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Abstract: Recently, Bauke and Mertens conjectured that the local statistics of energies inrandom spin systems with discrete spin space should in most circumstances be the same as inthe random energy model. Here we give necessary conditions for this hypothesis to be true,which we show to hold in wide classes of examples: short range spin glasses and mean �eldspin glasses of the SK type. We also show that, under certain conditions, the conjecture holdseven if energy levels that grow moderately with the volume of the system are considered.1. Introduction.In a recent paper [BaMe], Bauke and Mertens have formulated an interesting conjectureregarding the behaviour of local energy level statistics in disordered systems. Roughly speak-ing, their conjecture can be formulated as follows. Consider a random Hamiltonian, HN (�),i.e., a real-valued random function on some product space, S�N , where S is a �nite space,typically f�1; 1g, of the form HN(�) = XA��N �A(�); (1:1)where �N are �nite subsets of Zd of cardinality, say, N . The sum runs over subsets, A, of�N and �A are random local functions, typically of the form�A(�) = JA Yx2A�x (1:2)where JA, A � Zd, is a family of (typically independent) random variables, de�ned on someprobability space, (
;F ;P), whose distribution is not too singular. In such a situation, fortypical �, HN(�) � pN , while sup�HN (�) � N . Bauke and Mertens then ask the followingquestion: Given a �xed number, E, what is the statistics of the values N�1=2HN (�) that areclosest to this number, and how are con�gurations, �, for which these good approximants of Eare realised, distributed on S�N ? Their conjectured answer, which at �rst glance seems rathersurprising, is quite simple: �nd ÆN;E such that P(jN�1=2HN(�)�Ej � bÆN;E) � jSj�Nb; then,the collection of points, Æ�1N;E jN�1=2HN (�)�Ej, over all � 2 S�N , converges to a Poisson pointprocess on R+ . Furthermore, for any �nite k, the k-tuple of con�gurations, �1; �2; : : : ; �k,where the k-best approximations are realised, is such that all of its elements have maximalHamming distance between each other. In other words, the asymptotic behavior of thesebest approximants of E is the same, as if the random variables HN (�) were all independentGaussian random variables with variance N , i.e., as if we were dealing with the randomenergy model (REM) [Der1]. Bauke and Mertens call this \universal REM like behaviour".7=april=2005; 10:25 1



2 Section 1A comparable result had previously been conjectured by Mertens [Mer1] in the particularcase of the number partitioning problem. In that case, the function HN is simply given byHN (�) = NXi=1Xi�i; (1:3)with Xi i.i.d. random variables uniformly distributed on [0; 1], �i 2 f�1; 1g, and one isinterested in the distribution of energies near the value zero (which corresponds to an optimalpartitioning of the N random variables, Xi, into two groups such that their sum in each groupis as similar as possible). This conjecture was later proven by Borgs, Chayes, and Pittel[BCP, BCMP]. It should be noted that in this problem, one needs, of course, take care of theobvious symmetry of the Hamiltonian under the transformation � ! ��. An extension ofthese results in the spirit of the REM conjecture was proven recently in [BCMN], i.e., whenthe value zero is replaced by an arbitrary value, E.In [BK2] we generalised this result to the case of the k-partitioning problem, where therandom function to be considered is actually vector-valued (consisting of the vector of dif-ferences between the sums of the random variables in each of the k subsets of the partition).To be precise, we considered the special case where the subsets of the partition are requiredto have the same cardinality, N=k (restricted k-partitioning problem). The general approachto the proof we developed in that paper sets the path towards the proof of the conjecture byBauke and Mertens that we will present here.The universality conjecture suggests that correlations are irrelevant for the properties ofthe local energy statistics of disordered systems for energies near \typical energies". Onthe other hand, we know that correlations must play a rôle for the extremal energies nearthe maximum of HN (�). Thus, there are two questions beyond the original conjecture thatnaturally pose themselves: (i) assume we consider instead of �xed E, N -dependent energylevels, say, EN = N�C. How fast can we allow EN to grow for the REM-like behaviour tohold? and (ii) what type of behaviour can we expect once EN grows faster than this value?We will see that the answer to the �rst question depends on the properties of HN , and wewill give an answer in models with Gaussian couplings. The answer to question (ii) requires adetailed understanding of HN(�) as a random process, and we will be able to give a completeanswer on only in the case of the GREM, when HN is a hierarchically correlated Gaussianprocess. This will be discussed in a separate paper [BK05].Our paper will be organized as follows. In Chapter 2, we prove an abstract theorem, thatimplies the REM-like-conjecture under three hypothesis. This will give us some heuristic



Local REM conjecture 3understanding why and when such a conjecture should be true. In Chapter 3 we then showthat the hypothesis of the theorem are ful�lled in two classes of examples: p-spin Sherrington-Kirkpatrick like models and short range Ising models on the lattice. In both cases we establishconditions on how fast EN can be allowed to grow, in the case when the couplings areGaussian.Acknowledgements: We would like to thank Stephan Mertens for interesting discussions.2. Abstract theorems.In this section we will formulate a general result that implies the REM property undersome concise conditions, that can be veri�ed in concrete examples. This will also allow usto present the broad outline of the structure of the proof without having to bother withtechnical details. Note that our approach is rather di�erent from that of [BCMN] thatinvolves computations of moments.Our approach to the proof of the Mertens conjecture is based on the following theorem,which provides a criterion for Poisson convergence in a rather general setting.Theorem 2.1: Let Vi;M � 0, i 2 N, be a family of non-negative random variablessatisfying the following assumptions: for any ` 2 N and all sets of constants bj > 0, j =1; : : : ; `, limM"1 X(i1;:::;i`)�f1;:::;MgP(8j̀=1 Vij;M < bj)! Ỳj=1 bj (2:1)where the sum is taken over all possible sequences of di�erent indices (i1; : : : ; i`). Then thepoint process PM = MXi=1 ÆVi;M ; (2:2)on R+ , converges weakly in distribution, as M " 1, to the standard Poisson point process,P on R+ (i.e., the Poisson point process whose intensity measure is the Lebesgue measure).Remark: Theorem |mainth was proven (in a more general form, involving vector valuedrandom variables) in [BK2]. It is very similar in its spirit to an analogous theorem for thecase of exchangeable variables proven in [BM] in an application to the Hop�eld model. Therather simple proof in the scalar setting can be found in Chapter 13 of [B].Naturally, we want to apply this theorem with Vi;M given by jN�1=2HN(�)�EN j, properlynormalised.



4 Section 2We will now introduce a setting in which the assumptions of Theorem|mainth are veri�ed.Consider a product space SN where S is a �nite set. We de�ne on SN a real-valued randomprocess, YN (�). Assume for simplicity thatEYN (�) = 0; E (YN (�))2 = 1: (2:3)De�ne on SN bN (�; �0) � cov(YN (�); YN (�0)): (2:4)Let us also introduce the Gaussian process, ZN , on SN , that has the same mean and thesame covariance matrix as YN(�).Let G be the group of automorphisms on SN , such that, for g 2 G, YN(g�) = YN (�), andlet F be the larger group, such that, for g 2 F , jYN (g�)j = jYN (�)j. LetEN = cN�; c; � 2 R; 0 � � < 1=2; (2:5)be a sequence of real numbers, that is either a constant, c 2 R, if � = 0, or converges to plusor minus in�nity, if � > 0. We will de�ne sets �N as follows: If c 6= 0, we denote by �N bethe set of residual classes of SN modulo G; if c = 0, we let �N be the set of residual classesmodulo F . We will assume throughout that j�N j > �N , for some � > 1. De�ne the sequenceof numbers ÆN =q�2 eE2N=2j�N j�1: (2:6)Note that ÆN is exponentially small in N " 1, since � < 1=2. This sequence is chosen suchthat, for any b � 0, limN"1 j�N jP(jZN (�)�EN j < bÆN ) = b: (2:7)For ` 2 N, and any collection, �1; : : : ; �` 2 �
`N , we denote by BN (�1; : : : ; �`) the covariancematrix of YN (�) with elements bi;j(�1; : : : ; �`) � bN(�i; �j): (2:8)Assumptions A.(i) Let R�N;` denote the setR�N;` � f(�1; : : : ; �`) 2 �
`N : 81�i<j�` jbN (�i; �j)j � N��g: (2:9)



Local REM conjecture 5Then there exists a continuous decreasing function, �(�) > 0, on ]�0; ~�0[ (for some ~�0 ��0 > 0), and � > 0, such thatjR�N;`j � �1� exp���(�)N�(�)�� j�N j`: (2:10)(ii) Let ` � 2, r = 1; : : : ; `� 1. LetLǸ;r = n(�1; : : : ; �`) 2 �
`N : 81�i<j�` jYN (�i)j 6= jYN (�j)j;rank(BN (�1; : : : ; �`)) = ro (2:11)Then there exists dr;` > 0, such that, for all N large enough,jLǸ;rj � j�N jre�dr;`N : (2:12)(iii) For any ` � 1, any r = 1; 2; : : : ; `, and any b1; : : : ; b` � 0, there exist constants, pr;` � 0and Q <1, such that, for any �1; : : : ; �` 2 �
`N for which rank(BN (�1; : : : ; �`)) = r,P�8ì=1 : jYN (�i)�EN j < ÆN bi� � QÆrNNpr;` : (2:13)Theorem 2.2: Assume the Assumptions A hold. Assume that � 2 [0; 1=2[ is such that,for some �1 � �2 2]�0; ~�0[, we have: � < �2=2; (2:14)� < �=2 + �(�)=2; 8� 2]�1; �2[; (2:15)and � < �(�1)=2: (2:16)Furthermore, assume that, for any ` � 1, any b1; : : : ; b` > 0, and (�1; : : : ; �`) 2 R�1N;`,P �8ì=1 : jYN (�i)�EN j < ÆNbi� = P �8ì=1 : jZN (�i)�EN j < ÆN bi�+ o(j�N j�`): (2:17)Then, the point process, PN � X�2�N ÆfÆ�1N jYN(�)�EN jg ! P (2:18)converges weakly to the standard Poisson point process P on R+ .



6 Section 2Moreover, for any � > 0 and any b 2 R+ ,P �8N09N�N0 : 9�;�0:jbN (�;�0)j>� : jYN (�)�EN j � jYN (�0)�EN j � ÆN b� = 0: (2:19)Remark: Before giving the proof of the theorem, let us comment on the various assumptions.(i) Assumption A (i) holds with some � in any reasonable model, but the function �(�) ismodel dependent.(ii) Assumptions A (ii) and (iii) is also apparently valid in most cases, but can be trickysometimes. An example where (ii) proved diÆcult is the k-partitioning problem, withk > 2.(iii) Condition |ab.abs.12 is essentially a local central limit theorem. In the case � = 0 itholds, if the Hamiltonian is a sum over independent random interactions, under milddecay assumptions on the characteristic function of the distributions of the interactions.Note that some such assumptions are obviously necessary, since if the random interactionstake on only �nitely many values, then also the Hamiltonian will take values on a lattice,whose spacings are not exponentially small, as would be necessary for the theorem to hold.Otherwise, if � > 0, this will require further assumptions on the interactions. We will leavethis problem open in the present paper. It is of course trivially veri�ed, if the interactionsare Gaussian.Proof: We just have to verify the hypothesis of Theorem |mainth, for Vi;M given byÆ�1N jYN (�)�EN j, i.e., we must show thatX(�1;:::;�`)2�
lN P �8ì=1 : jYN (�i)�EN j < biÆN�! b1 � � � b`: (2:20)We split this sum into the sums over the set R�1N;` and its complement. First, by the assump-tion |ab.abs.5 X(�1;:::;�`)2R�1N;` P �8ì=1 : jYN (�i)�EN j < biÆN�= X(�1;:::;�`)2R�1N;` P �8ì=1 : jZN (�i)�EN j < biÆN�+ o(1): (2:21)But, with C(EN ) = f~x = (x1; : : : ; x`) 2 R` : 8ì+1jEN � xij � ÆN big,P �8ì=1 : jZN (�i)�EN j < biÆN� = ZC(EN ) e�(~z;B�1N (�1;:::;�`)~z)=2(2�)`=2pdet(BN (�1; : : : ; �`))d~z; (2:22)



Local REM conjecture 7where BN (�1; : : : ; �`) is the covariance matrix de�ned in |ab.abs.41. Since ÆN is exponen-tially small in N , we see that, uniformly for (�1; : : : ; �`) 2 R�1N;`, the integral |ab.abs.15equals (2ÆN=p2�)`(b1 � � � b`)e�( ~EN ;B�1(�1;:::;�`)~EN )=2(1 + o(1)); (2:23)where we denote by ~EN the vector (EN ; : : : ; EN ).We treat separately the sum |ab.abs.14 taken over the smaller set, R�2N;` � R�1N;`, and theone over R�1N;` n R�2N;`.Since, by |ab.abs.9, �2 is chosen such that E2NN��2 ! 0, by |ab.abs.5, |ab.abs.15, and|abs.n, each term in the sum over R�2N;` equals(2ÆN=p2�)`(b1 � � � b`)e� 12kEN k2(1+O(N��2 ))(1 + o(1)) = (b1 � � � b`)j�N j�`(1 + o(1)); (2:24)uniformly for (�1; : : : ; �`) 2 R�2N;l. Hence by Assumption A (i)X(�1;:::;�`)2R�2N;` P �8ì=1 : jZN (�i)�EN j < biÆN� = jR�2N;ljj�N j�`(b1 � � � b`)(1 + o(1))! b1 � � � bl: (2:25)Now let us consider the remaining set R�1N;` nR�2N;` (if it is non-empty, i.e., if strictly �1 < �2),and let us �nd �1 = �0 < �1 < � � � < �n = �2, such that� < �i=2 + �(�i+1)=2 8i = 0; 1; : : : ; n� 1; (2:26)which is possible due to the assumption|ab.abs.10. Then let us split the sum overR�1N;lnR�2N;`into n sums, each overR�iN;`nR�i+1N;` , i = 0; 1; : : : ; n�1. By |ab.abs.5, |ab.abs.15, and|abs.n,we have, uniformly for (�1; : : : ; �`) 2 R�iN;`,P �8ì=1 : jZN (�i)�EN j < biÆN� = (2ÆN=p2�)`(b1 � � � b`)e� 12kEN k2(1+O(N��i ))(1 + o(1))� Cj�N j�`eN2���i ; (2:27)for some constant C <1. Thus by Assumption A (i),XR�iN;lnR�i+1N;l P(8ì=1 : jZN (�i)�EN j < biÆN ) � Cj�
lN n R�i+1N;l jj�N j�`eN2���i� C exp���(�i+1)N�(�i+1) +N2���i� ; (2:28)



8 Section 2that, by |sss, converges to zero, as N !1, for any i = 0; 1; : : : ; n�1. So the sum |ab.abs.14over R�1N;l n R�2N;l vanishes.Now we turn to the sum over collections, (�1; : : : ; �`) 62 R�1N;l. We distinguish the caseswhen det(BN (�1; : : : ; �`)) = 0 and det(BN (�1; : : : ; �`)) 6= 0. For the contributions from thelatter case, using Assumptions A (i) and (iii), we get readily that,X(�1;:::;�`)62R�1N`rank(BN (�1;:::;�`))=`P �8ì=1 jYN (�i)�EN j < ÆN bi� � j�N j`e��(�1)N�(�1)QjÆN j`Np`� CNp` exp���(�1)N�(�1) + `E2N=2� : (2:29)The right-hand side of |ab.abs.17 tends to zero exponentially fast, if condition |ab.abs.10ais veri�ed.Finally, we must deal with the contributions from the cases when the covariance matrix isdegenerate, namely X(�1;:::;�`)2�
lNrank(BN (�1;:::;�`))=r P(8ì=1 : jYN (�i)�EN j < biÆN ); (2:30)for r = 1; : : : ; `� 1. In the case c = 0, this sum is taken over the set LrN;`, since � and �0 in�N are di�erent, i� jYN (�)j 6= jYN (�0)j, by de�nition of �N . In the case c 6= 0, this sum istaken over `-tuples (�1; : : : ; �`) of di�erent elements of �N , i.e., such that YN (�i) 6= YN(�j),for any 1 � i < j � `. But for all N large enough, all terms in this sum over `-tuples,(�1; : : : ; �`), such that YN(�i) = �YN(�j), for some 1 � i < j � `, equal zero, since theevents fjYN (�i)�EN j < biÆNg and fj � YN (�i)�EN j < bjÆNg, with EN = cN�, c 6= 0, aredisjoint. Therefore |sssss is reduced to the sum over LrN;` in the case c 6= 0 as well. Then,by Assumptions A (ii) and (iii), it is bounded from above byjLrN;`jQ(ÆN )rNpr;` � j�N jre�dr;`NQ(ÆN )rNpr;` � Ce�dr;`Ne`E2N=2Npr;` : (2:31)This bound converges to zero exponentially fast, since E2N = c2N2�, with � < 1=2. Thisconcludes the proof of the �rst part of the theorem.The second assertion |ab.abs.12 is elementary: by |ab.abs.17 and |ab.abs.18, the sum ofterms P(82i=1 : jYN (�i)�EN j < ÆN b) over all pairs, (�1; �2) 2 �
2N nR�1N;2, such that �1 6= �2,converges to zero exponentially fast. Thus |ab.abs.12 follows from the Borel-Cantelli lemma.}



Local REM conjecture 9Finally, we remark that the results of Theorem |ABS.1 can be extended to the case whenEYN (�) 6= 0, if � = 0, i.e., EN = c. Note that, e.g. the unrestricted number partitioningproblem falls into this class. Let now ZN (�) be the Gaussian process with the same meanand covariances as YN (�). Let us consider both the covariance matrix, BN , and the meanof YN , EYN (�), as random variables on the probability space (�N ;BN ; E� ), where E� is theuniform law on �N . Assume that, for any ` � 1,BN (�1; : : : ; �`) D! Id; N " 1; (2:32)where Id denotes the identity matrix, andEYN (�) D! D; N " 1; (2:33)where D is some random variable D. LeteÆN =q�2K�1j�N j�1: (2:34)where K � Ee�(c�D)2=2: (2:35)Theorem 2.3: Assume that, for some R > 0, jEYN (�)j � NR, for all � 2 �N . Assumethat |ab.abs.4 holds for some � > 0 and that (ii) and (iii) of Assumptions A are valid.Assume that there exists a set, QN � R�N;`, such that |ab.abs.5 is valid for any (�1; : : : ; �`) 2QN , and that jR�N;` n QN j � j�N j`e�N , with some  > 0. Then, the point processPN � X�2�N ÆeÆ�1N jYN(�)�EN j ! P (2:36)converges weakly to the standard Poisson point process P on R+ .Proof. We must prove again the convergence of the sum |ab.abs.13, that we split into threesums: the �rst over QN , the second over R�N;` n QN , and the third over the complement ofthe set R�N;`. By assumption, |ab.abs.5 is valid on QN , and thus the terms of the �rst sumare reduced toZ8i=1;:::;`:jzi�cj<eÆNbi e�((~z�E~YN (�))B�1N (�1;:::;�`)(~z�E~YN (�)))=2(2�)`=2pdet(BN (�1; : : : ; �`)) d~z= (2~ÆN=p2�)`(b1 � � � b`)e�(~c�~EYN (�))B�1(�1;:::;�`)(~c�E~YN (�))=2(1 + o(1)); (2:37)



10 Section 3with ~c � (c; : : : ; c), and E~YN (�) � (EYN (�1); : : : ; EYN (�`)), since ÆN is exponentially smalland jEYN (�)j � NR. By de�nition of ~ÆN , the quantities |kjk are at most O(j�N j�`), while,by the estimate |ab.abs.4 and by the assumption on the cardinality ofR�N;`nQN , the numberof `-tuples of con�gurations in �
lN n R�N;` and in R�N;` n QN is exponentially smaller thanj�N j`. HenceX(�1;:::;�`)2QN P(8ì=1 : jYN (�i)�EN j < biÆN )= X(�1;:::;�`)2QN(2~ÆN=p2�)`(b1 � � � b`)e�(~c�~EYN (�))B�1(�1;:::;�`)(~c�E~YN (�))=2(1 + o(1)) + o(1)= X(�1;:::;�`)2�
`N (2~ÆN=p2�)`(b1 � � � b`)e�(~c�~EYN (�))B�1(�1;:::;�`)(~c�E~YN (�))=2(1 + o(1)) + o(1)= b1 � � � b`j�N j`K` X(�1;:::;�`)2�
`N e�(~c�~EYN (�))B�1(�1;:::;�`)(~c�E~YN (�))=2(1 + o(1)) + o(1): (2:38)The last quantity converges to b1 � � � b`, by the assumptions |ab.z1, |ab.z2 and |ab.z3.The sum of the probabilities, P(8ì=1 : jYN (�) � EN j < ÆN bi), over all `-tuples of R�N;` nQN , contains at most j�N j`e�N� terms, while, by Assumption A (iii), (and since, for any(�1; : : : ; �`) 2 R�N;`, the rank of BN (�1; : : : ; �`) equals `) each term is at most of orderj�N j�`, up to a polynomial factor. Thus this sum converges to zero.Finally, the sum of the same probabilities over the collections (�1; : : : ; �`) 2 �
lN n R�N;`converges to zero, exponentially fast, by the same arguments as those leading to |ab.abs.17and |ab.abs.18, with �1 = �. }3. ExamplesWe will now show that the assumptions of our theorem are veri�ed in a wide class ofphysically relevant models: 1) the Gaussian p-spin SK models, 2) SK-models with non-Gaussian couplings, and 3) short-range spin-glasses. In the last two examples we consideronly the case � = 0.3.1 p-spin Sherrington-Kirkpatrick models, 0 � � < 1=2.In this subsection we illustrate our general theorem in the class of Sherrington-Kirkpatrickmodels. Consider S = f�1; 1g.HN(�) = pNq�Np � X1�i1<i2<���<ip�N Ji1;:::;ip�i1�i2 � � � �ip (3:1)



Local REM conjecture 11is the Hamiltonian of the p-spin Sherrington-Kirkpatrick model, where Ji1;:::;ip are indepen-dent standard Gaussian random variables.The following elementary proposition concerns the symmetries to the Hamiltonian.Proposition 3.1:Assume that, for any 0 < i1 < � � � < ip � N , �i1 � � � �ip = �0i1 � � � �0ip.Then, if p is pair, either �i = �0i, for all i = 1; : : : ; N , or �i = ��0i, for all i = 1; : : : ; N , and,if p is odd, then �i = �0i, for all i = 1; : : : ; N . Assume that, for any 0 < i1 < � � � < ip � N ,�i1 � � � �ip = ��0i1 � � � �0ip. This is impossible, if p is pair and �i = ��0i, for all i = 1; : : : ; N ,if p is odd.This proposition allows us to construct the space �N : If p is odd and c 6= 0, �N = SN ,thus j�N j = 2N . If p is even, or c = 0, �N consists of equivalence classes where con�gurations� and �� are identi�ed, thus j�N j = 2N�1.Theorem 3.2: Let p � 1 be odd. Let �N = SN . If p = 1 and � 2 [0; 1=4[, and, ifp = 3; 5; : : : ;, and � 2 [0; 1=2[, for any constant c 2 R n f0g the point processPN � X�2�N ÆfÆ�1N jN�1=2HN (�)�cN�jg (3:2)where ÆN = 2�Ne+c2N2�=2p�2 , converges weakly to the standard Poisson point process, P,on R+ .Let p be even. Let �N be the space of equivalence classes of SN where � and �� areidenti�ed. For any � 2 [0; 1=2[ and any constant, c 2 R, the point processPN � X�2�N Æf(2ÆN )�1jN�1=2HN (�)�cN�jg (3:3)converges weakly to the standard Poisson point process, P, on R+ . The result |pp2n holdstrue as well in the case of c = 0, for p odd.Proof of Theorem |unp-not0. We have to verify the assumptions of Theorem |ABS.1 forthe process N�1=2HN (�) = YN (�). The elements of the covariance matrix |ab.abs.41 are:bj;j(�1; : : : ; �`) = 1; 8j̀=1; (3:4)bj;m(�1; : : : ; �`) = �Np��1 X1�i1<i2<���<ip�N �ji1 : : : �jip�mi1 : : : �mip ; 81�j<m�`: (3:5)



12 Section 3It has been observed in [BKL] that its non-diagonal elements can be written asbj;m(�1; : : : ; �`) = [p=2]Xk=0(�N)�k�2kp �(k � 1)!!� 1N NXq=1 �jq�mq �p�2k(1 +O(1=N)): (3:6)Now let us verify the Assumption A (i). LetQ�N;`;q = n(�1; : : : ; �l) 2 �
lN : 81�i<j�` ���N�1 NXq=1 �iq�jq��� < qN��o: (3:7)The `-tuples of this set satisfy the following property: for any Æ2; : : : ; Æ` 2 f�1; 1g`�1, the setsof sites AÆ2;:::;Æ` = fi : �2i = Æ2�1i ; �3i = Æ3�1i ; : : : ; �ì = Æ`�1i g has the cardinality N2�(`�1) +O(N1��). Then it is an easy combinatorial computation to check that there exists h > 0,such that, for any q 2 R+ , and any � 2]0; 1=2[,jQ�N;`;qj � j�N j`(1� exp(�hN1�2�)); (3:8)for all N large enough. By the representation |ij, we have Tpk=0Q�(k��)=(p�2k)N;`;q � R�N;`, withq = (pmaxk=0;:::;[p=2] �2kp �(k � 1)!!)�1. But, for any � 2]0; p=2[, and any k = 0; 1; : : : ; [p=2],Q�(k��)=(p�2k)N;`;q � Q�(k+1��)=(p�2(k+1))N;`;q . Therefore,Q�=pN;`;q � R�N;`: (3:9)Thus, due to |aaaa, Assumption A (i) is veri�ed with �(�) = 1� 2�=p, for � 2]0; p=2[.Let us now check the Assumption A (ii). To estimate the cardinality of LrN;`, we need tointroduce an ` by �Np � matrix, Cp(�1; : : : ; �`), as follows. For any given �1; : : : ; �`, the jthcolumn is composed of all �Np � products, �ji1�ji2 � � � �jip , over all subsets 1 � i1 < i2 < � � � <ip � N . Then we haveCTp (�1; : : : ; �`)Cp(�1; : : : ; �`) = �Np��1BN (�1; : : : ; �`): (3:10)Let �1; : : : ; �` be such that rank(BN (�1; : : : ; �`)) = r < `. Then, r columns of the matrixCp(�1; : : : ; �`) form a basis of its ` columns. Assume that these are, e.g., the �rst r columns.The matrix Cp(�1; : : : ; �r) can contain at most 2r di�erent rows. We will show that, for any(�1; : : : ; �`) 2 LrN;`, it can in fact not contain all 2r rows, due to the following proposition.Proposition 3.3: Assume that an 2r � r matrix, A, with elements, 1 or �1, consists ofall 2r di�erent rows. Assume that a column of length 2r with elements 1 or �1 is a linear



Local REM conjecture 13combination of the columns of A. Then this column is a multiple (with coeÆcient +1 or �1)of one of the columns of the matrix A.Proof. The proof can be carried out by induction over r. A generalisation of this fact isproven in [BK-npp].Now, if the matrix Cp(�1; : : : ; �r) contained all 2r rows, then, by Proposition |prs, forany j = r+ 1; : : : ; `, there would exist m = 1; : : : ; r, such that, either, for any 0 < i1 < � � � <ip � N , �ji1 � � � �jip = �mi1 � � � �mip , or, for any 0 < i1 < � � � < ip � N , �ji1 � � � �jip = ��mi1 � � � �mip ,which would imply jYN (�j)j = jYN (�m)j. But this is excluded by the de�nition of LrN;`.Thus, for any (�1; : : : ; �`) 2 LrN;`, the matrix Cp(�1; : : : ; �r) contains at most 2r�1 di�er-ent rows. There are O((2r�1)N ) possibilities to construct such a matrix. Furthermore, thereis only an N -independent number of possibilities to complete it by adding linear combina-tions of its columns to Cp(�1; : : : ; �`). To see this, consider the restriction of Cp(�1; : : : ; �r)to any r linearly independent rows. There are not more than 2r(`�r) ways to complete it by(` � r) columns of �1 of length r, that are linear combinations of its r columns. But eachsuch choice determines uniquely linear coeÆcients in these linear combinations and hence thecompletion of the whole Cp(�1; : : : ; �r) up to Cp(�1; : : : ; �`). Thus jLrN;`j = O((2r � 1)N ).It remains to verify the Assumption A (iii). This is easy: if rank(BN (�1; : : : ; �`)) = r,then r of the random variables YN (�1); : : : ; YN (�`) are linearly independent. Assume thatthese are, e.g., YN (�i1); : : : ; YN (�ir ). Then the covariance matrix BN (�i1 ; : : : ; �ir ) is non-degenerate, and the corresponding probability is bounded from above byP(8rj=1jYN (�ij )�EN j < ÆN bij ) � (2ÆN )r(bi1 � � � bir)p(2�)rdetBN (�i1 ; : : : ; �ir) : (3:11)>From the representation of the matrix elements of ; BN (�i1 ; : : : ; �ir)), |tt, one sees that thedeterminant, (detBN (�i1 ; : : : ; �ir )), is a �nite polynomial in the variables N�1, and thus itsinverse can grow at most polynomially.Thus, we have established that Assumption A is veri�ed. We now turn to conditions|ab.abs.9, |ab.abs.10, and |ab.abs.10a on �. Since �(�) = 1 � 2�=p, for � 2]0; p=2[, weshould �nd �1; �2 2]0; p=2[ such that � < �2=2, � < �=2 + 1=2 � �=p for � 2]�1; �2[, and� < 1=2 � �1=p. We see that, for any p � 2 and � 2]0; 1=2[, it is possible to �x �1 > 0small enough, and �2 2]0; p=2[ close enough to 1, such that these assumptions are satis�ed.If p = 1, then such a choice is possible only for � 2]0; 1=4[. The assumption |ab.abs.5 neednot be veri�ed here as YN (�) is a Gaussian process. }



14 Section 3Remark: Values p = 1; � = 1=4. The value � = 1=4 is likely to be the true critical valuein the case p = 1. In this case, one can check that the principle part of our sum gives acontribution of the formconst(1 + o(1))p(2�N)k(k�1)=2 Xm1;2;:::;mk�1;k8i6=j:jmi;jj<N��1=2exp�c2N2� X1�i<j�Nmi;j(1+o(1))�N2 X1�i<j�km2i;j(1+o(1))�;(3:12)which in turn is easily seem to be of order (ec2=2)k(k�1)=2, that it it does not behave like aconstant to the power k. Note that the term proportional to pN in the exponents arisesfrom the o�-diagonal part of the covariance matrix BN .If � > 1=4, the contribution from the |ttn is already of order (eN4��1c2=2)k(k�1)=2, whichcannot be compensated by any normalisation of the form ÆkN . Thus at least the conditionsof Theorem |mainth cannot hold in this case.3.2. Generalized p-spin SK models at level � = 0.In this subsection we generalize Theorem |unp-not0 to the case of non-Gaussian processin the case of non-zero mean and � = 0. Let p � 1, Ui1;i2;:::;ip be any �Np � i.i.d. randomvariables with EU = a and VarU = 1. LetHN (�) = pNq�Np � X1�i1<i2<���<ip�N Ui1;:::;ip�i1�i2 � � � �ip : (3:13)Let �(s) = Eeis(U�a) be the generating function of (U � a).Assumption B. We will assume in this section that EjU j3 < 1 and j�(s)j = O(jsj�1), asjsj ! 1.Remark: The decay assumption on the Fourier transform is not optimal, but some conditionof this type is needed, as the result cannot be expected for discrete distributions, where thenumber of possible values the Hamiltonian takes on would be �nite.We consider YN (�) = N�1=2HN(�). The state space �N is de�ned as in the previous exam-ple. The covariance matrix, given by |ij, converges in law to the identity matrix by the law oflarge numbers. Furthermore, analogously to |ij, we see that EYN (�) = Qp(N�1=2PNi=1 �i),where Qp(x) = [p=2]Xk=0(�1)k�2kp �(k � 1)!!xp�2k: (3:14)



Local REM conjecture 15By the central limit theorem, EYN (�) D! Qp(J) where J is a standard Gaussian randomvariable. Hence, |ab.z1 and |ab.z2 are veri�ed and we may de�ne the constantKp � E exp �� (c� aQp(J))2=2� (3:15)Then, eÆN = K�1p j�N j�1(p2�=2), with j�N j = 2N for p odd and j�N j = 2N�1 for p even.Theorem 3.4:(i) Let p be odd. Let �N = SN . For any c 6= 0, the point processPN � X�2�N Æf2NKp(2=p2�)jYN (�)� cjg (3:16)converges weakly to the standard Poisson point process on R+ .(ii) Let p be odd and c = 0, or let p be even and c 6= 0. Denote by �N the space of the 2N�1equivalence classes in SN where � and �� are identi�ed. Then the point processPN � X�2�N Æf2N�1Kp(2=p2�)jYN (�)� cjg; (3:17)converges weakly to the standard Poisson point process on R+ .Proof of Theorem |uthyyy. We should check the assumptions of Theorem |ABS.3. TheAssumptions A (i), for any � 2]0; p=2[, and (ii) have been already veri�ed in the proof ofTheorem |unp-not0. We must check (iii) and also the assertion |ab.abs.5 on an appropriatesubset QN .We will use the construction of the matrix Cp(�1; : : : ; �`) explained in the proof of Theo-rem |unp-not0, see |ccb. Let us introduce the Fourier transformf�1;:::;�`(t1; : : : ; t`) = E exp �i[t1(YN (�1)�EYN (�1))+ � � �+ tk(YN (�k)�EYN (�`))]�: (3:18)A simple computation shows thatf�1;:::;�`(t1; : : : ; t`) = (Np)Ym=1���Np��1=2fCp(�1; : : : ; �`)~tgm�; (3:19)where fCp(�1; : : : ; �`)~tgm is the mth coordinate of the product of the matrix Cp(�1; : : : ; �`)with the vector ~t = (t1; : : : ; t`).



16 Section 3Assumption A (iii) is valid due to the following proposition.Proposition 3.5: There exists a constant, Q = Q(r; `; b1; : : : ; b`) > 0, such that, for any(�1; : : : ; �`) 2 �
`N , any r � `, if rankBN (�1; : : : �`) = r,P�8ì=1 : jYN (�i)� cj � eÆNbi� � [eÆN ]rQNpr=2+1: (3:20)Proof. Recall that it follows from the hypothesis that the rank of the matrix Cp(�1; : : : ; �`)equals r. Let us remove from this matrix `�r columns such that the remaining r columns arelinearly independent. They correspond to a certain subset of r con�gurations. Without loss ofgenerality, we may assume that they are �1; : : : ; �r, i.e., we obtain the matrix Cp(�1; : : : ; �r).Obviously, P�8ì=1 : jYN (�i)� cj � eÆN bi� � P�8rj=1 : jYN (�j)� cj � eÆNbi� (3:21)Then P�8ì=1 : jYN(�i)� cj � eÆNbi�� 1(2�)r limD!1 Z[�D;D]r ��f�1;:::;�rN (t1; : : : ; tr)�� rYj=1 eitjbjeÆN � e�itjbjeÆN2itj dtj : (3:22)As eÆN = O(2�N ), the integrand in |tt1.1 is bounded by�����eitjbjeÆN � e�itjbjeÆN2itj ����� � min �Q02�N ; 2jtj j�1� ; (3:23)with a constant, Q0 = Q0(bj). Next, let us choose in the matrix Cp(�1; : : : ; �r) any r linearlyindependent rows and construct from them an r � r matrix, �Cr�r. Then, by |rtt and byAssumption B on �(s)jf�1;:::;�rN (~t)j � rYj=1 ��������Np��1=2f �Cr�r~tgj������ � rYj=1min�1; ~Q0Np=2 ��f~t �Cr�rgj ���1� ; (3:24)with ~Q0 > 0. Hence, the absolute value of the integral |tt1.1 is bounded by the sum of twoterms, Q0(b1) � � �Q0(br)2�Nr Zk~tk<2Nr rYj=1min�1; ~Q0Np=2��f �Cr�r~tgj���1�dtj+ Zk~tk>2Nr rYj=1(2t�1m ) rYj=1min�1; ~Q0Np=2��f �Cr�r~tgj ���1�dtj : (3:25)



Local REM conjecture 17Recall that the matrix �Cr�r has matrix elements �1 and rank r. Since the total numberof such matrices is at most 2r2 , the smallest absolute value of the determinant of all suchmatrices is some positive number that does not depend on N , but only on r. Therefore,the change of variables, ~� = �Cr�r~t, in the �rst term shows that the integral over k~tk < 2rNis of order at most Npr=2 ln 2rN � Npr=2+1. Thus the �rst term of |yyl is bounded byQ12�NrNpr=2+1, with some constant Q1 < 1. Using the change of variables ~� = 2�rN~tin the second term of |yyl, one can see that the integral over k~tk > 2Nr is bounded byQ22�NrNpr=2, with some constant Q2 <1. This concludes the proof. }Finally, let us �x any � 2]0; 1=2[ and introduce QN = Q�=pN;`;q ( de�ned in |qqqqq) withq = (pmaxk=0;:::;[p=2] �2kp �(k � 1)!!)�1. By |qqqq and |aaaa, it is a subset of R�N;`, andj�
`N n QN j is smaller than 2N`e�hN1�2� , with some h > 0. We need to verify |ab.abs.5 forQN . We abbreviate ~WN � v�1�(c� EYN (�1)); : : : ; (c� EYN (�`))�: (3:26)For any �1; : : : ; �` 2 QN , we splitP(8ì=1jYN (�i)� cj < bieÆN ) = 4Xm=1 ImN (�1; : : : ; �`); (3:27)whereI1N (�1; : : : ; �`) = ZR` Ỳj=1 eitjbjeÆN � eitjbjeÆN2itj ei~t� ~WN e�~tBN (�1;:::;�`)~t=2d~t� Zk~tk��Np=6 Ỳj=1 eitjbjeÆN � e�itjbjeÆN2itj ei~t� ~WN e�~tBN (�1;:::;�`)~t=2d~t; (3:28)
I2N(�1; : : : ; �`) = Zk~tk<�Np=6 Ỳj=1 eitjbjeÆN � e�itjbjeÆN2itj ei~t� ~WN �f�1;:::;�`N (~t)� e�~tBN (�1;:::;�`)~t=2�d~t;(3:29)I3N (�1; : : : ; �`) = Z�Np=6<k~tk<ÆpNp Ỳj=1 eitjbjeÆN � e�itjbjeÆN2itj ei~t� ~WN f�1;:::;�`N (~t)d~t; (3:30)andI4N (�1; : : : ; �`) = (2�)�` limD!1 Z[�D;D]`\k~tk>ÆpNp Ỳj=1 eitjbjeÆN � e�itjbjeÆN2itj ei~t� ~WN f�1;:::;�`N (~t)d~t;(3:31)



18 Section 3with some �; Æ > 0 to be chosen later.The �rst part of I1N (�1; : : : ; �`) is exactly the quantity P(8ì=1 : jZN (�i)�cj < bieÆN ). Notethat ��� Ỳj=1 eitjbjeÆN � e�tjbjeÆN2itj ��� � Q2�N`; (3:32)with some Q < 1. Then the second part of I1N is exponentially smaller than 2�`N , for all(�1; : : : ; �`) 2 QN . We must show that I2N ; I3N ; I4N are o(2�N`), for all (�1; : : : ; �`) 2 QN .This is easy due to the following proposition.Proposition 3.6: There exist constants, C <1, �; �; Æ > 0, such that, for all (�1; : : : ; �`) 2QN , the following estimates hold:(i) For all k~tk < �Np=6,��f�1;:::;�`N (~t)� e�~tBN (�1;:::;�`)~t=2�� � Ck~tk3pNp e�~tBN (�1;:::;�`)~t=2: (3:33)(ii) For all k~tk < ÆpNp, ��f�1;:::;�`N (~t)�� � e��k~tk2 : (3:34)Proof. The proof is elementary and completely analogous to the corresponding estimate inthe proof of the Berry-Essen inequality. All details are completely analogous to those in theproof of Lemma 3.5 in [BK2] and therefore are omitted. }Using |p1 and |stb, we see that I2N (�1; : : : ; �l) = O(N�p=2)2�N`. The third term,I3N (�1; : : : ; �l), is exponentially smaller than 2�N` by |p3.Finally, by |stb we may estimate I4N (�1; : : : �`) roughly asjI4N (�1; : : : �`)j � Q2�`N Zk~tk>ÆpNp jf�1;:::;�kN (~t)jd~t; (3:35)with some constant Q <1. By the construction of the set QN |qqqqq, for any (�1; : : : ; �`) 2QN , the matrix C1(�1; : : : ; �`), (i.e., the matrix withN rows, the kth row being �1k; �2k; : : : ; �k̀),contains at least 2`�1 possible di�erent rows, each row being present at least 2�`N(1 + o(1))times. Consequently, each of these rows is present in the matrix Cp(�1; : : : ; �`) at least2�`Np(1 + o(1)) times, for any p � 2. Then, by |rtt, f�1;:::;�`N (~t) is the product of at least



Local REM conjecture 192`�1 di�erent characteristic functions, each is taken to the power at least 2�`Np(1 + o(1)).Let us �x from a set of di�erent rows of Cp(�1; : : : ; �`) ` linearly independent ones, anddenote by �C the square matrix composed of them. Then there exists �(Æ) > 0, such thatq~t �CT �C~t=v2 � �, for all ~t, with k~tk > Æ. Changing variables ~s = �Np ��1=2 �C~t in |16, one getsthe boundjI4N (�1; : : : ; �`)j � Q2�`NNp`=2 Zk~sk>� Ỳm=1 ���(sm)��2�(`�1)Np(1+o(1))dsm: (3:36)Assumption B made on �(s) implies that �(s) is aperiodic, and thus j�(s)j < 1, for any s 6= 0.Moreover, for any � > 0, there exists h(�) > 0, such that j�(s)j < 1 � h(�), for all s withjsj > �=`. Therefore, the right-hand side of |hj does not exceedQ2�N`Np`=2(1� h(�))2�(`�1)Np(1+o(1))�2 Zk~sk>� Ỳm=1 ���(sm)��2dsm; (3:37)where the integral is �nite again due to Assumption B. Therefore, I4N (�1; : : : ; �`) is exponen-tially smaller than 2�N`. This concludes the proof of |ab.abs.5 on QN and of the theorem.}3.3. Short range spin glasses.As a �nal example, we consider short-range spin glass models. To avoid unnecessarycomplications, we will look at models on the d-dimensional torus, �N , of length N . Weconsider Hamiltonians of the formHN (�) � �N�d=2 XA��N rAJA�A (3:38)where e �A � Qx2A �x, rA are given constants, and JA are random variables. We willintroduce some notation:(a) Let AN denote the set of all A � �N , such that rA 6= 0.(b) For any two subsets, A;B � �N , we say that A � B, i� there exists x 2 �N such thatB = A+ x. We denote by A the set of equivalence classes of AN under this relation.We will assume that the constants, rA, and the random variables, JA, satisfy the followingconditions:



20 Section 3(i) rA = rA+x, for any x 2 �N ;(ii) there exists k 2 N, such that any equivalence class in A has a representative A � �k; wewill identify the set A with a uniquely chosen set of representatives contained in �k.(iii) PA��N : r2A = Nd.(iv) JA, A 2 Zd, are a family of independent random variables, such that(v) JA and JA+x are identically distributed for any x 2 Zd;(vi) EJA = 0 and EJ2A = 1, and EJ3A <1;(vii) For any A 2 A, the Fourier transform �A(s) � E exp (isJA), of JA satis�es j�A(s)j =O(jsj�1) as jsj ! 1.Observe that EHN (�) = 0,b(�; �0) � N�dEHN (�)HN (�0) = N�d XA��N r2A�A�0A � 1 (3:39)where equality holds, if � = �0.Note that YN(�) = YN(�0) (resp. YN(�) = �YN(�0) ), if and only if, for all A 2 AN ,�A = �0A (resp. �A = ��0A). E.g., in the standard Edwards-Anderson model, with nearestneighbor pair interaction, if �x di�ers from �0x on every second site, x, then YN (�) = �YN(�0),and if �0 = ��, YN(�) = YN(�0). In general, we will consider two con�gurations, �; �0 2 S�N ,as equivalent, i� for all A 2 AN , �A = �0A. We denote the set of these equivalence classesby �N . We will assume in the sequel that there is a �nite constant, � � 1, such thatj�N j � 2Nd��1. In the special case of c = 0, the equivalence relation will be extended toinclude the case �A = ��0A, for all A 2 AN . In most reasonable examples (e.g. whenevernearest neighbor pair interactions are included in the set A), the constant � � 2 (resp. � � 4,if c = 0)).Theorem 3.7: Let c 2 R, and �N be the space of equivalence classes de�ned before. LetÆN � j�N j�1ec2=2p�2 . Then the point processPN � X�2�N ÆfÆ�1N jHN (�)�cjg; (3:40)converges weakly to the standard Poisson point process on R+ .



Local REM conjecture 21If, moreover, the random variables JA are Gaussian, then, for any c 2 R, and 0 � � < 1=4,with ÆN � j�N j�1eN2�c2=2p�2 , the point processPN � X�2�N ÆfÆ�1N jHN (�)�cN�jg; (3:41)converges weakly to the standard Poisson point process on R+ .Proof. We will now show that the assumptions A of Theorem |ABS.3 hold. First, the point(i) of Assumption A is veri�ed due to the following proposition.Proposition 3.8:Let R�N;` be de�ned as in |ab.abs.6. Then, in the setting above, for all0 � � < 12 , jR�N;`j � j�N j` �1� e�hNd(1�2�)� ; (3:42)with some constant h > 0.Proof. Let E� denote the expectation under the uniform probability measure on f�1; 1g�N .We will show that there exists a constant, K > 0, such that, for any �0, and any 0 � ÆN � 1P�(� : b(�; �0) > ÆN ) � exp(�KÆ2NNd): (3:43)Note that without loss, we can take �0 � 1. We want to use the exponential Chebyshevinequality and thus need to estimate the Laplace transformE� exp tN�d XA2�N r2A�A! : (3:44)Let us assume for simplicity that N = nk is a multiple of k, and introduce the sub-lattice,�N;k � f0; k; : : : ; (n� 1)k; nkgd. WriteXA2�N r2A�A = XA2A Xy2�N;k Xx2�k r2A+y+x�A+y+x � Xx2�k Zx(�) (3:45)where Zx(�) = Xy2�N;k Yy;x(�) (3:46)has the nice feature that, for �xed x, the summandsYx;y(�) � XA2A r2A+y+x�A+y+x



22 Section 3are independent for di�erent y; y0 2 �n;k (since the sets A+ y+x and A0+ y0+x are disjointfor any A;A0 2 �k). Using the H�older inequality repeatedly,E� exp t Xx2�k Zx(�)! � Yx2�k hE� etkdZx(�)ik�d= Yx2�k Yy2�N;k hE� etkdYx;y(�)ik�d= hE� etkdY0;0(�)iNdk�d (3:47)
It remains to estimate the Laplace transform of Y0;0(�),E� exp �tkdY0;0(�)� = E�  tkd XA2�k r2A�A! ; (3:48)and, since E��A = 0, using that ex � 1 + x+ x22 ejxj,E� exp tkd XA2�k r2A�A! � E� exp t22 k2d XA2�k r2A! etkdPA2�k r2A! � E� exp� t22 CetD� ;(3:49)so that E� exp tN�d Xx2�k Zx(�)! � exp�N�d t22 C 0eN�dtD� ; (3:50)with constants, C;C 0;D, that do not depend on N . To conclude the proof of the lemma, theexponential Chebyshev inequality gives,P� [b(�; �0) > ÆN ] � exp��ÆN t+N�d t22 C 0etN�dD� : (3:51)Choosing t = �NdÆN , this givesP� [b(�; �0) > ÆN ] � exp ���Æ2NNd �1� �C 0e�ÆND=2�� (3:52)Choosing � small enough, but independent of N , we obtain the assertion of the lemma. }To verify Assumptions A (ii) and (iii), we need to introduce the matrix C = C(�1; : : : ; �`)with ` columns and jAN j rows, indexed by the subsets A 2 AN : the elements of each of itscolumn are rA�1A; rA�2A; : : : ; rA�À, so that CTC is the covariance matrix, BN (�1; : : : ; �`), upto a multiplicative factor Nd.



Mertens 23The assumption (ii) is veri�ed due to Proposition |prs. In fact, let us reduce C to thematrix ~C = ~C(�1; : : : ; �`) with columns �1A; �2A; : : : ; �À, without the constants rA. Then,exactly as in the case of p-spin SK models, by Proposition |prs, for any (�1; : : : ; �`) 2 LǸd;rthe matrix ~C(�1; : : : ; �`) can contain at most 2r � 1 di�erent columns. Hence, jLǸd;rj =O((2r � 1)Nd) while j�N jr � (2Nd=�)r.The assumption (iii) is veri�ed as well, and its proof is completely analogous to that ofProposition |pr1. The key observation is that, again, the number of possible non-degeneratematrices �Cr�r that can be obtained from Cp(�1; : : : ; �`) is independent of N . But this istrue since, by assumption, the number di�erent constants rA is N -independent.Finally, we de�ne QN as follows. For any A 2 A, letQ�;AN;` = n(�1; : : : ; �`) : 81�i<j�` r2A Xx2Zd:x+A��N �iA�jA < jAj�1N��o: (3:53)Let us de�ne QN = TA2AQ�;AN;` � R�N;`. By Proposition |SRSG.0, applied to a modelwhere jAj = 1, for any A 2 A, we have jS
`N n Q�;AN;`j � 2Nd exp(�hANd(1�2�)), with somehA > 0. Hence, jR�N;` n QN j has cardinality smaller than j�N j` exp(�hNd(1�2�)), with someh > 0. The veri�cation of |ab.abs.5 on QN is analogous to the one in Theorem |uthyyy,using the analogue of Proposition |pr4. We only note a small di�erence in the analysis ofthe term I4N where we use the explicit construction of QN . We represent the correspondinggenerating function as the product of jAj terms over di�erent equivalence classes of A, withrepresentatives A � �k, each term being Qx2Zd:x+A2�N �(N�d=2rA(t1�1x+A+ � � �+ t`�x̀+A)).Next, we use the fact that for any (�1; : : : ; �`) 2 QN each of these jAj terms is a productof at least 2` � 1 (and of coarse at most 2`) di�erent terms, each is taken to the powerjAj�1Nd2�`(1 + o(1)). This proves the �rst assertion of the theorem.The proof of the second assertion, i.e., the case � > 0 with Gaussian variables JA isimmediate from the estimates above and the abstract Theorem |ABS.1, in view of the factthat the condition |ab.abs.5 is trivially veri�ed. }References[BFM] H. Bauke, S. Franz, and St. Mertens. Number partitioning as random energy model. Journal of StatisticalMechanics: Theory and Experiment, page P04003, 2004.[BaMe] H. Bauke and St. Mertens. Universality in the level statistics of disordered systems. Phys. Rev. E,70:025102(R), 2004.
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