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Abstrat. Here we develop an approah for eÆient priing disrete-time Ameri-an and Bermudan options whih employs the fat that suh options are equivalentto the European ones with a onsumption, ombined with analysis of the marketmodel over a small number of steps ahead. This approah allows onstruting bothupper and low bounds for the true prie by Monte Carlo simulations. An adaptivehoie of loal low bounds and use of the kernel interpolation tehnique enhaneeÆieny of the whole proedure, whih is supported by numerial experiments.1. IntrodutionThe valuation of high-dimensional Amerian and Bermudan options is one of themost diÆult numerial problems in �nanial engineering. Several approahes havereently been proposed for priing suh options using Monte Carlo simulation teh-nique (see, e.g. [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 15℄ and referenes therein). In somepapers, proedures are proposed that are able to produe upper and low bounds forthe true prie and hene allow for evaluating the auray of prie estimates.In [3℄ we develop the approah for priing Amerian options both for disrete-time and ontinuous-time models. The approah is based on the fat that anyAmerian option is equivalent to the European one with a onsumption proess in-volved. This approah allows us, in priniple, to onstrut iteratively a sequenev1; V 1; v2; V 2; v3; :::, where v1; v2; v3; ::: is an inreasing (at any point) se-quene of low bounds and V 1; V 2; :::, is a dereasing sequene of upper bounds.Unfortunately, the omplexity of the proedure inreases dramatially with any newiteration step. Even V 2 is too expensive for the real onstrution:Let us onsider a disrete-time �nanial model and let(Bti;Xti) = (Bti;X1ti ; :::;Xdti); i = 0; 1; :::; L;be the vetor of pries at time ti; where Bti is the prie of a salar riskless asset (weassume that Bti is deterministi and Bt0 = 1) and Xti = (X1ti; :::;Xdti) is the prievetor proess of risky assets ( along with index ti we shall use below the index i andinstead of (ti;Xti) we will write (ti;Xi)). Let fi(x) be the pro�t made by exerisingan Amerian option at time ti if Xti = Xi = x:In this paper we propose to use an inreasing sequene of low bounds for onstrut-ing an upper bound and low bound at the initial position (t0;X0). It is supposedthat the above sequene is not too expensive from the omputational point of view.This is ahieved by using loal low bounds whih take into aount a small numberof exerise dates ahead.Let (ti; mXi); i = 0; 1; :::; L; m = 1; :::;M; be M independent trajetories allstarting from the point (t0;X0) and let v1 � v2 � ::: � vl be a �nite sequeneof low bounds whih an be alulated at any position (ti; x). Clearly, these lowbounds are also ordered aording to their numerial omplexities and a naturalnumber l indiates the maximal suh omplexity as well as the quality of the lowbound vl. Any low bound gives a low bound for the orresponding ontinuationvalue (low ontinuation value) and an upper bound for the onsumption proess(upper onsumption proess). If the payo� at (ti; mXi) is less or equal to the low1



ontinuation value, then the position (ti; mXi) belongs to the ontinuation regionand the onsumption at (ti; mXi) is equal to zero. Otherwise the position (ti; mXi)an belong either to the exerise region or to the ontinuation region. In the latterases we ompute the upper onsumption at (ti; mXi) as a di�erene between thepayo� and the low ontinuation value.It is important to emphasize that the low bounds are applied adaptively. It meansthat if, for instane, using the low bound v1 (whih is the heapest one amongv1; v2; :::; vl) at the position (ti; mXi); we have found that this position belongs tothe ontinuation region (i.e., the orresponding upper onsumption proess is equalto zero), we do not alulate any further bounds. Similarly, if the upper onsumptionproess is positive but omparatively small, we an stop applying further bounds at(ti; mXi) beause a possible error will not be large. Finally, if the upper onsumptionproess is not small enough after applying low bounds v1; :::; vj but hanges notsigni�antly after applying vj+1; we an stop applying further bounds as well. Thelow bounds are presribed to every position (ti; mXi) and are, as a rule, loal.Applying them means, in some sense, a loal analysis of the onsidered �nanialmarket at any position. Suh a loal analysis for all positions (ti; mXi); i =0; 1; :::; L; m = 1; :::;M , yields some global low bound and upper bound at theoriginal position (t0;X0). If we detet that the di�erene between the global upperand low bounds is large, we an return to the deeper loal analysis. It is lear that,in priniple, this analysis an give exhaustive results in a �nite number of steps (itsuÆes to take the following sequene of Amerian options at (ti; mXi): v1 is theprie of the Amerian option on the time interval [ti; ti+1℄, v2 is the prie on [ti; ti+2℄and so on, in a way that vL�i is the prie on [ti; tL℄). Thus, we have no problemswith onvergene of the algorithms based on the approah onsidered.The paper is organized as follows. In Setion 2 we reall the basi notions related tothe priing of Amerian and Bermudan options and sketh the approah developedin [3℄. The method of this paper is presented in Setion 3. Two numerial examplesare given in Setion 4. The paper is onluded in Setion 5.2. The approah based on onsumption proessesTo be self-ontained, let us briey reall the approah to priing Amerian optionsthat has been developed in [3℄.2.1. The Snell envelope. We assume that the modelling is based on the �lteredspae (
;F ; (Fi)0�i�L;Q), where the probability measure Q is the risk-neutral pri-ing measure for the problem under onsideration, and Xi is a Markov hain withrespet to the �ltration (Fi)0�i�L :The disounted proess ~Xi := Xi=Bi is a martingale with respet to the Q and theprie of the orresponding disrete Amerian option at (ti;Xi) is given by(2.1) ui(Xi) = sup�2Ti;LBiE�f�(X� )B� jFi� ;2



where Ti;L is the set of stopping times � taking values in fi; i+ 1; :::; Lg: The valueproess ui (Snell envelope) an be determined by the dynami programming prini-ple: uN (x) = fN (x);(2.2) ui(x) = max�fi(x); BiE �ui+1(Xi+1)Bi+1 jXi = x�� ; i = L� 1; :::; 0:We see that theoretially the problem of evaluating u0(x); the prie of the disrete-time Amerian option, is easily solved using iteration proedure (2.2). However, ifXis high dimensional and/or L is large, the above iteration proedure is not pratial.2.2. The ontinuation value, the ontinuation and exerise regions. For theonsidered Amerian option, let us introdue the ontinuation value(2.3) Ci(x) = BiE�ui+1(Xi+1)Bi+1 jXi = x� ;the ontinuation region C and the exerise (stopping) region E :C = f(ti; x) : fi(x) < Ci(x)g ;(2.4) E = f(ti; x) : fi(x) � Ci(x)g :Let X i;xj ; j = i; i+ 1; :::; L; be the Markov hain starting at time ti from the pointx : X i;xi = x; and mX i;xj ; m = 1; :::;M; be independent trajetories of the Markovhain. The Monte Carlo estimator ûi(x) of ui(x) (in the ase when E is known) hasthe form(2.5) ûi(x) = 1M MXm=1 BiB� f(mX i;x� );where � is the �rst time at whih X i;xj gets into E (of ourse, � in (2.5) dependson i; x; and m : � =m � i;x). Thus, for estimating ui(x), it is suÆient to examinesequentially the position (tj; mX i;xj ) for j = i; i + 1; :::; L, whether it belongs to Eor not. If (tj; mX i;xj ) 2 E, then we stop at the instant � = tj on the trajetoryonsidered. If (tj; mX i;xj ) 2 C, we move one step more along the trajetory.Let v be any low bound, i.e. ui(x) � vi(x); i = 0; 1; :::; L: Clearly, fi(x) is a lowbound. If v1i ; :::; vli are some low bounds then the funtion vi(x) = max1�k�l vki (x)is also a low bound. Heneforth we onsider low bounds satisfying the inequalityvi(x) � fi(x): Introdue the setCv = �(ti; x) : fi(x) � BiE �vi+1(Xi+1)Bi+1 jXi = x�� :Sine Cv � C, any low bound provides us with a suÆient ondition for moving alongthe trajetory: if (tj; mX i;xj ) 2 Cv, we do one step ahead.3



2.3. Equivalene of Amerian options to European ones with onsumptionproesses. For 0 � i � L� 1 the equation (2.2) an be rewritten in the form(2.6) ui(x) = BiE �ui+1(Xi+1)Bi+1 jXi = x�+�fi(x)�BiE�ui+1(Xi+1)Bi+1 jXi = x��+ :Introdue the funtions(2.7) i(x) = �fi(x)�BiE�ui+1(Xi+1)Bi+1 jXi = x��+ ; i = L� 1; :::; 0:Due to (2.6), we haveuL�1(XL�1) = BL�1E�fL(XL)BL jFL�1�+ L�1(XL�1);uL�2(XL�2) = BL�2E�uL�1(XL�1)BL�1 jFL�2�+ L�2(XL�2)= BL�2E �fL(XL)BL jFL�2�+BL�2E�L�1(XL�1)BL�1 jFL�2�+ L�2(XL�2):Analogously, one getsui(Xi) = BiE�fL(XL)BL jFi�+Bi L�(i+1)Xk=1 E�L�k(XL�k)BL�k jFi�(2.8) +i(Xi); i = 0; :::; L� 1:Putting X0 = x and realling that B0 = 1; we obtain(2.9) u0(x) = E�fL(XL)BL �+ 0(x) + L�1Xi=1 E�i(Xi)Bi � :Formula (2.9) gives us the prie of the European option with the payo� funtionfi(x) in the ase when the underlying prie proess is equipped with the onsumptioni de�ned in (2.7).2.4. Upper and low bounds using onsumption proesses. The results aboutthe equivalene of the disrete-time Amerian option to the European one with theonsumption proess annot be used diretly beause ui(x) and onsequently i(x)are unknown. We take the advantage of this onnetion in the following way (see[3℄).Let vi(x) be a low bound on the true option prie ui(x): Introdue the funtion(upper onsumption proess)(2.10)  i;v(x) = �fi(x)�BiE�vi+1(Xi+1)Bi+1 jXi = x��+ ; i = 0; :::; L� 1:Clearly, i;v(x) � i(x):Hene the prie Vi(x) of the European option with payo� funtion fi(x) and upperonsumption proess i;v(x) is an upper bound: Vi(x) � ui(x):4



Conversely, if Vi(x) is an upper bound on the true option prie ui(x) and(2.11) i;V (x) = �fi(x)�BiE�Vi+1(Xi+1)Bi+1 jXi = x��+ ; i = 0; :::; L� 1;then the prie vi(x) of the European option with low onsumption proess i;V (x)is a low bound.Thus, starting from a low bound v1i (x); one an onstrut the sequene of lowbounds v1i (x) � v2i (x) � v3i (x) � ::: � ui(x); and the sequene of upper boundsV 1i (x) � V 2i (x) � ::: � ui(x). All these bounds an be, in priniple, evaluated bythe Monte Carlo simulations. However, eah further step of the proedure requireslabor-onsuming alulations and in pratie it is possible to realize only a few stepsof this proedure. In this onnetion, muh attention in [3℄ is given to varianeredution tehnique and some onstrutive methods for reduing statistial errorsare proposed there.2.5. Bermudan options. As before, let us onsider the disrete-time model(Bi;Xi) = (Bi;X1i ; :::;Xdi ); i = 0; 1; :::; L:Suppose that an investor an exerise only at an instant from the set of stoppingtimes S = fs1; :::; slg within f0; 1; :::; Lg, where sl = L. The prie ui(Xi) of the soalled Bermudan option is given byui(Xi) = sup�2TS\[i;L℄ BiE�f�(X� )B� jFi� ;where TS\[i;L℄ is the set of stopping times � taking values in fs1; :::; slg\fi; i+1; :::; Lgwith sl = L.The value proess ui is determined as follows:uL(x) = fL(x);ui(x) = 8>><>>: max�fi(x); BiE�ui+1(Xi+1)Bi+1 jXi = x�� ; i 2 S;Bi�ui+1(Xi+1)Bi+1 jXi = x� ; i =2 S:Similarly to Amerian options, any Bermudan option is equivalent to the Europeanone with the payo� funtion fi(x) and the onsumption proess i de�ned asi(x) = 8<: �fi(x)�BiE�ui+1(Xi+1)Bi+1 jXi = x��+ ; i 2 S;0; i =2 S:Thus, all the results obtained in this setion for disrete-time Amerian optionsan be arried over to Bermudan options. For example, if vi(x) is a low bound onthe true option prie ui(x), the prie Vi(x) of the European option with the payo�funtion fi(x) and with the onsumption proessi;v(x) = 8<: �fi(x)�BiE �vi+1(Xi+1)Bi+1 jXi = x��+ ; i 2 S;0; i =2 S:5



is an upper bound: Vi(x) � ui(x):3. The main proedureThe diÆulties mentioned in Subsetion 2.4 an be avoided by using an inreasingsequene of simple low bounds.3.1. Loal low bounds. The trivial low bound is fi(x) and the simplest nontrivialone is given by vi+1i (x) = max�fi(x); BiE�fi+1(Xi+1)Bi+1 jXi = x�� :The funtion vi+1i (x) is the prie of the Amerian option at the position (ti; x) onthe time interval [ti; ti+1℄. It takes into aount the behavior of assets at one stepahead. Let vi+ki (x) be the prie of the Amerian option at the position (ti; x) on thetime interval [ti; ti+k℄. The funtion vi+ki (x) orresponds to an analysis of the marketover k steps ahead. The alulation of vi+ki (x) an be done iteratively. Indeed, theprie of the Amerian option on the interval [ti; ti+k+1℄ with k + 1 exerise periodsan be alulated using the Amerian options on the interval [ti+1; ti+k+1℄ with kexerise periods(3.1) vi+k+1i (x) = max(fi(x); BiE vi+k+1i+1 (Xi+1)Bi+1 jXi = x!) :We see that vi+k+1i (x) is, as a rule, muh more expensive than vi+ki (x): The diretformula (3.1) an be too laborious even for k � 3. As an example of a simpler lowbound, let us onsider the maximum of the Amerian option on the interval [ti; ti+k℄and the European option on the interval [ti; ti+k+1℄:�vi+ki (x) = max�vi+ki (x); BiE �fi+k+1(Xi+k+1)Bi+k+1 jXi = x�� :This low bound is not so expensive as vi+k+1i (x): Clearlyvi+ki (x) � �vi+ki (x) � vi+k+1i (x):Di�erent ombinations onsisting of European, Amerian, and Bermudan optionsan give other simple low bounds.The suess of the main proedures (see below) exeedingly depends on a hoie oflow bounds. Therefore their eÆient onstrution is of great importane. To thisaim one an use the known methods and among them the method from [3℄.We emphasize again (see Introdution) that if after using some low bound it isestablished that the position belongs to C, then this position does not need anyfurther analysis. Therefore, at the beginning the simplest nontrivial low boundvi+1i (x) should be applied and then other low bounds should be used adaptively inthe order of inreasing omplexity. 6



3.2. The main proedure for onstruting upper bounds for the initialposition (global upper bounds). Aiming to estimate the prie of the Amerianoption at a �xed position (t0; x0), we simulate the independent trajetories mXi; i =1; :::; L; m = 1; :::;M; of the proess Xi, starting at the instant t = t0 from x0 :X0 = x0: Let vi(x) be a low bound and (ti; mXi) be the position on the m-thtrajetory at the time instant ti. We alulate the low ontinuation value(3.2) i;v(mXi) = BiE�vi+1(mXi+1)Bi+1 jFi�at the position (ti; mXi): If(3.3) fi(mXi) < i;v(mXi);then (ti; mXi) 2 C (see (2.4)) and we move one step ahead along the trajetory tothe next position (ti+1; mXi+1): Otherwise if(3.4) fi(mXi) � i;v(mXi);then we annot say de�nitely whether the position (ti; mXi) belongs to C or to E.In spite of this fat we do one step ahead in this ase as well. Let us reall that thetrue onsumption at (ti; x) is equal to(3.5) i (x) = [fi (x)� Ci (x)℄+(see (2.7) and (2.3)). Thus, it is natural to de�ne the upper onsumption i;v at anyposition (ti; mXi) by the formula(3.6) i;v(mXi) = [fi(mXi)� i;v(mXi)℄+:Obviously, i;v � Ci and hene i;v � i: Therefore, the prie Vi(x) of the Euro-pean option with payo� funtion fi(x) and upper onsumption proess i;v is anupper bound on the prie ui(x) of the original Amerian option. In the ase (3.3)i;v(mXi) = i(mXi) = 0 and we do not get any error. If (3.4) holds and besidesi;v(mXi) < Ci(mXi), we get an error. If i;v(mXi) is large, then it is in generalimpossible to estimate this error, but if i;v(mXi) is small, the error is small as well.Having found i;v, we an onstrut an estimate V̂0(x0) of the upper bound V0(x0)for u0(x0) by the formula(3.7) V̂0(x0) = 1M MXm=1 fL(mXL)BL + 1M L�1Xi=0 MXm=1 i;v(mXi)Bi :Note that for the onstrution of an upper bound V0 one an use di�erent loallow bounds depending on a position. This opens various opportunities for adaptiveproedures. For instane, if i;v(mXi) is large, then it is reasonable to use a morepowerful loal instrument at the position (ti; mXi):3.3. The main proedure for onstruting low bounds for the initial po-sition (global low bounds). Let us proeed to the estimation of a low boundv0(x0): We stress that both V0(x0) and v0(x0) are estimated for the initial position(t0; x0) only. Sine we are interested in obtaining as large as possible low bound,it is reasonable to alulate di�erent not too expensive low bounds at the position7



(t0; x0) and to take the largest one. Let us �x a loal low bound v. We denote byt0 � � (m)1 � L the �rst time when either (3.4) is ful�lled or � (m)1 = L: The seondtime � (m)2 is de�ned in the following way. If � (m)1 < L; then � (m)2 is either the �rsttime after � (m)1 for whih (3.4) is ful�lled or � (m)2 = L: So, t0 � � (m)1 < � (m)2 � L: Inthe same way we an de�ne � times(3.8) 0 � � (m)1 < � (m)2 < ::: < � (m)� = L:The number � depends on the m-th trajetory: � = �(m) and an vary between 1 andL+1 : 1 � � � L+1: We put by de�nition � (m)�+1 = � (m)� = L; � (m)�+2 = ::: = � (m)L+1 = L:Thus, we get times � 1; :::; �L+1 whih are onneted with the onsidered proess Xi:For any 1 � k � L + 1 the time �k does not antiipate the future beause at eahpoint Xi at time ti the knowledge of Xj ; j = 0; 1; :::; i; is suÆient to de�ne ituniquely. So, the times � 1; :::; �L+1 are stopping rules and the following low boundan be proposed v0(x0) = max1�k�L+1Ef�k(X�k)B�kwhih an be in turn estimated asv̂0(x0) = max1�k�L+1 1M MXm=1 f�(m)k (mX� (m)k )B� (m)k :Of ourse, v0(x0) depends on the hoie of the loal low bound v. Clearly, inreasingthe loal low bound implies inreasing the global low bound v0(x0):Remark 3.1. It is reasonable instead of the stopping riterion (3.4) to use thefollowing riterion(3.9) i;v(mXi) � "for some " > 0. On the one hand, i;v � i and hene the stopping riterion with" = 0 an lead to earlier stopping and possibly to a large error when i;v > 0 buti = 0. On the other hand, if 0 < i;v(mXi) < " we an make an error using riterion(3.9). Indeed, in this ase we ontinue and if  i > 0 then (ti; mXi) 2 E and the truedeision is to stop. Sine the prie of the option at (ti; mXi) upon the ontinuationis Ci(mXi) and fi(mXi)� Ci(mXi) = i � i;v < ";the error due to the wrong deision at (ti; mXi) is small as long as " is small. Itis generally diÆult to estimate the inuene of many suh wrong deisions on theglobal low bound. Fortunately, any " > 0 leads to a sequene of stopping times (3.8)and, onsequently, to a global low bound v0(x0). What the global upper bound isonerned, we have 0 � i;v�i < " when i;v < " and hene the error in estimatingV0 is small due to (3.7). The hoie of " an be based on some heuristis and theempirial analysis of overall errors in estimating true i's.8



3.4. Kernel interpolation. The omputational omplexity of the whole proedurean be substantially redued by using methods from the interpolation theory. Asdisussed in the previous setions, the set of independent pathsPM := fmXi; i = 1; :::; L; m = 1; :::;Mgand the sequene of loal low bounds fv1i ; :::; vlig deliver the set of the upper on-sumption values fi;v(mXi); i = 0; :::; L; m = 1; :::;Mg, where vi := maxfv1i ; :::; vlig.If M is large one may take a subset P ~M of PM ontaining �rst ~M �M trajetories(3.10) P ~M := fmXi; i = 1; :::; L; m = 1; :::; ~Mgand ompute fi;v(mXi); i = 0; :::; L; m = 1; :::; ~Mg. The remaining onsumptionvalues i;v(nXi) for n = ~M + 1; :::;M an be approximated bŷi;v(nXi) := X�m:mXi2BkP ~M (nXi)�wn;mi;v(mXi);where BkP ~M (nXi) is the set of k nearest neighbors of nXi lying in the P ~M for �xedexerise date ti andwn;m := K(knXi �m Xik=h)P�m:mXi2BkP ~M (nXi)�K(knXi �m Xik=h)with K(�) being a positive kernel. A bandwidth h and the number of nearest neigh-bors k are hosen experimentally. Having found ̂i;v(nXi), we get the global upperbound at (t0; x0) aording to (3.7) by plugging estimated values ̂i;v(mXi) withm = ~M + 1; :::;M in plae of the orresponding i;v(mXi) .The simulations show that an essential redution of omputational time an besometimes ahieved at small loss of preision. The reason for the suess of kernelmethods is that the loseness of the points in the state spae implies the losenessof the orresponding onsumption values.4. Simulations4.1. Bermudan max alls on d assets. This is a benhmark example studiedin [5℄, [9℄ and [15℄ among others. Spei�ally, the model with d idential assets isonsidered where eah underlying has dividend yield Æ. The risk-neutral dynami ofassets is given by dXktXkt = (r � Æ)dt+ �dW kt ; k = 1; :::; d;(4.1)where W kt ; k = 1; :::; d, are independent one dimensional Brownian motions andr; Æ; � are onstants. At any time t 2 ft0; :::; tLg the holder of the option mayexerise it and reeive the payo�f(Xt) = (max(X1t ; :::;Xdt )�K)+:9



In applying the method developed in this paper we take ti = iT=L; i = 0; :::; L, withT = 3; L = 9 and simulate M = 50000 trajetoriesPM = fmXi; i = 0; :::; LgMm=1using Euler sheme with a time step h = 0:1. Setting ~M = 500, we de�ne the setP ~M as in (3.10) and ompute adaptively the low ontinuation values for every pointin P ~M . To this end we simulate N = 100 pointsnX(ti;mXi)i+1 ; 1 � n � N;from eah point (ti; mXi) with i < L and m � ~M . For any natural l suh that0 � l � L� i� 1, values v(j)i+1�nX(ti;mXi)i+1 �; 0 � j � l;based on loal low bounds of inreasing omplexity, an be onstruted as follows.First, v(0)i+1�nX(ti;mXi)i+1 � = f�nX(ti;mXi)i+1 � and v(j)i+1 for j = 1; 2 are values of the Amer-ian option on the intervals [ti+1; ti+1+j ℄ . If j > 2 then v(j)i+1 is de�ned as value ofthe Bermudan option with three exerise instanes at time points fti+1; ti+j; ti+j+1g.Now, we estimate the orresponding low ontinuation value bŷi;l(mXi) = e�r(ti+1�ti)N NXn=1 max0�j�lnv(j)i+1(nX(ti;mXi)i+1 )o :Clearly, ̂i;l is the Monte-Carlo estimate of i;v, where v = max0�j�l v(j)i+1. Let us �xa maximal omplexity l�. Sequentially inreasing l from 0 to l�i = minfl�; L� i�1g,we ompute ̂i;l until l � l�, wherel� := minfl : fi(mXi) < ̂i;l(mXi)gor l� := l�i if fi(mXi) � ̂i;l(mXi); l = 1; : : : ; l�i :Note, that in the ase l� < l�i the numerial osts are redued as ompared to the non-adaptive proedure while the quality of the estimate ̂i;v�, where v� = max0�j�l� v(j)i+1is preserved. The estimated values ̂i;v�(mXi) allow us, in turn, to ompute the es-timates for the orresponding upper onsumptions i;v�(mXi) with m = 1; : : : ; ~M .The upper onsumptions values for m = ~M + 1; : : :M are estimated using kernelinterpolation with an exponential kernel (see Setion 3.4). In Table 4.1 the orre-sponding results are presented in dependene on l� and x0 with X0 = (X10 ; : : : ;Xd0 )T ,X10 = ::: = Xd0 = x0. The true values are quoted from [8℄. We see that while thequality of bounds inreases signi�antly from l� = 1 to l� = 3, the rossover tol� = 6 has a little impat on it. It means that either the true value is ahieved (asfor x0 = 90) or deeper analysis is needed (as for x0 = 100).4.2. Bermudan basket-put. In this example we onsider again the model with didential assets driven by independent idential geometrial Brownian motions (see(4.1)) with Æ = 0. De�ning the basket at any time t as �Xt = (X1t + ::: + Xdt )=d,let us onsider the Bermudan basket put option granting the holder the right to sellthis basket for a �xed prie K at time t 2 ft0; :::; tLg getting the pro�t given byf( �Xt) = (K � �Xt)+. We apply our method for onstruting low and upper bounds10



Table 4.1. Bounds (with 95% on�dene intervals) for the 2-dimensional Bermudan max all with parameters K = 100; r = 0:05,� = 0:2, L = 9 and l� varying as shown in the table.l� x0 Lower Bound Upper Bound True Valuev0(X0) V0(X0)90 7.892�0.1082 8.694�0.0023 8.081 100 12.872�0.1459 15.2568�0.0042 13.90110 19.275�0.1703 23.8148�0.0062 21.3490 8.070�0.1034 7.900�0.0018 8.083 100 13.281�0.1434 14.241�0.0038 13.90110 19.526�0.1852 21.807�0.0058 21.3490 8.099�0.1057 7.914�0.0018 8.086 100 13.196�0.1498 13.844�0.0038 13.90110 19.639�0.1729 21.411�0.0056 21.34on the true value of this option at the initial point (t0;X0). In order to onstrutloal low bounds we need to ompute the pries of the orresponding Europeanstyle options vt+�t (x) = e�r�E(f( �Xt+� )jXt = x) for di�erent � and t. It an be donein priniple by Monte-Carlo method sine the losed form expression for vt+�t (x) isnot known. However, in this ase it is more rational to use the so-alled moment-mathing proedure from [6℄ and to approximate the distribution of the basket �Xt+�by a log-normal one with parameters ~r�~�2=2 and ~��1=2, where ~r and ~� are hosen ina suh way that the �rst two moments of the above log-normal distribution oinidewith the true ones. In our partiular example ~r = r and~�2 = 1� log0B�Pdi;j=1X itXjt exp(1fi=jg�2�)hPdi=1X iti2 1CA :(4.2)In Table 4.2 the results of simulations for di�erent maximal omplexity l� and initialvalues x0 = X10 = ::: = Xd0 are presented. Here, overall M = 50000 paths aresimulated and on the subset of ~M = 500 trajetories the loal analysis is onduted.Other trajetories are handled with the kernel interpolation method as desribed inSetion 3.4. Similar to the previous example, signi�ant improvements are observedfor l� = 2 and l� = 3. The di�erene between the upper bound and low bound forl� > 3 is less than 5%. 5. ConlusionsIn this paper a new Monte-Carlo approah towards priing disrete Amerian andBermudan options is presented. This approah relies essentially on the represen-tation of an Amerian option as the European one with the onsumption proessinvolved. The ombination of the above representation with the analysis of the mar-ket over a small number of time steps ahead provides us with a low as well an upperbound on the true prie at a given point. Additional ideas onerning adaptive11



Table 4.2. Bounds (with 95% on�dene intervals) for the 5-dimensional Bermudan basket put with parameters K = 100; r =0:05, � = 0:2, L = 9 and di�erent l�.l� x0 Lower Bound Upper Bound True Valuev0(X0) V0(X0)100 2.391�0.0268 2.985�0.0255 2.4801 105 1.196�0.0210 1.470�0.0169 1.250110 0.594�0.0155 0.700�0.0105 0.595100 2.455�0.0286 2.767�0.0238 2.4802 105 1.210�0.0220 1.337�0.0149 1.250110 0.608�0.0163 0.653�0.0094 0.595100 2.462�0.0293 2.665�0.0228 2.4803 105 1.208�0.0224 1.295�0.0144 1.250110 0.604�0.0166 0.635�0.0090 0.595100 2.473�0.0200 2.639�0.0228 2.4806 105 1.237�0.0231 1.288�0.0142 1.250110 0.611�0.0169 0.632�0.0089 0.595100 2.479�0.0300 2.627�0.0226 2.4809 105 1.236�0.0232 1.293�0.0144 1.250110 0.598�0.0167 0.627�0.0087 0.595omputation of the ontinuation values and the use of interpolation tehniques helpreduing the omputational omplexity of the proedure. In summary, the approahproposed has following features:� It is Monte-Carlo based and is appliable to the problems of medium dimen-sionality.� The propagation of errors is transparent and the quality of �nal bounds anbe easily assessed.� It is adaptive that is its numerial omplexity an be tuned to the aurayneeded.� Di�erent type of sensitivities an be eÆiently alulated by ombining theurrent approah with the method developed in [14℄.6. AknowledgementsThis work was �nished while the seond author was a visitor of the Weierstrass-Institut f�ur Angewandte Analysis und Stohastik (WIAS), Berlin, due to the �nan-ial supports from this institute and DFG (grant No. 436 RUS 17/108/04) whihare gratefully aknowledged. Referenes[1℄ L. Andersen, M. Broadie (2001). A primal-dual simulation algorithm for priing multidimen-sional Amerian options. Working paper, Columbia Business Shool, New York.12
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