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Abstract: Recently, Bauke and Mertens conjectured that the local statistics of energies in
random spin systems with discrete spin space should in most circumstances be the same as in
the random energy model. Here we give necessary conditions for this hypothesis to be true,
which we show to hold in wide classes of examples: short range spin glasses and mean field
spin glasses of the SK type. We also show that, under certain conditions, the conjecture holds

even if energy levels that grow moderately with the volume of the system are considered.

1. Introduction.

In a recent paper [BaMe|, Bauke and Mertens have formulated an interesting conjecture
regarding the behaviour of local energy level statistics in disordered systems. Roughly speak-
ing, their conjecture can be formulated as follows. Consider a random Hamiltonian, Hy (o),
i.e., a real-valued random function on some product space, SA¥, where S is a finite space,
typically {—1,1}, of the form

Hy(o) = ) ®a(0), (1.1)
ACAN
where Ay are finite subsets of Z? of cardinality, say, N. The sum runs over subsets, A, of

AN and @4 are random local functions, typically of the form
D p(0) =Ja H O (1.2)

where J4, A C 74, is a family of (typically independent) random variables, defined on some
probability space, (2, F,P), whose distribution is not too singular. In such a situation, for
typical o, Hy (o) ~ V/N, while sup, Hy (o) ~ N. Bauke and Mertens then ask the following
question: Given a fixed number, E, what is the statistics of the values N~'/2H (o) that are
closest to this number, and how are configurations, o, for which these good approximants of £
are realised, distributed on SA~¥? Their conjectured answer, which at first glance seems rather
surprising, is quite simple: find g such that P(IN~Y/2Hy (o)~ E| < bdn, ) ~ |S|~Vb; then,
the collection of points, (51:,,1E|N_1/2HN(0)—E|, over all ¢ € SAV, converges to a Poisson point
process on R,. Furthermore, for any finite k, the k-tuple of configurations, o',02,..., 0",
where the k-best approximations are realised, is such that all of its elements have maximal
Hamming distance between each other. In other words, the asymptotic behavior of these
best approximants of E is the same, as if the random variables Hy (o) were all independent

Gaussian random variables with variance N, i.e., as if we were dealing with the random

energy model (REM) [Derl]. Bauke and Mertens call this “universal REM like behaviour”.
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2 Section 1

A comparable result had previously been conjectured by Mertens [Merl] in the particular

case of the number partitioning problem. In that case, the function Hy is simply given by

Hy(o) =) X0, (1.3)

with X; i.i.d. random variables uniformly distributed on [0,1], o; € {—1,1}, and one is
interested in the distribution of energies near the value zero (which corresponds to an optimal
partitioning of the N random variables, X;, into two groups such that their sum in each group
is as similar as possible). This conjecture was later proven by Borgs, Chayes, and Pittel
[BCP, BCMP]. It should be noted that in this problem, one needs, of course, take care of the
obvious symmetry of the Hamiltonian under the transformation o — —o. An extension of
these results in the spirit of the REM conjecture was proven recently in [BCMN], i.e., when

the value zero is replaced by an arbitrary value, F.

In [BK2] we generalised this result to the case of the k-partitioning problem, where the
random function to be considered is actually vector-valued (consisting of the vector of dif-
ferences between the sums of the random variables in each of the k subsets of the partition).
To be precise, we considered the special case where the subsets of the partition are required
to have the same cardinality, N/k (restricted k-partitioning problem). The general approach
to the proof we developed in that paper sets the path towards the proof of the conjecture by

Bauke and Mertens that we will present here.

The universality conjecture suggests that correlations are irrelevant for the properties of
the local energy statistics of disordered systems for energies near “typical energies”. On
the other hand, we know that correlations must play a role for the extremal energies near
the maximum of Hy (o). Thus, there are two questions beyond the original conjecture that
naturally pose themselves: (i) assume we consider instead of fixed F, N-dependent energy
levels, say, Exy = N*C. How fast can we allow Ey to grow for the REM-like behaviour to
hold? and (ii) what type of behaviour can we expect once Ey grows faster than this value?
We will see that the answer to the first question depends on the properties of Hy, and we
will give an answer in models with Gaussian couplings. The answer to question (ii) requires a
detailed understanding of Hy (o) as a random process, and we will be able to give a complete
answer on only in the case of the GREM, when Hy is a hierarchically correlated Gaussian

process. This will be discussed in a separate paper [BKO05].

Our paper will be organized as follows. In Chapter 2, we prove an abstract theorem, that

implies the REM-like-conjecture under three hypothesis. This will give us some heuristic
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understanding why and when such a conjecture should be true. In Chapter 3 we then show
that the hypothesis of the theorem are fulfilled in two classes of examples: p-spin Sherrington-
Kirkpatrick like models and short range Ising models on the lattice. In both cases we establish
conditions on how fast Fny can be allowed to grow, in the case when the couplings are

Gaussian.

Acknowledgements: We would like to thank Stephan Mertens for interesting discussions.

2. Abstract theorems.

In this section we will formulate a general result that implies the REM property under
some concise conditions, that can be verified in concrete examples. This will also allow us
to present the broad outline of the structure of the proof without having to bother with
technical details. Note that our approach is rather different from that of [BCMN] that

involves computations of moments.

Our approach to the proof of the Mertens conjecture is based on the following theorem,

which provides a criterion for Poisson convergence in a rather general setting.

Theorem 2.1: Let V;y > 0, i € N, be a family of non-negative random variables

satisfying the following assumptions: for any £ € N and all sets of constants b; > 0, j =
1,...,¢,

¢

. ‘

. > PV Vijm < bj) = H b; (2.1)
(il,...,ie)c{l,...,M} j=1
where the sum is taken over all possible sequences of different indices (i1,...,%,). Then the
point process

M
Py = Z(S‘/i,Mi (22)

i=1

on Ry, converges weakly in distribution, as M 1 oo, to the standard Poisson point process,

P on Ry (i.e., the Poisson point process whose intensity measure is the Lebesgue measure).

Remark: Theorem &mainth was proven (in a more general form, involving vector valued
random variables) in [BK2]. It is very similar in its spirit to an analogous theorem for the
case of exchangeable variables proven in [BM] in an application to the Hopfield model. The

rather simple proof in the scalar setting can be found in Chapter 13 of [B].

Naturally, we want to apply this theorem with V; 5 given by [N~Y2Hy /(o) — En|, properly

normalised.
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We will now introduce a setting in which the assumptions of Theorem &mainth are verified.
Consider a product space SV where S is a finite set. We define on SV a real-valued random

process, Yy (o). Assume for simplicity that
EYy (o) =0, E(Yn(0))® = 1. (2.3)

Define on SV

bn(o,0") = cov(Yn (o), Yn(a')). (2.4)

Let us also introduce the Gaussian process, Zy, on SV, that has the same mean and the

same covariance matrix as Yy(o).

Let G be the group of automorphisms on Sy, such that, for g € G, Yn(g0) = Yn(0), and
let F' be the larger group, such that, for g € F, |Yn(g90)| = |Yn(0)|. Let

En =¢N®, c¢a€eR, 0<a<1/2, (2.5)

be a sequence of real numbers, that is either a constant, ¢ € R, if & = 0, or converges to plus
or minus infinity, if & > 0. We will define sets Y. as follows: If ¢ # 0, we denote by Xy be
the set of residual classes of SY modulo G; if ¢ = 0, we let X n be the set of residual classes
modulo F. We will assume throughout that |Xy| > &V, for some & > 1. Define the sequence

of numbers
by = |/ 5ePR 2 sy . (2.6)

Note that dx is exponentially small in N 1 oo, since @ < 1/2. This sequence is chosen such
that, for any b > 0,

]%[iTm IXN|P(|Zn(0) — En| < bNn) = b. (2.7)
For £ € N, and any collection, ¢',..., 0% € Z}‘f’,z, we denote by By (c?,...,0f) the covariance

matrix of Yy (o) with elements

bij(ot,...,0f) = bn(ot, o). (2.8)
Assumptions A.
(i) Let Ry, denote the set

Ry ={(c",...,0") € 25" : Vicicj<e [bn(0’,07)| < N7} (2.9)
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Then there ezists a continuous decreasing function, p(n) > 0, on |ng,no| (for some 7y >

no > 0), and p > 0, such that

Rill > (1= exp (—u(mn?™) ) sl (2.10)

(i) Let £>2,r=1,...,£ — 1. Let

Ly, = {(01, oY) €3§  Vicici<e|[ YN (o) # [Ya(a?)],

(2.11)
rank(By(ol,...,0%) = ’r'}
Then there ezists d, o > 0, such that, for all N large enough,
Ly, < |Sn|me el (2.12)

(iii) For any £ > 1, anyr = 1,2,...,¢, and any by,...,by > 0, there ezist constants, p, 4 > 0

and Q < oo, such that, for any o',..., 0t € Z%e for which rank(By(c!,...,0%)) =1,

P(Vi_y : [Yn(o') — En| < Onb;) < QOy NP~ (2.13)

Theorem 2.2: Assume the Assumptions A hold. Assume that o € [0,1/2] is such that,
for some n1 < ng €Ny, o[, we have:

a < ng/2, (2.14)
a <n/2+ p(n)/2, V1 €]n1, n2l, (2.15)
and
a < p(m)/2. (2.16)
Furthermore, assume that, for any £ > 1, any by,...,b, >0, and (c',...,0%) € R;'\},z,

P(szl : ‘YN(O'i) — EN| < (SNb,) = P(szl : ‘ZN(O'i) — EN‘ < (SNbl) +O(|ZN|_K). (2.17)

Then, the point process,

Py = Z 5{6;,1|YN(0)—EN|} - P (2.18)
O'EEN

converges weakly to the standard Poisson point process P on Ry .
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Moreover, for any € >0 and any b € R,

P (VNDHNZNU . Ha,al:le(”,a—I)‘>e : |YN(O') — EN| S |YN(0") - EN| S 5Nb) =0. (219)

Remark: Before giving the proof of the theorem, let us comment on the various assumptions.

(i)

(i)

(iii)

Assumption A (i) holds with some 7 in any reasonable model, but the function p(n) is

model dependent.

Assumptions A (ii) and (iii) is also apparently valid in most cases, but can be tricky
sometimes. An example where (ii) proved difficult is the k-partitioning problem, with
k> 2.

Condition &ab.abs.12 is essentially a local central limit theorem. In the case a = 0 it
holds, if the Hamiltonian is a sum over independent random interactions, under mild
decay assumptions on the characteristic function of the distributions of the interactions.
Note that some such assumptions are obviously necessary, since if the random interactions
take on only finitely many values, then also the Hamiltonian will take values on a lattice,
whose spacings are not exponentially small, as would be necessary for the theorem to hold.
Otherwise, if a > 0, this will require further assumptions on the interactions. We will leave
this problem open in the present paper. It is of course trivially verified, if the interactions

are Gaussian.

Proof: We just have to verify the hypothesis of Theorem &mainth, for V; »; given by

o' Yn(0) — Enl, i.e., we must show that

Z P (szl : |YN(O'i) — EN| < b,(SN) — by ---by. (2.20)

(01,...,05)62%1

We split this sum into the sums over the set R , and its complement. First, by the assump-

tion deab.abs.5

> P (Vi : [Yn(o®) — En| < bidn)

(017"'502)67?‘"1\{1,@

' (2.21)
- 2 P (Viey @ |Zn(0") = En| < bidn) +o(1).
(01""’”£)€Ran,e
But, with C(EN) = {f = (ml’ L. 7$l) c Rﬂ . Vf+1‘EN _ (Ez| S (5Nbl},
P (Y, : |Zn(o%) — En| < bidn) / e GO o
o 7 = o) = z, 2.22
1 N N N (277)1/2\/det(BN(al, . ’04))

C(En)
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where By (o?,...,0") is the covariance matrix defined in ab.abs.41. Since §y is exponen-
tially small in N, we see that, uniformly for (o!,...,0%) € RT}\},Z, the integral &ab.abs.15
equals

(26N /V2r) (by - - by)e™ BB s DENII2(1 4 o(1)), (2.23)

where we denote by Ey the vector (En,...,EN).

We treat separately the sum dab.abs.14 taken over the smaller set, Ry , C Ry ,, and the

71 72
one over Ry ,\ RY ,.

Since, by &ab.abs.9; ns is chosen such that E3 N~ — 0, by dab.abs.5, &ab.abs.15, and

&dabs.n, each term in the sum over RT}\?J equals
(205 /v/21)" (by - by)e” TN IFOFONTIN (1 4 o(1)) = (by -+ bg) S| 41 +0(1)),  (2:24)
uniformly for (o,...,0%) € R%,. Hence by Assumption A (i)

o PVt |Zn(0Y) — En| < bidn) = [RE|[SN] by - be)(1 + 0(1))
(o1,..., rre)eR;'\?’(Z (2.25)

—>bl"'bl.

Now let us consider the remaining set R% ,\ R\, (if it is non-empty, i.e., if strictly n; < 72),

and let us find n; = n° < n' < ... < n™ = 1y, such that
a<n/2+pnthH/2 Vi=0,1,...,n 1, (2.26)

which is possible due to the assumption dab.abs.10. Then let us split the sum over Ry |\ R ,
into n sums, each over R% ,\RN',4=0,1,...,n—1. By dab.abs.5, &ab.abs.15, and dabs.n,

we have, uniformly for (o!,...,0%) € RN 4

P (Vi : |Zn(0") — En| < bidn) = (205 /v/2m) (b1 - - - by)e™ zlIEN ||2<1+0(N*"i))(1 +0(1))

< C|ZN|_46N2Q7"1

3

(2.27)
for some constant C' < oco. Thus by Assumption A (i),

- . 2a— i
Y PV i |Zn(0") — En| < bidy) < CISF\RYISN| TN

Ry \RNT! (2.28)

< Cexp (—u(n"“)N”‘"iH) + N%‘_"i) :
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that, by dsss, converges to zero, as N — oo, forany i = 0,1,...,n—1. So the sum &ab.abs.14

71 72 :
over Ry, \ Ry, vanishes.

Now we turn to the sum over collections, (¢,...,0%) & RY ;- We distinguish the cases
when det(By(c?,...,0%)) = 0 and det(By(o!,...,0%) # 0. For the contributions from the

latter case, using Assumptions A (i) and (iii), we get readily that,

Z P (Vi_; |Yn(0") — En| < dnbi) < |5 LN 0 5 NPe

(al,.., ,rl)emal"vll
rank(By (ol,...,00))=¢ (2.29)

< CNP¢exp (—p(nl)Np(m) + KE?V/Q) :

The right-hand side of &ab.abs.17 tends to zero exponentially fast, if condition dab.abs.10a

is verified.

Finally, we must deal with the contributions from the cases when the covariance matrix is

degenerate, namely

Z P(szl : ‘YN(O'i) — EN| < bi(SN), (230)

forr=1,...,£— 1. In the case ¢ = 0, this sum is taken over the set L'y 4, since o and o' in
Y. n are different, iff |Yn(o)| # |Yn(0')|, by definition of ¥. In the case ¢ # 0, this sum is
taken over /-tuples (o, ..., o) of different elements of ¥y, i.e., such that Yy (o?) # Yn(07),
for any 1 < i < j < £. But for all N large enough, all terms in this sum over /-tuples,
(o, ...,0%), such that Yy(o?) = —Yn(0?), for some 1 < i < j < £, equal zero, since the
events {|Yn(0") — En| < b;0n} and {| — Yn(0*) — En| < bjdn}, with Exy = c¢N®, ¢ # 0, are
disjoint. Therefore dsssss is reduced to the sum over L% , in the case ¢ # 0 as well. Then,

by Assumptions A (ii) and (iii), it is bounded from above by
L7, Q(On)T NPt < [Sy| e~ N Q(dy)" NPrt < CemdreN et Ex /2 NPre, (2.31)

This bound converges to zero exponentially fast, since E% = ¢*N?*, with o < 1/2. This

concludes the proof of the first part of the theorem.

The second assertion dab.abs.12 is elementary: by &ab.abs.17 and &ab.abs.18, the sum of
terms P(VZ_, : |Yn (o) — Enx| < dnb) over all pairs, (o!,02) € 2%2 \Rg}’z, such that o! # o2,
converges to zero exponentially fast. Thus &ab.abs.12 follows from the Borel-Cantelli lemma.

¢
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Finally, we remark that the results of Theorem &ABS.1 can be extended to the case when
EYn (o) # 0, if @ = 0, i.e., Exy = c¢. Note that, e.g. the unrestricted number partitioning
problem falls into this class. Let now Zx(o) be the Gaussian process with the same mean
and covariances as Yy(o). Let us consider both the covariance matrix, By, and the mean
of Yy, EYx (o), as random variables on the probability space (Xn, By, E, ), where E, is the

uniform law on 3. Assume that, for any £ > 1,
Bn(a',...,o") B I;, N1 oo, (2.32)
where I; denotes the identity matrix, and
EYn(c) 2 D, N 1 oo, (2.33)
where D is some random variable D. Let

dn = \/gK*I\erl. (2.34)

where
K =Ee (==D)"/2, (2.35)

Theorem 2.3: Assume that, for some R > 0, |[EYy(0)] < N, for all 0 € X . Assume
that dab.abs.4 holds for some n > 0 and that (ii) and (iii) of Assumptions A are valid.
Assume that there exists a set, Qn C R?V,z’ such that &ab.abs.5 is valid for any (o*,...,0%) €
On, and that |R7])V,1{ \ On| < |Zn|fe N7, with some v > 0. Then, the point process

Pn= > O vnio) mn P (2.36)

ocEX N

converges weakly to the standard Poisson point process P on Ry .

Proof. We must prove again the convergence of the sum &ab.abs.13, that we split into three
sums: the first over Qp, the second over R’ , \ Qn, and the third over the complement of
the set R?v,e- By assumption, éab.abs.5 is valid on Qp, and thus the terms of the first sum

are reduced to

/ e ((F=E¥n (0))By' (o ,....0°) (F=E¥n (0)))/2

~ (2m)8/2/det(B (o7, ..., 0%))
Vi=1,...,0:|z;—c|<dnbi (237)

= (20N /V/2m) (by -+ by)e” EFYNENE (o OERIN (/2 (1 4 o(1)),
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with ¢ = (¢, ...,c), and E)_;N(a) = (EYn (o'),...,EYN (%)), since 6 is exponentially small
and |EYy (0)| < NE. By definition of dy, the quantities dkjk are at most O(|Xx|4), while,
by the estimate dab.abs.4 and by the assumption on the cardinality of R?V,l\ On, the number
of /-tuples of configurations in Z%l \ R?v,e and in R?V,l \ Qn is exponentially smaller than
|¥n|¢. Hence
Y. F(¥ii:[Yn(o') — En| < bidy)
(a'l,...,o'[)GQN
_ Z (231\// /27 (by - - - bl)e—(a—EYN(g))Bﬂ(al,_..,gf)(a_E?N(a))/z(l +0(1)) + o(1)
(a'l,...,o'[)GQN
— Z (20n /V2m)t(by - - by)e~ E—EYN ()BT (oo (E-EVN (0))/2(1 4 o(1)) + 0(1)

_ bl "'bl‘ Z e—(E—]]_ﬂ.YN(a'))371(al,...,ol)(E—E?N(a’))/2(1 +0(1)) +0(1)_

(2.38)
The last quantity converges to by - - - by, by the assumptions &ab.z1, &ab.z2 and &ab.z3.

The sum of the probabilities, P(V_, : |Yn (o) — En| < dnb;i), over all £-tuples of R, \
Qn, contains at most [Ny |’e”™N " terms, while, by Assumption A (iii), (and since, for any
(o',...,0%) € R ,, the rank of By(o',...,0%) equals £) each term is at most of order

|X | %, up to a polynomial factor. Thus this sum converges to zero.

Finally, the sum of the same probabilities over the collections (o!,...,0%) € Z%l \ R;’V,l
converges to zero, exponentially fast, by the same arguments as those leading to dab.abs.17
and &ab.abs.18, with n; = 7. §

3. Examples

We will now show that the assumptions of our theorem are verified in a wide class of
physically relevant models: 1) the Gaussian p-spin SK models, 2) SK-models with non-
Gaussian couplings, and 3) short-range spin-glasses. In the last two examples we consider

only the case a = 0.
3.1 p-spin Sherrington-Kirkpatrick models, 0 < a < 1/2.

In this subsection we illustrate our general theorem in the class of Sherrington-Kirkpatrick

models. Consider § = {1, 1}.

Wy

(N) N ' . i,0i, Ty "+ O,
p 1<i1 << <ip <N

Hy(o) = (3.1)
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is the Hamiltonian of the p-spin Sherrington-Kirkpatrick model, where J;, .

....i, are indepen-

dent standard Gaussian random variables.
The following elementary proposition concerns the symmetries to the Hamiltonian.

Proposition 3.1:Assume that, for any 0 < iy < --- < i, < N, 04, -~ 0y, = 0} -0} .

P

Then, if p is pair, either o; = o, for alli=1,...,N, oro; = —o., foralli=1,...,N, and,

if p is odd, then o; = o}, for all i =1,...,N. Assume that, for any 0 < i; < --- < i, < N,
!

o L . e . o, .
iy = *- 03, = =0 =05 . This s impossible, iof p is pair and 0; = —o;, foralli=1,... N,

if p is odd.

This proposition allows us to construct the space Xn: If p is odd and ¢ # 0, ¥y = SV,
thus |[X | = 2V. If pis even, or ¢ = 0, ¥ consists of equivalence classes where configurations

o and —o are identified, thus |X | = 2V ~1.

Theorem 3.2: Letp > 1 be odd. Let Xy = SN. If p = 1 and a € [0,1/4], and, if
p=3,5,...,, and a € [0,1/2], for any constant ¢ € R\ {0} the point process

Pv= ), O(5 1N -1/2Hx (o) —cNo|} (3.2)
ocEX N

where oy = 9~ Neg+e®N>*/2 \/g, converges weakly to the standard Poisson point process, P,

on R, .
Let p be even. Let Y n be the space of equivalence classes of SV where o and —o are

identified. For any a € [0,1/2[ and any constant, ¢ € R, the point process

Py = Z 5{(251\;)*1|N*1/2HN(U)7CNH|} (3.3)
ocEX N

converges weakly to the standard Poisson point process, P, on Ry . The result &pp2n holds

true as well in the case of ¢ =0, for p odd.

Proof of Theorem &unp-not0. We have to verify the assumptions of Theorem &ABS.1 for

the process N~ '/2Hy(0) = Yn(o). The elements of the covariance matrix dab.abs.41 are:

bj,j(ala s ’o_l) = la Vﬁ':l; (34)

N ! , ,
bj,m(o'l,...,o'e) = < ) Z 0'31 O'ZJ 0’:?...0‘::, V1§j<mgl- (35)
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It has been observed in [BKL] that its non-diagonal elements can be written as

[p/2] sk
bim(ot, ... ob) = Z(—N)"“(Q:) (k1) H( Za] ) (1+O(1/N)).  (3.6)

Now let us verify the Assumption A (i). Let

N
1 ! ! —1 i
QN,[,q {(0’ ooy 0) €% Vicici<e ‘N ZO‘;

g=1

ol < qN’C}. (3.7)

The ¢-tuples of this set satisfy the following property: for any ds,...,8, € {—1,1}¥"1, the sets
of sites As,,...5, = {i : 0} = dy0;,03 = d30},. .. ,0f = §,0!} has the cardinality N2~ (1) 4
O(N'=¢). Then it is an easy combinatorial computation to check that there exists h > 0,
such that, for any ¢ € Ry, and any ¢ €]0,1/2],

|QN€q| > |ZN|[(1 - eXp(—hN172c)), (38)

(an /(p—2k) C RNZ’ with

q = (pmaxy—g, . [p/2] ( )(k — 1))~ But, for any n €]0,p/2[, and any k = 0,1,...,[p/2],

QN(k n)/(p—2k) ~ QNE-;I m/(p=2(k+1)) Therefore,

for all N large enough. By the representation &ij, we have (\i_, Oy

QNlg C Rl (3.9)
Thus, due to &aaaa, Assumption A (i) is verified with p(n) = 1 — 2n/p, for n €]0,p/2].

Let us now check the Assumption A (ii). To estimate the cardinality of L 4, we need to

introduce an £ by (N) matrix, Cp (o ...,al), as follows. For any given o!,...,c", the jth
column is composed of all ( ) products, 0'“0'12 . agp, over all subsets 1 <41 < iy < -+ <

ip < N. Then we have

-1
N
CZ(O’I, o0, (0. ot = <p> Bn(c',...,0%). (3.10)
Let o!,...,0" be such that rank(By(c',...,0%)) = r < £. Then, 7 columns of the matrix
C,(a!,...,0*) form a basis of its £ columns. Assume that these are, e.g., the first 7 columns.
The matrix C,(c!,...,0") can contain at most 2" different rows. We will show that, for any
(o', ...,0%) € Ly 45 it can in fact not contain all 2" rows, due to the following proposition.

Proposition 3.3: Assume that an 2" x r matriz, A, with elements, 1 or —1, consists of

all 27 different rows. Assume that a column of length 2" with elements 1 or —1 is a linear
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combination of the columns of A. Then this column is a multiple (with coefficient +1 or —1)

of one of the columns of the matrixz A.

Proof. The proof can be carried out by induction over r. A generalisation of this fact is

proven in [BK-npp].

Now, if the matrix Cy,(co',...,0") contained all 2" rows, then, by Proposition &prs, for
any j =7+ 1,...,£, there would exist m = 1,...,r, such that, either, for any 0 <i; < --- <
, J i _ .m m ; , J j _ m m
ip <N, 05 ---0; =oi---0;, or forany 0 <iy <--- <ip <N, 05 ---0; = —0i'---0;",

which would imply |Yx(o?)| = [Ya(6™)|. But this is excluded by the definition of Ly 4

Thus, for any (o!,...,0%) € LY 4, the matrix Cp(c?,...,0") contains at most 2" — 1 differ-
ent rows. There are O((2" — 1)) possibilities to construct such a matrix. Furthermore, there
is only an N-independent number of possibilities to complete it by adding linear combina-
tions of its columns to C,(c!,...,a*). To see this, consider the restriction of Cp(o?,...,0")
to any r linearly independent rows. There are not more than 2"*~") ways to complete it by
(£ — r) columns of £1 of length 7, that are linear combinations of its 7 columns. But each
such choice determines uniquely linear coefficients in these linear combinations and hence the
completion of the whole C,(a!,...,0") up to C,(o!,...,0*). Thus Lyl = O((2" — nHMvy.

It remains to verify the Assumption A (iii). This is easy: if rank(Bn(c!,...,0%)) = r,
then r of the random variables Yy (o!),...,Yn (o) are linearly independent. Assume that
these are, e.g., Yn(c't),...,Yn(0%"). Then the covariance matrix By(c®,...,0') is non-

degenerate, and the corresponding probability is bounded from above by

;. (20N )" (bi, -~ bi,)
P(V"_,|Yn(0%) — Ey| < 6xbi,) <
(i Yivlo™) = Bl < Ot J/@r)det By(o™, ..., o)

(3.11)

;From the representation of the matrix elements of , By (0!, ...,0'")), &tt, one sees that the
determinant, (det By (c%,...,0%")), is a finite polynomial in the variables N~!, and thus its

inverse can grow at most polynomially.

Thus, we have established that Assumption A is verified. We now turn to conditions
&ab.abs.9, &ab.abs.10, and &ab.abs.10a on «a. Since p(n) = 1 — 2n/p, for n €]0,p/2[, we
should find ny,7m2 €]0,p/2[ such that a < 19/2, a < n/2+ 1/2 — n/p for n €]n1,n2|[, and
a < 1/2 —n/p. We see that, for any p > 2 and a €]0,1/2], it is possible to fix n; > 0
small enough, and 7y €]0, p/2[ close enough to 1, such that these assumptions are satisfied.
If p = 1, then such a choice is possible only for a €]0,1/4[. The assumption dab.abs.5 need

not be verified here as Yy (o) is a Gaussian process.



14 Section 3

Remark: Values p = 1,a = 1/4. The value o = 1/4 is likely to be the true critical value
in the case p = 1. In this case, one can check that the principle part of our sum gives a
contribution of the form

const(1 + o(1)) S e (N Y miyOre)-T Y ml,(4e(1),

k(k—1)/2
(27[-N) ( )/ m1,2 ..... mk*l,k 1Si<jSN 1Si<jsk
Vijim; j|<NTT1/2

(3.12)
which in turn is easily seem to be of order (ec2/2)k(’“_1)/2, that it it does not behave like a
constant to the power k. Note that the term proportional to v N in the exponents arises

from the off-diagonal part of the covariance matrix By.

If a > 1/4, the contribution from the &ttn is already of order (eN'"  ©/2)k(k=1)/2 which
cannot be compensated by any normalisation of the form §%. Thus at least the conditions

of Theorem &mainth cannot hold in this case.
3.2. Generalized p-spin SK models at level a = 0.

In this subsection we generalize Theorem &unp-not0 to the case of non-Gaussian process
in the case of non-zero mean and o = 0. Let p > 1, U;
variables with EU = a and VarU = 1. Let
Y
o

Ny - -
Lyiz,..i, DE any (p) 1.1.d. random

HN(O') =

i1,0enyipTin Oy *** iy (3.13)

) 1<61 << <ip <N
Let ¢(s) = Fe**(U=4) be the generating function of (U — a).

Assumption B. We will assume in this section that E|U|® < oo and |¢(s)| = O(|s|71), as

|s| — oo.

Remark: The decay assumption on the Fourier transform is not optimal, but some condition
of this type is needed, as the result cannot be expected for discrete distributions, where the

number of possible values the Hamiltonian takes on would be finite.

We consider Yy (o) = N~ Y/2Hy(o). The state space X is defined as in the previous exam-

ple. The covariance matrix, given by &ij, converges in law to the identity matrix by the law of
.. _ N
large numbers. Furthermore, analogously to &ij, we see that EYy (o) = Q, (N /2 Y is10i),

where

[p/2]
Qulz) = Z(U’“(zp’“

k=0

)(k — 1)NzP2k, (3.14)
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By the central limit theorem, EYy (o) 3 Qp(J) where J is a standard Gaussian random

variable. Hence, dab.z1 and &ab.z2 are verified and we may define the constant
K, = Eexp ( (e~ an(J))2/2) (3.15)

Then, 6y = KN N7 (V27 /2), with [Xn| = 2V for p odd and [Xx| = 2V~! for p even.
Theorem 3.4:

(i) Let p be odd. Let X = S™. For any c # 0, the point process

Pn= Y 8{2VK,(2/V2r)[Yn(o) — cl} (3.16)
ocEXN

converges weakly to the standard Poisson point process on Ry .

(ii) Let p be odd and ¢ = 0, or let p be even and ¢ # 0. Denote by X n the space of the 2N ~!

equivalence classes in SN where o and —o are identified. Then the point process
Pn= Y. 02N K, (2/V21) V(o) — cf}, (3.17)
ocEX N

converges weakly to the standard Poisson point process on R, .

Proof of Theorem &uthyyy. We should check the assumptions of Theorem &ABS.3. The
Assumptions A (i), for any n €]0,p/2], and (ii) have been already verified in the proof of
Theorem &unp-not0. We must check (iii) and also the assertion dab.abs.5 on an appropriate

subset On.

We will use the construction of the matrix Cp (o, ..., 0*) explained in the proof of Theo-

rem &unp-not0, see dccb. Let us introduce the Fourier transform

4

§7 5 b1, ) = EBexp (il (Ya(0') BV (61) 4+ -+t (Yir(0*) - BV (0)]). (3.18)

A simple computation shows that

(5 —1/2
£ (L) = 1__[ ¢((]Z> / {cp(gl,_..,gf)t‘}m), (3.19)

where {C, (0!, ...,0%)t}n is the mth coordinate of the product of the matrix C, (o', ..., c%)
with the vector & = (t1,...,%).
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Assumption A (iii) is valid due to the following proposition.

Proposition 3.5: There exists a constant, Q = Q(r,£,b1,...,bs) > 0, such that, for any

(o1, ...,0%) € 2§, any r <, if rank By(o',...0%) =1,

P (szl V(o) —¢f < ngi) < [on]"QNPT/2H1, (3.20)

Proof. Recall that it follows from the hypothesis that the rank of the matrix C,(o?,...,0%)
equals . Let us remove from this matrix £—r columns such that the remaining r columns are

linearly independent. They correspond to a certain subset of  configurations. Without loss of

generality, we may assume that they are o',..., 0", i.e., we obtain the matrix C,(c?,...,0").
Obviously,

i (vf:1 |Yn(o®) —¢f < SNb,-) <P (v;:1 Yn(0?) — ¢ < ngi) (3.21)
Then

P (vf:1 Y (of) — ¢ < ngi)

1 ) r itjb]-g’Ni —it,-bﬁw (3.22)
lim / 5 (b)) TT S c dt;.

< .
- (271')7' D—oo ! 2it;
[7D1D]T J:1 !

As by = O(27N), the integrand in &tt1.1 is bounded by

eitjbj’gN _ e_'itjbj’gN .
. < min (Qo2~ ™, 206, )., (3.23)
22tj
with a constant, Qo = Qo(b;). Next, let us choose in the matrix C,(o?,...,0") any r linearly

independent rows and construct from them an r x r matrix, C"*". Then, by &rtt and by

Assumption B on ¢(s)
L . T N —-1/2 _
7j=1

with Qg > 0. Hence, the absolute value of the integral &tt1.1 is bounded by the sum of two

< [] min (1, Qo N*/? \{FC‘W},-\*) . (3.24)
=1

terms,

Qo(b1) -+ Qo(b,)27N" / [T min (1, QoN#/2|{Cm*r 2| ") at

- . J=1
) i<z (3.25)
+ / H(2t;nl)Hm1n (1,QoNp/Q‘{C_'rXTt‘}j‘il)dtj.
71=1 =1

l[£]]>2N"
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Recall that the matrix C™*" has matrix elements +1 and rank r. Since the total number
of such matrices is at most 2T2, the smallest absolute value of the determinant of all such
matrices is some positive number that does not depend on N, but only on r. Therefore,
the change of variables, 7 = C™*"#, in the first term shows that the integral over ||]] < 2"V
is of order at most N?"/2In2"N ~ N?7/2+1  Thys the first term of &yyl is bounded by
Q12 N NP/2+1 with some constant Q; < oo. Using the change of variables 7 = 2-"N¢
in the second term of dyyl, one can see that the integral over [|{]] > 2" is bounded by
Q22 N NP"/2 with some constant Q5 < co. This concludes the proof. ¢

Finally, let us fix any n €]0,1/2[ and introduce Qn = Q;’V/ﬁ,q ( defined in &qqqqq) with
q = (pmaxy—g,.._[p/2] (i}k)(k — 1)!N~!. By &qqqq and &aaaa, it is a subset of R?v,ea and
X%\ Q| is smaller than 9NLe—hN'*" " \ith some h > 0. We need to verify dab.abs.5 for

Qn. We abbreviate

Wy =07 ((c — EYn(0)),..., (c — EYn(c?))). (3.26)
For any o',...,0f € Qn, we split
_ 4
P(Vi_y|Yn(0') — el <bidn) = Y IR(a',..., 0%, (3.27)
m=1

where

it- Wi —t_’BN(o'l,...,ae)t_‘/2d£'

£ Litibidn _ gitibion
_ e
2it;
=1

I}V(Ul,...,oz):/ e
Re I !
L jitibi0n _ p—itibion ; o (3.28)
_ / H 53 ezt-WNe—tBN(o' N )t/2dt,
. it;
B >enere =1 !
£ it]bj‘sN ’Lt]b]'tsN N .
IIQV(O_I’ ’01') _ / H € 2.: ot WN( 7 seen® (f) . eftBN(al,...,ae)t/2)dt,
, it;
18] <eness I !
(3.29)
¢ ’Lt]'b]"gN —’Ltjbj’gN o
IX(eo',...,0% = / I1¢ 5 : EWn polest (NaE (3.30)
5 it;
eNv/o i <oV I !
and
L itbion —it;bi N
e —e "1 Ty 1 £ N
Iy(oh, ... 0% = (2n)7* lim / T W pot o (R
N(U ) :U) ( 7T) DSoo ]:[1 2itj fN (‘) 3

[~ D, D)n||f]>6VNF 1=
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with some €,d > 0 to be chosen later.

The first part of I (ol,. .., o) is exactly the quantity P(V:_, : |Zn(0%) —c| < bidn). Note
that _
£ ’Lt]'b]'(sN _ —t]b]'(sN
‘ [IE ¢ < Q2 M, (3.32)
" 22tj
j=1

with some @ < co. Then the second part of I is exponentially smaller than 2~V for all
(o',...,0%) € On. We must show that I3, I, Iy are o(2~ V), for all (o',...,0"%) € Qn.

This is easy due to the following proposition.

Proposition 3.6: There exist constants, C < oo, €,0,8 > 0, such that, for all (o!,...,0%) €
On, the following estimates hold:

(i) For all ||t_]| < eNP/8

o! ot —t 1 8y, C||t_]|3 —tB 1 Ht/2
‘fN yenny (t_) _e tBN(a' yeens O )t/2‘ S — " e N(U' 3eees 0 ) / . (333)
VNP

(ii) For all ||t]| < /NP,
‘f](\r,l""’ge(f)‘ < e~ OlEI” (3.34)

Proof. The proof is elementary and completely analogous to the corresponding estimate in
the proof of the Berry-Essen inequality. All details are completely analogous to those in the
proof of Lemma 3.5 in [BK2] and therefore are omitted. ¢

Using &pl and &stb, we see that I%(o',...,0') = O(N7?/2)2=Nt  The third term,
I3(c, ..., o), is exponentially smaller than 27V¢ by &p3.

Finally, by &stb we may estimate I5 (c!,...o*) roughly as

0'1 ...o'k g
Rl [ gt @ (3.35)
171>/ N7

with some constant QQ < co. By the construction of the set Qx &qqqqq, for any (o!,...,0%) €
Qn, the matrix Cy (o, ..., 0%), (i.e., the matrix with NV rows, the kth row being 01,02, ...,0%),
)

2¢~1 possible different rows, each row being present at least 27*N (1 + o(1

contains at least
times. Consequently, each of these rows is present in the matrix Cp(o! ,...,0%) at least

27 ¢NP(1 + o(1)) times, for any p > 2. Then, by &rtt, ff\r,l’""ae (t) is the product of at least
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2¢~1 different characteristic functions, each is taken to the power at least 27¢N?(1 + o(1)).
Let us fix from a set of different rows of C,(c',...,0*) £ linearly independent ones, and
denote by C the square matrix composed of them. Then there exists ((d) > 0, such that
\/tCTCt/v? > ¢, for all £, with ||£]] > 0. Changing variables 5§ = (g)il/QC_'E'in &16, one gets
the bound

£
—(£-1) NP o
o ,...,0 ) < - Sm S+ .
|IE4V( 1’ ’ l)‘ Q2 ZNNp£/2 / H ‘d)( )‘2 NP (14 (1))d (3 36)

- =1
I#>¢ ™

Assumption B made on ¢(s) implies that ¢(s) is aperiodic, and thus |¢(s)| < 1, for any s # 0.
Moreover, for any ¢ > 0, there exists h(¢) > 0, such that |¢(s)| < 1 — h((), for all s with
|s| > ¢/£. Therefore, the right-hand side of &hj does not exceed

¢
S L B ) IO A CE

Ii[>n ™=
where the integral is finite again due to Assumption B. Therefore, I3 (c!, ..., 0*) is exponen-

tially smaller than 2Nt This concludes the proof of &ab.abs.5 on Qy and of the theorem.
%
3.3. Short range spin glasses.

As a final example, we consider short-range spin glass models. To avoid unnecessary
complications, we will look at models on the d-dimensional torus, Ay, of length N. We

consider Hamiltonians of the form

Hy(o)= =N 3" radaca (3.38)

where e 04 = Hze 40z, TA are given constants, and J4 are random variables. We will

introduce some notation:
(a) Let An denote the set of all A C Ay, such that r4 # 0.

(b) For any two subsets, A, B C Ay, we say that A ~ B, iff there exists x € Ay such that
B = A+ x. We denote by A the set of equivalence classes of Apx under this relation.

We will assume that the constants, r 4, and the random variables, J4, satisfy the following

conditions:
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(i) 74 = TA4s, for any z € Ap;

(ii) there exists k € N, such that any equivalence class in A has a representative A C Ag; we

will identify the set A with a uniquely chosen set of representatives contained in Ay.
(i) Y acan.™a = N
(iv) Ja, A € Z4, are a family of independent random variables, such that
(v) J4 and J4, are identically distributed for any z € 7
(vi) EJ4 =0 and EJ2 =1, and EJ3 < oc;

(vii) For any A € A, the Fourier transform ¢4(s) = Eexp (isJa), of J4 satisfies |¢a(s)| =

O(|s|™1) as |s| — oco.

Observe that EH (o) = 0,

b(o,0') = N "EHy(0)Hn(0') = N~ * Y rioacl <1 (3.39)
ACAN

where equality holds, if ¢ = ¢’.

Note that Yy(o) = Yn(o') (resp. Yn(o) = —Yn(o') ), if and only if, for all A € Ay,

o4 =0y (resp. o4 = —0'y). E.g., in the standard Edwards-Anderson model, with nearest
neighbor pair interaction, if o,, differs from ¢/, on every second site, z, then Yy (o) = =Yn(0”),
and if o' = —o, Yy (0) = Yn(0'). In general, we will consider two configurations, o, o’ € SA~,

as equivalent, iff for all A € Ay, 04 = ¢';. We denote the set of these equivalence classes
by YXn. We will assume in the sequel that there is a finite constant, I' > 1, such that
XN > 2N'T=1. Tn the special case of ¢ = 0, the equivalence relation will be extended to
include the case 04 = —0o’y, for all A € Ay. In most reasonable examples (e.g. whenever
nearest neighbor pair interactions are included in the set A), the constant I' < 2 (resp. I' < 4,
if ¢ = 0)).

Theorem 3.7: Let c € R, and XN be the space of equivalence classes defined before. Let

oy = |EN|’16”'2/2\/§. Then the point process

Pn = Z 5{5;,1|HN(H)7C|}: (3.40)

ocEX N

converges weakly to the standard Poisson point process on R, .
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If, moreover, the random variables J4 are Gaussian, then, for any ¢ € R, and 0 < a < 1/4,

with dn = |EN|71€N2(162/2\/§, the point process
Pn = Z 5{6;1\HN(0)—cNa|}, (3.41)
O'EEN

converges weakly to the standard Poisson point process on R, .

Proof. We will now show that the assumptions A of Theorem &ABS.3 hold. First, the point

(i) of Assumption A is verified due to the following proposition.

Proposition 3.8:Let R , be defined as in &ab.abs.6. Then, in the setting above, for all
0<n<3,
Ryl > [nlf (1 e (3.42)

with some constant h > 0.

Proof. Let E, denote the expectation under the uniform probability measure on {—1, 1}~

We will show that there exists a constant, K > 0, such that, for any ¢/, and any 0 < §ny < 1
P, (0 :b(o,0') > 6n) < exp(—K63N?). (3.43)

Note that without loss, we can take o/ = 1. We want to use the exponential Chebyshev

inequality and thus need to estimate the Laplace transform

E, exp <tN—d > riaA) : (3.44)

AcAN

Let us assume for simplicity that N = nk is a multiple of k, and introduce the sub-lattice,

Ani ={0,k,...,(n— 1)k, nk}%. Write

Z TQAO'A = Z Z Z 7',24+y+g;UA+y+:n = Z Z:n(a) (3'45)

AcAN AEAyEAN,k €A €A

where

Za(0) = > Yyau(o) (3.46)

YEAN &
has the nice feature that, for fixed z, the summands

Yoy(o) = Z 7"124+y+z‘7A+y+w

AcA
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are independent for different y,y’ € A,  (since the sets A+y+x and A’ +y' + = are disjoint
for any A, A’ € Ag). Using the Holder inequality repeatedly,

E, exp <t Z Zz(0)> < H [Eaetkdzm(g)}kd

€A €A

1 1 [Eﬂ etkdn,y(a)} L (3.47)

zE€EAL YEAN &

5, e300 "

dk—d

It remains to estimate the Laplace transform of Y} (o),

E, exp (tk?Yy0(0)) = E, <tkd Z ’I"QAO'A) , (3.48)

and, since E, 04 = 0, using that e <1+ z + %em,

d 2 t? 2d 2 t’ﬂdzA NESR t? tD
E, exp | tk Z’I‘AO'A < E, exp Ek Z’I"A e €A =K, exp ECe ,

A€ A€A;
(3.49)

so that

t2 -
I, exp (tNd > Zm(a)> < exp (NdEC'eN dtD) , (3.50)

with constants, C,C’, D, that do not depend on N. To conclude the proof of the lemma, the

exponential Chebyshev inequality gives,
at? N~D
P, [b(o,0") > dn] < exp (—(5Nt + N~ §C'et ) . (3.51)
Choosing t = eN%§y, this gives
P, [b(o,0") > dn] < exp (—edu N* (1 — eC'e®N P /2)) (3.52)

Choosing € small enough, but independent of N, we obtain the assertion of the lemma. <

To verify Assumptions A (ii) and (iii), we need to introduce the matrix C = C(d!,. .., c*)
with £ columns and |Ay| rows, indexed by the subsets A € Ay: the elements of each of its
column are rqoly,r40%,...,740%, so that CTC is the covariance matrix, By (o', ...,0%), up

to a multiplicative factor N¢.
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The assumption (ii) is verified due to Proposition &prs. In fact, let us reduce C to the

matrix C = C(c',...,o") with columns ol,0%,...,0%, without the constants r4. Then,
exactly as in the case of p-spin SK models, by Proposition &prs, for any (o!,...,0%) € ﬁﬁvd,T
the matrix C(o',...,0%) can contain at most 2" — 1 different columns. Hence, |£de =

O((2" — 1)N") while |[Sy|" > (2N /T)".

The assumption (iii) is verified as well, and its proof is completely analogous to that of
Proposition &prl. The key observation is that, again, the number of possible non-degenerate
matrices C™>" that can be obtained from Cp(a,... ,0t) is independent of N. But this is

true since, by assumption, the number different constants r4 is N-independent.

Finally, we define Qy as follows. For any A € A, let

e = {(01, o) Vicicgaerh Y, ohol < |A|—1N—"}. (3.53)
ceZdx+ACAN

Let us define On = (4 QK}? C R}, By Proposition #SRSG.0, applied to a model
where |A| = 1, for any A € A, we have |[S$F\ 7]'\}:2| < 2V exp(—h 4 N1 =2)) with some
ha > 0. Hence, [R} ,\ Qn| has cardinality smaller than ¥ n|f exp(—hAN41=21)) | with some
h > 0. The verification of &ab.abs.5 on Qp is analogous to the one in Theorem &uthyyy,
using the analogue of Proposition &pr4. We only note a small difference in the analysis of
the term I where we use the explicit construction of Qn. We represent the corresponding
generating function as the product of |A| terms over different equivalence classes of A, with
representatives A C Ag, each term being [[,cza.014ea, PN~ 2 g(trol g+ + b L))
Next, we use the fact that for any (o!,...,0%) € Qn each of these |A| terms is a product

of at least 2 — 1 (and of coarse at most 2¢) different terms, each is taken to the power

|A|"IN927¢(1 4 0o(1)). This proves the first assertion of the theorem.

The proof of the second assertion, i.e., the case @ > 0 with Gaussian variables J4 is
immediate from the estimates above and the abstract Theorem &ABS.1, in view of the fact
that the condition &ab.abs.5 is trivially verified.
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