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Abstract

We consider a system of autonomous ODE's which is S1
-equivariant and

has a family of asymptotically stable modulated wave solutions with wave

frequency �0 and modulation frequency �0. This system will be perturbed,

where the applied nonautonomous force also represents a modulated wave,

but with wave frequency � and modulations frequency �. The strength of

this perturbation is not necessarily small. Our goal is to look for conditions

such that the perturbed system exhibits an approximate entrainment of the

modulation frequency � on any given �nite time interval, where the approxi-

mation error can be controlled by the wave frequency.

1 Introduction

A classical problem in the theory of synchronization is the problem of frequency

entrainment of an oscillatory system by an external force. In the simplest case, the

oscillatory system is an autonomous di�erential system possessing an exponentially

orbitally stable limit cycle with frequency �0, and the external force is periodic with

frequency �. If we characterize the strength of the forcing by the parameter , then

the goal is to �nd regions in the (�; )-plane such that the perturbed system has a

stable periodic solution with frequency �. These regions are called resonance horns

or Arnold-tongues. The boundaries of these cone-like areas are determined by bi-

furcations of periodic solutions.

A more complicated scenario has been investigated by [Afraimovich and Shilnikov,

1974b; Afraimovich and Shilnikov, 1974a]. They considered the case that the un-

perturbed autonomous system has a homoclinic orbit instead of a limit cycle. Here,

the application of a small periodic force leads to regions in the parameter space

corresponding to synchronized as well as to chaotic regimes.

In this paper we study the case that the unperturbed system is an autonomous sys-

tem possessing a modulated wave solution with wave frequency �0 and modulation

frequency �0, and that the applied force with strength  is also a modulated wave

with wave frequency � and modulation frequency �. The case that j���0j; j���0j
and  are small has been treated in [Recke and Peterhof, 1999]. In their paper

they have proved that in the (; �; �)- parameter space there is a cone-like region

with (0; �0; �0) as vortex such that to each point of this set there corresponds a

perturbed system possessing a stable modulated wave solution with wave frequency

� and modulation frequency �, that is, there is a frequency entrainment between

corresponding frequencies.
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The goal of this paper is to investigate the case j� � �0j � 1; �� 1. Moreover, we

do not assume  to be small.

The motivation to study such problems comes from the challenge in communication

networks to increase strongly the data transmission rate. A promising class of de-

vices to realize this goal are multisection semiconductor lasers with distributed feed-

back. A well-established model to describe such lasers is the traveling wave model

(see, e.g., [Bandelow et al., 1993; Radziunas and W�unsche, 2004] which consists of

a hyperbolic system of partial di�erential equations for the optical �eld which is

nonlinearly coupled with the system of ordinary di�erential equations for the carrier

densities. This model exhibits two crucial properties, namely the S1-equivariance

and the linearity of the di�erential system for the optical �eld.

In our paper we consider a system of ordinary di�erential equations consisting of two

coupled subsystems and exhibiting the same fundamental properties as the travelling

wave model mentioned before. We additionally assume that one subsystem is under

the forcing of a modulated wave with wave frequency � and modulation frequency

�. After transforming this system into some normal form taking into account that �

is a large parameter, we are able, to any given strength  of the forcing, to establish

the entrainment of the modulation frequency � of some truncated system. Concern-

ing the complete model we can prove an approximate frequency entrainment of the

modulation frequency on any given �nite time interval, where the entrainment error

can be controlled by the wave frequency � of the forcing.

The paper is organized as follows. In Sec. 2 we introduce the unperturbed system

and formulate the corresponding assumptions. In Sec. 3 we describe the perturbed

system and characterize the perturbation. Section 4 contains nearly identical trans-

formations leading to some normal form of our perturbed system. In Sec. 5 we

introduce the truncated nonautonomous system and establish the existence of fre-

quency entrainment. In the �nal section we study the behavior of the full system

and estimate the error between the solution of the truncated system and the solution

of the full system starting at the same time at neighboring initial points.

2 The unperturbed system

We consider the system of autonomous di�erential equations

dx

dt
= f(x) + jyj2g(x);

dy

dt
= h(x)y

(2.1)

under the smoothness assumption

(A1). The functions f; g : Rn ! R
n , and h : Rn ! C are k-times (k � 2) continu-

ously di�erentiable.
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We note that system (2.1) is equivariant with respect to the S1-representation

( ; x; y) 2 R=2� � R
n � C 7! (x; ei y) 2 R

n � C :

Hence, if (x(t); y(t)) is a solution of (2.1), then, for each  2 R, also (x(t); ei y(t))

is a solution of (2.1).

By introducing polar coordinates y = rei# with r 2 R
+ ; # 2 R we get from (2.1)

dx

dt
= f(x) + r2g(x);

dr

dt
= Re h(x) r;

(2.2)

d#

dt
= Imh(x); (2.3)

where Re and Im denote the real and the imaginary parts, respectively. Thus, the

equation for the phase # is decoupled from the equations for x and r, moreover,

system (2.2) is no more equivariant.

Concerning the decoupled system (2.2) we suppose:

(A2). System (2.2) has a periodic solution p : R ! R
n+1 with period T0 = 2�

�0
,

�0 > 0, where 1 is a simple Floquet multiplier and all other multipliers of p

are located in the interior of the unit circle.

For the sequel we represent p in the form

p(t) � p0(�0t) := (x0(�0t); r0(�0)); (2.4)

where x0 : R ! R
n and r0 : R ! R

+ are periodic with minimal period 2�.

We denote by

O0 := fz 2 R
n+1 : z = p0(�); 0 � � � 2�g

the closed orbit in R
n+1 generated by the periodic solution p0 of system (2.2). Ac-

cording to hypothesis (A2), O0 is a nontrivial exponentially stable limit cycle.

It is obvious that the function # de�ned by

#(t; t0) :=

tZ
t0

Imh(x0(�0�)) d� (2.5)

solves the phase equation (2.3). Using the notation

�0 :=
�0

2�

2�

�0Z
0

Im h(x0(�0�)) d� =
1

T0

T0Z
0

Imh(x0(�0�)) d�
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we can verify that #0(�0t) := #(t; t0)� �0(t� t0) is periodic in �0t with period 2�.

Thus, the solution # of (2.3) can be represented in the form

#(t; t0) = #0(�0t) + �0(t� t0):

Therefore, the full system (2.1) possesses the solution

ŵ0(t) := (x̂(t); ŷ(t)) := (x0(�0t); e
i�0(t�t0) ei#0(�0t)r0(�0t)): (2.6)

Each component of the solution (2.6) consists of a product of two functions with the

frequencies �0 and �0, respectively. Therefore, the solution (x̂(t); ŷ(t)) is called a

modulated wave solution with wave frequency �0 and modulation frequency �0 (for

this terminology see [Rand, 1982]).

The modulated wave solution (2.6) is called asymptotically stable if the related

periodic solution (2.4) is asymptotically stable. Thus, under the hypothesis (A2),

(x̂(t); ŷ(t)) is an asymptotically stable modulated wave solution of (2.1).

Remark 2.1 In the case that �0=�0 is irrational, the modulated wave solution ŵ0

represents a quasiperiodic solution of system (2.1), otherwise it is a periodic solu-

tion. The S1
-equivariance of system (2.1) implies that together with ŵ0 there exists

a one-parameter family of modulated wave solutions ŵ 0 (t) := (x̂(t); ei ŷ(t)) which

generates in R
n � C an exponentially attracting invariant set M0 which is di�eo-

morphic to a two-torus in R
n � C and consists either of periodic or of quasiperiodic

solutions.

3 The perturbed system

In the sequel we will study the inuence of an external force of modulated wave type

on system (2.1), where we assume that the perturbed system has the form

dx

dt
= f(x) + jyj2g(x);

dy

dt
= h(x)y + ei�ta(�t):

(3.1)

Concerning the function a we suppose

(A3). The function a : R ! C is k-times (k � 2) continuously di�erentiable and

periodic with primitive period 2�.

Thus, the external force

ei�ta(�t) (3.2)

is a modulated wave with wave frequency � and modulation frequency �. Through-

out the following we suppose that �; � and  are positive constants.
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We note that in contrast to the unperturbed system (2.1), system (3.1) is not equiv-

ariant with respect to the S1-representation, and it is not possible by introducing

polar coordinates for y to separate the equation for the phase from the other vari-

ables.

Our goal is to investigate the inuence of the external force (3.2) on the asymptot-

ically stable modulated wave solution (2.6) of system (2.1).

In the case

0 <  � 1; j�� �0j � 1; j� � �0j � 1

this perturbation problem has been considered by [Recke and Peterhof, 1999]. Under

the assumption that the parameter tuple (; �; �) varies in some cone-like open sets

with (0; �0; �0) as vortex, the existence of an asymptotically stable modulated wave

solution of the form

(~x(�t); ei�t~y(�t)) with ~x(�) = ~x(� + 2�) and ~y(�) = ~y(� + 2�) (3.3)

to equation (3.1) has been proved. Note that the wave frequencies of (3.2) and (3.3)

as well as the modulation frequencies coincide. That means, frequency entrainment

occurs between \corresponding" frequencies for suÆciently small .

In the present paper we consider system (3.1) under the assumption (A1) � (A3),

where we emphasize that  must not be small. Our goal is to look for conditions

such that a solution of the perturbed system (3.1) starting near the modulated wave

solution ŵ0 stays for a prescribed time interval in a given (small) neighborhood of

ŵ0.

In the following Sec. we will transform system (3.1) for (x; y) 2 G0 into some normal

form which can be understood as a small perturbation of the unperturbed system

(2.1) provided � is large.

4 Averaging transformations

In what follows we suppose that  is any given positive constant. By means of the

transformation

x = x1; y = y1 � i


�
ei�ta(�t); (4.1)

which is in the compact region G� a nearly identical transformation for large �, we

get from (4.1) and (3.1)

dx1

dt
= f(x1) + jy1j

2g(x1) +
2

�2
ja(�t)j2g(x1)

+2


�
Re

n
ie�i�t�a(�t)y1

o
g(x1);

dy1

dt
= h(x1)y1 �



�
iei�t

�
h(x1)a(�t)� �a0(�t)

�
;

(4.2)
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where a0 denotes the di�erentiation of a(�) with respect to � and �a(�) is the conjugate

complex value of a(�).

The goal of the next transformation is to shift for large � the inuence of the highly

oscillating terms e�i�t and ei�t to terms which are of higher order in ��1.

Applying the transformation

x1 = x2 � 2


�2
Re

n
e�i�ta(�t)y2

o
g(x2);

y1 = y2 �


�2
ei�t

h
h(x2)a(�t)� �a0(�t)

i
;

(4.3)

which is also near the identity in G0 for suÆciently large �, we obtain from (4.3)

and (4.2)

�
En � 2



�2
Re

n
e�i�ta(�t)y2

o
g0(x2)

� dx2
dt

�2


�2
Re

n
e�i�ta(�t)

dy2

dt

o
g(x2)

= f
�
x2 � 2



�2
Re

n
e�i�ta(�t)y2

o
g(x2)

�

+

��
y2 �



�2
ei�t

h
h(x2)a(�t)� �a0(�t)

i�

�
�
y2 �



�2
e�i�t

h
h(x2)a(�t)� �a0(�t)

i�
+
2

�2
ja(�t)j2

+2


�
Re

n
ie�i�ta(�t)

�
y2 �



�2
ei�t

h
h(x2)a(�t)� �a0(�t)

i�o�

�g
�
x2 � 2



�2
Re

n
e�i�ta(�t)y2

o
g(x2)

�

�2


�
Re

n
ie�i�ta(�t)y2

o
g(x2) + 2�



�2
Re

n
e�i�ta0(�t)y2

o
g(x2)

=: u2(x2; y2; �t; e
i�t; ��1; �);

(4.4)

where En is the n� n - unit matrix,
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dy2

dt
�



�2
ei�ta(�t)h0(x2)

dx2

dt
=


�
iei�t

�
h(x2)a(�t)� �a0(�t)

�

+


�2
ei�t

�
h(x2)a

0(�t)� � a00(�t)�2
�

+ h
�
x2 � 2



�2
Re
n
e�i�ta(�t)y2

o
g(x2)

�

�
�
y2 �



�2
ei�t

h
h(x2)a(�t)� �a0(�t)

i�

�


�
iei�t

h
h
�
x2 � 2



�2
ei�tRe

n
e�i�ta(�t)y2

o
g(x2)

�
a(�t)� �a0(�t)

i

:= v2(x2; y2; �t; e
i�t; ��1; �):

(4.5)

By (4.4) and (4.5) we have the representations

u2(x2; y2; �t; e
i�t; ��1; �) � f(x2) + jy2j

2g(x2) +
2

�2
ja(�t)j2g(x2)

�2


�2

�
Re

n
e�i�t�a(�t)y2

o
f 0(x2)g(x2)

+jy2j
2Re

n
e�i�t�a(�t)y2

o
g0(x2)g(x2)

�Re
n
e�i�t

�
h(x2)a(�t)� �a0(�t)y2

�o
g(x2)

��Re
n
e�i�ta(�t)a0(�t)y2

o
g(x2)

�
+ ��3~u2(x2; y2; �t; e

i�t; ��1; �)

=: f(x2) + jy2j
2g(x2) +

2

�2
ja(�t)j2g(x2) +



�2
Re

n
e�i�tr2(x2; y2; �t)

o

+��3~u2(x2; y2; �t; e
i�t; ��1; �);

(4.6)

where ~u2 is continuous in all variables and uniformly bounded for (x2; y2) 2 G0; j��
�0j � �0=2; t 2 R; � � ��, where �� is any positive number, r2 is continuously

di�erentiable with respect to all variable and uniformly bounded for (x2; y2) 2 G�; t 2
R.
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v2(x2; y2; �t; e
i�t; ��1; �) � h(x2)y2

�


�2

�
ei�th(x2)

�
h(x2)a(�t)� �a0(�t)y2

�

+2h0(x2)Re
n
e�i�t

�
a(�t)y2

o
g(x2)y2

�ei�t
�
h(x2)�a

0(�t)� �2a00(�t)
��

+��3u2(x2; y2; �t; e
i�t; ��1; �) := h(x2)y2 +



�2
ei�ts2(x2; y2; �t)

+2


�2
Re

n
e�i�t%2(x2; y2; �t)

o
+ ��3~v2(x2; y2; �t; e

i�t; ��1; �);

(4.7)

where the function ~v2 has the same smoothness and boundedness properties as the

function ~u2, and the functions s2 and %2 as the function r2.

If we use the representation

e�i�ta(�t) = Re
n
e�i�ta(�t)

o
+ i Im

n
e�i�ta(�t)

o
; y2 =: �2 + i !2;

then we may rewrite (4.4) and (4.5) in the form

�
En �

2

�2
Re

n
e�i�ta(�t)(�2 + i!2)

o
g0(x2)

�
dx2

dt

�
2

�2

�
Re
n
e�i�ta(�t)

od�2
dt

� Im
n
e�i�ta(�t)

od!2

dt

�
g(x2)

= u2(x2; y2; �t; e
i�t; ��1; �);

d�2

dt
�

2

�2
Re

n
ei�ta(�t)h0(x2)

odx2
dt

= Re v2(x2; y2; �t; e
i�t; ��1; �);

d!2

dt
�

2

�2
Im

n
ei�ta(�t)h0(x2)

odx2
dt

= Im v2(x2; y2; �t; e
i�t; ��1; �):

(4.8)

By means of the (n + 2)� (n + 2) matrix

A := (4.9)

�

2

�2

0
BBB@

Re

n
e�i�ta(�t)y2

o
g0(x2) Re

n
e�i�ta(�t)

o
g(x2) �Im

n
e�i�ta(�t)

o
g(x2)

Re

n
ei�ta(�t)h0(x2)

o
0 0

Im

n
ei�ta(�t)h0(x2)

o
0 0

1
CCCA

the relation (4.8) can be represented in the form

8



(En+2 + A)

0
@

dx2

dt
d�2

dt
d!2

dt

1
A =

0
@ u2(x2; y2; �t; e

i�t; ��1; �)

Re v2(x2; y2; �t; e
i�t; ��1; �)

Im v2(x2; y2; �t; e
i�t; ��1; �)

1
A : (4.10)

For suÆciently large � and (x2; y2) 2 G� we have jjAjj < 1. Thus, it holds

(En+2 + A)�1 = En+2 � A + A2 � : : :+ : : : (4.11)

Therefore, we get from (4.9)-(4.11)

dx2

dt
= u2(:::) +

2

�2

h
Re

n
e�i�ta(�t)y2

o
g0(x2)u2(:::)

+Re
n
e�i�ta(�t)u2

o
g(x2)

i
+ ��3û2(x2; y2; �t; e

i�t; ��1; �);

dy2

dt
= v2(:::) +

2

�2
ei�ta(�t)h0(x2)v2(:::)

+��3v̂2(x2; y2; �t; e
i�t; ��1; �);

(4.12)

where û2 and v̂2 have the same properties as the functions ~u2 and ~v2.

Taking into account the representations (4.6) and (4.7) we get from (4.12)

dx2

dt
= f(x2) + jy2j

2g(x2) +
2

�2
ja(�t)j2g(x2)

+
2

�2
Re
n
e�i�t~r2(x2; y2; �t)

o
+ ��3u�2(x2; y2; �t; e

i�t; ��1; �);

dy2

dt
= h(x2)y2 +

2

�2

h
ei�t~s2(x2; y2; �t) + Re

n
e�i�t~%2(x2; y2; �t)

oi

+ ��3v�2(x2; y2; �t; e
i�t; ��1; �);

(4.13)

where the functions ~r2, ~s2 and ~%2 have the same properties as the functions r2,

s2, and %2 respectively, and the functions u�2 and v�2 as the functions ~u2 and ~v2,

respectively.

It can be easily veri�ed that by means of the nearly identical transformation

x2 = x3 + 2


�3
Re

n
ie�i�t~r2(x2; y2; �t)

o
;

y2 = y3 � 2


�3

h
iei�t~s2(x2; y2; �t)� Re

n
ie�i�t~%2(x2; y2; �t)

oi
;

system (4.13) takes the form
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dx3

dt
= f(x3) + jy3j

2g(x3) +
2

�2
ja(�t)j2g(x3)

+��3~u3(x3; y3; �t; e
i�t; ��1; �);

dy3

dt
= h(x3)y3 + ��3~v3(x3; y3; �t; e

i�t; ��1; �);

(4.14)

where the functions ~u3 and ~v3 have the same properties as the functions ~u2 and

~v2, respectively. System (4.14) can be considered as some normalized form of our

perturbed system (3.1).

For the following we introduce the positive parameter " by

" :=
1

�
: (4.15)

Moreover, in order to reduce the number of indices, we rename the coordinates

(x3; y3) as (�; �). Hence, system (4.14) takes the form

d�

dt
= f(�) + j�j2g(�) + "22ja(�t)j2g(�) + "3~u3(�; �; �t; e

i"
�1
t; "; �);

d�

dt
= h(�)� + "3~v3(�; �; �t; e

i"
�1
t; "; �):

(4.16)

Here, we want to reformulate our problem to be studied. For " = 0, system (4.16)

has the asymptotically stable modulated wave ŵ0(t) with wave frequency �0 and

modulation frequency �0 . By introducing polar coordinates � = rei# system (4.16)

takes the form

d�

dt
= f(�) + r2g(�) + "22ja(�t)j2g(�) + "3û3(�; re

i#; �t; ei"
�1
t; "; �)

dr

dt
= Re h(�)r + "3v̂

(r)
3 (�; rei#; �t; ei"

�1
t; "; �);

(4.17)

d#

dt
= Im h(�) + "3v̂

(#)
3 (�; rei#; �t; ei"

�1
t; "; �): (4.18)

The problem under consideration can be formulated as follows: Is it possible for

suÆciently small " to �nd solutions of the full system (4.17), (4.18) which stay for

any prescribed �nite time interval in a given small neighborhood of M0 such that

their (�; r) components are nearly periodic with 'frequency' �? In a �rst step we

will not consider the full system (4.16) but some truncated system.

10



5 The truncated system

If we drop all terms in (4.16) multiplied by " we get the unperturbed system (2.1).

The lowest order of the perturbation terms in (4.16) is "2. If we omit all terms of

order O("3), we get the system

d�

dt
= f(�) + j�j2g(�) + "22ja(�t)j2g(�);

d�

dt
= h(�)�;

(5.1)

which we call the truncated system. This system can be considered as a small

perturbation of the unperturbed system

d�

dt
= f(�) + j�j2g(�);

d�

dt
= h(�)�:

Di�erent to the perturbed system (3.1), where the forcing term represents a modu-

lated wave and is not necessarily small, the perturbation in system (5.1) is small and

periodic. Moreover, in contrast to (3.1), the perturbation term in (5.1) breaks only

the autonomy but not the S1-equivariance. Thus, by introducing polar coordinates

� = r ei# r 2 R
+ ; # 2 S1 (5.2)

we can decouple the equation for the phase # from the system for the variables �

and r. Indeed, putting (5.2) into (5.1) we get

d�

dt
= f(�) + r2g(�) + "22ja(�t)j2g(�);

dr

dt
= Re h(�)r; (5.3)

d#

dt
= Imh(�):

(5.4)

In case of the perturbed system (3.1), such a decomposition is possible only for

 = 0, that means for the unperturbed system (2.1).

Setting " = 0 in (5.3) we obtain the unperturbed autonomous system

d�

dt
= f(�) + r2g(�);

dr

dt
= Re h(�)r: (5.5)
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By hypothesis (A2), this system has an exponentially stable periodic solution p0(�0t) =

(x0(�0t); r0(�0t)) with frequency �0. Since the forcing term "22a(�t)g(�) in (5.3) is

periodic in t with frequency �, system (5.3) represents the classical problem of har-

monic synchronization of a hyperbolic periodic solution of an autonomous system

by means of a small periodic forcing.

Let p0 be the point on the closed orbit O0 de�ned by p0 := p0(0). (We re-

call that O0 is generated by the periodic solution p0(�0t) of system (5.5)). Let

S be a smooth surface in the phase space Rn+1 intersecting O0 transversally in

p0. We denote by '(t; t0; �
�; "; �) the solution of the perturbed system (5.3) for

�xed  satisfying '(t0; t0; �
�; "; �) = ��. According to hypothesis (A2) we have

'(t; 0; p0; 0; �̂) � p0(�0t) for any �̂. Let R"0
be the rectangle in R

+ � R de�ned by

R"0
:= f("; t0) 2 R

+ � R : 0 � " � "0;�"0 � t0 � "0g.

The following theorem is a reformulated and adapted result due to [Farkas, 1994],

p. 316.

Theorem 5.1 Suppose the assumptions (A1) � (A3) are satis�ed. Then there ex-

ist a suÆciently small positive number "0 and functions � 2 Ck(R"0
;Rn+1); ~� 2

Ck(R"0
;R+) satisfying

�(0; t0) � 0; ~�(0; t0) � �0 (5.6)

such that to any ("; t0) 2 R"0
system (5.3) has for � = ~�("; t0) a periodic solu-

tion '(t; t0; p
0 + �("; t0); "; ~�("; t0)) � p"( ~�("; t0) t; t0; ~p

0
"
) with frequency ~�("; t0) and

passing for t = t0 the point p0 + �("; t0) =: ~p
0
"
2 S:

Remark 5.2 From Theorem 5.1 and taking into account (4.15) we can conclude

that to any su�ciently small ", that is for � � 1, there exists a periodic solution

p"( ~�("; t0) t; t0; ~p
0
"
) whose frequency � = ~�("; t0) and starting point ~p0

"
for t = t0

satisfy the relations

j~p0
"
� p0j � 1; j� � �0j � 1: (5.7)

In order to determine the stability of the periodic solution p"( ~�("; t0)t; t0; ~p
0
"
) we

consider the variational system to (5.3) with respect to p"( ~�("; t0)t; t0; ~p
0
"
) and with

� = ~�("; t0). To simplify notation we use for system (5.3) the representation

dz

dt
= F (z) + "2G(z; �t); (5.8)

where z = (�; r),

F (z) :=

�
f(�) + r2g(�)

Reh(�)r

�
; G(z; �t) :=

�
2ja(�t)j2g(�)

0

�
: (5.9)

Using the matrix

A"( ~�("; t0)t; t0) := F 0

z
(p"( ~�("; t0)t; t0; ~p

0
"
) + "2G0

z
(p"( ~�("; t0)t; t0; ~p

0
"
); ~�("; t0)t);

(5.10)
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then the variational system of (5.8) with respect to p"( ~�("; t0)t; t0; ~p
0
"
) and with

� = ~�("; t0) can be written as

d�

dt
= A"( ~�("; t0)t; t0) �: (5.11)

We denote by �"( ~�("; t0)t; t0) the fundamental matrix of (5.11) satisfying

�"( ~�("; t0)t0; t0) = En+1. The monodromy matrix M" of (5.11) is de�ned by M" :=

�"( ~�("; t0)t0+2�; t0). The eigenvalues ofM" are the characteristic multipliers of the

periodic solution p"( ~�("; t0) t; t0; ~p
0
"
). According to assumption (A2), the matrix M0

has the simple eigenvalue 1, while all other eigenvalues are located in the interior

of the unit circle. Under the hypotheses (A1)-(A3) there are a suÆciently small

number "1, "1 � "0, and a unique di�erentiable function � mapping R"1
into R with

the properties

� (i). �("; t0)is an eigenvalue ofM": (ii). �(0; t0) � 1:

For the following we assume

(A4) �00
""
(0; 0) < 0:

Concerning the stability of the periodic solution p"( ~�("; t0) t; t0; ~p
0
"
) the following

result is valid.

Theorem 5.3 Assume the hypotheses (A1) � (A4) to be valid. Then, for ("; t0) 2
R"1

, the periodic solution p"( ~�("; t0) t; t0; ~p
0
"
) is asymptotically stable.

The proof can be obtained by a modi�cation of the proof of a similar result in

[Farkas, 1994], pp 345/345.

To be able to formulate a result about frequency entrainment we introduce for

0 � " � "1 the functions

�(") := max
�"1�t0�"1

~�("; t0); �(") := min
�"1�t0�"1

~�("; t0):

By (5.6) we have

lim
"!0

�(") = lim
"!0

�(") = �0:

From Theorem 5.1 and Theorem 5.3 we get

Theorem 5.4 Assume the hypotheses (A1) � (A4) to be satis�ed. Then, to any

small positive number �0, there exists a suÆciently small positive number "2, "2 �
"1, such that to any given ("; �) obeying 0 < " � "2, � 2 (�("); �(")) there is

an asymptotically stable periodic solutions p"(�t; t0; p
0
"
) with frequency � of system

(5.3) whose corresponding closed curve O" in the phase space is located in a �0-

neighborhood of O0.
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If we represent the periodic solution p"(�t; t0; p
0
"
) of system (5.3) in the form

p"(�t; t0; p
0
"
) = (�̂"(�t; t0; �̂

0
"
); r̂"(�t; t0; r̂

0
"
));

then we can conclude in the same way as for system (2.1) that the truncated system

(5.1) has the asymptotically stable modulated wave solution

ŵ"(t; t0; ŵ
0) :=

�
�̂"(�t; t0; �̂

0
"
); ei�"(t�t0) ei#̂"(t;t0)r̂"(�t; t0; r̂

0
"
)
�

with wave frequency �" and modulation frequency �, where

�" :=
�

2�

2�

�Z
0

Imh(�"(��; t0; �
0
"
)) d�; #"(t; t0) :=

Z
t

t0

Imh(�̂"(��; t0; �̂
0
"
))d�;

#̂"(t; t0) := #"(t; t0)� �"(t� t0):

Remark 5.5 In the case that �"=� is irrational, the modulated wave solution ŵ"
represents a quasiperiodic solution of system (5.1), otherwise it is a periodic solution.

The S1
-equivariance of system (5.1) implies that together with ŵ" there exists a

family of modulated wave solutions which generates in R
n � C �S1

an exponentially

attracting invariant set M" which is di�eomorphic to a two-torus in R
n � C .

We cannot expect that ŵ"(t; t0; ŵ
0) is also a solution of the full system (4.16). But

by Remark 5.5 we can conclude that the exponentially attracting invariant set M"

persists for suÆciently small " as an exponentially attracting invariant set ~M" for

the full system (4.16). In the next Sec. we will consider the solution w"(t; t0; ŵ
0)

of (4.16) starting for t = t0 at the same point ŵ0 as ŵ"(t; t0; ŵ
0) in order to give

an asymptotic estimate of the di�erence jŵ"(t; t0; ŵ
0)� w"(t; t0; ŵ

0)j on some time-

interval.

6 Behavior of the solutions of the full system

Let w"(t; t0; ŵ
0) be the solution of the full system

d�

dt
= f(�) + j�j2g(�) + "22ja(�t)j2g(�) + "3~u3(�; �; �t; e

i"
�1
t; "; �);

d�

dt
= h(�)� + "3~v3(�; �; �t; e

i"
�1
t; "; �)

(6.1)

satisfying w"(t0; t0; ŵ
0) = ŵ0. In the following we will estimate the di�erence

jŵ"(t; t0; ŵ
0)�w"(t; t0; ŵ

0)j. To this end we introduce polar coordinates by � = rei#

such that system (6.1) takes the form

14



d�

dt
= f(�) + r2g(�) + "22ja(�t)j2g(�) + "3û3(�; re

i#; �t; ei"
�1
t; "; �)

dr

dt
= Re h(�)r + "3v̂

(r)
3 (�; rei#; �t; ei"

�1
t; "; �);

(6.2)

d#

dt
= Im h(�) + "3v̂

(#)
3 (�; rei#; �t; ei"

�1
t; "; �): (6.3)

Equations (6.2) and (6.3) represent two systems which are coupled by terms of order

O("3), that is, they are weakly coupled. If we omit all terms of order O("3) in (6.2)

we get the truncated system to system (6.2)

d�

dt
= f(�) + r2g(�) + "22ja(�t)j2g(�);

dr

dt
= Re h(�)r:

(6.4)

For the sequel we rewrite the truncated system (6.4) as in (5.8) in the form

dz

dt
= F (z) + "2G(z; �t); z 2 Rn+1; (6.5)

where the functions F and G are de�ned in (5.9). The full system (6.2) will be

represented as

dẑ

dt
= F (ẑ) + "2G(ẑ; �t) + "3H(ẑ; �t; ei"

�1
t; "; �); ẑ 2 Rn+1; (6.6)

where H has the same smoothness and boundedness properties as the function

(~u2; ~v2).

The function z = p"(�t; t0; p
0
"
) is a solution of (6.5). We denote by ẑ(t; t0; p

0
"
) the so-

lution of the full system (6.6) satisfying ẑ(t0; t0; p
0
"
) = p0

"
. To estimate the di�erence

jp"(�t; t0; p
0
"
)� ẑ(t0; t0; p

0
"
)j we introduce in (6.6) new coordinates � by

ẑ = p"(�t; t0; p
0
"
) + "�: (6.7)

Taking into account that p"(�t; t0; p
0
"
) is a periodic solution of system (6.5) and using

in analogy to (5.10) the notation

A"(�t; t0; p
0
"
) := F 0

z
(p"(�t; t0; p

0
"
)) + "2G0

z
(p"(�t; t0; ~p

0
"
); �t); (6.8)

we get from (6.7) and (6.6)

d�

dt
= A"(�t; t0; p

0
"
) � + "F 00(p"(�t; t0; p

0
"
)) ��

+"2 ~H(�; �t; ei"
�1
t; "; �); (6.9)

where F 00 is the Hessian of F at p"(�t; t0; p
0
"
), and ~H(�; �t; ei"

�1
t; "; �) is continuous
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in all variables and uniformly bounded for j�j � c, j� � �0j � �0, 0 < " � "2, t 2 R,

where c is any given positive constant.

Our next goal is to estimate the time interval such that the solution �"(t; t0; 0; �) of

(6.9) satisfying

�"(t0; t0; 0; �) = 0 (6.10)

stays in the compact ball

KÆ := f� 2 Rn+1 : j�j � Æg;

where Æ is any given positive number. The Cauchy problem (6.9), (6.10) is equivalent

to the integral equation

�"(t) = " �"(�t; t0)

Z
t

t0

(�"(�s; t0)
�1

�
�
F 00(p"(�s; t0)�"(s)�"(s) + " ~H(�"(s); �s; e

i"
�1

; "; �)
�
ds;

(6.11)

where �"(�t; t0) is the fundamental matrix of the linear system

d~�

dt
= A"(�t; t0; p

0
"
) ~� (6.12)

satisfying �"(�t0; t0) = En+1, and the function ~H(�; �t; ei"
�1
t; "; �) satis�es

j ~H(�; �t; ei"
�1
t; "; �)j � c1 for � 2 KÆ; j� � �0j � �0=2; t 2 R; 0 < " � "2: (6.13)

Since A"(�t; t0; p
0
"
)) is 2�-periodic in �t, the fundamental matrix �"(�t; t0) of (6.12)

can be represented in the form

�"(�t; t0)a = P"(�t; t0)e
B"�t; (6.14)

where P"(�t; t0) is a regular matrix for all t satisfying P"(�t0; t0) = En+1, addi-

tionally P" is continuous and 2�-periodic in �t, and the eigenvalues of B" are the

characteristic exponents of the periodic solution p"(�t; t0; p
0
"
).

If we substitute (6.14) into (6.11) we obtain

�"(t) = " P"(�t; t0)

Z
t

t0

eB"�(t�s)(P"(�s; t0))
�1

�
�
F 00(p"(�t; t0; p

0
"
))�"(s)�"(s) + " ~H(�"(s); �s; e

i"
�1
s; "; �)

�
ds:

(6.15)

From the hypotheses (A2) and (A4) it follows that for suÆciently small " the matrix

B" has only eigenvalue with negative real parts. If we denote by jj � jj the norm of a

matrix which is compatible with the Euclidean norm, then we have

jjeB"�(t�s)jj � c2 for t � s; (6.16)
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where c2 is some positive constant. Furthermore, under our assumptions there is a

positive constant c3 such that

jj(F 00(p"(�t; t0; p
0
"
))jj � c3; jjP"(�t; t0)jj � c3; jj(P"(�t; t0)

�1jj � c3 for t 2 R:
(6.17)

If we assume that tmax is the largest positive value of t � t0 such that �"(t; t0; 0; �)

belongs to KÆ, then we obtain from (6.15) by taking into account (6.13), (6.16),

(6.17)

j�"(t; t0; 0; �)j � "c23(tmax � t0)(c2Æ
2 + "c1): (6.18)

In order to ensure the inequality j�"(t; t0; 0; �)j � Æ, the constant tmax has to satisfy

the condition

tmax � t0 +
Æ

"c23(c2Æ
2 + "c1)

= O("�1): (6.19)

Taking into account (6.7) we have the following result.

Theorem 6.1 Assume the hypotheses (A1) � (A4) are valid, then the following

asymptotic estimate holds true

jp"(�t; t0; p
0
"
)� ẑ(t; t0; p

0
"
j = j"�"(t; t0; 0; �)j = O(") for t0 � t � O

�1
"

�
: (6.20)

Using the relation (6.20) we get from (6.3)

Lemma 6.2 Let ~#"(t; t0) be the solution of (6.3) satisfying ~#"(t0; t0) = 0, let T be

any given number satisfying T > t0. Then, under the assumptions of Theorem 6.1,

the following asymptotic estimate holds true

j~#"(t; t0)� #(t; t0)j = O(") for t0 � t � T; (6.21)

where #(t; t0) is de�ned in (2.5).

From Theorem 6.1 and Lemma 6.2 we get

Theorem 6.3 Assume the hypotheses (A1) � (A4) are valid. Then the following

asymptotic estimate holds true

jw"(t; t0; ŵ
0
"
)� ŵ"(t; t0; ŵ

0
"
)j = O(") for t0 � t � T:

Remark 6.4 Since ~M" is an exponentially attracting invariant set, we can conclude

that the estimate remains valid, when the start point w0
"
of the solution w"(t; t0; w

0
"
)

is near ŵ0
"
.

Remark 6.5 The result of Theorem 6.3 can be interpreted as approximated synchro-

nization on some �nite interval, where the synchronization error can be controlled

by the wave frequency � = "�1. Especially, this result implies an approximate en-

trainment of the modulation frequency �.
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