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Abstra
t. Here we develop an approa
h for eÆ
ient pri
ing dis
rete-time Ameri-
an and Bermudan options whi
h employs the fa
t that su
h options are equivalentto the European ones with a 
onsumption, 
ombined with analysis of the marketmodel over a small number of steps ahead. This approa
h allows 
onstru
ting bothupper and low bounds for the true pri
e by Monte Carlo simulations. An adaptive
hoi
e of lo
al low bounds and use of the kernel interpolation te
hnique enhan
eeÆ
ien
y of the whole pro
edure, whi
h is supported by numeri
al experiments.1. Introdu
tionThe valuation of high-dimensional Ameri
an and Bermudan options is one of themost diÆ
ult numeri
al problems in �nan
ial engineering. Several approa
hes havere
ently been proposed for pri
ing su
h options using Monte Carlo simulation te
h-nique (see, e.g. [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 15℄ and referen
es therein). In somepapers, pro
edures are proposed that are able to produ
e upper and low bounds forthe true pri
e and hen
e allow for evaluating the a

ura
y of pri
e estimates.In [3℄ we develop the approa
h for pri
ing Ameri
an options both for dis
rete-time and 
ontinuous-time models. The approa
h is based on the fa
t that anyAmeri
an option is equivalent to the European one with a 
onsumption pro
ess in-volved. This approa
h allows us, in prin
iple, to 
onstru
t iteratively a sequen
ev1; V 1; v2; V 2; v3; :::, where v1; v2; v3; ::: is an in
reasing (at any point) se-quen
e of low bounds and V 1; V 2; :::, is a de
reasing sequen
e of upper bounds.Unfortunately, the 
omplexity of the pro
edure in
reases dramati
ally with any newiteration step. Even V 2 is too expensive for the real 
onstru
tion:Let us 
onsider a dis
rete-time �nan
ial model and let(Bti;Xti) = (Bti;X1ti ; :::;Xdti); i = 0; 1; :::; L;be the ve
tor of pri
es at time ti; where Bti is the pri
e of a s
alar riskless asset (weassume that Bti is deterministi
 and Bt0 = 1) and Xti = (X1ti; :::;Xdti) is the pri
eve
tor pro
ess of risky assets ( along with index ti we shall use below the index i andinstead of (ti;Xti) we will write (ti;Xi)). Let fi(x) be the pro�t made by exer
isingan Ameri
an option at time ti if Xti = Xi = x:In this paper we propose to use an in
reasing sequen
e of low bounds for 
onstru
t-ing an upper bound and low bound at the initial position (t0;X0). It is supposedthat the above sequen
e is not too expensive from the 
omputational point of view.This is a
hieved by using lo
al low bounds whi
h take into a

ount a small numberof exer
ise dates ahead.Let (ti; mXi); i = 0; 1; :::; L; m = 1; :::;M; be M independent traje
tories allstarting from the point (t0;X0) and let v1 � v2 � ::: � vl be a �nite sequen
eof low bounds whi
h 
an be 
al
ulated at any position (ti; x). Clearly, these lowbounds are also ordered a

ording to their numeri
al 
omplexities and a naturalnumber l indi
ates the maximal su
h 
omplexity as well as the quality of the lowbound vl. Any low bound gives a low bound for the 
orresponding 
ontinuationvalue (low 
ontinuation value) and an upper bound for the 
onsumption pro
ess(upper 
onsumption pro
ess). If the payo� at (ti; mXi) is less or equal to the low1




ontinuation value, then the position (ti; mXi) belongs to the 
ontinuation regionand the 
onsumption at (ti; mXi) is equal to zero. Otherwise the position (ti; mXi)
an belong either to the exer
ise region or to the 
ontinuation region. In the latter
ases we 
ompute the upper 
onsumption at (ti; mXi) as a di�eren
e between thepayo� and the low 
ontinuation value.It is important to emphasize that the low bounds are applied adaptively. It meansthat if, for instan
e, using the low bound v1 (whi
h is the 
heapest one amongv1; v2; :::; vl) at the position (ti; mXi); we have found that this position belongs tothe 
ontinuation region (i.e., the 
orresponding upper 
onsumption pro
ess is equalto zero), we do not 
al
ulate any further bounds. Similarly, if the upper 
onsumptionpro
ess is positive but 
omparatively small, we 
an stop applying further bounds at(ti; mXi) be
ause a possible error will not be large. Finally, if the upper 
onsumptionpro
ess is not small enough after applying low bounds v1; :::; vj but 
hanges notsigni�
antly after applying vj+1; we 
an stop applying further bounds as well. Thelow bounds are pres
ribed to every position (ti; mXi) and are, as a rule, lo
al.Applying them means, in some sense, a lo
al analysis of the 
onsidered �nan
ialmarket at any position. Su
h a lo
al analysis for all positions (ti; mXi); i =0; 1; :::; L; m = 1; :::;M , yields some global low bound and upper bound at theoriginal position (t0;X0). If we dete
t that the di�eren
e between the global upperand low bounds is large, we 
an return to the deeper lo
al analysis. It is 
lear that,in prin
iple, this analysis 
an give exhaustive results in a �nite number of steps (itsuÆ
es to take the following sequen
e of Ameri
an options at (ti; mXi): v1 is thepri
e of the Ameri
an option on the time interval [ti; ti+1℄, v2 is the pri
e on [ti; ti+2℄and so on, in a way that vL�i is the pri
e on [ti; tL℄). Thus, we have no problemswith 
onvergen
e of the algorithms based on the approa
h 
onsidered.The paper is organized as follows. In Se
tion 2 we re
all the basi
 notions related tothe pri
ing of Ameri
an and Bermudan options and sket
h the approa
h developedin [3℄. The method of this paper is presented in Se
tion 3. Two numeri
al examplesare given in Se
tion 4. The paper is 
on
luded in Se
tion 5.2. The approa
h based on 
onsumption pro
essesTo be self-
ontained, let us brie
y re
all the approa
h to pri
ing Ameri
an optionsthat has been developed in [3℄.2.1. The Snell envelope. We assume that the modelling is based on the �lteredspa
e (
;F ; (Fi)0�i�L;Q), where the probability measure Q is the risk-neutral pri
-ing measure for the problem under 
onsideration, and Xi is a Markov 
hain withrespe
t to the �ltration (Fi)0�i�L :The dis
ounted pro
ess ~Xi := Xi=Bi is a martingale with respe
t to the Q and thepri
e of the 
orresponding dis
rete Ameri
an option at (ti;Xi) is given by(2.1) ui(Xi) = sup�2Ti;LBiE�f�(X� )B� jFi� ;2



where Ti;L is the set of stopping times � taking values in fi; i+ 1; :::; Lg: The valuepro
ess ui (Snell envelope) 
an be determined by the dynami
 programming prin
i-ple: uN (x) = fN (x);(2.2) ui(x) = max�fi(x); BiE �ui+1(Xi+1)Bi+1 jXi = x�� ; i = L� 1; :::; 0:We see that theoreti
ally the problem of evaluating u0(x); the pri
e of the dis
rete-time Ameri
an option, is easily solved using iteration pro
edure (2.2). However, ifXis high dimensional and/or L is large, the above iteration pro
edure is not pra
ti
al.2.2. The 
ontinuation value, the 
ontinuation and exer
ise regions. For the
onsidered Ameri
an option, let us introdu
e the 
ontinuation value(2.3) Ci(x) = BiE�ui+1(Xi+1)Bi+1 jXi = x� ;the 
ontinuation region C and the exer
ise (stopping) region E :C = f(ti; x) : fi(x) < Ci(x)g ;(2.4) E = f(ti; x) : fi(x) � Ci(x)g :Let X i;xj ; j = i; i+ 1; :::; L; be the Markov 
hain starting at time ti from the pointx : X i;xi = x; and mX i;xj ; m = 1; :::;M; be independent traje
tories of the Markov
hain. The Monte Carlo estimator ûi(x) of ui(x) (in the 
ase when E is known) hasthe form(2.5) ûi(x) = 1M MXm=1 BiB� f(mX i;x� );where � is the �rst time at whi
h X i;xj gets into E (of 
ourse, � in (2.5) dependson i; x; and m : � =m � i;x). Thus, for estimating ui(x), it is suÆ
ient to examinesequentially the position (tj; mX i;xj ) for j = i; i + 1; :::; L, whether it belongs to Eor not. If (tj; mX i;xj ) 2 E, then we stop at the instant � = tj on the traje
tory
onsidered. If (tj; mX i;xj ) 2 C, we move one step more along the traje
tory.Let v be any low bound, i.e. ui(x) � vi(x); i = 0; 1; :::; L: Clearly, fi(x) is a lowbound. If v1i ; :::; vli are some low bounds then the fun
tion vi(x) = max1�k�l vki (x)is also a low bound. Hen
eforth we 
onsider low bounds satisfying the inequalityvi(x) � fi(x): Introdu
e the setCv = �(ti; x) : fi(x) � BiE �vi+1(Xi+1)Bi+1 jXi = x�� :Sin
e Cv � C, any low bound provides us with a suÆ
ient 
ondition for moving alongthe traje
tory: if (tj; mX i;xj ) 2 Cv, we do one step ahead.3



2.3. Equivalen
e of Ameri
an options to European ones with 
onsumptionpro
esses. For 0 � i � L� 1 the equation (2.2) 
an be rewritten in the form(2.6) ui(x) = BiE �ui+1(Xi+1)Bi+1 jXi = x�+�fi(x)�BiE�ui+1(Xi+1)Bi+1 jXi = x��+ :Introdu
e the fun
tions(2.7) 
i(x) = �fi(x)�BiE�ui+1(Xi+1)Bi+1 jXi = x��+ ; i = L� 1; :::; 0:Due to (2.6), we haveuL�1(XL�1) = BL�1E�fL(XL)BL jFL�1�+ 
L�1(XL�1);uL�2(XL�2) = BL�2E�uL�1(XL�1)BL�1 jFL�2�+ 
L�2(XL�2)= BL�2E �fL(XL)BL jFL�2�+BL�2E�
L�1(XL�1)BL�1 jFL�2�+ 
L�2(XL�2):Analogously, one getsui(Xi) = BiE�fL(XL)BL jFi�+Bi L�(i+1)Xk=1 E�
L�k(XL�k)BL�k jFi�(2.8) +
i(Xi); i = 0; :::; L� 1:Putting X0 = x and re
alling that B0 = 1; we obtain(2.9) u0(x) = E�fL(XL)BL �+ 
0(x) + L�1Xi=1 E�
i(Xi)Bi � :Formula (2.9) gives us the pri
e of the European option with the payo� fun
tionfi(x) in the 
ase when the underlying pri
e pro
ess is equipped with the 
onsumption
i de�ned in (2.7).2.4. Upper and low bounds using 
onsumption pro
esses. The results aboutthe equivalen
e of the dis
rete-time Ameri
an option to the European one with the
onsumption pro
ess 
annot be used dire
tly be
ause ui(x) and 
onsequently 
i(x)are unknown. We take the advantage of this 
onne
tion in the following way (see[3℄).Let vi(x) be a low bound on the true option pri
e ui(x): Introdu
e the fun
tion(upper 
onsumption pro
ess)(2.10) 
 i;v(x) = �fi(x)�BiE�vi+1(Xi+1)Bi+1 jXi = x��+ ; i = 0; :::; L� 1:Clearly, 
i;v(x) � 
i(x):Hen
e the pri
e Vi(x) of the European option with payo� fun
tion fi(x) and upper
onsumption pro
ess 
i;v(x) is an upper bound: Vi(x) � ui(x):4



Conversely, if Vi(x) is an upper bound on the true option pri
e ui(x) and(2.11) 
i;V (x) = �fi(x)�BiE�Vi+1(Xi+1)Bi+1 jXi = x��+ ; i = 0; :::; L� 1;then the pri
e vi(x) of the European option with low 
onsumption pro
ess 
i;V (x)is a low bound.Thus, starting from a low bound v1i (x); one 
an 
onstru
t the sequen
e of lowbounds v1i (x) � v2i (x) � v3i (x) � ::: � ui(x); and the sequen
e of upper boundsV 1i (x) � V 2i (x) � ::: � ui(x). All these bounds 
an be, in prin
iple, evaluated bythe Monte Carlo simulations. However, ea
h further step of the pro
edure requireslabor-
onsuming 
al
ulations and in pra
ti
e it is possible to realize only a few stepsof this pro
edure. In this 
onne
tion, mu
h attention in [3℄ is given to varian
eredu
tion te
hnique and some 
onstru
tive methods for redu
ing statisti
al errorsare proposed there.2.5. Bermudan options. As before, let us 
onsider the dis
rete-time model(Bi;Xi) = (Bi;X1i ; :::;Xdi ); i = 0; 1; :::; L:Suppose that an investor 
an exer
ise only at an instant from the set of stoppingtimes S = fs1; :::; slg within f0; 1; :::; Lg, where sl = L. The pri
e ui(Xi) of the so
alled Bermudan option is given byui(Xi) = sup�2TS\[i;L℄ BiE�f�(X� )B� jFi� ;where TS\[i;L℄ is the set of stopping times � taking values in fs1; :::; slg\fi; i+1; :::; Lgwith sl = L.The value pro
ess ui is determined as follows:uL(x) = fL(x);ui(x) = 8>><>>: max�fi(x); BiE�ui+1(Xi+1)Bi+1 jXi = x�� ; i 2 S;Bi�ui+1(Xi+1)Bi+1 jXi = x� ; i =2 S:Similarly to Ameri
an options, any Bermudan option is equivalent to the Europeanone with the payo� fun
tion fi(x) and the 
onsumption pro
ess 
i de�ned as
i(x) = 8<: �fi(x)�BiE�ui+1(Xi+1)Bi+1 jXi = x��+ ; i 2 S;0; i =2 S:Thus, all the results obtained in this se
tion for dis
rete-time Ameri
an options
an be 
arried over to Bermudan options. For example, if vi(x) is a low bound onthe true option pri
e ui(x), the pri
e Vi(x) of the European option with the payo�fun
tion fi(x) and with the 
onsumption pro
ess
i;v(x) = 8<: �fi(x)�BiE �vi+1(Xi+1)Bi+1 jXi = x��+ ; i 2 S;0; i =2 S:5



is an upper bound: Vi(x) � ui(x):3. The main pro
edureThe diÆ
ulties mentioned in Subse
tion 2.4 
an be avoided by using an in
reasingsequen
e of simple low bounds.3.1. Lo
al low bounds. The trivial low bound is fi(x) and the simplest nontrivialone is given by vi+1i (x) = max�fi(x); BiE�fi+1(Xi+1)Bi+1 jXi = x�� :The fun
tion vi+1i (x) is the pri
e of the Ameri
an option at the position (ti; x) onthe time interval [ti; ti+1℄. It takes into a

ount the behavior of assets at one stepahead. Let vi+ki (x) be the pri
e of the Ameri
an option at the position (ti; x) on thetime interval [ti; ti+k℄. The fun
tion vi+ki (x) 
orresponds to an analysis of the marketover k steps ahead. The 
al
ulation of vi+ki (x) 
an be done iteratively. Indeed, thepri
e of the Ameri
an option on the interval [ti; ti+k+1℄ with k + 1 exer
ise periods
an be 
al
ulated using the Ameri
an options on the interval [ti+1; ti+k+1℄ with kexer
ise periods(3.1) vi+k+1i (x) = max(fi(x); BiE vi+k+1i+1 (Xi+1)Bi+1 jXi = x!) :We see that vi+k+1i (x) is, as a rule, mu
h more expensive than vi+ki (x): The dire
tformula (3.1) 
an be too laborious even for k � 3. As an example of a simpler lowbound, let us 
onsider the maximum of the Ameri
an option on the interval [ti; ti+k℄and the European option on the interval [ti; ti+k+1℄:�vi+ki (x) = max�vi+ki (x); BiE �fi+k+1(Xi+k+1)Bi+k+1 jXi = x�� :This low bound is not so expensive as vi+k+1i (x): Clearlyvi+ki (x) � �vi+ki (x) � vi+k+1i (x):Di�erent 
ombinations 
onsisting of European, Ameri
an, and Bermudan options
an give other simple low bounds.The su

ess of the main pro
edures (see below) ex
eedingly depends on a 
hoi
e oflow bounds. Therefore their eÆ
ient 
onstru
tion is of great importan
e. To thisaim one 
an use the known methods and among them the method from [3℄.We emphasize again (see Introdu
tion) that if after using some low bound it isestablished that the position belongs to C, then this position does not need anyfurther analysis. Therefore, at the beginning the simplest nontrivial low boundvi+1i (x) should be applied and then other low bounds should be used adaptively inthe order of in
reasing 
omplexity. 6



3.2. The main pro
edure for 
onstru
ting upper bounds for the initialposition (global upper bounds). Aiming to estimate the pri
e of the Ameri
anoption at a �xed position (t0; x0), we simulate the independent traje
tories mXi; i =1; :::; L; m = 1; :::;M; of the pro
ess Xi, starting at the instant t = t0 from x0 :X0 = x0: Let vi(x) be a low bound and (ti; mXi) be the position on the m-thtraje
tory at the time instant ti. We 
al
ulate the low 
ontinuation value(3.2) 
i;v(mXi) = BiE�vi+1(mXi+1)Bi+1 jFi�at the position (ti; mXi): If(3.3) fi(mXi) < 
i;v(mXi);then (ti; mXi) 2 C (see (2.4)) and we move one step ahead along the traje
tory tothe next position (ti+1; mXi+1): Otherwise if(3.4) fi(mXi) � 
i;v(mXi);then we 
annot say de�nitely whether the position (ti; mXi) belongs to C or to E.In spite of this fa
t we do one step ahead in this 
ase as well. Let us re
all that thetrue 
onsumption at (ti; x) is equal to(3.5) 
i (x) = [fi (x)� Ci (x)℄+(see (2.7) and (2.3)). Thus, it is natural to de�ne the upper 
onsumption 
i;v at anyposition (ti; mXi) by the formula(3.6) 
i;v(mXi) = [fi(mXi)� 
i;v(mXi)℄+:Obviously, 
i;v � Ci and hen
e 
i;v � 
i: Therefore, the pri
e Vi(x) of the Euro-pean option with payo� fun
tion fi(x) and upper 
onsumption pro
ess 
i;v is anupper bound on the pri
e ui(x) of the original Ameri
an option. In the 
ase (3.3)
i;v(mXi) = 
i(mXi) = 0 and we do not get any error. If (3.4) holds and besides
i;v(mXi) < Ci(mXi), we get an error. If 
i;v(mXi) is large, then it is in generalimpossible to estimate this error, but if 
i;v(mXi) is small, the error is small as well.Having found 
i;v, we 
an 
onstru
t an estimate V̂0(x0) of the upper bound V0(x0)for u0(x0) by the formula(3.7) V̂0(x0) = 1M MXm=1 fL(mXL)BL + 1M L�1Xi=0 MXm=1 
i;v(mXi)Bi :Note that for the 
onstru
tion of an upper bound V0 one 
an use di�erent lo
allow bounds depending on a position. This opens various opportunities for adaptivepro
edures. For instan
e, if 
i;v(mXi) is large, then it is reasonable to use a morepowerful lo
al instrument at the position (ti; mXi):3.3. The main pro
edure for 
onstru
ting low bounds for the initial po-sition (global low bounds). Let us pro
eed to the estimation of a low boundv0(x0): We stress that both V0(x0) and v0(x0) are estimated for the initial position(t0; x0) only. Sin
e we are interested in obtaining as large as possible low bound,it is reasonable to 
al
ulate di�erent not too expensive low bounds at the position7



(t0; x0) and to take the largest one. Let us �x a lo
al low bound v. We denote byt0 � � (m)1 � L the �rst time when either (3.4) is ful�lled or � (m)1 = L: The se
ondtime � (m)2 is de�ned in the following way. If � (m)1 < L; then � (m)2 is either the �rsttime after � (m)1 for whi
h (3.4) is ful�lled or � (m)2 = L: So, t0 � � (m)1 < � (m)2 � L: Inthe same way we 
an de�ne � times(3.8) 0 � � (m)1 < � (m)2 < ::: < � (m)� = L:The number � depends on the m-th traje
tory: � = �(m) and 
an vary between 1 andL+1 : 1 � � � L+1: We put by de�nition � (m)�+1 = � (m)� = L; � (m)�+2 = ::: = � (m)L+1 = L:Thus, we get times � 1; :::; �L+1 whi
h are 
onne
ted with the 
onsidered pro
ess Xi:For any 1 � k � L + 1 the time �k does not anti
ipate the future be
ause at ea
hpoint Xi at time ti the knowledge of Xj ; j = 0; 1; :::; i; is suÆ
ient to de�ne ituniquely. So, the times � 1; :::; �L+1 are stopping rules and the following low bound
an be proposed v0(x0) = max1�k�L+1Ef�k(X�k)B�kwhi
h 
an be in turn estimated asv̂0(x0) = max1�k�L+1 1M MXm=1 f�(m)k (mX� (m)k )B� (m)k :Of 
ourse, v0(x0) depends on the 
hoi
e of the lo
al low bound v. Clearly, in
reasingthe lo
al low bound implies in
reasing the global low bound v0(x0):Remark 3.1. It is reasonable instead of the stopping 
riterion (3.4) to use thefollowing 
riterion(3.9) 
i;v(mXi) � "for some " > 0. On the one hand, 
i;v � 
i and hen
e the stopping 
riterion with" = 0 
an lead to earlier stopping and possibly to a large error when 
i;v > 0 but
i = 0. On the other hand, if 0 < 
i;v(mXi) < " we 
an make an error using 
riterion(3.9). Indeed, in this 
ase we 
ontinue and if 
 i > 0 then (ti; mXi) 2 E and the truede
ision is to stop. Sin
e the pri
e of the option at (ti; mXi) upon the 
ontinuationis Ci(mXi) and fi(mXi)� Ci(mXi) = 
i � 
i;v < ";the error due to the wrong de
ision at (ti; mXi) is small as long as " is small. Itis generally diÆ
ult to estimate the in
uen
e of many su
h wrong de
isions on theglobal low bound. Fortunately, any " > 0 leads to a sequen
e of stopping times (3.8)and, 
onsequently, to a global low bound v0(x0). What the global upper bound is
on
erned, we have 0 � 
i;v�
i < " when 
i;v < " and hen
e the error in estimatingV0 is small due to (3.7). The 
hoi
e of " 
an be based on some heuristi
s and theempiri
al analysis of overall errors in estimating true 
i's.8



3.4. Kernel interpolation. The 
omputational 
omplexity of the whole pro
edure
an be substantially redu
ed by using methods from the interpolation theory. Asdis
ussed in the previous se
tions, the set of independent pathsPM := fmXi; i = 1; :::; L; m = 1; :::;Mgand the sequen
e of lo
al low bounds fv1i ; :::; vlig deliver the set of the upper 
on-sumption values f
i;v(mXi); i = 0; :::; L; m = 1; :::;Mg, where vi := maxfv1i ; :::; vlig.If M is large one may take a subset P ~M of PM 
ontaining �rst ~M �M traje
tories(3.10) P ~M := fmXi; i = 1; :::; L; m = 1; :::; ~Mgand 
ompute f
i;v(mXi); i = 0; :::; L; m = 1; :::; ~Mg. The remaining 
onsumptionvalues 
i;v(nXi) for n = ~M + 1; :::;M 
an be approximated by
̂i;v(nXi) := X�m:mXi2BkP ~M (nXi)�wn;m
i;v(mXi);where BkP ~M (nXi) is the set of k nearest neighbors of nXi lying in the P ~M for �xedexer
ise date ti andwn;m := K(knXi �m Xik=h)P�m:mXi2BkP ~M (nXi)�K(knXi �m Xik=h)with K(�) being a positive kernel. A bandwidth h and the number of nearest neigh-bors k are 
hosen experimentally. Having found 
̂i;v(nXi), we get the global upperbound at (t0; x0) a

ording to (3.7) by plugging estimated values 
̂i;v(mXi) withm = ~M + 1; :::;M in pla
e of the 
orresponding 
i;v(mXi) .The simulations show that an essential redu
tion of 
omputational time 
an besometimes a
hieved at small loss of pre
ision. The reason for the su

ess of kernelmethods is that the 
loseness of the points in the state spa
e implies the 
losenessof the 
orresponding 
onsumption values.4. Simulations4.1. Bermudan max 
alls on d assets. This is a ben
hmark example studiedin [5℄, [9℄ and [15℄ among others. Spe
i�
ally, the model with d identi
al assets is
onsidered where ea
h underlying has dividend yield Æ. The risk-neutral dynami
 ofassets is given by dXktXkt = (r � Æ)dt+ �dW kt ; k = 1; :::; d;(4.1)where W kt ; k = 1; :::; d, are independent one dimensional Brownian motions andr; Æ; � are 
onstants. At any time t 2 ft0; :::; tLg the holder of the option mayexer
ise it and re
eive the payo�f(Xt) = (max(X1t ; :::;Xdt )�K)+:9



In applying the method developed in this paper we take ti = iT=L; i = 0; :::; L, withT = 3; L = 9 and simulate M = 50000 traje
toriesPM = fmXi; i = 0; :::; LgMm=1using Euler s
heme with a time step h = 0:1. Setting ~M = 500, we de�ne the setP ~M as in (3.10) and 
ompute adaptively the low 
ontinuation values for every pointin P ~M . To this end we simulate N = 100 pointsnX(ti;mXi)i+1 ; 1 � n � N;from ea
h point (ti; mXi) with i < L and m � ~M . For any natural l su
h that0 � l � L� i� 1, values v(j)i+1�nX(ti;mXi)i+1 �; 0 � j � l;based on lo
al low bounds of in
reasing 
omplexity, 
an be 
onstru
ted as follows.First, v(0)i+1�nX(ti;mXi)i+1 � = f�nX(ti;mXi)i+1 � and v(j)i+1 for j = 1; 2 are values of the Amer-i
an option on the intervals [ti+1; ti+1+j ℄ . If j > 2 then v(j)i+1 is de�ned as value ofthe Bermudan option with three exer
ise instan
es at time points fti+1; ti+j; ti+j+1g.Now, we estimate the 
orresponding low 
ontinuation value by
̂i;l(mXi) = e�r(ti+1�ti)N NXn=1 max0�j�lnv(j)i+1(nX(ti;mXi)i+1 )o :Clearly, 
̂i;l is the Monte-Carlo estimate of 
i;v, where v = max0�j�l v(j)i+1. Let us �xa maximal 
omplexity l�. Sequentially in
reasing l from 0 to l�i = minfl�; L� i�1g,we 
ompute 
̂i;l until l � l�, wherel� := minfl : fi(mXi) < 
̂i;l(mXi)gor l� := l�i if fi(mXi) � 
̂i;l(mXi); l = 1; : : : ; l�i :Note, that in the 
ase l� < l�i the numeri
al 
osts are redu
ed as 
ompared to the non-adaptive pro
edure while the quality of the estimate 
̂i;v�, where v� = max0�j�l� v(j)i+1is preserved. The estimated values 
̂i;v�(mXi) allow us, in turn, to 
ompute the es-timates for the 
orresponding upper 
onsumptions 
i;v�(mXi) with m = 1; : : : ; ~M .The upper 
onsumptions values for m = ~M + 1; : : :M are estimated using kernelinterpolation with an exponential kernel (see Se
tion 3.4). In Table 4.1 the 
orre-sponding results are presented in dependen
e on l� and x0 with X0 = (X10 ; : : : ;Xd0 )T ,X10 = ::: = Xd0 = x0. The true values are quoted from [8℄. We see that while thequality of bounds in
reases signi�
antly from l� = 1 to l� = 3, the 
rossover tol� = 6 has a little impa
t on it. It means that either the true value is a
hieved (asfor x0 = 90) or deeper analysis is needed (as for x0 = 100).4.2. Bermudan basket-put. In this example we 
onsider again the model with didenti
al assets driven by independent identi
al geometri
al Brownian motions (see(4.1)) with Æ = 0. De�ning the basket at any time t as �Xt = (X1t + ::: + Xdt )=d,let us 
onsider the Bermudan basket put option granting the holder the right to sellthis basket for a �xed pri
e K at time t 2 ft0; :::; tLg getting the pro�t given byf( �Xt) = (K � �Xt)+. We apply our method for 
onstru
ting low and upper bounds10



Table 4.1. Bounds (with 95% 
on�den
e intervals) for the 2-dimensional Bermudan max 
all with parameters K = 100; r = 0:05,� = 0:2, L = 9 and l� varying as shown in the table.l� x0 Lower Bound Upper Bound True Valuev0(X0) V0(X0)90 7.892�0.1082 8.694�0.0023 8.081 100 12.872�0.1459 15.2568�0.0042 13.90110 19.275�0.1703 23.8148�0.0062 21.3490 8.070�0.1034 7.900�0.0018 8.083 100 13.281�0.1434 14.241�0.0038 13.90110 19.526�0.1852 21.807�0.0058 21.3490 8.099�0.1057 7.914�0.0018 8.086 100 13.196�0.1498 13.844�0.0038 13.90110 19.639�0.1729 21.411�0.0056 21.34on the true value of this option at the initial point (t0;X0). In order to 
onstru
tlo
al low bounds we need to 
ompute the pri
es of the 
orresponding Europeanstyle options vt+�t (x) = e�r�E(f( �Xt+� )jXt = x) for di�erent � and t. It 
an be donein prin
iple by Monte-Carlo method sin
e the 
losed form expression for vt+�t (x) isnot known. However, in this 
ase it is more rational to use the so-
alled moment-mat
hing pro
edure from [6℄ and to approximate the distribution of the basket �Xt+�by a log-normal one with parameters ~r�~�2=2 and ~��1=2, where ~r and ~� are 
hosen ina su
h way that the �rst two moments of the above log-normal distribution 
oin
idewith the true ones. In our parti
ular example ~r = r and~�2 = 1� log0B�Pdi;j=1X itXjt exp(1fi=jg�2�)hPdi=1X iti2 1CA :(4.2)In Table 4.2 the results of simulations for di�erent maximal 
omplexity l� and initialvalues x0 = X10 = ::: = Xd0 are presented. Here, overall M = 50000 paths aresimulated and on the subset of ~M = 500 traje
tories the lo
al analysis is 
ondu
ted.Other traje
tories are handled with the kernel interpolation method as des
ribed inSe
tion 3.4. Similar to the previous example, signi�
ant improvements are observedfor l� = 2 and l� = 3. The di�eren
e between the upper bound and low bound forl� > 3 is less than 5%. 5. Con
lusionsIn this paper a new Monte-Carlo approa
h towards pri
ing dis
rete Ameri
an andBermudan options is presented. This approa
h relies essentially on the represen-tation of an Ameri
an option as the European one with the 
onsumption pro
essinvolved. The 
ombination of the above representation with the analysis of the mar-ket over a small number of time steps ahead provides us with a low as well an upperbound on the true pri
e at a given point. Additional ideas 
on
erning adaptive11



Table 4.2. Bounds (with 95% 
on�den
e intervals) for the 5-dimensional Bermudan basket put with parameters K = 100; r =0:05, � = 0:2, L = 9 and di�erent l�.l� x0 Lower Bound Upper Bound True Valuev0(X0) V0(X0)100 2.391�0.0268 2.985�0.0255 2.4801 105 1.196�0.0210 1.470�0.0169 1.250110 0.594�0.0155 0.700�0.0105 0.595100 2.455�0.0286 2.767�0.0238 2.4802 105 1.210�0.0220 1.337�0.0149 1.250110 0.608�0.0163 0.653�0.0094 0.595100 2.462�0.0293 2.665�0.0228 2.4803 105 1.208�0.0224 1.295�0.0144 1.250110 0.604�0.0166 0.635�0.0090 0.595100 2.473�0.0200 2.639�0.0228 2.4806 105 1.237�0.0231 1.288�0.0142 1.250110 0.611�0.0169 0.632�0.0089 0.595100 2.479�0.0300 2.627�0.0226 2.4809 105 1.236�0.0232 1.293�0.0144 1.250110 0.598�0.0167 0.627�0.0087 0.595
omputation of the 
ontinuation values and the use of interpolation te
hniques helpredu
ing the 
omputational 
omplexity of the pro
edure. In summary, the approa
hproposed has following features:� It is Monte-Carlo based and is appli
able to the problems of medium dimen-sionality.� The propagation of errors is transparent and the quality of �nal bounds 
anbe easily assessed.� It is adaptive that is its numeri
al 
omplexity 
an be tuned to the a

ura
yneeded.� Di�erent type of sensitivities 
an be eÆ
iently 
al
ulated by 
ombining the
urrent approa
h with the method developed in [14℄.6. A
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