
� Yti+1 j2

i
+ C(1 +

�

�i

)�3
i

+C(1 +
�

�i

)

�
�2

iE
h
jY (1;�)

ti
� Ytij2

i
+�iE

Z ti+1

ti

jZs � Z
(1;�)
ti

j2ds
�

(16)

We will next estimate the last term on the right hand side. To this end let us

introduce the random variables

bZ(�)
ti

=
1

�i

E

�Z ti+1

ti

Zsds

����Fti

�
: (17)

It is shown in Zhang (2001), Theorem 3.4.3, that

N�1X
i=0

E

Z ti+1

ti

jZs � bZ(�)
ti
j2ds � Cj�j (18)

Note also that by (15) and Itô's isometry,

Z
(1;�)
ti

=
1

�i

E

�Z ti+1

ti

~Z(�)
s ds

����Fti

�
: (19)
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The identities (17) and (19) can be easily combined to get,

E

Z ti+1

ti

jZs � Z
(1;�)
ti

j2ds

� 2

�
E

Z ti+1

ti

jZs � bZ(�)
ti
j2ds+ E

Z ti+1

ti

jZs � eZ(�)
s j2ds

�
(20)

We can now �x � suÆciently small such that for small j�j (combining (16) and (20)),

(1 � �i

4
)E
h
jY (1;�)

ti
� Ytij2

i
+
1

2
E

Z ti+1

ti

j ~Z(�)
s � Zsj2ds

� (1 +
�i

�
)E
h
jY (1;�)

ti+1
� Yti+1 j2

i
+ C�2

i +
1

2
E

Z ti+1

ti

jZs � bZ(�)
ti
j2ds

Note that for suÆciently small j�j,

(1 +
�i

�
)(1 � �i

4
)�1 � (1 +

�i

�
+
�i

2
):

Thus,

E
h
jY (1;�)

ti
� Ytij2

i
+
1

2
E

Z ti+1

ti

j ~Z(�)
s � Zsj2ds

� (1 + C�i)E
h
jY (1;�)

ti+1
� Yti+1 j2

i
+ C�2

i + CE

Z ti+1

ti

jZs � bZ(�)
ti
j2ds (21)

Step 2: Convergence of Y (1;�):

We may now conclude from (21), the discrete Gronwall lemma and (18) that

max
0�i�N

E
h
jY (1;�)

ti
� Ytij2

i
� C

 
E[j� � �(�)j2] +

N�1X
i=0

�2
i + E

Z ti+1

ti

jZs � bZ(�)
ti
j2
!

� C
�
E[j� � �(�)j2] + j�j� (22)

This shows the estimate for Y (1;�) at the points of the partition. The extension to

the piecewise constant interpolation is rather straightforward and identical to the

argument in Theorem 5.6 of Zhang (2004).

Step 3: Convergence of Z(1;�):

29



We sum (21) from 0 to N � 1 and obtain,

N�1X
i=0

E

Z ti+1

ti

j ~Z(�)
s � Zsj2ds

� C

N�1X
i=1

E
h
jY (1;�)

ti
� Ytij2�i

i
+ CE[j� � �(�)j2]

+Cj�j+ C

N�1X
i=0

E

Z ti+1

ti

j bZ(�)
ti
� Zsj2ds

� C
�
E[j� � �(�)j2] + j�j� (23)

due to (18) and (22). By (19) and the mean-square minimizing property of the

conditional expectation,

E

"�Z ti+1

ti

( ~Z(�)
s � Z

(1;�)
ti

)ds

�2
#
� E

"�Z ti+1

ti

( ~Z(�)
s � bZ(�)

ti
)ds

�2
#
:

Elementary manipulations show that this is equivalent to

E

�Z ti+1

ti

( ~Z(�)
s � Z

(1;�)
ti

)2ds

�
� E

�Z ti+1

ti

( ~Z(�)
s � bZ(�)

ti
)2ds

�
:

The estimate for Z(1;�) may now be easily derived from (18) and (23).
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