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Abstract 

New approach to construction of mean-square numerical methods for solution 
of stochastic differential equations with small noises is proposed. The approach 
is based on expanding of the exact solution of the system with small noises by 
powers of time increment and regrouping of expansion terms according to powers 
of time increment and small parameter. The theorem on mean-square estimate 
of method errors is proved. Various efficient numerical schemes are derived for a 
general system with small noises and for systems with small additive and small 
colored noises. The proposed methods are tested by calculation of Lyapunov ex-
ponents and simulation of a laser Langevin equation with multiplicative noises. 
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1 Introduction 
The stochastic approach has found wide application in physics. (1,2) Usually analytic 
solutions for stochastic dynamical systems are hardly available. In this case the im-
portance of numerical methods is obvious. In previous works various mean-square and 
weak numerical methods were derived for a general system of stochastic differential 
equations and for some specific systems such as systems with additive and colored 
noises, etc. (see Refs. 3-7). In the general case some difficulties arise to realize numer-
ical methods for stochastic differential equations. For instance, there are no efficient 
Runge-Kutta schemes. As to mean-square approximation there are no sufficiently con-
structive methods to simulate multiple Ito integrals. 

But often fluctuations, which affect a physical system, are sufficiently small. For-
tunately, as shown in the paper, for a stochastic system with small noises it is possible 
to construct special numerical methods which are more effective and easier than in the 
general case. 

Herein for the first time numerical integration of stochastic differential equations 
with small noises is systematically considered. In the paper mean-square approximation 
is investigated. Weak methods will be the subject of a separate paper. 

The system of Ito stochastic differential equations with small noises may be written 
in the form 

q 

dX == a(t, X) dt + c L <7r(t, X) d~Vr ' X(to) = Xo, t E [to, T] (1.1) 
r=l 

where X, a(t, X) and <7r(t, X) are n-dimensional vectors, Wr are uncorrelated standard 
\Viener processes and e is a small parameter. 

If the parameter £ tends to zero, we have a deterministic system for which various 
effective numerical methods exist. One can believe that if parameter c is sufficiently 
small, i.e., the system ( 1.1) is sufficiently close to deterministic one, it is also possible 
to obtain effective methods taking into account that c is small. 

In the paper for the system ( 1.1) the approach to construction of effective numerical 
methods is proposed, the theorem on estimate of mean-square error of a method on the 
whole interval is proved, various mean-square methods with low errors are constructed 
including explicit, implicit and Runge-Kutta schemes. Derived methods are efficient 
as to simulation of needed random variables. In the case of a general system, i.e., 
c = 1, only time order 1/2 schemes (i.e., mean-square error of the method on the 
whole interval is equal to 0( h 112 ) ) may be efficient. And first order methods already 
require calculation of complicated multiple Ito integrals which is difficult and laborious 
problem.(6 ) Using the approach, developed in the paper, one can obtain for the system 
( 1.1) numerical schemes with mean-square errors on the whole interval which have a 
form 

O(hro-1 + L hr f,J(r)), 
rES 

S is a set of positive integers and semi-integers which are less than positive integer 
r0 - 1, J(r) is a decreasing function with natural values. In the paper various schemes 
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with r 0 = 2, 3, 4, 5 are derived. Because of the small parameter c both the sum I: hr cJ(r) 

and the method error may be sufficiently low. So, the approach gives an opportunity to 
construct numerical methods with low errors for solution of the system ( 1.1) which are 
efficient with respect to both simulation of needed random variables and calculation 
expenses. As we believe, these methods would be useful for many physical applications. 

Our approach is based on expanding of the exact solution of the system ( 1.1) by 
powers of time increment h and regrouping of expansion terms according to their factors 
hiei (h-e approach). It may be seemed as more natural to expand the exact solution 
firstly by powers of small parameter c and then by powers of time increment h ( e-h 
approach). But e-h approach suffers from grave shortcoming because of divergence of 
methods constructed in this way. For details see Subsection 3.4. 

The organization of the paper is as follows. In Section 2 we consider some pre-
liminary examples and construct one-step approximation of the solution of the system 
( 1.1). The theorem on mean-square estimate of method error is proved in Section 3. 
Section 4 is devoted to a stochastic system with small noises in Stratonovich interpre-
tation. By the results of Sections 3 and 4 we derive various efficient numerical schemes 
which are presented in Section 5. In Sections 6 and 7 one can find numerical methods 
for systems with small additive noises and small colored noises. Although the concept 
of construction of special methods for a system with small noises is not difficult, the 
derivations of appropriate schemes are sufficiently laborious. So, in Sections 5-7 we 
write down more important and useful methods without detailed derivations. Numer-
ical tests of the proposed methods are given in Section 8. 

2 One-step approximation 

Let us introduce a discretization /:).N of the interval [t 0 , T]: !J,.N = {ti : 0, 1, ... , N; t0 < 
t1 < ... < tN = T}; the time increment h = ti+l - ti; the approximation xk or X(tk) of 
the exact solution X(tk) of the system (1.1); the mean value E~ of a random variable 
~ ; operators 

L 2 fJ fJ fJ ~if) 
L 1 + e L2, L1 = -8 + (a, -8 ) = -8 + L.J a fJ i t x t i=l x 
1 q fJ 2 1 q n . . fJ2 
2 I)ar, ~) = 2 L L O"~O"; fJ if) j' 

r=l UX r=l i,j=l X X 

Ito integrals 

l;,, ... ,;,(F, t, h) = l+h dW;, ( 0) l dW;H ( 01 ) l 1 

••• l'-2 

F( Oi_1 ) dWiJ( Oi_ 1 ) 

where i1, ... , ii are from the set of numbers {O, 1, ... , q} and dW0 (0r) designates dOr, F(O) 
is some deterministic (for simplicity continuous) function; 
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J. . ·(t h) = J. . ·.(1 t h) z1 ,i2, ••• ,i1 ' - i1 ,i2 1 ••• ,i1 ' ' ' 

where 1 ( B) is the function which is exactly equal to one. 
We assume that restrictions on the coefficients of the system ( 1.1) are so that they 

ensure the existence and uniqueness of the solution on the '\\'hole time interval [t 0 , T]. 
Moreover, for construction of high order methods the coefficients must be sufficiently 
smooth functions. Note that an initial value X 0 of the system (1.1) may be equal to a 
deterministic value or a random variable which does not depend on the Wiener process. 

2.1 Preliminary consideration 
The simplest numerical method for solution of the system (1.1) is the Euler one 

q 

X(t + h) = X(t) + € L <Tr(t, X(t)) Ir(t, h) + a(t, X(t))h (2.1) 
r=l 

The remainder p of the approximation (2.1) is equal to(6•7) 

q 

p = X(t + h) - X(t + h) = c2 L fsr(As<Tr, t, h) + 
s,r=l 

q q 

+c L for(L1<Tr, t, h) + c3 L f0 r(L2<Tr, i, h) + 
r=l r=l 

q 

+c L Ir 0 (Ara, t, h) + I00 (L1a, t, h) + c2 I00 (L2a, t, h) (2.2) 
r=l 

It is known(6,7) that the Ito integrals have the properties 

E h, ... ,i
1 

= 0 if one of the indices ik =f. 0, 
E Ii 1 , ••• ,i1 = O(hi) if all indices ik = 0, 
(E (/i 1 , ... ,i1 )

2
) 112 = O(hr), r = l1 + l2/2, 

[ 1 is the number of zero indices ik and [2 is the number of non-zero indices ik. 
By the properties (2.3) the remainder p of (2.2) can be estimated as 

Ep=O(h2
) 

(Ep2 ) 112 = O(h2 + ch3
/
2 + c2h) = O(h2 + s2h) 

(2.3) 

(2.4) 

The term ch312 of the second estimate is omitted because it is not greater than (h2 + 
c2 h) /2. The one-step time-increment accuracy order of the Euler method is certainly 
equal to one, but the principal term of the error (2.4) with respect to h has the small 
factor s2 • 

Let us consider the method with the one-step order two(6•7) 

q 

X(t + h) = X(t) + c L <Tr(t, X(t))Ir(t, h) + a(t, X(t))h + 
r=l 
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q q 

+c2 L Arai(t, X(t))lri(t, h) + c L L1ar(t, X(t))Ior(t, h) + 
i,r=l r=l 

q q 

+c3 L L2ar(t, X(t))I0 r(t, h} + c L Ara(t, X(t))Iro(t, h) + 
r=l r=l 

q 

+c3 L AsAiar(t, X(t))Isir(t, h) + L1a(t, X(t))h 2 /2 + 
s,i,r=l 

+c2 L2a(t, X(t))h2 /2 (2.5) 

The remainder p of this approximation has the form 
q q 

p =c4 L lrisj(ArAiAsaj,t,h)+c2 L foir(L1Aiant,h)+ 
r,i,s,j=l i,r=l 

q q 

+c4 L Ioir(L2Aiar,t,h)+c2 L lior(AiL1ant,h)+ 
i,r=l i,r=l 

q q 

+c4 L fiorV'•·iL20"n t, h) + c2 L liro(AiAra, t, h) + 
i,r=l i,r=l 

q q 

+c3 L fosir(L1AsAian t, h) + c5 L fosir(L2AsAian t, h) + 
r,i,s=l r,i,s=l 
q q 

+c L foor(LiO"n t, h) + c3 L f 00r((L1L2 + L2Li)an t, h) + 
r=l r=l 

q q 

+c5 L f00r(L~ar, t, h) + c L l 0 r0 (L1Ara, t, h) + 
r=l r=l 

q q 

+c3 L l 0 r0 (L2Ara, t, h) + c L lr00 (ArL1a, t, h) + (2.6) 
r=l r=l 

q 

+c3 L lr0 o(ArL2a, t, h) + 10 oo(Lia, t, h) + 
r=l 

+c2 Iooo((L1L2 + L2L1)a, t, h) + c4 looo(L~a, t, h). 
The Ito integrals Iri and /sir of the method (2.5) cannot be easily simulated. But these 
integrals are multiplied by ccx. That is why, they may be omitted and error of the 
approximation would be still not large. On this way we obtain the reduced method 

q 

X(t + h) = X(t) + c L ar(t, X(t))Ir(t, h) + a(t, X(t))h + 
r=l 

q q 

+c L L1ar(t, X(t))l0 r(t, h) + c L Ara(t, X(t))Ir 0 (t, h) + 
r=l 

+L1a(t, X(t))h2 /2, 
the remainder p1 of which is equal to 

r=l 

q q 

Pt= p+c2 L Arai(t,X(t))lri(t,h)+c3 LL2ar(t,X(t))l0 r(t,h)+ 
i,r=l r=l 

6 
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q 

+ c:3 I: AsAiar(t, X(t))Isir(t, h) + c: 2 L2a(t, X(t))h 2 /2, (2.8) 
s,i,r=I 

where p is taken from (2.6). 
Let us regroup the terms of the approximation (2. 7) and its remainder according to 
their factors hicj 

q 

X(t + h) == X(t) + h1
/

2c L C!r(t, X(t))Jr(O, 1) + ha(t, X(t)) + 
r=l 

+h3
/

2c {~Li <7r ( t, X ( t) )l0 r(O, 1) + ~Ara( t, X ( i) )lr0 (0, 1)} + 

+h2 L1a(t, X(t))/2, (2.9) 

q q 

PI == hc2 L Arai(t, X(t))Iri(O, 1) + h312c:3{L L2ar(t, X(t))I0 r(O, 1) + 
i,r=l r=l 

q 

+ L AsAiar(t,X(t))lsir(O, 1)} + h2c:2L2a(t,X(t))/2+ 
s,i,r=I 

q q 

+h2 {c:2
[ L foir(L1AiC!r, 0, 1) + L fior(AiL1C!r, 0, 1) + 
i,r=l i,r=l 

q q 

+ L Iiro(AiAra, 0, 1)] + c4
[ L Irisj(ArAiAsaj, 0, 1) + 

i,r=I r,i,s,j=l 
q q 

+ L foir(L2Aiar, 0, 1) + L fior(AiL2ar, 0, 1)]} + 
i,r=I i,r=I 

q q 

+h5
/

2{c:[L f00r(Liar, 0, 1) + L foro(L1Ara, 0, 1) + 
r=l r=l 

q q 

+ L Iroo(ArL1a, 0, 1)] + c3
[ L fosir(L1AsAiar, 0, 1) + 

r=l r,i,s=l 
q q 

+ L foor((L1L2 + L2Li)ar, 0, 1) + L foro(L2Ara, 0, 1) + 
r=l r=l 

q q 

+ L Iroo(ArL2a, 0, 1)] + c5
[ L fosir(L2As/\iC!r, 0, 1) + 

r=l . r,i,s=I 
q 

+ L foor(L~ar, 0, 1)]} + h3 {Jooo(Lia, 0, 1) + 
r=l 

(2.10) 

where, as it can be done without ambiguity, the previous notation Ji1 , ... ,i,,.(F, t, h) is used, 
while it is obtained from the previously defined h,. .. ,i,,.(F, t, h) by change of variables: 
new e is equal to (0 - t)/h. 
Now one can obtain 

(2.11) 
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(Epi)1/2 = O(h3 + c.hs/2 + c.2h2 + e3h3/2 + c.2h) = O(h3 + c.2h) 

Of course, the approximation (2. 7) has lower time increment order (due to the term 
c: 2 'L{,r=l ArO"Jri the one-step order is equal to one) than the approximation (2.5). But 
the error of the method (2. 7) has small factor c. 2 at h. Thus, we obtain the method 
(2. 7) one-step mean-square error of which is sufficiently small and which is efficient as 
to simulation of needed random variables. Note that we exclude from (2.5) not only the 
terms with complicated Ito integrals, but also the terms with equal or higher smallness 
orders with respect to h and c. together than orders of the terms with complicated 
integrals. 

By the preliminary consideration we have demonstrated the idea which is the base 
of the paper. In contrast to the general case smallness of terms of an approximation 
for a system with small noise and of its remainder depends not only on time increment 
h, but also on small parameter c. This circumstance, as shown above, allows us to 
construct new numerical methods by excluding complicated terms, for instance multiple 
Ito integrals, from a method and including them in its remainder. New methods are 
efficient as to simulation of needed random variables and have low mean-square errors 
in the sense of product ci hi. Moreover, such methods contain much less terms with 
operators than the corresponding schemes for a general system. 

2.2 One-step approximation 
Let us assume that one-step approximation Xt,x( t + h) of the exact solution Xt,x( t + h) 
of the system (1.1) ( X(t) = X(t) = x, t0 ::::; t < t + h ::::; T ) is constructed so that it 
depends on t, x, h,c and {vVi(v) - vVi(t), ... , vVq(v)- vVq(t); t::::; {):::; t + h}: 

Xt,x(t + h) = x + A(t, x, h, c; Wi(v) - vVi(t), i = 1, ... , q, t::::; v :::; t + h) (2.12) 

If we suppose that the approximation (2.12) is obtained by the Wagner-Platen 
expansion/4•6•7) then the function A may be written in the following form 

A(t, x, h,c; Wi(v)- Wi(t), i = 1, ... , q, t::::; {):::; t + h) = (2.13) 

r 0 -l K(i)-1 r 1 l(i)-1 r 2 M(i)-1 
= L L aiihic;2i + L L biihi-1/2c;2j-1 + L L ciihic;2i 

i=l j=O i=l j=l i=l j=l 

where r 0 ~ 2 is a natural number; 1 ::::; r 1 ::::; r 0 is a natural number too; the in-
teger r2 < r 0 can be zero, in this case the third sum 2::£;1 L:f!:\i)-l Cijhic;2i is ne-
glected by definition; 1 ::::; R(i) ::::; i, 2 ::::; L(i) ::=; i + 1, 2 ::=; M(i) ::=; i + 1 are 
functions with natural values; aij depend on t and x; bij and Cij depend on t, x and 
{ W1 ( v) - vVi ( t), ... , Wq ( {)) - vVq ( t); t :::; v ::::; t + h}, E bii = E cii = 0. The concrete 
expressions for aij, bii and Cij are followed from construction of the Wagner-Platen 
expansion.(4

•
6

•
7

) The expression (2.13) generalizes the examples (2.1) and (2.7) of the 
previous subsection. For instance, as followed from (2.9), in the case of the approxi-
mation (2.7) bu= L~=l O"r(t, X(t))Ir(O, 1). 
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To estimate one-step error of an approximation one must thoroughly analyze its 
remainder. The remainder p of the approximation (2.12)-(2.13) may be written in the 
form ro i-1 ro i 

p = L L aijhic2j + L L bijhi-l/2c2j-1+ 
i=2 j=K(i) i=2 j=L(i) 

ro-1 i 

+ L L Cijhic:2j' (2.14) 
i=l j=M(i) 

where K('i) = K(i) if i < r0 and K(r0 ) = O; L(i) = L(i) if i :::; r 1 and L(i) = 1 
if i > r 1 ; M(i) = JVJ(i) if i :::; r 2 and Nf(i) = 1 if i > r 2 ; K(i), L(i), M(i) are the 
functions with natural values. If I<(i) = i (correspondingly L(i) = i + 1, .M(i) = 
i + 1), the sum I:~-:k(i) aijhic2j (correspondingly the sum L:~=L(i) bijhi-1f2c:2i-1 , the 
sum I:;·=M(i) Cijhic2i) is neglected by definition. It must be mentioned that aij, bii 
and Cij contain integrals and depend on values of functions in the interval ( t, t + h). 
The expressions (2.2) and (2.8) are examples of such a remainder. For instance, as 
followed from (2.10), in the case of approximation (2.7) r0 = 3, a32 = I000 (L~a, 0, 1), 
b22 = L;=l L20"r(t, X(t))for(O, 1) + L;,i,r=l As/\.iO"r(t, X(t))Jsir(O, 1), 
C21 = Ll,r=l foir(L1/\.iO"T, 0, 1) + Lf,r=l hoT(/\.iL10"r, 0, 1) + Ll,T=l firo(/\.i/\.ra, 0, 1). 

Now let us estimate mean and mean-square values of the remainder p (2.14),-which 
will be useful below, 

To i-1 
Ep = Q(L L hi£2j) = Q(hro + L hl£2K(l)) (2.15) 

i=l j=K(i) lES1 

where S1 is either empty set or the bounded set of positive integers l (l :::; l < r 0 ), 

K(l) < l. 
Note that such a set S1 can contain superfluous, unessential numbers l, corresponding 
terms for which h1c2K(l) are less than all others. Such numbers can be excluded from 
the set S1 • For instance, if 11 > 12 and K(li) ~ I<(/2 ), then h11 c2K(li) is always less than 
h12 c2K(h) and 11 is excluded from S1 . So, S1 must contain only such numbers l that 
I<(l), l E S1 , would be the decreasing function with natural values. The mean-square 
value of the remainder p is estimated as 

ro i-1 To i 
[Ep2]1/2 = O(L L hic2j +I: L hi-1/2c2j-1+ 

i=l i=K(i) i=l j=L(i) 

r 0 -l i 
+ L L hic2j) = O(hro + L hlc:J(l)) (2.16) 

i=l j=M(i) lES2 

where S2 is either empty set or the bounded set of positive integers m and semi-integers 
k (1 :::; m < r 0 , 1/2 :::; k:::; r 0 - 1/2), the function J(l) with natural values is defined 
as J(m) = min(2I<(m), 2M(m)), J(k) = 2L(k + 1/2) - L Note that from the set 
52 both repeated and unessential, as described above, numbers l can be excluded, for 
instance see (2.4) and (2.11), and the function J(l), l E S2 , would be the decreasing 
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one. Usually, estimates of remainders of concrete schemes are simple and contain only 
two terms. 

It must be mentioned that just as in the general case(6,7) numerical methods for 
solution of the system (1.1) can be constructed not only on the basis of the formula 
(2.13), but estimates of one-step approximation always have the form (2.15)-(2.16). 

3 The theorem on mean-square estimate on the 
whole interval 

The necessity of a theorem on relation between properties of one-step approximation 
and estimate of mean-square error of the corresponding method, similar to the mean-
square convergence theorem in the general case, (3•4•6- 8) is obvious. 

Note that both in the formulation of Theorem 1 and its proof the same letter I< is 
used for various constants. 

Theorem 1. If the following inequalities are fulfilled 

IE (Xt,x(t + h) - Xt,x(t + h))j ::; [( (l + lxl 2)112[hro + L h1c2K(l)] (3.1) 
lES1 

[E IXt,x(t + h) - Xt,x(t + h)l2] 1!2 ::; I< (1 + lxl2)112[hr0 + L h1cJ(l)] (3.2) 
lES2 

where Xt,x( t + h) is an approximation of the exact solution Xt,x( t + h) of the system 
(1.1) with initial condition X(t) = X(t) = x; S1 is either empty set or bounded set 
of positive integers l which are less than natural number r0 ; S2 is either empty set or 
bounded set of positive integers and semi-integers l which are less than r 0 ; I<( l) and 
J(l) are decreasing functions with natural values. Then 

[ 
- 2 1/2 E IXt 0 ,xJtk) - Xt 0 ,xJtk)I ] ::; 

::; ]{ (l + EIXol2)lf2[hro-l + L hl-l€2K(l) + L hl-1/26 J(l)], (3.3) 
lES1 lES2 

where I< does not depend on discretization step h and parameter c:, i.e., the method, 
corresponding to the one-step approximation X ( t + h), gives mean-square error evalu-
ated by 

O(hro-l + L ht-16 2K(l) + L hl-l/26 J(l)) (3.4) 
lES1 lES2 

on the whole interval. 

3.1 Proof of Theorem 1 
The proof of Theorem 1 is similar to the proof of the mean-square convergence the-
orem for a general system. (6 •8 ) To prove Theorem 1 we need three lemmas which are 
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formulated below. One can find proofs of these lemmas in the monograph.(6) 

Lemma 1. The following representation takes place 

for which 

Xt,x( t + h) - Xt,y( t + h) = x - y - Z, 

EIXt,x(t + h) - Xt,y(t + h)l 2
::; Ix - Yl 2 (1 + I<h), 

EZ 2
::; I<lx - yl 2h. 

Lemma 2. For any time discret£zation tlN the inequality 

is fulfilled. 
Lemma 3. If 

l 

uk+1 ::; ( 1 + Ah )uk + L BihPi, 
i=l 

where h = T / N, A 2:: 0, Bi 2:: 0, Pi 2:: 1, uk 2:: 0, k = 0, 1, ... , N. Then 

Proof of Theorem 1. 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Let us remind that non-decreasing family of a-algebras :Ft C :F and Wiener process 
vV(t) are defined on probability space ("E,:F,P), Wiener process W(t) conforms to the 
family :Ft and increment W(s) - W(t) does not depend on :Ft for s 2:: t. 

It is obvious that 

Xto,Xo(tk+I) - Xto,Xo(tk+i) = Xtk,X(tk)(tk+i) - xtk,xk(tk+i) = (3.9) 

= (Xtk,X(tk)(tk+i) - Xtk,xk(tk+1)) + (Xtk,xk(tk+i) - Xtk,xk(tk+i)). 
The first difference in the right-hand side of (3.9) is connected with the error accumu-
lated to step k. The second difference is the one-step error at step ( k + 1 ). From (3.9) 
one can obtain 

2 - 2 -Xtkixk(tk+i)) l:Ftk) + EE((Xtkixk(tk+i) - xtk,xk(tk+1)) IFtk)+ 
2EE((Xtk,X(tk)(tk+i) - Xtk,xk(tk+i))(Xtk,xk(tk+i) - Xtk,xk(tk+i))l:Ftk) (3.10) 

According to the conditional variant of Lemma 1 we have 

By the conditional variant of the inequality (3.2) and by Lemma 2 we obtain 

(3.12) 
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Let us rewrite the difference Xtk,X(tk) ( tk+d - xtkiXk ( tk+l) of the last term of (3.10) 
by Lemma 1. Then we have two terms, each of which is estimated separately. By the 
conditional variant of (3.1) and by Lemma 2 the first of these terms is estimated as 

IEE((X(tk) - Xk)(Xtk,xk(tk+i) - Xtk,xk(tk+1)IFtk)I :::; (3.13) 

:::; (EIX(tk) - Xk12)1/2 K(l + £1Xol2)1/2[hro + L hlc2K(l)] 
lES1 

By Lemma 1 and inequality (3.2) for the second term we obtain 

IE(Z(Xtk,xk(tk+i) - xtk,xk(tk+1)))I:::; (3.14) 

:::; J<(EIX(tk) - Xkl2)1/2(1 + EIXol2)1/2hl/2[hro + L hlt:J(l)] 

Let us denoteµ%= EIX(tk) - xk1 2 . Substituting (3.11)-(3.14) in (3.10) we have 

µ%+1 :::; µ%(1 + f{h) + J<(l + EjX0 j2)([hro + L h1t:J(l)] 2+ 

+ [hro-1/2 + L hl-1/2c2K(l)]2). 
lES1 

lES2 

(3.15) 

Then by Lemma 3 and taking into account thatµ; = 0 we come to the inequality (3.3). 
Theorem 1 is proved. 

3.2 Remarks 

According to Theorem 1 the Euler method (2.1) has 1/2 time order, and its mean-
square error on the whole interval is estimated by O(h + c: 2 h112 ); the method (2.7) has 
the mean-square error estimated by O(h2 + c:2h112), and its time order is also equal to 
1/2. While the methods (2.1) and (2.7) have only 1/2 time order, their errors on the 
whole interval are sufficiently low because of small factor c, 2 at h 1/ 2 • 

From Theorem 1 it follows that if r 0 is greater than one and the set S1 does not 
contain a number l, which is not greater than one, and the set 5 2 does not contain a 
number l, which is not greater than 1/2, then the corresponding method converges. 
However, the primary meaning of Theorem 1 is not that it gives convergence order of 
a method, but is that it gives a method error on the whole interval in terms of h and 
c. 

It must be mentioned that the mean-square convergence theorem for a general 
system,(B,s) i.e., e = 1, may be obtained as a corollary of Theorem 1. If parameter c, is 
equal to one, it is possible to rewrite the inequalities (3.1) and (3.2) in the form 

IE(Xt,x(i + h) - Xt,x(t + h))I = O(hPl ), 

[EIXt,x(t + h) - Xt,x(t + h)l2] 1l 2 = O(hP2
), 
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where p1 is the minimum of the set {r0 } US1 and p2 is the minimum of the set {r0 } US2 • 

Then by Theorem 1 we have 

If we assume, as done in Refs. 6,8, that P1 ~ p2 + 1/2 and p2 ~ 1/2, then time order 
of the corresponding method is equal to p2 - 1/2. So, we obtain the mean-square 
convergence theorem for a general system which was previously proved. (6 ,8 ) 

3.3 Selection of time increment h depending on parameter E 

Let us choose time increment h so that h < Cea. Then error of a method can be 
estimated by powers of small parameter € 

[EIXto,X0 (tk) - Xt 0 ,X0 (tk)l2] 1f2 = O(ct'), 

where /3 = min{ a(r0 - 1 ), min1es2 ( a(l - 1/2) + J( l) ), min1es1 ( a(l - 1) + 2I<(l) )}. The 
parameter a and a method may be so that some term of this method is less than the 
method error O(e,t'). If it does not lead to divergence of the method (see Subsection 3.2), 
such a term may be omitted and, in spite of this, smallness order of the method error 
does not change with respect to €. 

Let us analyze the method (2. 7). If h ~ Cta, the mean-square error of the method 
(2. 7) on the whole interval is estimated by O(c2a + e, 2+al2 ). Let us choose a be equal 
to one. In this case the method error is estimated by 0(€2), smallness order of the 
terms cL1(}"rlor and cAralro is equal to O(c5/ 2 ) and their omission gives O(c2 ) to the 
mean-square error on the whole interval. So, in the case of a = 1 these terms may be 
omitted and it does not lead to increasing of the error. Thus, we obtain a new method 

q 

xk+I = xk + € L((}"rlr)k + akh + L1akh2 /2, (3.16) 
r=l 

(ER2 ) 1l 2 ~ O(h2 + e,h + e, 2h1l 2 ), 

where (}"rk = (}"r(tk,Xk), ak = a(tk,Xk), (/r)k = lr(tk,h), (ER2 ) 112 is the mean-square 
error of the method on the whole interval. It is clear that if h ~ Cc or h 2 Cc2 , 

errors of the methods (2.7) and (3.16) have the same order with respect to c. But, for 
example, if h = C e,312, the method (3.16) has the lower order with respect to c than 
the method (2.7). 

3.4 h - E approach versus E - h approach 
In the paper we construct numerical methods by h - € approach, for instance, see the 
methods (2.1), (2.7) and (3.16). According to h - €approach at first we expand the 
exact solution X(t) of the system (1.1) by powers of time increment h and obtain an 
expansion which is similar to the Wagner-Platen one.(4•6•7) Then we regroup terms of the 
expansion with respect to their hie,i factors and decide which terms must be included in 
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a method. Such a decision depends on mean-square error of a method, which we want 
to reach, and on calculation complicacy of an expansion term, especially on complicacy 
of simulation of needed random variables. 

c - h approach is based on another idea. At first the exact solution of the system 
( 1.1) is expanded by powers of small parameter c, for instance, 

·X(t) = X 0 (t) + cX1(t), 

R = X(t) - X(t) = O(c2
) 

(3.17) 

where X 0
( t) and X 1 (t) are found as solutions of the original system under € = 0 and 

its system of the first approximation 

dX 0 = a(t, X 0
) dt, X 0 (0) = Xo (3.18) 

q 

dX 1 = a~(t, X 0 )X 1 dt + L O"r(t, X 0
) dWr, X 1(0) = 0 (3.19) 

r=l 

The system (3.18) is the system of deterministic differential equations for which, as is 
generally known, efficient high order numerical methods exist, for example, 

xk+I = xz + akh +[a a~ + a~]kh2 /2, (3.20) 

X~ = Xo, Ro = O(h2
), 

where ak = a(tk, Xf:), nxn-matrix [a~]k is equal to 8a(tk, Xf.)/8x, n-vector [a~]k is equal 
to 8a(tk, Xf:)/8t, R0 is the error of the method on the whole interval.The system (3.19) 
is the system of stochastic differential equations with additive noises. (G,7 ) The Euler 
method for the system (3.19) has the form 

q 

x:+I = x: + L[O"rlr]k + [a~X 1 ]kh (3.21) 
r=l 

X~ = 0, [E(R1 )
2

]
1l2 = O(h), 

where O"rk = O"r(tk,Xk), [a~]k = 8a(tk,X/.)/8x, R1 is the error of the method on the 
whole interval. So, we obtain the method (3.17),(3.20),(3.21) for numerical solution of 
the system (1.1) with the mean-square error O(h2 + c2 ) on the whole interval. 

One can see that h - c approach and c - h approach are essentially different. If 
time increment h tends to zero, a method, constructed by c - h approach, does not 
converge to the exact solution and converges to X 0 (t) +cX1(t). In contrast to c -h 
approach h - c approach gives a method which always converges to the exact solution 
of the system (1.1) in the case of h ~ 0 . Our aim is to derive numerical methods for 
solution of the system (1.1) with small, but fixed parameter c > 0. That is why h - c 
approach is more preferable than c - h one. 
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4 Stratonovich stochastic differential equations with 
small noises 

For some physical applications Stratonovich integration of a stochastic system is 
preferable. (I,2) It is known that the stochastic system in Stratonovich sense (marked 
by"*") 

q 

dX = a(t, X) dt + c L Clr(t, X) * dWr ' X(to) = Xo ( 4.1) 
r=l 

is equivalent to the following system of the Ito stochastic differential equations 

c2 q fJCl q 

dX = [a(t,X)+ 2 L a:(t,X)Clr(t,X)]dt+cI:Clr(t,X)dWr (4.2) 
r=l . r=l 

In the general case numerical methods, constructed for the Ito system, are easily rewrit-
ten for the Stratonovich system by adding the term e:; L~=I ~Clr to the drift. (5•7) 

However, in the case of small noises the additional term is multiplied by small fac-
tor c2 and, thus, it is usually less than the coefficient a( t, X). So, the Stratonovich 
system with small noises (4.1) is distinguished from the Ito system dX = a(t,X)dt + 
c I:;=l Clr( t, X)dvVr by the small component in the shift, and constructing a numer-
ical method for the system ( 4.2) one must take into account smallness order of the 
additional term. 

4.1 Examples 
By h - c approach one can derive numerical methods for the system ( 4.2) as in Subsec-
tion 2.1 for the system (1.1). Here instead of the operator L2 we introduce the operator 
L2: 

The Euler method is rewritten for the Stratonovich system ( 4.1) or for the equivalent 
Ito system ( 4.2) as 

Ep = O(h2
), (Ep2

)
1! 2 = O(h2 + c2 h) 

where Clrk = Clr(tb Xk), ak = a(tb Xk) and pis the one-step error of the method. 
The method, which is similar to (2.7), for the system (4.1) has the form 
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q q 

+ c l)L10"r for)k + c L)Aralroh + L1akh2 /2,. ( 4.4) 
r=l r=l 

Ep = O(h3 + c2h2
), 

(Ep2)1/2 = O(h3 + chs/2 + c2h2 + c3h3/2 + c2h) = O(h3 + c2h) 

One can see that the methods ( 4.3), ( 4.4) for the Stratonovich system ( 1.1) differ from 
the methods (2.1), (2.7) by additional terms e:; I:;=l ~O"rh. 

4.2 One-step approximation 
In the case of the Stratonovich system ( 4.1) the function A of the approximation 
(2.12) may be written in the same form as (2.13), but I<( i) is not greater than i + 1 
(K(i):::; i + 1). The expressions (4.3) and (4.4) are examples of such an approximation. 
In the case of the Stratonovich system the remainder p of the approximation (2.12)-
(2.13) has the form 

ro i ro i 
p = I: I: aijhic:2j +I: I: bijhi-112€2j-1+ 

i=l i=K(i) i=1 i=L(i) 

( 4.5) 

Then we have ro i 
£p = Q(L L hic;2j) = Q(hr0 + L hlc;2K(l)) (4.6) 

i=l i=K(i) rES1 

where S1 is the bounded set of positive integers l (1 :::; l < r 0 ), K(l) :::; l; 

(£p2]1/2 = O(hro + L hlcJ(l)) (4.7) 
lES2 

where S2 is the bounded set of positive integers and semi-integers, J(l):::; 21. 
In the Stratonovich case in contrast to the Ito case the first sums of the approximation 
(2.13) and its remainder have the following additional terms 

the second and the third sums include the additional terms 

where ii E {O, 1, ... , q }, n ~ 1 is the number of non-zero indices ij, A0 = (L 1 + c2 l 2 ). 

Besides that, the operator L2 in the approximation (2.13) and in its remainder is 
replaced by the operator L2 • 
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4.3 The theorem on mean-square estimate 
Similar to Theorem 1 the theorem on mean-square estimate for the Stratonovich sys-
tem ( 4.1) may be formulated and proved. 

Theorem 2. If for an approximation Xt,x(t + h) of the exact solution Xt,x(t + h) 
of the system (4-1) the inequalities (3.1) and (3.2) are fulfilled (the sets S1, S2 and the 
decreasing functions with natural values I<(l), J(l) are defined as in Subsection 4-2), 
the following inequality takes place 

- 2 1/2 [£ IXt 0 ,X0 (tk) - Xt 0 ,Xo(tk)I ] :::; 

:::; ]( (1 + EIXol2)lf2[hro-l + L hl-1€2K(l) + L hl-1/2c;J(l)], ( 4.S) 
lES1 lES2 

where I< does not depend on discretization step h and parameter c. 

4.4 Remarks 
According to Theorem 2 the mean-square error of the method ( 4.3) on the whole 
interval is estimated by O(h + c; 2 h112 ). The scheme (4.4) on the whole interval has 
the mean-square error O(h2 + c; 2 h112 ). Note that additional terms in (4.3) and (4.4) 
are sufficiently small, but they cannot be omitted because the omission would lead to 
divergence of the methods. It must be also mentioned that on the other hand under 
small parameter c this omission may not lead to a large error that, of course, is the 
consequence of closeness of the Stratonovich and Ito systems with small noises which 
has been marked above. Thus, in the case of small parameter c the difference between 
methods for the Ito and Stratonovich systems is less than in the case of a general 
system. For instance, the method (2.7) for the Ito system with small noises (1.1) and 
the method (4.4) for the Stratonovich system with small noises (4.1) have the same 
mean-square errors but they are distinguished only by the term he; L:;=l ~~ O"r· 

5 Some methods for general systems with small . noises 
Let us involve the notation: pis one-step error of a method and Risa method error on 
the whole interval. Method errors Ron the whole interval are obtained by Theorem 1 
and Theorem 2. 

Our aim is to construct methods with low mean-square errors (provided that c; is 
a small parameter) and with simply simulated random variables. Herein we restrict 
ourselves to the methods which contain the following Ito integrals 
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Jr= f t9Wr(t9)dt9=h5/ 2 [~r/3+1Jr/(4J3) + (,/(12J5)], 

froo = hfro - Jr, 

foro = 2Jr - hfro' 

foor = h2 Ir/2 - Jr, (5.1) 

where ~r, r1r, (r are independent normally distributed N(O, 1) random variables with 
zero mean and unit standard derivation. The needed random variables (Ito integrals) 
of the methods (2.1), (2.7), (3.16), (4.3), (4.4) and of methods of Sections 5-7 can be 
simulated at each step according to the formulas (5.1). 

5.1 Taylor-type numerical methods 
I.Methods O(h + ... )and O(h2 + ... ) 

These methods have been written above. The Euler schemes (2.1) and ( 4.3) for the 
Ito and Stratonovich systems have mean-square errors O(h+c2h112). The mean-square 
errors of the methods (2.7) and (4.4) are equal to O(h2 + c2h112). The mean-square 
error of the algorithm (3.16) for the Ito system is estimated by O(h2 + t:h + c2h112). 

2.Methods O(h3 + ... ) 
For the Ito system ( 1.1) we derive the method 

q q q 

xk+l = xk + c L(arlrh + akh + c L(L10"rlor)k + c L(Aralroh+ 
r=l r=l r=l 

+ L1akh2/2 + Liakh3 /6, 
Ep = O(h4 + c2h2), (Ep2 ) 1l 2 = O(h4 + c2h), 

[ER2p12 = O(h3 + c2h1/2). 

For the Stratonovich system ( 4.1) we obtain 

[ER2]1/2 = O(h3 + c2h1/2), 

where xk+l is taken from (5.2). 

3.Methods 0( h4 + ... ) 
For the Ito system ( 1.1) we have 

q q q 

xk+l = xk + f; L(arlrh + akh + f; L(L10"rlor)k + c L(Aralroh+ 
r=l r=l r=l 
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q q 

+ L1akh2 /2 + € 'LJLiaJoor)k + f, L(L1Araloroh+ 
r=l r=l 

q 

+e L(ArL1alroo)k + Liakh3 /6 + L~akh4/24, 
r=l 

Ep = O(h5 + £2h2), (Ep2)1l 2 = O(h5 + c2h), 
[ER2]1/2 = O(h4 + £2h1/2). 

(5.4) 

If we choose h so that h::; Cc112 , we obtain for the method (5.4) [ER2 ]11 2 = 0(£2 ). 

For the Stratonovich system (4.1) the method, which is similar to (5.4), has the 
form 

- £ 2 q oar 
Xk+l = xk+l + 2 L[ ox O"r]kh, 

r=l 
(5.5) 

[ER2]1/2 = O(h4 + £2h1/2), 

where Xk+I is taken from (5.4). The random variables of (5.4) and (5.5) are simulated 
according to ( 5.1). 

In some cases, using a special properties of a concrete system, the derived methods 
may be improved. For instance, let us consider the commutative case, i.e., AiO"r = ArO"i, 
or a system with one noise (q = 1). For such systems we obtain · 
(in the Ito case) 

i=l r=i+l i=l 

+£2 L2akh2 /2, 
Ep = O(hs + c2h3), (Ep2)1/2 = O(hs + c2h2 +c3h3/2), 

[ER2]1/2 = O(h4 + c2h3/2 + £3h), 

where xk+l is taken from (5.4) 
(in the Stratonovich case) 

i=l r=i+ 1 i=l 

2 {~oar } 2; 2- 2/ +c L1 ~ ox O"r k h 4 + E: L2akh 2, 

[ER2]1/2 = O(h4 + c.2h3/2 + c3h), 

where xk+l is taken from (5.5). 
Here we use the well-known rule(6) 
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h =(I[ - h)/2. 

Note that for the system with one noise (q = 1) the term c; 2 "L,{~f "L,~=i+I(Ai()rIJrh 
is neglected. One can see that errors of the methods (.S.6), (.S.7) are less than errors 
of the schemes (.S.4), (.S . .S). Moreover, the methods (.S.6), (.S.7) have the first order of 
convergence, while the time-step orders of the methods (5.4), (5.5) are equal to 1/2. 

As it is possible to obtain schemes O(h5 ), O(h6 ) and so on for deterministic systems, 
methods with mean-square errors O(h5 + ... ), O(h6 + ... ),etc. for a system with small 
noises can be also derived. In the same way as above terms with complicated Ito 
integrals,of course, multiplied by c;a, would be omitted in methods and included in 
their remainders. This remark is true for all groups of methods which are presented in 
the paper. 

5.2 Runge-Kutta methods 
To reduce calculations of derivatives in the methods of Subsection 5.1 we propose 
Runge-Kutta schemes. 

l.Atfethods O(h2 + ... ) 
For the Ito system we obtain 

q q 

xk+I = xk + c L((jrlr )k + (ak + ak)h/2 + c: l:(L1(jrlor h+ (.S.8) 
r=l r=l 

q 

+c L(Ara(/ro - lrh/2))k, 
r=l 

Ep = O(h3), (Ep2)1f2 = O(h3 + c;2h), 

[ER2]1f2 = O(h2 + c;2h1/2), 

where ak = a(t+h,Xk+c:r:,;=1((jrlr)k+akh) and the needed Ito integrals are simulated 
as in (5.1 ). 

For the Stratonovich system we have 

[ER2]1f2 = O(h2 + c;2h1/2), 

where xk+I is taken from (5.8). 

2.Methods 0( h3 + ... ) 

(5.9) 

By the idea of attracting a subsidiary deterministic system(6) the methods (5.2), 
(.5.3) can be simplified. Let us involve the subsidiary system 

dx/dt = a(t,x), x(tk) = xk (5.10) 
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The deterministic system (5.10) may be solved by a third order Runge-Kutta rule, for 
instance, 

I<1 = ha(tb Xk), I<2 = ha(tk + h/2, Xk + I<i/2), 
l<3 = ha( tk+l 1 xk - 1<1 + 2I<2) 

Xk+l = Xk + [J<1 + 4J<2 + J<3]/6. (5.11) 
Then one can obtain the following Runge-Kutta IT}ethod for solving the stochastic 
system (1.1) 

q 

xk+I = xk + [I<1+4I<2+1<3]/6 + c l:(o-rlrh+ 
r=l 

q q 

+ C: 2:)£10-rfor)k + £ L(Arafro)k, 
r=l r=l 

[ER2]1/2 = O(h3 + c2h1/2), 

where K1, I<2, ]{3 are from (.5_.11 ). 
For the Stratonovich system ( 4.1) we have 

[ER2]1/2 = O(h3 + c:2h1f2), 

(5.12) 

( 5.13) 

where Xk+I is taken from (5.12). The needed random variables of the methods (5.12), 
(5.13) are simulated as in (.5.1). 

3.Methods O(h4 + ... ) 
The system (5.10) may be solved by a deterministic fourth order Runge-Kutta rule 

and the following Runge-Kutta method for the Ito system (1.1) is obtained 

1<1 = ha(tk, Xk),1<2 = ha(tk + h/2, Xk + I<i/2), 

](3 = ha(tk + h/2, xk + I<i/2),/(4 = ha(tk+1, xk + ](3), 
q 

Xk+l = xk + [K1 + 2I<2 + 2](3 + ](4)/6 + c: L( O"rlr h+ 
r=l 

q q q 

+ £ L(L10-Jorh + c L(Arafroh + C: L(Lio-rfoorh+ (5.14) 
r=l r=l r=l 

q q 

+c: L(liAraloroh + C: L(ArL1afroo)k, 
r=l r=l 

[ER2]1/2 = O(h4 + s2h1f2). 

For the Stratonovich system the method (5.14) is modified as 

(5.15) 
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[ER2]1f2 == O(h4 + c2h1/2), 

where Xk+l is from (5.14). The random variables of (.5.14), (5.15) are the same as 
in (5.1). In the commutative case the methods (5.14), (5.15) can be improved as in 
Subsection 5.1.3. 

The methods (5.14) and (5.1.5) may be simplified in the following way 
(Ito system) 

q 

xk+l == xk + [I<1 + 2K2 + 2[{3 + l<4]/6 + c I)O"rlr)k, (.5.16) 

[ER2]1l2 == O(h4 +ch+ c2h112
), 

where I<i are calculated as in (.5.14); 
(Stratonovich system) 

[ER2 ]1l2 == O(h4 +ch+ c2 h112 ), 

r=l 

(5.17) 

where Xk+I is from (5.16). The mean-square errors of these methods with respect to c 
are greater than the errors of the schemes (5.14), (.5.15) under C1c113 < h < C2 t 2 and 
otherwise they have the same order. 

5.3 Implicit methods 
Implicit methods are useful for stiff stochastic systems. 

I.Methods O(h + ... ) 
The implicit Euler schemes for the system (1.1) are written in the form(6 ,7) 

q 

xk+I == xk + c 'LJO"rlr)k + o:hak + (1 - o:)hak+b (5.18) 
r=l 

0::; o:::; 1, [ER 2 ]1l 2 == O(h + c, 2 h112 ). 

The similar methods for the Stratonovich system ( 4.1) have the form 

- c2 q aO"r aO"r 
xk+I == xk+I + 2 ?;[o:( ax O"rh + (1 - o:)( ax O"rh+i]h, (5.19) 

(ER2]1/2 == O(h + 6 2h1/2), 

where xk+l is taken from (5.18). 
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2.Methods O(h2 + ... ) 
By the ideas of the monograph(6 ) the two parametric family (a and /3) of implicit 

schemes for the Ito system ( 1.1) is constructed 

q 

xk+l = xk + c L:(o-rlr h + ahak + (1 - a)hak+l + 
r=l 

q q 

+ c 2=(L10-rlorh + c L(Ara(/ro - (1 - a)Irh))k+ 
r=l r=l 

+J9(2a - 1 )L1akh2 /2 + (1 - /3)(2a - 1 )L1ak+i h2 /2, 

0 ~ a ~ 1, 0 ~ /3 ~ 1, 

Ep = O(h3 + c2h2), (Ep2)1l 2 = O(h3 + c2h), 
[ER2]1/2 = O(h2 + c2h1/2), 

For the Stratonovich system we have 

[ER2]1f2 = O(h2 + c2h1/2), 

(.5.20) 

(5.21) 

where Xk+1 is taken from (5.20). The needed random variables Ir, Ir 0 , I0 r are simulated 
as in ( .5 .1 ) . 

If a = 1/2, we obtain the trapezoidal method which is the simplest of the family 
(5.20) 

q 

Xk+1 = Xk + c L( o-rlr h + h[ak + ak+il/2+ 
r=l 

q q 

+ c L(L10"rfor)k + c L(Ara(Jro - frh/2))k, (5.22) 
r=l r=l 

[ER2]1f2 = O(h2 + c2h1/2). 

In the commutative case or in the case of one noise the methods (5.20)-(5.22) may be 
improved as the method ( 5.4) in Subsection 5.1. 

5.4 Remark 
Obviously, a lot of other methods may be derived. Firstly, by adding or omitting some 
terms one can obtain methods that are similar to above but have other mean-square 
errors. Secondary, it is possible to derive other types of methods, for instance, implicit 
Runge-Kutta methods. In this Section, however, we have restricted ourselves to the set 
of more common and, in our opinion, useful methods and ha:ve illustrated the proposed 
approach to numerical solution of a stochastic system with small noises. 
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6 Numerical methods for a system with small ad-
ditive noises 

One of the important particular cases of the systems ( 1.1) and ( 4.1) is the system with 
additive noises 

q 

dX == a(t, X) dt + £ L O"r(t) dWr. 
r=l 

Note that in this case the Stratonovich system coincides with the Ito system. 

6.1 Taylor-type explicit methods 
1. The Euler method 

(6.1) 

The Euler method for the system (6.1) coincides with the scheme (2.1). However, 
in the case of additive noises it has the first time order and the following mean-square 
error(6 •7) 

(ER2 ) 1l 2 == O(h). 

2.Methods O(h2 + ... ) 
The method (2. 7) for the system ( 6.1) has the form 

q q dO" q 

xk+I == xk + c L(O"rlrh + akh + c L( dtr Iorh + c l::(Aralro)k+ 
r=l r=l r=l 

+ L1akh2 /2 (6.2) 
Ep == O(h3 + c2h2), (Ep2)1/2 = O(h3 + c2h2), 

[ER2
]
1l 2 == O(h2 + c2h). 

If we lightly modify this method so that 

(6.3) 

where Xk+i is taken from (6.2), the mean-square error R is equal to O(h2 +c;2h312). The 
needed random variables of the methods (6.2) and (6.3) are simulated as in (5.1). The 
scheme (6.3) coincides with the well-known (6•7) explicit method for a general system 
with additive noises (c == 1). Note that omission of the terms with order ch312 in the 
scheme (6.2) leads to the method with [ER2]112 == O(h2 +ch). 

3.1'v!ethod 0( h3 + ... ) 
Let us rewrite the method (5.2) for the system with additive noises (6.1) 

q q dO"r q 
Xk+I == xk + £ L(O"rlr )k + akh + £ L( dtlor )k + € L(Aralro)k+ 

r=l r=l r=l 

q d20" q· 

+ (L1 + c2 L2)akh2 /2 + £ L( dt 2r foorh + € L(Lii\raloroh+ (6.4) 
r=l r=l 
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q 

+c '"[JArL1alrooh + Liakh3 /6 
r=l 

Ep = O(h4 + c2h3), (Ep2)1/2 = O(h4 + c2h2), 
(ER2]1/2 = O(h3 + e,2h3f2). 

The needed random variables are simulated as in (5.1). 

4.Method O(h4 + ... ) 
From the method (5.4) we obtain the following scheme for the system (6.1) 

- 3 4 Xk+1 = Xk+1 + L1 akh /24, 

[ER2p12 = O(h4 + e,2h3f2). 

where xk+l is taken from (6.4). 

(6.5) 

For systems under c = 1 the methods (6.4), (6 .. 5) have the order h312 and they are not 
preferable in comparison with more simple scheme (6.3). 

6.2 Runge-Kutta methods 
l.Method O(h2 + ... ) 

In the case of the system with additive noises (6.1) the Runge-Kutta scheme (5.8) 
has the form 

q q da 
xk+l = xk + c 2]arlrh + (ak + ak)h/2 + c L( dtr Iorh+ (6.6) 

r=l r=l 

q 

+c L[Ara(/ro - Irh/2)]k 
r=l 

Ep = O(h3), (Ep2)1f2 = O(h3 + c2h2), 
[ER2]1f2 = O(h2 + e,2h3f2), 

where ak = a(t + h, xk + c L:;=l ( O'rlr h + akh ). 
The scheme (6.6) coincides with the Runge-Kutta method for a general system with 
additive noises that was proposed in the monograph. (6) 

2.Method O(h3 + ... ) 
Similar to the method (5.12) one can obtain the following Runge-Kutta method for 

the system (6.1) 

q q d 
xk+l = xk + (K1 + 41<2 + J<3]/6 + c L(arlrh + c L( ;r Iorh+ 

· r=l r=l 

q q d2. 
+ c l)Aralroh + c2 L2akh2 /2 + € L( d~r foorh+ 

r=l r=l 
(6.7) 
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where 

q q 

+c 'fJL1Araloroh + c "fJArL1afrooh 
r=l r=l 

I<1 = ha(tk, Xk), I<2 = ha(tk + h/2, Xk + I<i/2), 
l<3 = ha(tk+1, Xk - I<1 + 2K2). 

The remainder R of this method on the whole interval is estimated as [ER2]1l 2 
-

O(h3 + c2 h312 ). The needed random variables are simulated as in (5.1). 

3.Method O(h4 + ... ) 
For the system with additive noises the method (5.14) gives 

q 

xk+I = xk + [K1 + 2K2 + 2/(3 + /(4)/6 + c L( O'rlr )k+ 
r=l 

(6.8) 

where 
I<1 = ha(tk, Xk), I<2 = ha(tk + h/2, Xk + Ki/2), 

K3 = ha(tk + h/2, Xk + K2/2), J<4 = ha(tk+i, Xk + J<3), (6.9) 
the needed Ito integrals are calculated as in (5.1). 

The method (6.8) can be simplified in the same way as the scheme (5.14) in Sub-
section 5.2.3. In the case of additive noises the resulting simplified method coincides 
with the scheme (5.16) but has the mean-square error on the whole interval which is 
equal to 

[ER2]If2 = O(h4 + c;h) (6.10) 

6.3 Implicit methods 
The implicit Euler schemes for the system (6.1) are the same as (5.18). But the 
mean-square error of such schemes for the system with additive noises is equal to 
[ER2]1!2 = O(h). 

Just as other methods of Section 5 have been modified for the system (6.1), the 
family of implicit schemes (5.20) can be also rewritten 

q 

xk+I = xk + c I:( O'rlr )k + ahak + (1 - ?)hak+1 + 
r=l 
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+,8(2a - l)(L1 + c2 L2)akh2 /2 + (1 - ,8)(2a - l)(L1 + c2 L2)ak+ih2 /2, 
0 ::; a ::; 1, 0 ::; ,B ::; 1, 

[ER2]1f2 = O(h2 + e,2h3f2), 

(6.11) 

This method coincides with 3/2 order implicit scheme for a general system with additive 
noises that was proposed in the monograph. (6) 

The simplest method among the family ( 6.11) is the trapezoidal scheme 
q 

xk+l = xk + c 2:(0-rlr)k + h[ak + ak+i]/2+ 
r=l 

(6.12) 

[ER2]1f2 = O(h~ + c2h3/2). 

The needed random variables of the methods ( 6.11), ( 6.12) can be simulated as in ( 5.1). 

7 Numerical methods for a system with small col-
ored noises 

It is known that for some physical applications colored noises are more preferable than 
white ones. In Refs. 9,10 various special numerical methods for solution of a system 
with colored noises were derived. Here we present schemes for a system with small 
colored noises. Thanks to small parameter c they are simpler and have less errors than 
in the case of a general system with colored noises. 

A system with small colored noises may be written in the form 

dY = J(t, Y) dt + cG(t, Y)Z dt, (7.1) 
q 

dZ = A(t)Z dt + L br(t) dWr, 
r=l 

Y( ta) = Yo, Z(to) = Zo, t E [to, T], 
where Y and f(t, Y) are !-dimensional vectors, Zand br(t) are m-dimensional vectors, 
A(t) is mxm-matrix and G(t, Y) is lxm-matrix, Wr are uncorrelated standard ·wiener 
processes and c is small parameter. 

Let us introduce new variable U 

U =cZ (7.2) 

· Then the system (7.1) is rewritten in the convenient form · 

dY = J(t, Y) dt + G(t, Y)U dt, (7.3) 
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q 

dU = A(t)U dt + c L br(t) dWn 
r=l 

Y(t 0 ) =Ya, U(to) = cZo. 
The system (7.3) is the particular case of the system with s~all additive noises (6.1). 
However, the system (7.3) is simpler than (6.1), because it is linear with respect to U 
and the first equation of (7.3) does not contain Wiener differentials. These properties 
allow us to construct special numerical methods for the system (7.3) which are simpler 
and have less errors than the corresponding schemes for the system (6.1). 

Operators L1 , L2 and Ar for the system (7.3) have the form 

a a a 
L1 =at+ (J(t, Y) + G(t, Y)U, ay) + (A(t)U, au), 

7.1 Taylor-type explicit methods 
1.lv!ethod O(h) 

(7.4) 

The Euler method for the system (7.3) has the well-known form<9.io) and its error 
IS 

[ER 2
]1l 2 = O(h). 

2.1'fothods 0( h2 + ... ) 
From the method (6.2) we have for the system with small colored noises (7.3) 

q 

Yk+I = Yk + [f + GU]kh + cGk L(brlro)k+ 
r=l 

+ [!; + G~U +(!+GU)~(!+ GU)+ GAU]kh2 /2, (7.5) 

q q dbr 
Uk+l =Uk+ c 2JbJr)k + AkUkh + c L:J-~ltfor]k+ 

r=l r=l 
q 

+c: L(Abrlro)k + [A~U + A2U]kh2 /2, 
r=l 

[ER2]1f2 = O(h2). 

The autonomous version of the method (7.5) coincides with the second order explicit 
method for a general system with colored noises (c: = 1) that was proposed in Ref. 9. 

If we omit terms with order h312 in the scheme (7.5), we obtain the following simpler 
method 

Yk+i = Yk + [! + GU]kh + [!; + G~U +(!+GU)~(!+ GU)+ (7.6) 

+GAU]kh2 /2, 
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q 

Uk+I =Uk+€, "'fJbrlrh + AkUkh + [A~U + A2U]kh2/2, 
r=l 

[ER2]1!2 = O(h2 +ch). 
If one chooses time increment h so that h = O(c), the errors of both the method (7.5) 
and the method (7.6) would be estimated by O(i:2 ). The needed Ito integrals of the 
schemes (7.5), (7.6) are simulated as in (5.1) . 

.'3.Methods 0( h3 + ... ) 
The method (6.4) for the system (7.3) has the form 

q 

Yk+I = Yk+I + c L([( Gbr )~ + ( Gbr )~(J + GU)]foro)k+ 
r=l 

q 

+ €, l:(ArLI [! + GU]Irooh +Li[!+ GU]kh3 /6+ (7.7) 
r=l 

q 

+c2 L( ( Gbr )~Gbr )kh3 /6, 
r=l 

q 

+c L[(A~br + A2br)lroo]k + (A7tU + AA~U + A3U + 2A~AU)kh3 /6, 
r=l 

(ER2)1/2 = O(h3 + c2hs/2), 

where Yk+I and Uk+I are taken from (7.5) and needed Ito integrals are calculated as in 
(5.1). The autonomous version of the method (7.7) coincides with the 5/2 mean-square 
order method of Ref. 9. If one chooses time increment h so that h = 0 ( e,), the error 
of the method (7.7) is estimated by O(e,3 ). The same result may be obtained by the 
simpler method 

- 2 3 yk+I = yk+I + LI[!+ GU]kh /6 
[h+i = Uk+i + (A~'tU + AA~U + A3U + 2A~AU)kh3 /6, 

(ER2]1/2 = O(h3 + e,h2), 

(7.8) 

Yk+I and Uk+i are taken from (7.5). However, if one chooses h = O(e,2 ), the method 
(7.7) gives O(e,6 ) and the method (7.8) gives O(e,5 ). 

4.Method O(h4 + ... ) 
On the base of the method (6.5) we obtain the following method for the system 

with small colored noises (7.3) 

(7.9) 
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fh+1 = (h+1 + {(:t +(Au, :))[A~,U + AA;u + A3 U+ 

+2A~AU]}kh4 /24, 

[ER2]1/2 = O(h4 + c:h3 + c:2hs/2), 

Yk+l and ih+1 are taken from (7.7). 
The method (7.9) may be improved up to [ER2 ]112 = O(h4 + c: 2 h512 ) by adding 

terms with the order c:h712 . 

7.2 Runge-Kutta methods 
l.Method O(h2 ) 

Let us rewrite the Runge-Kutta method (6.6) for the system (7.3) 

q 

+ c:Gk IJ br(/ro - Irh/2)k, 
r=l 

q 

+c: L(Abr(Jro - Jrh/2)k, 
r=l 

[ER2]1/2 = O(h2). 

(7.10) 

where Jk = f(t + h, Yk), Ch = G(t + h, Yk), Yi = Yk + [! + GU]kh, Uk = Uk + 
c L;=l ( brlr )k + AkUkh. 
The autonomous version of the method (7.10) coincides with the second order Runge-
Kutta method of Ref. 9. 

2.Method O(h3 + ... ) 
For the system with small colored noises the method (6.7) becomes 

q 

Yk+l = Yk + [J<1 + 4I<2 + ]{3]h/6 + C:Gk L(brlro)k+ (7.11) 
r=l 

q q 

C: L([( Gbr )~ + ( Gbr )~(! + GU)]Joroh + C: L(ArLi[J + GU]frooh+ 
r=l r=l 

q 

+c2 2:( ( Gbr )~Gbr )kh3 /6, 
r=l 
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where 

q d2b q 
+[A~U + A2U]kh2 /2 + c L( dt; foor)k + c L((Abr)~foro)k+ 

r=l r=l 
q 

+c L[(A~br + A2 br)lroo]k + (A~'tU + AA~U + A3U + 2A~AU)kh3 /6, 
r=l 

K1 == hF(tk, Yk, Uk), K2 == hF(tk + h/2, Yk + Ki/2, Uk+ hAkUk/2) 

[{3 == hF(tk+1, Yk - K1 + 2I<2, Uk - hAkUk + 2hAk+i/2(Uk + hAkUk/2)) 
F(t, Y, U) == J(t, Y) + G(t, Y)U, Ak+i/2 == A(tk + h/2). (7.12) 

The needed random variables are simulated as in (5.1). 

3.1V!ethods 0( h4 + ... ) 
For the system (7.3) the method (6.8) may be rewritten in the form 

K1 == hF(tk, Yk, Uk), I<2 = hF(tk + h/2, Yk + I<i/2, Uk+ hAkUk/2) 

J<3 == hF(tk + h/2, Yk + K2/2, Uk+ hAk+i/2(Uk + hAkUk/2)/2) 

K4 = hF(tk+i, Yk + K3, Uk+ hAk+1/2[Uk + hAk+i/2(Uk + hAkUk/2)/2]) 
q 

Yk+l == 1'/c +[Ki+ 2/(2 + 2/(3 + ](4]h/6 + cGk L(brlro)k+ 
r=l 

q q 

€ 2:([( Gbr )~ + ( Gbr )~(! + GU)]Ioroh + c 2:(ArLi[J + GU]Iroo)k+ (7.13) 
r=l r=l 

q 

+c2 L( ( Gbr )~Gbr )kh3 /6, 
r=l 

where 
F(t, Y, U) == J(t, Y) + G(t, Y)U, Ak+i/2 == A(tk + h/2), 

Uk is calculated as lh+1 in (7.9) and the needed random variables are simulated as in 
( 5.1 ). 
Just as (5.14), the method (7.13) may be simplified 

(7.14) 
q 

Uk+i ==Uk+ c: L(brlr )k + AkUkh + [A~U + A2U]kh2 /2+ 
r=l 
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+ { ( :t +(Au,! ))[A;',U + AA;u + A3 U + 2A;Au] L h4 /24, 

[ER2]1f2 == O(h4 + c:h), 

where J(i are taken from (7.13). Note that if h == O(c:114 ), the errors of both methods 
(7.13) and (7.14) are estimated by O(c:). However, if h == O(c:), the method (7.13) gives 
[ER2 ]112 == O(c:4 ) and the method (7.14) gives only O(c:2 ). 

7.3 Implicit methods 
I.Methods O(h) 

From the family of Euler methods (5.18) we obtain 

q 

Uk+l == Uk+ c "'fJbrlr )k + o.(AU)kh + (1 - o.)(AU)k+lh, 
r=l 

2.lvlethods O(h2 ) 

0 ~ 0. ~ 1, 

[ER2]1l2 == O(h). 

(7.15) 

The family of implicit schemes (6.11) is rewritten for the system (7.3) in the form 

q 

+c:Gk L(br(Jro - (1 - o.)Jrh))k + /3(2o. - l)Li[J + GU]kh2 /2+ 
r=l 

+(1 - /3)(2o. - l)Li[J + GU]k+ih2 /2, 
q 

uk+t ==Uk+ c L(brlrh + o.(AU)kh + (1 - o.)(AU)k+th+ 
r=l 

q db q 
+c L( d; lor]k + € L(Abr(Jro - (1 - o.)lrh))k+ 

r=l r=l 

+/3(2o. - l)[A~U + A2U]kh2 /2 + (1 - /3)(2o. - l)[A~U + A2U]k+ih2 /2, 

0 ~ 0. ~ 1, 0 ~ /3 ~ 1, 

[ER2]1f2 == O(h2). 

The needed Ito integrals are calculated as in (5.1). In the case of o. == 1/2 we obtain 
the simplest method of the family (7.16) 

q . 

yk+t == yk + ([! + GU]k + [! + GU]k+1)h/2 + cGk L(br(Iro - Irh/2))k (7.17) 
r=l 
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q 

uk+I =Uk+ c L(bJrh + [(AU)k + (AU)k+I]h/2+ 
r=l 

q db q 

+c L[ d; for]k + c L(Abr(Jro - Irh/2))k, 
r=l r=l 

[ER2]1f2 = O(h2). 

The autonomous variants of the methods (7.15)-(7.17) coincide with the corresponding 
implicit schemes of Ref. 9. 

8 Numerical tests 

8.1 Simulation of Lyapunov exponent of a linear system with 
small noises 

The stability problem of a stochastic system is of great importance from physical and 
engineering points of view. It is known(n,i 2) that one can investigate stability of a 
dynamical stochastic system by Lyapunov exponents. The negativeness of upper Lya-
punov exponents is an indication of system stability. Usually, it is impossible to derive 
analytical expressions for Lyapunov exponents. In this case numerical approaches are 
useful. For the first time an algorithm of numerical computation of Lyapunov expo-
nents was proposed by D.Talay.(l3 } Here we use another method to calculate Lyapunov 
exponent of a linear system with small noises. 

Let us consider the following two-dimensional linear Ito stochastic system 

q 

dX =AX+ <L: BrXd~Vr(t), (8.1) 
r=l 

where X is two-dimensional vector, A and Br are constant 2x2 matrices, Wr are inde-
pendent standard vViener processes, c: > 0 is a small parameter. In ergodic case the 
unique Lyapunov exponent ,\ of the system (8.1) exists(n) 

-\ = lim ~E(lnlX(t)I) = lim ~lnlX(t)I, 
t-+oo t t-+oo t (8.2) 

X(t), t 2:: 0, is non-trivial solution of the system (8.1). The last equality of (8.2) holds 
with the probability one. Non-trivial solution of the system (8.1) is asymptotically 
stable with probability one if and only if the Lyapunov exponent ,\ is negative. (n) 

In Ref. 14 the expansion of Lyapunov exponent of the system (8.1) by powers of 
small parameter c; was obtained. In the case of 

r = l,q (8.3) 
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the Lyapunov exponent of the system (8.1) is exactly equal to(14) 

(8.4) 

To test the numerical schemes of the present paper we choose the case (8.3) of the 
system (8.1) with two independent noises (q = 2). 

We calculate the function ,\( t) 

1 1 -
-\(t) = -lnlX(t)I ~ -lnlX(t)I 

t t 
(8.5) 

which in the limit of large time ( t ---; oo) tends to the Lyapunov exponent ,\. The 
approximation X ( t) of the exact solution X ( t) of the system (8.1) is simulated by 
three mean-square schemes: 1) the first order method, (3 •6•7) 2) the simplified version 
of the Runge-Kutta scheme (5.8) with the mean-square error O(h2 +ch+ c2h112) and 
3) the Runge-Kutta scheme (5.16) with the error O(h4 +ch +c2 h112 ). 

Since the system (8.1) with the matrices defined by (8.3) is the commutative 
(i.e., Ai(BrX) = Ar(BiX)) two-dimensional system with two multiplicative noises, 
the first order method is the highest mean-square order scheme with easily simulated 
needed random variables for numerical solution of this system among known general 
methods. (6 •7) This method for the system (8.1 )-(8.3) has the form( 3•6•7> 

2 

xi+i = X~ + c l)brX~ + drX~]~r1;h 1 l2 + [aX~ + cXi]h+ 
r=l 

2 

+c2 h{l)(br) 2 Xk +2brdrXi-(dr)2Xi]((~rk) 2 -1)/2+ 
r=l 

+ [b1b2xi + b1d2Xz - did2xi + dib2X~]6k6k}, 
2 

Xz+l =xi+ c L[-drX~ + brXi]erkh1!2 + [-cX~ + aXz]h+ 
r=l 

2 

+c:2h{L[-2drbrxi - (dr) 2 Xz + (br) 2 Xi)((~rk) 2 
- 1)/2+ 

r=l 
+[-d1b2X~ - d1d2X; - b1d2Xi + b1b2Xi)~11;~2k}, 

(ER2
)

1l2 = O(h), 

(8.6) 

where ~r, r = 1, 2, are independent random variables with standard normal distribution 
N(O, 1). 

The simplified version of the Runge-Kutta scheme (5.8) for the system (8.1)-(8.3) 
is writ ten as 

2 

X~+i = X~ + c l:[brXk + drXi]~rkh 1 l2 +[I<:+ K~]/2, 
r=l 
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Figure 1: Lyapunov exponent. Time dependence of the function ).(t) for a= -3, c = 1, 
b1 = b2 = 1, d1 = 1, d2 = -1, c = 0.1, X 1(0) = 0, X 2 (0) = 1 and time step h = 0.3. 
The solution of the system (8.1)-(8.3) is approximated by {1) the method (8.6), (2) the 
Runge-Kutta method (8. 7), (3) the Runge-Kutta method (8.8). Dashed line is the exact 
value of the Lyapunov exponent ). {). = -3}. 

2 

XZ+i = Xz + c I)-drxi + brxi]~rkh 1 l2 +[I<{+ I<i}/2, (8.7) 
r=l 

I<{ = h[aXk + cX~], I<i = h[a(Xk + I<n + c(Xi + I<i)], 
I<i = h[-cXf + axn I<i = h[-c(Xk +I<{)+ a(xi + I<i)], 

(ER2 ) 1l 2 = O(h2 +ch+ c2 h1l 2
), 

~r, r = 1, 2, are independent random variables with standard normal distribution 
N(O, 1). According to the Runge-Kutta scheme (5.16) we obtain the following al-
gorithm for the system (8.1)-(8.3) 

2 

xi+i =xi+ c 2:[brxi + drXZ]~rkh 1 l2 +[Ki+ 2I<i + 2K~ + I<l]/6, 
r=l 

2 

xi+i =xi+ c 2:[-drxi + brXZ]~rkh 1 l2 +[Ki+ 2K~ + 2I<5 + I<~]/6, (8.8) 
r=l 

I<: = h[axi + cXZ], I<i = h[-cxi + aXz], 
I<i = h[a(xi + K{ /2) + c(Xz +Ki /2)], 
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Figure 2: Lyapunov exponent. Time dependence of the function ..\(t) for h = 0.1, 
other parameters are the same as in Fig. 1. The solution of the system (8.1)-(8.3) 
is approximated by (1) the method (8.6), (2) the Runge-I<utta method (8. 7)J {3) the 
Runge-I< utta method (8.8). Dashed line is the exact value of the Lyapunov exponent ,.\ 
(,.\ = -3). 

I<i = h[-c(xi + J<{/2) + a(X~ + I<i/2)], 

J<j = h[a(Xk + J<i/2) + c(X~ + J<~/2)], 
Kj = h[-c(xi + I<U2) + a(X~ + J<i /2)), 

Kl= h[a(xi + J<j) + c(xi + J<~)], 
/(~ = h[-c(xi + J<j) + a(x; + J<j)], 

(ER2)1f2 = O(h4 + c:h + c:2h1f2), 

~n r = 1, 2, are independent normally distributed N(O, 1) random variables. To simu-
late Gaussian random numbers we use the procedure GASDEV.(15) 

If one chooses h = O(c;112 ) (see Fig.1), the method (8.6) gives the mean-square error 
O(c:1l 2 ) on the whole interval, the Runge-Kutta method (8.7) - O(c:) and the Runge-
Kutta method (8.8) - O(c:312 ). In the case of h = O(c:) (see Fig. 2) the mean-square 
errors of these methods are estimated as: the scheme (8.6) - O(c:), the scheme (8.7) 
- O(c:2 + c: 2 + c; 512

) = O(c:2 ) and the method (8.8) - O(c:4 + c; 2 + c;512 ) = O(c:2 ). For 
h = O(c:2

) (see Fig. 3) we have: (8.6) - O(c:2 ) and (8.7), (8.8) -O(c:3 ). Analyzing Figures 
1-3 one can conclude that l)the proposed methods for a system with small noises are 
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Figure 3: Lyapunov exponent. Time dependence of the function ,.\( t) for h == 0.01, 
other parameters are the same as in Fig. 1. The solution of the system (8.1)-(8.3) is 
approximated by {1) the method {8.6), {2) the Runge-Kutta methods (8. 7) and {8.8). 
Dashed line is the exact value of the Lyapunov exponent ,.\ (,.\ == -3). 

correct; 2)in the case of small noises new methods may have less errors than ordinary 
methods and permit to save CPU time. 

It must be mentioned that if e, is equal to one, the method (8.6) always gives better 
results than the schemes (8. 7), (8.8) since the method (8.6) has higher order with 
respect to h than the schemes (8.7), (8.8). However, for the commutative system (8.1)-
(8.3) the methods (8. 7) and (8.8) may be easily improved (see the scheme (5.6) as an 
example) up to O(h2 + e,2h312 + e,3 h) and O(h4 + e,2h312 + e,3 h) correspondingly. 

8.2 Laser Langevin equation with multiplicative noises 
Our second example is devoted to trajectory simulation of the following laser Langevin 
equation (16•17) 

db/dt ==[(a+ i/3) - (A+ iB)lbl2 ]b + f(t) (8.9) 

where a, /3 and r fluctuate according to 

a== O'.o + r a(t), /3 == /30 + f p(t), r(t) == f 1(t) +if 2(t), 

< rQ >==< r p >==< ri >== 0, < r a(t) r a(t') >== Qa8(t - t'), (8.10) 

< f13(t) fp(t') >== Qp8(t- t'), < f a(t) fp(t') >== Qa138(t- t'), 
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< ri(t) rj(t') >= Q8ij8(t - t'), < C~(t) C(t') >=< r13 (t) ri(t') >= o, 
i,j==l,2. 

Let us suppose that fluctuations are small. According to the. notation of the paper the 
system (8.9)-(8.10) may be rewritten in the form 

where 

b = X == X 1 + iX2
, 

2 

+ c{~]aiX1 
- /3iX2] * dWi + adW3}, 

i=l 

2 

+c(~]/3iX 1 + aiX2
] * dWi + ad~Vi}, 

i=l 

c2[(a1)2 + (a2)2) = Qcn c2[(/31)2 + (/32)2) == Q13, 

c2[a1/31 + a2/32] == Qa13, ca== /Q. 

(8.11) 

(8.12) 

Under c == 0 the system (8.12) becomes deterministic. In the case of a/A> 0 it has 
asymptotically stable limit cycle (X1 )2 + (X2)2 == a 0 / A. The radius p == IXI satisfies 
the equation 

dp/ dt == (a - Ap2 )p 

and does not depend on the detuning parameters ;30 and B. But difference equations, 
which are the result of applying numerical methods to the system (8.12), essentially 
depend on these parameters, and growing of 1/3 - Bl leads to vanishing of stable cycle. 
Therefore, to solve the system (8.12) one must use high order schemes or choose quite 
small time step. Since the system (8.12) contains multiplicative noises and does not 
belong to class of systems with commutative noises, the Euler method is the high-
est order scheme among known mean-square methods with easily simulated random 
variables. (617) The Euler method has the mean-square error 0( h + c2 h1! 2 ) and in the 
case of large l/J0 - Bl too small step h is required. On the other hand, for instance, 
the method (5.17) with the mean-square error O(h4 +ch+ c2 h112 ) allows to obtain 
sufficiently accurate approximations of solutions of the system (8.12) and, particularly, 
to simulate phase trajectories. 

For the convenience of the reader we write down the Runge-Kutta method (5.17) 
for the system (8.12) 

I<: == h[aoX~ - /3oXZ - (Axi - BX~)XkXZ], 

I<i == h[f3oX~ + aoXZ - (BX~ + AXZ)xkx;], 
.Xi == Xi + I<U2, i = 1, 2, 

1 -1 -2 -1 -2 - -* I<2 == h[aoXk - /30 Xk - (AXk - BXk)XkXk], 
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Figure 4: Laser Langevin equation. Time dependence of the radius p = IXkl for a 0 = 
o.5, /30 = 1, A= 0.1, B = 0.4, c = o.3, ai = /3i =a= 1, i = 1, 2, x 1 (0) = x 2 (0) = o 
and time step h = 0.01. The solution Xk of the system (8.12) is approximated by the 
Euler method and by the Runge-Kutta method (8.13). 

I<~ = h[/30.1Yl + noX~ - (BXl + AX~)xkx;], 
5:t = xt + I<~/2, i = 1, 2, 

rl " 1 "' 2 "' 1 " 2 "' "' * f\. 3 = h[a0Xk - /30Xk - (AXk - BXk)XkXk], 
I<5 = h[/3o"'tl + aox~ - (B.(ti + A.(tn"'tkx;J, 

xt = x~ + I<~, i = 1, 2, 

I<l = h[aoxi - f3oX~ - (AXl - B"'tnxkx;], 

XI+I = Xl +[I<{+ 2I<i + 2I<~ + I<~]/6+ 
2 

+ch1l 2[2:( nix~ - /3iXi)~ik + a771k]+ 
i=l 

2 

+ c2 h L[( ( ai) 2 
- (/3i) 2)xi - 2ai/3iX~]/2, 

i=l 

x~+I = x~ + [I<i + 2I<i + 2I<~ + I<~]/6+ 
2 

+ch1 l2 [2:(/3iX~ + aiX~)~ik + a772J+ 
i=l 

2 

+c2 h L[( ( ni) 2 
- (/3i) 2 )X~ + 2ai/3iXl]/2, 

i=l 

[ER2
]
1l 2 = O(h4 +ch+ c2 h1/2

), 

(8.13) 

where ~i and T/i are independent random variables with normal distribution N(O, 1 ). 
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Figure 5: Laser Langevin equation. Time dependence of the radius p == IXk I for time 
step h == 0.1, other parameters are the same as in Fig. 4. The solution Xk of the 
system (8.12) is approximated by {1) the Euler method, (2) the Runge-Kutta method 
(8.13). 

The radius p == IXkl is plotted in Fig. 4 and 5. Fig. 4 demonstrates the radius 
p calculated by Euler scheme and the Runge-Kutta scheme (8.13) with the time step 
h == 0.01. In this case both methods give the same results. As seen in Fig. 5 if one 
chooses greater time step (h == 0.1), the Runge-Kutta scheme (8.13) gives quite well 
results (compare with Fig. 4 ), but the Euler method becomes unstable. In both cases 
we use the same sample paths for the Wiener processes. 

Note that the Runge-Kutta method (8.13) may be improved up to [ER 2]1l2 == 
O(h4 + c2 h112 ) (see the method (5.15)). 

9 Conclusions 
Differential equations with small noises is an important case of a stochastic system. 
In the paper the approach to construction of efficient mean-square methods with low 
errors for a system with small noises is developed. Thanks to a small parameter c new 
methods may be easier, require less computer time and have less errors than general 
schemes. (6 •7) Special attention has been paid to constructing methods with efficiently 
simulated random variables. An accuracy and convergence of a method on the whole 
interval are analyzed by the theorem on estimate of mean-square errors that have been 
proved in the paper. Herein the explicit, implicit and Runge-Kutta methods with the 

40 



mean-square errors from O(h + s2 h1 l 2
) up to O(h4 + s2 h112 ) are proposed for general 

Ito and Stratonovich systems with small noises. Moreover, systems with small additive 
noises and systems with small colored noises are considered. The appropriate methods 
for these systems have been also derived: for systems with small additive noises -
schemes with mean-square errors from 0( h2 +c2 h) up to 0( h4 +c2 h312 ) and for systems 
with small colored noises - schemes with mean-square errors from O(h2 +ch) up to 
O(h4 + ch3 + c.2h512 ). Obviously, by the proposed approach it is possible to derive a 
lot of other numerical schemes for a system with small noises. 

Mean-square methods are useful for direct simulation of stochastic trajectories, 
which, for instance, may give an information on qualitative behaviour of a stochas-
tic model. However, for practical applications weak methods(6•7) are more important. 
Firstly, they are sufficient for calculation of mean values and solving problems of math-
ematical physics by Monte-Carlo technique. Secondary, they are simpler than mean-
square methods. Weak methods, constructed for a system with small noises, may be a 
useful tool for numerical solution of partial differential equations with a small param-
eter at high derivative. Note that mean-square methods are the basis for construction 
of weak ones. vVeak methods for a system with small noises and their applications to 
problems of mathematical physics will be the subject of our next paper. 
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