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Abstract: Recently, Bauke and Mertens conjectured that the local statistics of energies inrandom spin systems with discrete spin space should in most circumstances be the same asin the random energy model. This was proven in a large class of models for energies that donot grow too fast with the system size. Considering the example of the generalized randomenergy model, we show that the conjecture breaks down for energies proportional to thevolume of the system, and describe the far more complex behavior that then sets in.1. Introduction.In a recent paper [BaMe], Bauke and Mertens have formulated an interesting conjectureon the behavior of local energy level statistics in disordered systems. Roughly speaking,their conjecture can be formulated as follows. Consider a random Hamiltonian, HN(�), i.e. arandom function from some product space, SN , where S is a �nite space, typically f�1; 1g,to the real numbers. We may assume for simplicity that EHN (�) = 0. In such a situation, fortypical �, HN(�) � pN , while sup�HN (�) � N . Bauke and Mertens then ask the followingquestion: Given a �xed number, E, what are the statistics of the values N�1=2HN(�) that areclosest to this number E, and how are con�gurations, �, for which these good approximantsof E are realized, distributed on SN? Their conjectured answer, which at �rst glance seemsrather surprising, is simple: �nd ÆN;E such that P(jN�1=2HN(�) � Ej � bÆN;E) � jSj�Nbfor any constant b > 0; then the collection of points Æ�1N;E jN�1=2HN (�)�Ej over all � 2 SNconverges to a Poisson point process on R+ , with intensity measure the Lebesgue measure.Furthermore, for any �nite k, the k-tuple of con�gurations �1; �2; : : : ; �k, where the k bestapproximations are realized, is such that all of its elements have maximal Hamming distancebetween each other. In other words, the asymptotic behavior of these best approximantsof E is the same, as if the random variables HN (�) were all independent Gaussian randomvariables with zero mean and variance N , i.e. as if we were dealing with the random energymodel (REM) [Der1]; for this reason, Bauke and Mertens call this phenomenon \universalREM like behavior".This conjecture was proven recently [BK2] in a wide class of models, including mean �eldmodels and short range spin glass models. In the case of Gaussian interactions, it was shownto hold even for energies that diverge with the volume of the system, N , as EN = cN�, for0 � � < �0, where �0 is model dependent.Is is rather clear that the conjecture must break down in general for � such that cN� is ofthe order of the maximum of HN(�). It is a natural question to ask what will happen in thisregime. Naturally, the answers will become model dependent, and in general very diÆcult7=april=2005; 11:24 1



2 Section 1to obtain. The only (non-trivial) models where we are able to carry out such an analysisin detail are the so-called generalized random energy models (GREMs) of Derrida [Der2].In these models, the extremal process was analyzed in full in [BK1]. The result we obtaingives a somewhat extreme microcanonical picture of the GREM, exhibiting in a somewhattomographic way the distribution of states in a tiny vicinity of any value of the energy.Let us briey recall the de�nition of the GREM. We consider parameters �0 = 1 <�1; : : : ; �n < 2 with Qni=1 �i = 2, a0 = 0 < a1; : : : ; an < 1, Pni=1 ai = 1. Let �N = f�1; 1gNbe the space of 2N spin con�gurations �. Let X�1����l , l = 1; : : : ; n, be independent standardGaussian random variables indexed by con�gurations �1 : : : �l 2 f�1; 1gN ln(�1����l)= ln 2. Wede�ne the Hamiltonian of the GREM as HN (�) � pNX�, withX� � pa1X�1 + � � �+panX�1����n : (1:1)Then cov (X� ;X�0) = A(dN (�; �0)), where dN (�; �0) = N�1[minfi : �i 6= �0ig�1], and A(x) isa right-continuous step function on [0; 1], such that, for any i = 0; 1; : : : ; n, A(x) = a0+� � �+ai,for x 2 [ln(�0�1; � � ��i)= ln 2 ; ln(�0�1; � � ��i+1)= ln 2).Set J0 � 0, and, de�ne, for l > 0,Jl = minnn � J > Jl�1 : ln(�Jl�1+1 � � ��J )aJl�1+1 + � � � + aJ < ln(�J+1 � � ��m)aJ+1 + � � � + am 8m � J + 1o: (1:2)up to Jk = n. Then, the k segments connecting the points (a0+� � �+aJl ; ln(�0�1 � � ��Jl)= ln 2),for l = 0; 1; : : : ; k form the concave hull of the graph of the function A(x). Let�al = aJl�1+1 + aJl�1+2 + � � � + aJl ; ��l = �Jl�1+1�Jl�1+2 � � ��Jl : (1:3):Then ln ��1�a1 < ln ��2�a2 < � � � < ln ��k�ak : (1:4)Moreover, as it is shown in Proposition 1.4 of [BK1], for any l = 1; : : : ; k, and for anyJl�1 + 1 � i < Jl, we have ln(�Jl�1+1 � � ��i)=(aJl�1+1 + � � �+ ai) � ln(��l)=�al. Henceln ��l�al = minj=Jl�1+1;Jl�1+2;:::;n ln(�Jl�1+1 : : : �j)aJl�1+1 + � � �+ aj : (1:5)To formulate our results, we also need to recall from [BK1] (Lemma 1.2) the point processof Poisson cascades P l on Rl . It is best understood in terms of the following iterativeconstruction. If l = 1, P1 is the Poisson point process on R1 with the intensity measure



Beyond the REM conjecture 3K1e�xdx. To construct P l, we place the process P l�1 on the plane of the �rst l�1 coordinatesand through each of its points draw a straight line orthogonal to this plane. Then we put oneach of these lines independently a Poisson point process with intensity measure Kle�xdx.These points on Rl form the process P l. The constants K1; : : : ;Kl > 0 (that are di�erentfrom 1 only in some degenerate cases) are de�ned in the formula (1.14) of [BK1].We will also need the following facts concerning P l from Theorem 1.5 of [BK1]. Let1 > 2 > � � � > l > 0. There exists a constant h > 0, such that, for all y > 0,P�9(x1; : : : ; xl) 2 P l;9j = 1; : : : ; l : 1x1 + 2x2+ � � �+ jxj > (1 + � � �+ j)y� � exp(�hy):(1:6)Here and below we identify the measure P l with its support, when suitable. Furthermore,for any y 2 R, #f(x1; : : : ; xl) 2 P l : x11 + � � � + xll > yg <1 a:s: (1:7)Moreover, let � > 0 be such that �1 > � � � > �l > 1. The integral�l = ZRl e�(1x1+���lxl)P l(dx1; : : : ; dxl): (1:8)is understood as limy!�1 Il(y) withIl(y) = Z(x1;:::;xl)2Rl :9i;1�i�l:1x1+���+ixi>(1+���+i)y e�(1x1+���+lxl)P l(dx1; : : : ; dxl)= lXj=1 Z(x1;:::;xl)2Rl :8i=1;:::;j�1:1x1+���+ixi�(1+���+i)y1x1+���+jxj>(1+���+j)y e�(1x1+���+lxl)P l(dx1; : : : ; dxl; ): (1:9)
It is �nite, a.s., by Proposition 1.8 of [BK1]. To keep the paper self-contained, let us recallhow this fact can be established by induction starting from l = 1. The integral (1.8), inthe case l = 1, is understood as limy!�1 I1(y). Here I1(y) = 1Ry e�1x1P1(dx) is �nite,a.s., since P1 contains a �nite number of points on [y;1[, a.s. Furthermore, by [BKL]or Proposition 1.8 of [BK1], limy!�1 I1(y) is �nite, a.s., since E supy0�y(I1(y0) � I1(y))converges to zero exponentially fast, as y ! �1, provided that �1 > 1. If l � 1, each termin the representation (1.9) is determined and �nite, a.s., by induction. In fact, to see this forthe jth term, given any realization of P l in Rl , take its projection on the plane of the �rstj coordinates. Then by (1.7), there exists only a �nite number of points (x1; : : : ; xj) of Pj ,



4 Section 1such that 1x1 + � � � + jxj > (1 + � � � + j)y, a.s. Whenever the �rst j coordinates of apoint of P l in Rl are �xed, the remaining l � j coordinates are distributed as P l�j on Rl�j .Then the integral over the function e�(j+1xj+1+���+lxl) over these coordinates is de�ned byinduction and is �nite, a.s., provided that �j+1 > � � � > �l > 1. Thus the jth term in (1.9)is the sum of an a.s. �nite number of terms and each of them is a.s. �nite. Finally, again byProposition 1.8 of [BK1], limy!�1 Il(y) is �nite, a.s., since E supy0�y(Il(y0)� Il(y))! 0 asy ! �1 exponentially fast provided that �1 > � � � > �l > 1.Let us de�ne the constants dl, l = 0; 1; : : : ; k, where d0 = 0 anddl � lXi=1p�ai2 ln ��i: (1:10)Finally, we de�ne the domains Dl, for l = 0; : : : ; k � 1, asDl �8<:jyj < dl +s2 ln ��l+1�al+1 kXj=l+1 �aj9=; : (1:11)It is not diÆcult to verify that D0 � D1 � � � � � Dk�1. We are now ready to formulate themain result of this paper.Theorem 1.1: Let a sequence cN 2 R be such that lim supN!1 cN 2 D0 and lim infN!1 cN 2D0. Then, the point processM0N = X�2�N Æ�2N+1(2�)�1=2e�c2NN=2��X��cNpN��	 (1:12)converges to the Poisson point process with intensity measure the Lebesgue measure.Let, for l = 1; : : : ; k � 1, c 2 Dl n Dl�1 (where Dl�1 is the closure ofDl�1). De�ne~cl = jcj � dl; (1:13)�l = ~cl�al+1 + � � � + �ak ; i =p�ai=(2 ln ��i); i = 1; : : : ; l; (1:14)and Rl(N) =2(��l+1 � � � ��k)N exp(�N~cl�l=2)p2�(�al+1 + � � �+ �ak) lYj=1(4N� ln ��j)��lj=2: (1:15)Then, the point processMlN = X�2�N Æ�Rl(N)��pa1X�1+���+panX�1:::�n�cpN��	 (1:16)



Beyond the REM conjecture 5converges to mixed Poisson point process on [0;1[: given a realization of the random variable�l, its intensity measure is �ldx. The random variables �l is de�ned in terms of the Poissoncascades Pl via �l = ZRl e�l(1x1+���lxl)P l(dx1; : : : ; dxl): (1:17)The next section will be devoted to the proof of this result. Before doing this, we concludethe present section with a heuristic interpretation of the main result.Let us �rst look at (1.12). This statement corresponds to the REM-conjecture of Baukeand Mertens [BaMe]. It is quite remarkable that this conjecture holds in the case of theGREM for energies of the form cN (namely for c 2 D0).In the REM [Der1], X� are 2N independent standard Gaussian random variables and a s-tatement (1.12) would hold for all c with jcj < p2 ln 2: it is a well known result from the theoryof independent random variables [LLR]. The value c = p2 ln 2 corresponds to the maximumof 2N independent standard Gaussian random variables, i.e., max�2�N N�1=2X� ! p2 ln 2a.s. Therefore, at the level c = p2 ln 2, one has the emergence of the extremal process. Moreprecisely, the point processX�2�N Æ�p2N ln 2�X��p2N ln 2+ln(4�N ln 2)=p8N ln 2�	; (1:18)that is commonly written as P�2�N Æu�1N (X�) withuN (x) = p2N ln 2� ln(4�N ln 2)2p2N ln 2 + xp2N ln 2 ; (1:19)converges to the Poisson point process P1 de�ned above (see e.g. [LLR]). For c > p2 ln 2,the probability that one of the X� will be outside of the domain fjxj < cpNg, goes to zero,and thus it makes no sense to consider such levels.In the GREM, N�1=2max�2�N X� converges to the value dk 2 @Dk�1 (1.10) (see Theorem1.5 of [BK1]) that is generally smaller than p2 ln 2. Thus it makes no sense to consider levelswith c 62 Dk�1. However, the REM-conjecture is not true for all levels in Dk�1, but only inthe smaller domain D0.To understand the statement of the theorem outsideD0, we need to recall how the extremalprocess in the GREM is related to the Poisson cascades introduced above. Let us set �Nwl �f�1; 1gNwl where wl = ln(��1 � � � ��l)= ln 2 (1:20)



6 Section 2with the notation (1.3). Let us also de�ne the functionsUl;N (x) � N1=2dl �N�1=2 lXi=1 i ln(4�N ln ��i)=2 +N�1=2x (1:21)with the notations (1.3), (1.10), (1.14), and setbXj� � jXi=1paiX�1:::�i ; �Xj� � nXi=j+1paiX�1:::�i : (1:22)From what was shown in [BK1], for any l = 1; : : : ; k, the point process,El;N � X�̂2�Nwl ÆU�1l;N (bXJl�̂ ) (1:23)converges in law to the Poisson cluster process, El, given in terms of the Poisson cascade, P l,as El � ZRl P(l)(dx1; : : : ; dxl)ÆPli=1 ixi : (1:24)In view of this observation, we can re-write the de�nition of the process MlN as follows:MlN = X�̂2�wlN X��2�(1�wl)N Æ�Rl(N)�� �XJl�̂���pN�jcj�dl�N�1(�l;N�U�1l;N(bXJl�̂ ))���	; (1:25)with the abbreviation �l;N � lXi=1 i ln(4�N ln ��i)=2 (1:26)(c is replaced by jcj due to the symmetry of the standard Gaussian distribution). Thenormalizing constant, Rl(N), is chosen such that, for any �nite value, U , the point processX��2�(1�wl)N Æ�Rl(N)�� �XJl�̂���pN�jcj�dl�N�1(�l;N�U)���	; (1:27)converges to the Poisson point processes on R+ , with intensity measure given by eU timesLebesgue measure, which is possible precisely because c 2 Dl nDl�1, that is jcj�dl is smallerthat the a.s. limit of N�1=2max��2�(1�wl)N �XJl�̂��. This is completely analogous to the analysisin the domain D0. Thus each term in the sum over �̂ in (1.25) that gives rise to a \�nite"U�1l;N ( bX l̂�), i.e., to an element of the extremal process of bX l̂�, gives rise to one Poisson processwith a random intensity measure in the limit ofMlN . This explains how the statement of the



Beyond the REM conjecture 7theorem can be understood, and also shows what the geometry of the con�gurations realizingthese mixed Poisson point processes will be.Let us add that, if c 2 @Dk�1, i.e. jcj = dk, then one has the emergence of the extremalpoint process (1.23) with l = k, i.e. P�2�N ÆfpN(X��dkpN+N�1=2�k;N )g converges to (1.24)with l = k, see [BK1].2. Proof of Theorem 1.1.Note that (1.17) is �nite a.s. since 1 > � � � > l by (1.4) and �ll > 1 by the de�nition of�l. Note also that c can be replaced by jcj in (1.12) and (1.16) due to the symmetry of thestandard Gaussian distribution.LetMlN (A) be the number of points ofMlN in a Borel subset A � R+ . We will show thatfor any �nite disjoint union of intervals, A = [pq=1[aq; bq), the avoidance function convergesP(MlN (A) = 0)! E exp(�jAj�l); (2:1)where of course �0 = 1 in the case l = 0. Note that in that case, the right-hand side is theavoidance function of a Poisson point process with intensity 1, while in all other cases, thisis the avoidance function of a mixed Poisson point process.To conclude the proof in the case l = 0, it is enough to show that for any segment A = [a; b)EM0N (A)! (b� a); N !1: (2:2)Then the result (1.12) would follow from Kallenberg's theorem, see [Ka] or [LLR].In the cases l = 1; : : : ; k � 1 we will prove that the family fMlNg1N=1 is uniformly tight:by Proposition 9.1V of [DV], this is equivalent to the fact that, for any compact segment,A = [a; b], and for any given � > 0, one can �nd a large enough integer, R, such thatP(MlN (A) > R) < �; 8N � 1: (2:3)Finally, we will show that the limit of any weakly convergent subsequence ofMlN is a simplepoint process, that is without double points (see De�nition 7.1IV in [DV]). Theorem 7.3II of[DV] asserts that a simple point process is uniquely characterized by its avoidance function,which then implies the result (1.16) claimed in Theorem 1.1.To prove (2.1), we need the following lemma.



8 Section 2Lemma 2.1: Let A = [pq=1[aq; bq), 0 � a1 < b1 < a2 < b2 < � � � < aq < bq, withjAj =Ppq=1(bq�aq). Let 0 < f < 1, K(N) > 0 be a polynomial in N . We write K(N)fNA �[pq=1[K(N)fNaq ;K(N)fNbq).For any i = 1; 2; : : : ; n, any � > 0, Æ > 0 small enough, and M > 0, there exists N0, suchthat, for all N � N0 and for all y, such thatmax� maxm=i+1;:::;n (ai + � � �+ an)(2 ln�m + � � �+ 2 ln�n + 2 ln f + �)am + � � �+ an ;(2 ln�i+1 + � � �+ 2 ln�n + 2 ln f + �)� � y2 �M; (2:4)the probability,P�8�� 2 f�1; 1gN(ln(�i����n)= ln 2) : ��� �Xi�1��pai + � � � + an � ypN ��� 62 K(N)fNA�; (2:5)with �Xi�1�� de�ned by (1.22), is bounded from above and below, respectively, byexp�� (1� Æ)jAj(2�)�1=22K(N)fN�Ni �Ni+1 � � ��Nn e�y2N=2�: (2:6)Proof. Let us de�ne the quantityPN (i; y; f;K(N)) � P�9�� 2 f�1; 1g(ln �i+1+����n)= ln 2 : ��� �Xi��pai + � � � + an�ypN ��� 2 K(N)fNA�:(2:7)We will show that, for any � > 0 small enough and M > 0 large enough, we havePN (i; y; f;K(N)) � (2�)�1=22K(N)fN jAj�Ni+1 � � ��Nn e�y2N=2; as N !1; (2:8)uniformly for the parameter y in the domainmaxm=i+1;:::;n (ai + � � �+ an)(2 ln�m + � � �+ 2 ln�n + 2 ln f + �)am + � � �+ an � y2 �M: (2:9)Then, the probability (2.5) equals �1 � PN (i; y; f;K(N))��Ni , where the asymptotics of thequantity PN (i; y; f;K(N)) is established in (2.8). Moreover, by the assumption (2.4),PN (i; y; f;K(N)) � (2�)�1=22K(N)jAj exp(��N=2)! 0: (2:10)Then the elementary inequality, �x� x2 � ln(1�x) � �x, that holds for jxj < 1=2, leads to(2.6).



Beyond the REM conjecture 9Therefore we concentrate on the proof of the asymptotics (2.8). Let X be a standardGaussian random variable. ThenPN (n; y; f;K(N)) = P(jX�ypN j 2 K(N)fNA) � (2�)�1=22K(N)fN jAje�y2N=2; N !1;(2:11)uniformly for y2 �M . This implies (2.8) for i = n. Note also thatPN (i; y; f;K(N)) � �Ni+1 � � ��Nn P(jX � ypN j 2 K(N)fNA); (2:12)so that the upper bound for (2.8) is immediate. We will establish the lower bound by inductiondownwards from i = n to i = 1, using the identityPN (i; y; f;K(N)) = 1Z�1 dt e�t2=2p2�  1� h1�� PN�i+ 1; pai + � � �+ anypN �paitpN(ai+1 + � � � + an) ; f; pai + � � � + anpai+1 + � � � + anK(N)�i�Ni+1!: (2:13)By the induction hypothesis for i+ 1,PN�i+ 1; pai + � � �+ any �paitpN(ai+1 + � � �+ an) ; f; pai + � � � + anpai+1 + � � � + anK(N)�� (2�)�1=2 pai + � � �+ anpai+1 + � � �+ an 2K(N)fN jAj�Ni+2�Ni+3 � � ��Nn e� (pai+���+anypN�pait)22(ai+1+���+an) ;(2:14)uniformly for all y; t that satisfyingmaxm=i+2;:::;n (ai+1 + � � �+ an)(2 ln�m + � � �+ 2 ln�n + 2 ln f + �i+1)am + � � �+ an� �pai + � � � + anypN �paitpN(ai+1 + � � �+ an) �2 �Mi+1; (2:15)for any �i+1 > 0 small enough and Mi+1 > 0 large enough. The right-hand side of thisinequality readspNT�1 (y) � pNpai + � � � + any �pai+1 + � � � + anMi+1pai � t� pNpai + � � � + any +pai+1 + � � � + anMi+1pai = pNT+1 (y): (2:16)Obviously, the left-hand side of (2.15) holds for all t 2 (�1;1), if ln�n + � � � + ln�i+2 +2 ln f < 0 and �i+1 is small enough. Otherwise, it holds, if eithert � pNpai maxm=i+2;:::;n:ln�n+���+ln�m+2 ln f�0 �pai + � � � + any+ ai+1 + � � � + anpam + � � �+ anp2 ln�m + � � �+ 2 ln�n + 2 ln f + �i+1� � pNT+2 (y); (2:17)



10 Section 2or t � pNpai minm=i+2;:::;n:ln�n+���+ln�m+2 ln f�0 �pai + � � �+ any� ai+1 + � � �+ anpam + � � � + anp2 ln�m + � � �+ 2 ln�n + 2 ln f + �i+1� � pNT�2 (y): (2:18)Let us put for convenience T+2 (y) = �1 and T�2 (y) =1, if 2 ln�n+� � �+2 ln�i+2+2 ln f < 0.Finally, �Ni+1PN�i+ 1; pai + � � � + any �paitpN(ai+1 + � � � + an) ; f; pai + � � �+ anpai+1 + � � �+ anK�! 0; (2:19)uniformly in the domain where�pai + � � �+ anypN �paitpN(ai+1 + � � �+ an) �2 � 2 ln�i+1 + � � �+ 2 ln�n + 2 ln f + �i+1: (2:20)This domain is equivalent to �1 < t < +1, if 2 ln�n + � � � + 2 ln�i+1 + 2 ln f < 0 and�i+1 > 0 is small enough. Otherwise, it is reduced to the union of the domainst � pNpai �pai + � � � any +p(ai+1 + � � �+ an)(2 ln�i+1 + � � �+ 2 ln�n + 2 ln f + �i+1)�� T+3 (y)pN (2:21)andt � pNpai �pai + � � � any �p(ai+1 + � � �+ an)(2 ln�i+1 + � � �+ 2 ln�n + 2 ln f + �i+1)�� T+3 (y)pN :(2:22)Then, using the elementary inequalities�x� x2 � ln(1� x) � �x; 1 + x � ex � 1 + x+ x2 for jxj < 1=2; (2:23)it is easy to deduce from (2.13), (2.14), and (2.19) the following asymptotic lower bound, if2 ln�n + � � �+ 2 ln�i+1 + 2 ln f � 0:P (i; y; f;K(N)) � (2�)�1 pai + � � � + anpai+1 + � � � + an 2K(N)fN�Ni+1�Ni+2�Ni+3 � � ��Nn� � min(T�2 (y);T�3 (y))pNZT�1 (y)pN + T+1 (y)pNZmax(T+2 (y);T+3 (y))pN �e� (pai+���+anypN�pait)22(ai+1+���+an) e�t2=2dt: (2:24)



Beyond the REM conjecture 11If 2 ln�i+1+� � �+2 ln�n+2 ln f < 0, then from the same assertions we deduce the same bound,but with the domain of integration ranging over the entire interval [T�1 (y)pN;T+1 (y)pN ].By the change of variables, s = pai + � � � + ant�paiypai+1 + � � � + an ; (2:25)the right-hand side of (2.24) equals2K(N)2� fN�Ni+1�Ni+2�Ni+3 � � ��Nn e�y2N=2� min(S�2 (y);S�3 (y))pNZS�1 (y)pN + S+1 (y)pNZmax(S+2 (y);S+3 (y))pN �e�s2=2ds(2:26)where S�1 (y); S+1 (y) = pai+1 + � � �+ any �pai + � � �+ anMi+1pai ; (2:27)S�2 (y) = minm=i+1;:::;n:ln�n+���+ln�l+2 ln f�0p(ai+1 + � � �+ an)=ai� �y � pai + � � �+ anpam + � � �+ anpln�m + � � � + ln�n + ln f + �i+1�;(2:28)S+2 (y) = maxm=i+1;:::;n:ln�n+���+ln�m+2 ln f�0p(ai+1 + � � �+ an)=ai� �y + pai + � � � + anpam + � � �+ anpln�l + � � � + ln�n + ln f + �i+1�;(2:29)if T�2 (y) are �nite, and, of course, S+2 (y) = �1, if T+2 (y) = �1, S�2 (y) = +1, if T�2 (y) =+1, and �nallyS�3 (y) = pai+1 + � � �+ any �pai + � � �+ anpln�i+1 + � � �+ ln�n + ln f + �i+1pai : (2:30)Now let us take any � > �i+1 and M = Mi+1 Then, there exist Æ > 0 and Q > 0, suchthat, for all y � 0 satisfying (2.9), we have S�1 (y) � �Q and min(S�2 (y); S�3 (y)) � Æ; and forall y < 0 satisfying (2.9), we have S+1 (y) � Q and max(S+2 (y); S+3 (y)) � �Æ. Hence(2�)�1=2� min(S�2 (y);S�3 (y))pNZS�1 (y)pN + S+1 (y)pNZmax(S�2 (y);S�3 (y))pN �e�s2=2ds � (2�)�1=2 Z ÆpN�QpN e�s2=2ds! 1;(2:31)



12 Section 2as N !1. In the case when 2 lnn+ � � �+2 ln�i+1+2 ln f < 0, we have the analogue of (2.24)with the integral over [T�1 (y)pN;T+1 (y)pN ], and by the same change we get the bound(2�)�1=2 S+1 (y)pNZS�1 (y)pN e�s2=2ds � (2�)�1=2 QpNZ�QpN e�s2=2ds! 1; N !1: (2:32)Since �i+1 [resp. Mi+1] could be chosen arbitrarily small [resp. large], by the induction hy-pothesis, the estimates (2.24), (2.26), and (2.31), (2.32) show that, for any � > 0 smallenough, and M > 0 large enough, the assertion (2.8) holds uniformly in the domain (2.9).This �nishes the proof of the lemma. }Lemma 2.1 implies the next lemma.Lemma 2.2: Let l 2 f0; : : : ; k � 1g, c be with jcj < p2 ln ��l+1(�al+1 + � � �+ �ak)=�al+1. Forany �; Æ > 0 small enough, and M > 0, there exists N0 = N0(�; Æ;M), such that, for allN � N0, the probabilityP�8�� 2 f�1; 1g(1�wl)N : ��� �XJl��p�al+1 + � � �+ �ak � (jcj + z)pN ��� 62 K(N)ec2N=2(��l+1 � � � ��k)�NA�(2:33)is bounded from above and below, respectively, byexp�� (1� Æ)(2�)�1=22K(N)jAje�(2jcjz+z2)N=2� (2:34)for any �� < z < M .Proof. If jcj <p2 ln ��l+1(�al+1 + � � �+ �ak)=�al+1, then by (1.5) we have ec2=2(��l+1 � � � ��k)�1 <1 and with some �0 > 0 small enough:max� maxm=Jl+2;:::;n(aJl+1 + � � �+ an)(2 ln�m + � � � + 2 ln�n + 2(c2=2� ln(��Jl+1 � � � ��Jk )) + �0)am + � � �+ an ;(2 ln�Jl+2 + � � �+ 2 ln�n + 2(c2=2� ln(��Jl+1 � � � ��Jk)) + �0� < c2: (2:35)This last inequality remains true with c2 replaced in the left-hand side by (jcj+ z)2 if z > ��with � > 0 small enough. Then Lemma 2.1 applies with i = Jl+1 and f = ec2=2(��l+1 � � � ��k)�1and gives the asymptotics (2.34).}Lemma 2.2 with l = 0, z = 0, K(N) = p2�=2 implies immediately the convergence of theavoidance function (2.1) in the case l = 0. To conclude the proof of (1.12), let us note thatEM0N (A) = X�2�N P�jX� � cNpN j 2 2�N�1(2�)ec2NN=2A� (2:36)



Beyond the REM conjecture 13is the sum of 2N identical terms, each of them being 2�N jAj(1+ o(1)) by the trivial estimatefor standard Gaussian random variables (2.11). Then (2.36) converges to jAj and the proofof (1.12) is �nished.To prove the convergence of the avoidance function (2.1) in the case l � 1, let us write theevent fMlN (A) = 0g in terms of the functions Ul;N de�ned in (1.21) asfMlN (A) = 0g= n8�̂ 2 �wlN ; �� 2 �(1�wl)N : �� �XJl�̂�� �pN�~cl +N�1��l;N � U�1l;N ( bXJl�̂ )���� 62 Rl(N)�1Ao(2:37)with the abbreviations (1.20), (1.22), (1.26). Let us introduce the following event with aparameter y > 0:BlN (y) = n8j = 1; : : : ; l;8�̂ 2 �wlN :2�j;N � 2Ndj � (1 + � � �+ j)y < U�1j;N ( bXJj�̂ ) < y(1 + � � �+ j)o: (2:38)By the convergence (1.23) to (1.24), the property (1.6) and the symmetry of the standardGaussian distribution, the probability of the complementary event satis�es the followingbound: lim supN!1P( �BlN (y)) � 2 exp(�hy); (2:39)with some constant h > 0. Now, let us �x any arbitrarily large y > 0 and considerP(MlN (A) = 0) =E�1IfBlN (y)gE(1IfMlN (A)=0g j bXJj�̂ ;8lj=1;8b� 2 �wlN)�+ E�1If �BlN (y)gE(1IfMlN (A)=0g j bXJj�̂ ;8lj=1;8b� 2 �wlN )�: (2:40)Due to the representation (2.37), the conditional expectation E(1IfMlN (A)=0g j bXJj�̂ ;8lj=1;8b� 2�wlN ) can be viewed as the product over b� 2 �wlN of the quantities (2.33) withjcj = ~clp�al+1 + � � � + �ak ; K(N) = p2�2 lYj=1(4N� ln ��j)�lj=2; (2:41)and z = z(�̂) = (�al+1 + � � � + �ak)�1=2N�1��l;N � U�1l;N( bXJl�̂ )�; �̂ 2 �wlN : (2:42)Furthermore, on BlN (y), we have z(b�) 2 (�� ; 2dlp�al+1+���+�ak + �) 8�̂ 2 �wlN (with some smallenough � > 0), so that Lemma 2.2 applies to 1IfBlN (y)gE (1IfMlN (A)=0g j bXJj�̂ ;8lj=1;8b� 2 �wlN ).



14 Section 2Hence, by (2.40) and by Lemma 2.2, for any Æ > 0 small enough, there exists N0(Æ; y) suchthat for all N � N0Eh Y�̂2�wlN exp�� (1� Æ)(2�)�1=22K(N)jAje��2jcjz(�̂)+z2(�̂)�N=2�i+ P( �BlN (y))� Eh1IfBlN (y)g Y�̂2�wlN exp�� (1� Æ)(2�)�1=22K(N)jAje��2jcjz(�̂)+z2(�̂)�N=2�i+ P( �BlN (y))� P(MlN (A) = 0)� Eh1IfBlN (y)g Y�̂2�wlN exp�� (1 + Æ)(2�)�1=22K(N)jAje��2jcjz(�̂)+z2(�̂)�N=2�i� Eh Y�̂2�wlN exp�� (1 + Æ)(2�)�1=22K(N)jAje��2jcjz(�̂)+z2(�̂)�N=2�i� P( �BlN (y)): (2:43)Using the convergence (1.23) to (1.24), we derive that for any y > 0 large enough and Æ > 0small enoughE Y(x1 ;:::;xl)2Pl exp(�(1� Æ)jAje�l(1x1+���+lxl)) + lim supN!1P( �BlN (y))� lim supN!1P(MN (A) = 0) � lim infN!1P(MN (A) = 0)� E Y(x1 ;:::;xl)2Pl exp(�(1 + Æ)jAje�l(1x1+���+lxl))� lim supN!1P( �BlN (y)): (2:44)Thus (2.44) and (2.39) imply the following bounds:E exp(�(1 � Æ)jAj�l) + 2 exp(�hy) � lim supN!1P(MlN (A) = 0)� lim infN!1P(MlN (A) = 0) � E exp(�(1 + Æ)jAj�l))� 2 exp(�hy): (2:45)Since y > 0 can be chosen arbitrarily large and Æ > 0 �xed arbitrarily small, this �nishes theproof of the convergence of the avoidance function (2.1) in the case of l = 1; 2; : : : ; k � 1.To proceed with the proof of tightness (2.3), we need the following lemma.Lemma 2.3: Let l 2 f0; : : : ; k � 1g, jcj < p2 ln ��l+1(�al+1 + � � � + �ak)=�al+1, K(N) > 0 ispolynomial in N , z 2 R. For any segment B � R+ , let us de�ne an integer-valued randomvariableT c;z;K(N)l;N (B)= #n�� 2 �(1�wl)N : ��� �XJl��p�al+1 + � � �+ �ak �pN(jcj + z)��� 2 K(N)ec2N=2(��l+1 � � � ��k)�NBo:(2:46)



Beyond the REM conjecture 15(i) For any bounded segment A � R+ , any �; Æ > 0 small enough and M > 0 there existsN0 = N0(Æ;M; �) such that for all N � N0, for any B � A and any z 2]� �;M [ we have:P�T c;z;K(N)l;N (B) � 1� � (1 + Æ)jBjK(N)(2=p2�)e�(2jcjz+z2)N=2: (2:47)(ii) For any bounded segment A � R+ , any Æ > 0 small enough, K > 0 large enough andM > 0 there exists N0 = N0(Æ;M;K) such that for all N � N0, for any segment B � A withjBj < K�1 and for any z = zN 2 i ln(2K(N)=p2�)� lnKjcjN ; Mh (2:48)we have:P�T c;z;K(N)l;N (B) � 2�� ÆjBjK(N)(2=p2�)e�(2jcjz+z2)N=2 + �jBjK(N)(2=p2�)e�(2jcjz+z2)N=2�2=2: (2:49)Remark: The bound (2.49) is far from being the optimal one, but it is enough for ourpurpose. Therefore, we do not prove a precise bound that requires much more tediouscomputations.Proof. The right-hand side of (2.47) is bounded from above by(��l+1 � � � ��k)NP�jX �pN(jcj+ z)j 2 K(N)ec2N=2(��l+1 � � � ��k)�NB� (2:50)with X a standard Gaussian random variable. Since by the assumption of the lemma and by(1.5) we have ec2=2(��l+1 � � � ��k)�1 < 1, then (2.47) is obvious from the trivial estimate (2.11).To prove (ii), note that ET c;z;K(N)l;N (B) just equals (2.50), whenceET c;z;K(N)l;N (B) � (1 + Æ)jBjK(N)(2=p2�)e�(2jcjz+z2)N=2: (2:51)Finally P�T c;z;K(N)l;N (B) � 2� � ET c;z;K(N)l;N (B)� �1� P�T c;z;K(N)l;N (B) = 0�� (2:52)where by Lemma 2.2 P�T c;z;K(N)l;N (B) = 0� is bounded from above by the exponent (2.34).The assumption (2.48) and the fact that jBj < 1=K assure that the argument of this exponentis smaller than 1 by absolute value, i.e.0 < (1� Æ)jBjK(N)(2=p2�)e�(2jcjz+z2)N=2 < 1� Æ: (2:53)



16 Section 2Then (2.52), (2.51), the bound (2.34) with (2.53) and the elementary fact that e�x � 1�x+x2=2 for 0 < x < 1 yield the estimate (2.49). }We are now ready to prove the tightness (2.3) of the family fMlNg1N=1 for l = 1; : : : ; k�1.For a given � > 0, let us �rst �x y large enough and N1(y) such thatP( �BlN (y)) < �=4 8N � N1 = N1(y); (2:54)which is possible due to (2.39). Now let us split the segment A = [a; b] into R disjointsegments A1; : : : ; AR of size (b� a)=R, R > 1. ThenP(fMlN (A) > Rg \BlN (y)) � RXi=1 P(fMlN (Ai) � 2g \BlN (y))� RXi=1 X�̂2�wlN P(C lN (Ai; b�) \BlN (y; b�))+ RXi=1 X�̂ ;�̂2�wlN ;�̂ 6=�̂ P(DlN (Ai; b� ) \DlN (Ai; b�) \BlN (y; b� ) \BlN (y; b�)) (2:55)
where C lN(Ai; b�) = n9��; �� 2 �(1�wl)N ; �� 6= �� :��� �XJl�̂�� �pN�ecl +N�1(�l;N � U�1l;N ( bXJl�̂ ))���� 2 Rl(N)�1Ai for �� = ��; �� = ��o;DlN (Ai; b�) = n9�� 2 �(1�wl)N : ��� �XJl�̂�� �pN�ecl +N�1(�l;N � U�1l;N ( bXJl�̂ ))���� 2 Rl(N)�1Aio;(2:56)andBlN (y; b�) = n8j = 1; : : : ; l : 2�j;N �2Ndj � (1+ � � �+j)y < U�1j;N( bXJj�̂ ) < y(1+ � � �+j)o:(2:57)Each term in the �rst sum of (2.55) equalsE�1I�BlN (y;�̂)	E�1I�ClN (Ai;�̂)	 �� bXJj�̂ ;8lj=1��= E�1I�BlN (y;�̂)	E�1I�T c;z(�̂);K(N)l;N (Ai)�2	 j bXJj�̂ ;8lj=1�� (2:58)with the random variables T c;z;K(N)l;N de�ned in Lemma 2.3 and with parameters c;K(N); z(b�)de�ned by (2.41) and (2.42). Furthermore, on BlN (y; b�), the parameter z(b�) satis�es thecondition (2.48) with the constant K = e�l(1+���+l)y and M = 2dl(�al+1 + � � �+ �ak)�1=2 + �



Beyond the REM conjecture 17with some small � > 0. Therefore, if jAij = (a � b)=R < e��l(1+���+l)y, then the assertion(ii) of Lemma 2.3 applies to the conditional expectation in (2.58). Next, each term of thesecond sum of (2.55) equalsEh1I�BlN (y;�̂);BlN (y;�̂)	E�1I�DlN (Ai;�̂)	 �� bXJj�̂ ;8lj=1�E�1I�DlN (Ai;�̂)	 �� bXJj�̂ ;8lj=1�i= Eh1I�BlN (y;�̂);BlN (y;�̂)	E�1I�T c;z(�̂);K(N)l;N (Ai)�1	 �� bXJj�̂ ;8lj=1�� E�1I�T c;z(�̂);K(N)l;N (Ai)�1	 �� bXJj�̂ ;8lj=1�i (2:59)where on BlN (y; �̂) \ BlN (y; �̂ ) we have �� < z(b�); z(b�) < 2dl(�al+1 + � � � + �ak)�1=2 + � withsome small � > 0. Then the assertion (i) of Lemma 2.3 applies to the conditional expectationsin (2.59). Thus by Lemma 2.3, for any Æ > 0, there exists N2(y; Æ) such that for all N � N2RXi=1 P(fM0N (Ai) � 2g \BlN (y))� RXi=1 Æ(2=p2�)K(N)(b � a)R�1E� X�̂2�wlN 1I�BlN (y;�̂)	e��2jcjz(�̂)+z2(�̂)�N=2�+ RXi=1(4=2�)K(N)2(b� a)2R�2� E� 12 X�̂2�wlN 1I�BlN (y;�̂)	e��2jcjz(�̂)+z2(�̂)�N+ X�̂ ;�̂2�wlN :�̂ 6=�̂ 1I�BlN (y;�̂);BlN (y;�̂)	e��2jcjz(�̂)+z2(�̂)+2jcjz(�̂)+z2(�̂)�N=2�= Æ(b � a)IN (y) +R�1(b� a)2JN (y)=2where IN (y) = (2=p2�)K(N)E� X�̂2�wlN 1I�BlN (y;�̂)	e��2jcjz(�̂)+z2(�̂)�N=2�;JN (y) = (4=(2�))K(N)2E� X�̂2�wlN 1I�BlN (y;�̂)	e��2jcjz(�̂)+z2(�̂)�N=2�2:Here, the quantity IN (y) converges toI(y) = E Z81�j�l:1 x1+���+jxj<(1+���j)y e�(1x1+���lxl)Pl(dx1 : : : ; dxl)= Z81�j�l:1x1+���+jxj<(1+���j)y e�(1x1+���lxl)�x1�����xldx1; : : : ; dxl <1:



18 ReferencesTherefore, one can �x N3 = N3(y) large enough and then Æ = Æ(y) so small that Æ(b �a)J1N (y) < �=4, 8N � N3(y): The term JN (y) converges toJ(y) = E� Z8j=1;:::;l:(1x1+���+jxj)<(1+���+j)y e�l(1x1+���+lxl)P l(dx1 � � � dxl)�2 (2:60)which is �nite. In fact, J(y) is the sum of l + 1 terms, the kth of them being21Ik 6=l Z81�i�k:(1x1+���ixi)<(1+���+i)y8k+1�i�l:(1x1+���+kxk+���ivi)<(1+���+i)y8k+1�i�l:(1x1+���+kxk+���iwi)<(1+���+i)ye2�l(1x1+���+kxk)e�l(k+1vk+1+���+lvl)e�l(k+1wk+1+���+lwl)� e�x1�����xk�vk+1�����vl�wk+1�����wldx1 � � � dxkdvk+1 � � � dvldwk+1 � � � dwl <1: (2:61)Then for any � > 0, one can choose N4 = N4(y) such that for all N � N4(y) jJN (y)�J(y)j <�=4. Next, let us choose R0 = R0(y) > K = e�(1+���l)y(b � a) such that (b � a)2R�10 < 1and also such that (b�a)2R�10 J(y) < �=4. Thus (b�a)2R�1JN (y)=2 < �=2 8N � N4(y) and8R � R0. Hence,RXi=1 P(fM0N (Ai) � 2g \BlN (y)) < 3�=4 8R � R0; and 8N � N2(Æ(y); y); N3(y); N4(y):(2:62)Taking into account (2.54), we obtain thatP(MlN (A) > R) < � 8R � R0 and 8N � max(N1; N2; N3; N4); (2:63)whence P(MlN (A) > max(R0; 2N1 ; 2N2 ; 2N3 ; 2N4)) < � 8N � 1; (2:64)then MlN is tight.It remains to show that the limit ~Ml of any weakly convergent subsequence of fMlNg is asimple process, that is very easy. Consider any segment A = [a; b) and its dissecting systemfAr;i; i = 1; 2; : : : ; 2r; r = 1; 2; : : : g such that A1;1 = [a; (a + b)=2) and A1;2 = [(a + b)=2; b)are obtained by splitting [a; b) in the middle and the system of disjoint intervals fAr;i; i =1; 2; : : : ; 2rg is obtained from fAr�1;i; i = 1; 2; : : : ; 2r�1g by splitting similarly each segmentof the latter system into two parts in the middle. It follows from the estimates (2.54) and(2.62) that for any � > 0 there exists N0 and r0 such thatP(9i = 1; : : : ; 2r :MlN (Ar;i) � 2) < � 8N � N0; 8r � r0: (2:65)



Mertens 19Then for any � > 0 there exists r0 such thatP(9i = 1; : : : ; 2r : ~Ml(Ar;i) � 2) < � 8r � r0: (2:66)Then ~Ml can have double points within A with probability smaller than �. Since � > 0 isarbitrary, it follows that ~Ml is simple. Thus the proof of the theorem is complete. }References[BaMe] H. Bauke and St. Mertens. Universality in the level statistics of disordered systems. Phys. Rev. E,70:025102(R), 2004.[BK1] A. Bovier and I. Kurkova. Derrida's generalized random energy models. I. Models with �nitely manyhierarchies. Ann. Inst. H. Poincar�e Probab. Statist., 40(4):439{480, 2004.[BK2] A. Bovier and I. Kurkova. Local energy statistics in disordered system: a proof of the local REM conjecture.Preprint of the University Paris 6, April (2005).[BKL] A. Bovier, I. Kurkova, M. Lowe. Fluctuations of the free energy in the REM and the p-spin SK models,Ann. Probab. 30 (2002) 605{651.[DV] D.J. Daley, D. Vere-Jones, An introduction to the theory of point processes. Springer Series in Statistics,Springer-Verlag (1988).[Der1] B. Derrida. Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B (3),24(5):2613{2626, 1981.[Der2] B. Derrida. A generalization of the random energy model that includes correlations between the energies.J. Phys. Lett., 46:401{407, 1985.[LLR] M.R. Leadbetter, G. Lindgren, and H. Rootz�en. Extremes and related properties of random sequences andprocesses. Springer Series in Statistics. Springer-Verlag, New York, 1983.[Ka] O. Kallenberg, Random Measures, fourth ed., Akademie Verlag, Berlin, 1986.


