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Abstra
tBased on options data at the market the problem of 
alibrating an exponential L�evy modelfor the underlying asset is investigated. It is shown that this statisti
al inverse problem is ingeneral severely ill-posed and exa
t minimax rates of 
onvergen
e are derived. The estimationpro
edure we propose is based on the expli
it inversion of the option pri
e formula in thespe
tral domain and a 
ut-o� s
heme for high frequen
ies as regularisation. Its performan
eis illustrated by numeri
al simulations.1 Introdu
tionAlready shortly after the introdu
tion of the Bla
k-S
holes model Merton (1976) argued thatbased on empiri
al eviden
e share pri
e models should in
orporate a jump 
omponent. Nowadays,standard problems of mathemati
al �nan
e like derivative pri
ing have been su

essfully solvedfor many general L�evy models, as has be
ome manifest in the monograph by Cont and Tankov(2004a). On the other hand, the investigation of 
alibration methods for L�evy models has mainlyfo
used on 
ertain parametrisations of the underlying L�evy pro
ess. Sin
e the 
hara
teristi
 tripletof a L�evy pro
ess is a priori an in�nite-dimensional obje
t, this approa
h is always exposed to theproblem of misspe
i�
ation, in parti
ular when there is no inherent e
onomi
 foundation of theparameters and they are only used to generate di�erent shapes of possible jump distributions.The goal of this paper is to investigate mathemati
ally the problem of nonparametri
 inferen
e forthe L�evy triplet when the asset pri
e (St) follows an exponential L�evy modelSt = Sert+Xt with a L�evy pro
ess Xt for t > 0: (1.1)We suppose that at time t = 0 we dispose of pri
es for vanilla European 
all and put options onthis asset with di�erent strike pri
es and possibly di�erent maturities. By basing our estimationon option data we draw inferen
e on the underlying risk neutral pri
e pro
ess, whi
h in general
annot be determined from histori
al pri
e data due to the in
ompleteness of the L�evy market.The observed option pri
es will be slightly unpre
ise due to bid-ask spreads or other fri
tions in themarket. It is well known that in the ideal 
ase of pre
ise observations for all possible strike pri
esthe state pri
e density and hen
e the L�evy triplet 
an be uniquely identi�ed, see e.g. A��t-Sahaliaand Duarte (2003). Under the realisti
 model of �nitely many noisy observations we 
annot hopeto determine the triplet 
orre
tly, we should rather try to provide an estimator whi
h is as goodas possible for the given a

ura
y of the data. This optimality property is usually assessed by theminimax paradigm, whi
h measures the inherent 
omplexity of the statisti
al problem 
lass. Onemain result of the present paper is a lower bound, showing that already in the simple exponentialL�evy model the estimation problem is in general severely ill-posed, that is, the estimation error forany part of the L�evy triplet as a fun
tion of the a

ura
y of the observations will only 
onvergewith a logarithmi
 rate for any 
on
eivable estimation pro
edure.On the other hand, we propose an expli
it 
onstru
tion of an estimator that attains this optimalminimax rate. The pro
edure is based on the inversion of the expli
it pri
ing formula via Fouriertransforms by Carr and Madan (1999) and a regularisation in the spe
tral domain. Using the FastFourier Transformation, the pro
edure is easy to implement and yields good results in simulationsin view of the severe ill-posedness. In 
omparison with standard statisti
al ill-posed problems, the1



main 
hallenges are the nonlinearity involved and the 
omplex interplay between the jumpmeasureas nonparametri
 part and the drift and di�usion 
oeÆ
ient as parametri
 parts.The exponential L�evy model re
e
ts the assumption that the log returns of the asset evolve in-dependently and with identi
al distribution for the same time steps, whi
h is plausible for liquidmarkets and not too long time horizons. This basi
 model 
lass has been 
onsidered re
ently fora variety of pri
ing and optimisation problems in �nan
e. Let us mention here Morde
ki (2002)for pri
ing Ameri
an-type perpetual options, Cont and Volt
hkova (2005) for pri
ing other path-dependent options and Eberlein and Papapantoleon (2004) for a good survey and generalisationsto the time-inhomogeneous 
ase. Kallsen (2000) and Emmer and Kl�uppelberg (2004) study marketmodels in a multidimensional framework.When no model for the pri
e pro
ess is spe
i�ed, 
alibration from option data 
an be used toestimate the state pri
e density, see A��t-Sahalia and Duarte (2003). This density yields the dis-tribution of the asset pri
e at the times of maturity, but does not provide any information on theevolution of the pri
e in time. A stru
tural assumption on the pri
e pro
ess allows to �nd pri
esfor path-dependent options or to perform a dynami
 risk management. In �nan
ial engineeringinformation about the time evolution expe
ted at the market is obtained by smoothing impliedBla
k-S
holes volatilities, 
f. Fengler, H�ardle, and Mammen (2003). For the generalised Bla
k-S
holes model Dupire's formula permits the 
alibration from option pri
es, see e.g. Ja
kson, S�uli,and Howison (1999) for a numeri
al approa
h and Cr�epey (2003) for a theoreti
al study. The 
al-ibration of parametri
 exponential L�evy models has been studied for example by Eberlein, Keller,and Prause (1998) and Carr, Geman, Madan, and Yor (2002).The study by Cont and Tankov (2004b), also des
ribed in Cont and Tankov (2004a), is 
losestto our nonparametri
 approa
h for exponential L�evy models. In order to 
ope with the involvedill-posedness, these authors employ a least squares method penalized by the relative entropy withrespe
t to an a priori 
hosen L�evy triplet. This type of penalisation has 
ertain genuine features:the method takes into a

ount prior information and the resulting fun
tional is 
onvex. However,the value of the di�usion 
oeÆ
ient is thus �xed in advan
e, and the regularising e�e
t does nottake pla
e for independent random errors in the observations, essentially be
ause white noise 
anonly be 
onsidered as an element in a Sobolev spa
e of negative regularity, 
f. the Hilbert s
alesapproa
h in Engl, Hanke, and Neubauer (1996). In 
ontrast, we strive for a method that hasonly few tuning parameters, permits the 
alibration of the di�usion 
oeÆ
ient and is suited forobservations with random errors. The method we present below will have all these properties andis in addition provably rate-optimal over standard smoothness 
lasses. Instead of minimizing somedata-dependent 
riterion, for whi
h in ea
h step the option pri
e for the 
urrent triplet value hasto be evaluated, we prefer using the expli
it nonlinear inversion dire
tly. This results in an eÆ
ientstraight-forward algorithm. Combining this method with a stage-wise aggregation pro
edure, arobust data-driven method is obtained.After introdu
ing the �nan
ial and statisti
al model in Se
tion 2, the estimation method for the�nite intensity 
ase is developed in Se
tion 3. The main theoreti
al results are formulated inSe
tion 4. A typi
al in�nite intensity 
ase is treated in Se
tion 5 and we 
on
lude in Se
tion 6.The proofs of the upper and lower bounds are deferred to Se
tions 7 and 8, respe
tively, while theAppendix provides some further te
hni
al results.2 The model2.1 The exponential L�evy model and option pri
esWe suppose that the pri
e St of an asset at time t follows the L�evy model (1.1), where S > 0 is thepresent value of the asset and r > 0 is the riskless interest rate, whi
h is assumed to be known and
onstant. An ex
ellent referen
e for this model in �nan
e is the monograph by Cont and Tankov2



(2004a). In this paper we shall only 
onsider L�evy pro
esses X with a jump 
omponent of �nitevariation and absolutely 
ontinuous jump distribution. Its 
hara
teristi
 fun
tion is given by theL�evy-Khint
hine representation'T (u) := E [exp(iuXT )℄ = exp�T���22 u2 + i
u + Z 1�1(eiux � 1)�(x) dx��: (2.1)� > 0 is 
alled volatility, 
 2 Rdrift and the non-negative fun
tion �, satisfying R (jxj^1)�(x) dx <1, is the jump density. Its jump intensity is de�ned as � := k�kL1(R). The 
hara
teristi
 tripletT := (�2; 
; �) has for �nite � the intuitive explanation that X is the sum of three independent
lassi
al pro
esses, namely a Wiener pro
ess of volatility �, a deterministi
 linear pro
ess withtrend 
 and a 
ompound Poisson pro
ess of intensity � with jump distribution �=�. Pro
esseswith in�nite a
tivity are obtained by a limiting pro
edure and their sample paths have in�nitelymany jumps, but with jump sizes a

umulating at zero. By ex
luding L�evy pro
esses of unboundedvariation we ensure an intuitive explanation of the parameters and we are in line with the empiri
alparametri
 �ndings of Carr, Geman,Madan, and Yor (2002), though some useful parametri
 modelslike generalized hyperboli
 distributions are ex
luded.A European 
all option with maturity T and strike K for an underlying asset grants the holderthe right to buy the asset at the future time T for the pri
e K. A risk neutral pri
e at time t = 0for this option is given by C(K;T ) = e�rT EQ[(ST �K)+℄; (2.2)where (A)+ := max(A; 0) and Q is a martingale measure equivalent to the real world probabilityP. By 
onsidering option pri
es we immediately draw inferen
e on this pri
ing measure Q andwe assume from now on that S follows an exponential L�evy model (1.1) under Q and that thedis
ounted pri
e pro
ess e�rtSt is a martingale on the �ltered probability spa
e (
;F ;Q; (Ft)),�xed throughout the paper. As is standard in the 
alibration literature, the measure Q is assumedto be settled by the market and to be identi
al for all options traded.By the independen
e of in
rements in X the martingale 
ondition may be expli
itly stated as8 t > 0 : E [eXt℄ = 1 () �22 + 
 + Z 1�1(ex � 1)�(x) dx = 0: (2.3)Observe that we have imposed impli
itly the exponential moment 
ondition R10 (ex�1)�(x) dx <1to ensure the existen
e of E [St℄. Another 
onsequen
e is that the 
hara
teristi
 fun
tion 'T isde�ned on the whole strip fz 2 C j Im(z) 2 [�1; 0℄g in the 
omplex plane, whi
h will be importantlater. We redu
e the number of parameters by introdu
ing the negative log-forward moneynessx := log(K=S) � rT;su
h that the 
all pri
e in terms of x is given byC(x; T ) = S E [(eXT � ex)+℄:The analogous formula for the pri
e of a put option, whi
h gives the owner the right to sell an assetat time T for the pri
e K, is P(x; T ) = S E [(ex � eXT )+℄. Then the well-known put-
all parity iseasily established: C(x; T )�P(x; T ) = S E [eXT � ex℄ = S(1 � ex): (2.4)2.2 The observationsWe fo
us on the 
alibration from options with a �xed maturity T > 0 and mention the straight-forward extension to several maturities in Se
tion 3.1. We observe the pri
es of N 
all options(or by the put-
all parity (2.4) alternatively put options) at di�erent strikes Kj , j = 1; : : : ; N ,
orrupted by noise Yj = C(Kj; T ) + �j"j; j = 1; : : : ; N: (2.5)3



We assume the observational noise ("j) to 
onsist of independent 
entred random variables withE ["2j ℄ = 1 and supj E ["4j ℄ < 1. The noise levels (�j) are assumed to be positive and known. Thisrandom observation model re
e
ts the bid-ask spread and other fri
tions at the market.As we need to employ Fourier te
hniques, we introdu
e the fun
tionO(x) := (S�1C(x; T ); x > 0;S�1P(x; T ); x < 0 (2.6)in the spirit of Carr and Madan (1999). O re
ords normalised 
all pri
es for x > 0 and normalisedput pri
es for x 6 0. The following important properties of O are proved in the Appendix.Proposition 2.1.(a) We have O(x) = S�1C(x; T )� (1� ex)+ for all x 2 R.(b) O(x) 2 [0; 1^ ex℄ holds for all x 2 R.(
) If C� := E [e�XT ℄ is �nite for some � > 1, then O(x) 6 C�e(1��)x holds for all x > 0.(d) At any x 2 Rnf0g, respe
tively x 2 Rnf0; 
Tg in the 
ase � = 0 and � <1, the fun
tion Ois twi
e di�erentiable with ZRnf0;
TgjO00(x)j dx 6 3:The �rst derivative O0 has a jump of height �1 at zero and, in the 
ase � = 0 and � < 1,a jump of height +eT (
��) o

urs in O0 at 
T .(e) The Fourier transform of O satis�esFO(v) = 1� 'T (v � i)v(v � i) ; v 2 R: (2.7)This identity extends to all 
omplex values v with Im(v) 2 [0; 1℄. Note the properties 'T (0) =1 and 'T (�i) = 1 derived from the general property of 
hara
teristi
 fun
tions and themartingale 
ondition (2.3), respe
tively.We transform our observations (Yj) and predi
tors (Kj) toOj := Yj=S � (1�Kje�rT=S)+ = O(xj) + Æj"j ; (2.8)xj := log(Kj=S) � rT; (2.9)where Æj = S�1�j. In pra
ti
e, the design (xj) will be rather dense around x = 0 and sparse foroptions further out of the money or in the money, 
f. Fengler, H�ardle, and Mammen (2003) for astudy on the German DAX index.In order to fa
ilitate the subsequent analysis we make a mild moment assumption on the pri
epro
ess, whi
h guarantees by Proposition 2.1(b,
) the exponential de
ay of O.Assumption 1. We assume that C2 := E [e2XT ℄ is �nite. This is equivalent to postulating for theasset pri
e a �nite se
ond moment: E [S2T ℄ <1.3 The estimation for bounded jump densitiesLet us assume here that the L�evy pro
ess has �nite intensity �. Later we shall impose also a 
ertainregularity on the jump density �. We make use of the exa
t inversion formula, that is the mapping4



from the option pri
es to the parameters. This has the advantage that no numeri
al minimizationte
hnique needs to be employed and the propagation of errors is more transparent.Sin
e our asset follows an exponential L�evy model, the jumps in the L�evy pro
ess appear exponen-tially transformed in the asset pri
es and it is intuitive that inferen
e on the exponentially weightedjump measure �(x) := ex�(x); x 2 R;will lead to spatiallymore homogeneous properties of the estimator than for � itself. Our 
alibrationpro
edure relies essentially upon the formula (v) := 1T log�1 + iv(1 + iv)FO(v)� = 1T log('T (v � i))= ��2v22 + i(�2 + 
)v + (�2=2 + 
 � �) +F�(v); (3.1)whi
h is a simple 
onsequen
e of the formulae (2.1) and (2.7). Note that the fun
tion  is up toa shift in the argument the 
umulant-generating fun
tion of the L�evy pro
ess and a 
ontinuousversion of the logarithm must be taken su
h that  (0) = 0, whi
h is implied by the martingale
ondition. Formula (3.1) shows that the L�evy triplet is uniquely identi�able given the observationof the whole option pri
e fun
tion O without noise: F�(v) tends to zero as jvj ! 1 due to theRiemann-Lebesgue Lemma and �2, 
, � are identi�able as 
oeÆ
ients in the polynomial, whi
h inturn yields the fun
tion F�(v). A properly re�ned appli
ation of this approa
h will equip us withestimators for the whole triplet T = (�2; 
; �) (we parametrize L�evy triplets equivalently with �or �).3.1 The basi
 pro
edureLet us formulate the basi
 algorithm to be used when a 
ertain smoothness property is imposed on�, that is under the prior knowledge � 2 G, where G is a smoothness 
lass. The pro
edure 
onsistsof four steps: (a) we build an approximation ~O of O from the data; (b) we obtain an approximation~ of  by formula (3.1); (
) we estimate the 
oeÆ
ients of the quadrati
 polynomial on the right-hand side in (3.1) from ~ under the presen
e of a noise 
omponent and the nonparametri
 nuisan
epart F�; (d) we obtain an estimator for F� by 
onsidering the remainder.The model (3.1) has a similar stru
ture as the well-known partial linear models, but in fa
t there isone substantial di�eren
e: the fun
tion F� is not supposed to be smooth, but instead it is de
ayingfor high frequen
ies be
ause we work in the spe
tral domain. This is also why we shall regularizethe problem by 
utting o� frequen
ies jvj higher than a 
ertain threshold level U , whi
h dependson the noise level and the smoothness assumptions in G.We now give a detailed des
ription of the di�erent steps in the pro
edure.(a) We approximate the fun
tion O by building ~O from the observations (Oj) in the form~O(x) = �0(x) + NXj=1Ojbj(x); x 2 R;and 
onsequently FO byF ~O(u) = F�0(u) + NXj=1OjFbj(u); u 2 R;where (bj) are some basis fun
tions to be 
hosen and the fun
tion �0 is added to take 
areof the jump in the derivative of O at zero: �00(0+) � �00(0�) = �1. Taking into a

ount the5



de
ay properties of O, we interpolate the data by spe
ifying8x 2 R : bk(x) 2 [0; 1℄; 8 j; k = 1; :::; N : bk(xj) = Æjk; limjuj!1 bk(u) = 0:We stress here that step (a) should not be understood as a smoothing step, but rather as ameans to �nd a reasonable approximation of FO based on dis
rete data. As 
an be seen inthe theoreti
al analysis and the numeri
al simulations below, it suÆ
es to use simple linearB-splines as basis fun
tions. Theoreti
ally, we need that the results of Proposition 7.1 andestimate (7.7) are satis�ed.(b) For �(v) 2 (0; 1), spe
i�ed later in (4.1), we 
al
ulate~ (v) := 1T log>�(v)�1 + iv(1 + iv)F ~O(v)�; v 2 R; (3.2)where the fun
tion log>� : C n f0g ! C is given bylog>�(z) := (log(z); jzj � �log(� z=jzj); jzj < � (3.3)and log(�) is taken in su
h a way that ~ (v) is 
ontinuous with ~ (0) = 0 (almost surely theargument of the logarithm in (3.2) does not vanish). If we observe option pri
es for di�erentmaturities Tk, we perform the steps (a) and (b) for ea
h Tk separately and aggregate at thispoint the di�erent estimators for  to obtain one estimator with less varian
e.(
) With an estimate ~ of  at hand, we obtain estimators for the parametri
 part (�2; 
; �) byan averaging pro
edure taking into a

ount the polynomial stru
ture in (3.1). Upon �xingthe spe
tral 
ut-o� value U = U (G; (Æj); (xj)), we set�̂2 := Z U�U Re( ~ (u))wU� (u) du; (3.4)
̂ := ��̂2+ Z U�U Im( ~ (u))wU
 (u) du; (3.5)�̂ := �̂22 + 
̂� Z U�U Re( ~ (u))wU� (u) du; (3.6)where the weight fun
tions wU� ; wU
 and wU� satisfyZ U�U wU� (u) du = 0; Z U�U u2wU� (u) du = �2; Z U�U uwU
 (u) du = 1; (3.7)Z U�U u2wU� (u) du = 0; Z U�U wU� (u) du = 1: (3.8)For standard smoothness 
lasses G asymptoti
ally optimal 
hoi
es of the 
ut-o� value U andthe weight fun
tions are given in (4.9) and (4.2)-(4.4). The estimate of the 
oeÆ
ients 
anbe understood as an orthogonal proje
tion estimate with respe
t to an L2-s
alar produ
tweighted a

ording to the supposed de
ay property of F�.(d) Finally, we de�ne the estimate for � as the inverse Fourier transform of the remainder:�̂(u) := F�1 h� ~ (�) + �̂22 (�� i)2 � i
̂(�� i) + �̂�1[�U;U ℄(�)i (u); u 2 R: (3.9)Note that the 
omputational 
omplexity of this basi
 estimation pro
edure is very low. The onlytime 
onsuming steps are the three integrations in step (
) and the inverse Fourier transform6



(inverse FFT) in step (d). In step (a) we just take a data-dependent linear 
ombination of thefun
tions Fbk and the fun
tion F�0, whi
h with our 
hoi
e as linear B-splines 
an be 
omputedexpli
itly:Fbk(u) := u�2�eiuxk � eiuxk�1xk � xk�1 �eiuxk+1 � eiuxkxk+1 � xk �; F�0(u) = u�2�1+eiuxj0xj0�1 � eiuxj0�1xj0xj0 � xj0�1 �(3.10)with k = 1; : : : ; N , some extrapolated design points x0 and xN+1, where we set ~O(x0) = ~O(xN+1) =0, and with the index j0 de�ned by xj0�1 < 0 6 xj0 .3.2 A data-driven estimator for the jump densityLet us brie
y des
ribe the 
onstru
tion of a data-driven pro
edure whi
h requires no prior smooth-ness assumptions on � to adjust the tuning parameters. The idea is to �lter out the parametri
 partand to obtain a standard 'fun
tion in noise'-estimation problem in the spe
tral domain. Insteadof 
hoosing one 
ut-o� value U , we take a geometri
 grid U1 > U2 > � � � > UJ of 
ut-o� values andaggregate the 
orresponding estimators adaptively.For �ltering quadrati
 polynomials we introdu
e the 
onvolution operatorAgf(x) := f(x) � 12� Z 1�1 f(y)Fg(x � y) dy (3.11)with a suÆ
iently regular and ni
ely de
aying fun
tion g : R! R satisfyingZ 1�1 Fg(y) dy = 1; Z 1�1 ykFg(y) dy = 0; k = 1; 2, that is g(0) = 1; g0(0) = g00(0) = 0: (3.12)The �rst two steps of the data-driven pro
edure are identi
al to the steps (a) and (b) of the basi
pro
edure. The subsequent steps are as follows:(
) We apply the operator Ag to ~ and obtain ~ g(v) := Ag ~ (v), whi
h by (3.1) is a reasonableestimate of Ag (v) = AgF�(v) = F(�(1 � g))(v).(d) We 
onsider the family of basi
 estimators ~�(j)g given by~�(j)g := F�1� ~ g1[�Uj;Uj ℄�(y); j = 1; : : : ; J:(e) We 
onstru
t the aggregated estimator �̂g as a 
onvex 
ombination of (~�(j)g )j=1;:::;J withdata-dependent weights. These weights are obtained by the following algorithm:(i) Initialize �̂(1)g = ~�(1)g .(ii) For j = 2; :::; J sequentially de�ne�̂(j)g := �j ~�(j)g + (1� �j)�̂(j�1)g ;where �j = K(m(j)=�) for some � > 0, a 
ompa
tly supported kernel K andm(j) := k~�(j)g � �̂(j�1)g k2L2kVar[~�(j)g ℄kL1 :(iii) Put �̂g := �̂(J)g .Although Var[~�(j)g ℄ is not known exa
tly, it 
an be easily estimated from above. The param-eter � is taken in a

ordan
e with the suggestions given in Belomestny and Spokoiny (2004),where the whole aggregation pro
edure is explained in detail.7
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Figure 1: Kou model. Left: Sample (Oj) and true fun
tion O (dashed line). Center: True �(dashed) and estimated �̂ (bla
k) modi�ed L�evy densities. Right: Box plot for the data-drivenand the basi
 pro
edure based on 1000 Monte-Carlo simulations.(f) The �nal estimator for �(x) is de�ned as �̂(x) = �̂g(x)=(1�g(x)) for all x 2 Rwith g(x) 6= 1.Example 1. A possible family of fun
tions g satisfying (3.12) is given by g�(x) = 1�(1�e�x2=�2)2,x 2 R, � > 0, whi
h gives rise to the 
onvolution �lter Fg�(u) = �p� e��2u2=4 � �p8� e��2u2=8.Observe that 1 � g� only vanishes at zero and that for smaller values of � the weight 1 � g� is
loser to one outside the origin, but the �lter Fg� does not de
ay so rapidly.3.3 Numeri
al ExampleTwo empiri
al phenomena in �nan
ial data have attra
ted mu
h attention re
ently: the leptokurti
return distribution of assets with a higher peak and two (asymmetri
) heavier tails than those ofthe normal distribution, and the implied volatility smile. To in
orporate these features, the doubleexponential jump di�usion model was proposed by Kou (2002). In his model the L�evy triplet isspe
i�ed by the jump density�(x) = ��p�+e��+x1[0;1)(x) + (1� p)��e��x1(�1;0)(x)�; x 2 R;and the parameters �; �; �+; �� > 0 and p 2 [0; 1℄, while 
 is uniquely determined by the martin-gale 
ondition. We simulate the Kou model with parameters � = 0:1; � = 5; �� = 4; �+ = 8; p =1=3 and apply the nonparametri
 estimation pro
edure given the observation of noisy Europeanoption data with T = 0:25, N = 50, r = 0:06 and Æj = O(xj)=10.In Figure 1 (left) the simulated observations (Oj) and the true 
urve O are depi
ted as fun
tionsof the log-forward moneyness. The estimated transformed L�evy density � in the 
enter is obtainedusing the basi
 pro
edure, as spe
i�ed in the mathemati
al analysis, with a human-driven 
hoi
eof the 
ut-o� parameter U . The parameters were estimated as �̂ = 0:035; �̂ = 7:56; 
̂ = 0:556 (
 =0:423). We observe that the estimated transformed L�evy density re
overs the main features of theKou model like the mode at zero and the skewness. From the fun
tional form of the estimator we
an easily derive estimates for other important quantities, e.g. for the proportion of negative jumpsby 
al
ulating �̂�1 R 0�1 �̂(x) dx = �̂�1 R 0�1 e�x�̂(x) dx, whi
h in the simulation example evaluatesto 0:72 (true value: 1� p = 2=3).In the right part of Figure 1 we 
ompare the performan
e of the data-driven aggregated estimatorwith the ora
le estimator (i.e, 
hoosing the best possible U ) obtained from the basi
 pro
edure interms of the empiri
al L2-loss. A box plot is shown for 1000 Monte-Carlo repli
ations. In this plot,as provided by the statisti
al software pa
kage R, the box stret
hes from the 25% per
entile tothe 75% per
entile, 
rossed by the median, and the position of the remaining 50% of the values isindi
ated. The fa
t that the data-driven estimator frequently even outperforms the ora
le estimator8



is to some part due to the hard 
ut-o� at frequen
y U , whi
h is smoothed out by aggregating thebasi
 estimators. As pointed out by Cavalier and Golubev (2004), standard data-driven estimationpro
edures often perform badly for inverse problems su
h that the method of aggregation used here
an be 
onsidered as 
omparatively very stable.4 Risk bounds for bounded jump densities4.1 Mathemati
al resultsWe shall use throughout the notation A . B if A is bounded by a 
onstant multiple of B,independent of the parameters involved, that is, in the Landau notation A = O(B). EquallyA & B means B . A and A s B stands for A . B and A & B simultaneously.In order to assess the quality of the estimators, we quantify their risks under a Sobolev-typesmoothness 
ondition of order s on the transformed jump density �.De�nition 4.1. For s 2 N and R; �max > 0 let Gs(R; �max) denote the set of all L�evy tripletsT = (�2; 
; �), satisfying the martingale 
ondition and Assumption 1 with C2 6 R, su
h that � iss-times (weakly) di�erentiable and� 2 [0; �max℄; j
j; � 2 [0; R℄; max06k6sk�(k)kL2(R) 6 R; k�(s)kL1(R) 6 R:We have enfor
ed j ~ T (v)j > log(�(v)) in (3.2) to prevent unboundedness in the 
ase of largesto
hasti
 errors. For L�evy triplets in Gs(R; �max) a reasonable 
hoi
e for �(v) 
an be obtainedfrom the following 
al
ulation using the identity �22 + 
 +F�(0) = � derived from the martingale
ondition (2.3): 12 j'T (v � i)j = 12 exp��T �22 v2 � TF�(0) + T Re(F�(v))�> 12 exp��T �2max2 v2 � 4TR� =: �(v): (4.1)The only reason for the fa
tor 1=2 is the mathemati
al tra
tability giving later the bound of Lemma7.2.Con
erning the 
hoi
e of the weight fun
tions, we take advantage of the smoothness s of � bytaking fun
tions w su
h that Fw has s vanishing moments. Equivalently expressed in the spe
traldomain, the weight fun
tions w(u) grow with frequen
ies juj like jujs to pro�t from the de
ay ofjF�(u)j. Hen
e, we de�ne for all U > 0 families of weight fun
tions by res
aling those fun
tionssatisfying restri
tions (3.7) and (3.8) for U = 1:wU� (u) = U�3w1�(U�1u) with w1� satisfying (3.7) and kF(w1�(u)=us)kL1 <1; (4.2)wU
 (u) = U�2w1
(U�1u) with w1
 satisfying (3.7) and kF(w1
(u)=us)kL1 <1; (4.3)wU� (u) = U�1w1�(U�1u) with w1� satisfying (3.8) and kF(w1�(u)=us)kL1 <1: (4.4)In these de�nitions it is understood that the support of the weight fun
tions is 
ontained in [�U;U ℄.Note that the property F(w(u)=us) 2 L1(R) means in parti
ular that w(u)=us is 
ontinuous andbounded su
h thatjwU� (u)j . U�(s+3)jujs; jwU
 (u)j . U�(s+2)jujs and jwU� (u)j . U�(s+1)jujs: (4.5)For the simulations we have used symmetri
 weight fun
tions that are 
onstant multiples of u2ex
ept for three (at 0 and �U for 
) respe
tively four (at �U 0;�U with some U 0 < U for �2, �)smoothed out jumps to satisfy the restri
tions (3.7), (3.8).9



Sin
e the underlying L�evy triplet is only identi�able if O(x) is known for all x 2 R, we 
onsiderthe asymptoti
s of a growing number of observations with� := maxj=2;:::;N(xj � xj�1)! 0 and A := min(xN ;�x1)!1: (4.6)We use linear B-splines for the basis fun
tions (bk) and the fun
tion �0. To ease the mathemati
altreatment of the extrapolation error, we assume that all data is 
ontained in the interval (�A ��; A+�) and add the arti�
ial observations x0 = �A��, xN+1 = A+� with O0 = ON+1 = 0.The reason why we 
hoose a pie
ewise linear approximation is that this yields rate-optimal in-terpolation errors for ~O, knowing that O is twi
e di�erentiable ex
ept at �nitely many points,
f. Proposition 7.1 below. Of 
ourse, when assuming some positive regularity on � or by someadaptive method, the numeri
al approximation rate with respe
t to � 
an be a

elerated, but thisimprovement is only valid for a very small dis
retisation distan
e � when the sto
hasti
 observa-tion error is usually dominant anyway. In 
ontrast to standard regression estimates we shall alwaystra
k expli
itly the dependen
e on the level (Æk) of the noise in the observations, whi
h is usuallyrather small for observed option pri
es.The subsequent analysis 
an 
ertainly be improved for a 
on
rete design (xj) and 
on
rete noiselevels (Æj), but for revealing the main features it is more transparent and 
on
ise to state the resultsin terms of the abstra
t noise level " := �3=2 +�1=2kÆkl1 ; (4.7)
omprising the level of the numeri
al interpolation error and of the sto
hasti
 error simultaneously.Here and in the sequel we use the norms kÆkl1 := supk Æk and kÆk2l2 :=Pk Æ2k.We are now in a position to state the main results about the risk upper bounds of the estimatorsobtained by the basi
 pro
edure and about the risk lower bounds valid for any estimation pro
edurewhatsoever. The proofs are given in Se
tions 7 and 8 for the upper and lower bounds, respe
tively.Theorem 4.2. Assume e�A . �2 and �kÆk2l2 . kÆk2l1 . Choosing for some �� > �max the 
ut-o�U�� := ���1(2 log("�1)=T )1=2, we obtain for the risk of �̂2 the uniform 
onvergen
e ratesupT =(�2;
;�)2Gs(R;�max) ET [j�̂2 � �2j2℄1=2 . ��s+3(log("�1))�(s+3)=2: (4.8)The asymptoti
 risk in the estimation of the other unknown quantities shows a di
hotomy. Whileusually it is larger than the risk for �̂2, it is mu
h smaller if we know that � = 0 holds, that is, forthe 
ompound Poisson 
ase.Theorem 4.3. Assume e�A . �2 and �kÆk2l2 . kÆk2l1 . For any �� > �max we 
hooseU�� := ���1�2 log("�1)=T �1=2; U0 := "�2=(2s+5); (4.9)in the 
ases �max > 0 and �max = 0, respe
tively. Then the risk bounds for 
̂ and �̂ aresupT =(�2;
;�)2Gs(R;�max) ET [j
̂ � 
j2℄1=2 . (��s+2(log("�1))�(s+2)=2; � 2 [0; �max℄ unknown;"(2s+4)=(2s+5); � = �max = 0; (4.10)supT =(�2;
;�)2Gs(R;�max) ET [j�̂� �j2℄1=2 . (��s+1(log("�1))�(s+1)=2; � 2 [0; �max℄ unknown,"(2s+2)=(2s+5); � = �max = 0: (4.11)Theorem 4.4. Assume e�A . �2 and �kÆk2l2 . kÆk2l1 . For some �� > �max we 
hoose U�� andU0 as in (4.9) to obtain the following risk estimates for �̂:supT =(�2;
;�)2Gs(R;�max) ET h Z 1�1j�̂(x)��(x)j2 dxi1=2 . (��s(log("�1))�s=2; � 2 [0; �max℄ unknown,"2s=(2s+5); � = �max = 0: (4.12)10



The two assumptions in ea
h theorem are not very severe: be
ause of the exponential de
ay of Othe width A of the design only needs to grow logarithmi
ally and the error levels (Æk) need onlybe square summable after renormalisation. The latter 
ondition 
an 
ertainly be further relaxedsin
e this term is 
aused by a rough bound on the quadrati
 remainder term.For the lower bounds we appeal to the equivalen
e between the regression and the Gaussian whitenoise model, as established by Brown and Low (1996), and 
onsider merely the idealized observationmodel dZ(x) = O(x) dx+ " dW (x); x 2 R; (4.13)with the noise level asymptoti
s " ! 0, a two-sided Brownian motion W and with O = OTdenoting the option pri
e fun
tion from (2.6) for the given triplet T . This simpli�
ation avoidstedious numeri
al approximations in the proofs.Theorem 4.5. Let s 2 N, R > 0 and �max > 0 be given. For the observation model (4.13) andany quantity q 2 f�2; 
; �; �g the following asymptoti
 risk lower bounds hold:inf̂q supT 2Gs(R;�max) ET [kq̂� qk2℄1=2 & vq;�max ;where k�k denotes the absolute value for q 2 f�2; 
; �g and the L2(R)-norm for q = �, the in�mumis always taken over all estimators, that is all measurable fun
tions of the observation Z, and therate vq;�max is given in the following table:�2 
 � ��max > 0 log("�1)�(s+3)=2 log("�1)�(s+2)=2 log("�1)�(s+1)=2 log("�1)�s=2�max = 0 0 "(2s+4)=(2s+5) "(2s+2)=(2s+5) "2s=(2s+5)4.2 Dis
ussionWe have seen that for � > 0 the rate 
orresponds to a severely ill-posed problem (
f. Engl,Hanke, and Neubauer (1996) and the referen
es there), while for known � = 0 the rates are mu
hbetter, but still ill-posed 
ompared to those obtained in 
lassi
al nonparametri
 regression. Thereason for the severe ill-posedness for � > 0 is that we fa
e an underlying de
onvolution problemwith a Gaussian distribution: the law of the di�usion part of XT is 
onvolved with that of the
ompound Poisson part to give the density of XT . This type of estimation problem has beenstudied thoroughly by Butu
ea and Matias (2005) in an idealized density estimation setup. Notethe general order in whi
h the (asymptoti
) quality of estimation de
reases: �2, 
, � and �nally�, whi
h is related to the domination property formulated in A��t-Sahalia and Ja
od (2004). In theupper bounds we have kept tra
k of the dependen
e on � be
ause for small values of � and �nitesamples the performan
e is not so bad, 
ompare the simulations in Se
tion 3.3; it just needs a lotmore observations to improve on that.At �rst sight the rates for the parametri
 estimation part in the 
ase � = 0 are astonishing.They are worse than in usual semi-parametri
 problems whi
h also indi
ates that misspe
i�edparametri
 models will give unreliable estimates for the volatility and jump intensity. These ratesare, however, easily understood when employing the language of distributions. With Æ0 denotingthe Dira
 distribution in zero and Æ00 its derivative we havelog('T (u)) = TF�
Æ00 + � � �Æ0�(u):Estimating the density of XT and similarly its 
hara
teristi
 fun
tion from the noisy observationsof O amounts roughly to di�erentiate the observed fun
tion twi
e, 
f. A��t-Sahalia and Duarte(2003) and the remark after equation (7.6) below. This gives the minimax rate for � and � as thatof estimating the se
ond derivative of a regression fun
tion of regularity s + 2. For the parameter� it suÆ
es to estimate the jump in the antiderivative of F�1(log('T )), whi
h 
orresponds to11



a pointwise estimation problem in the �rst derivative of a regression fun
tion, while for 
 theanalogy is the estimation of the regression fun
tion itself at zero. This explains also why in the
lass Gs we have measured the regularity not only in L2, but also uniformly. In fa
t, if we onlyassume an L2-Sobolev 
ondition, then the same lower bound te
hniques will yield slower rates forthe parameters, as is typi
al for pointwise estimation problems. An interesting way to estimatedire
tly 
 and � is suggested by Proposition 2.1(d): a 
hange point dete
tion algorithm for jumpsin the derivative of O, as proposed by Goldenshluger, Tsybakov, and Zeevi (2004), 
an equip uswith an estimate of 
 and a subsequent estimate of the jump size yields an estimate of �, whi
hgives the same minimax rates.As usual, the estimation pro
edure needs 
ertain tuning parameters. The approximate size of �maxand the noise level is in general known to the pra
titioner. The stabilisation of the logarithm bythe fun
tion �(v) was enfor
ed mainly for theoreti
al reasons to prevent explosions due to largedeviations. The usually unknown order s of smoothness of the transformed jump density, however,is needed to determine a good 
hoi
e of the 
ut-o� frequen
y U and also appears in the weightsw1�; w1
 ; w1�. Yet, for the latter it suÆ
es to use weight fun
tions satisfying (4.2)-(4.4) for somelarge smax like in standard nonparametri
s where the order of the kernel must only be suÆ
ientlylarge. We are thus left with only one tuning parameter U , whi
h is the same for all four estimationproblems. The data-driven pro
edure presented in Se
tion 3.2 is one way to 
ope with this problemfor the jump density. Note, however, that a proper mathemati
al analysis for the general problemseems 
hallenging due to the underlying nonlinear '
hange point dete
tion'-stru
ture, for whi
h adata-driven algorithm even in the idealized linear setting of Goldenshluger, Tsybakov, and Zeevi(2004) is not yet available. Finally, observe that the estimation of the jump density at zero is onlypossible by imposing a 
ertain regularity there, otherwise it is 
learly not possible to dete
t jumpsof height zero.5 Estimation for unbounded jump densitiesLet us now dis
uss the 
ase that � is a jump density with a singularity at zero. For simpli
ity werestri
t the presentation to the 
ase � = 0, whi
h is also in agreement with the empiri
al parametri
�ndings by Carr, Geman, Madan, and Yor (2002). We then dedu
e as before for �(x) = ex�(x)using (2.3), (2.7) and the de�nition (3.1) of  in terms of O (v) = i
v + Z 1�1(eivx � 1)�(x) dx = i
v + Z v0 F(ix�(x))(w) dw:Under Assumption 1 x�(x) 2 L1(R) holds. By taking derivatives we �nd 0(v) = (i � 2v)FO(v) � (v � iv2)F(xO(x))(v)T (1 + (iv � v2)FO(v)) = i
 +F(ix�(x))(v):We �rst 
onsider the problem of estimating � in some weighted L2-loss with a weight fun
tionvanishing in zero. More pre
isely, we aim at estimating �g(x) = �(x)(1 � g(x)) in L2(R)-loss forsome di�erentiable ni
ely de
aying fun
tion g : R! [0; 1℄ with g(0) = 1. We obtain �g 2 L1(R)and F�g(v) = 12�iF(ix�(x)) � F((1� g(x))=x)(�v)= 
g0(0) + 12�i� (i � 2�)FO � (�+ i�2)F(xO(x))T (1 + (i�� �2)FO) � � �F((1� g(x))=x)�(�v) (5.1)The 
onvolution kernel F((1 � g(x))=x) de
ays rapidly for smooth fun
tions g su
h that for agood approximation of F�g(v) it suÆ
es to know the fun
tions FO and F(xO(x)) in a 
loseneighbourhood of �v. 12



Consequently, we 
an estimate F�g(v) for v 2 [�U;U ℄ by substituting the empiri
al 
ounterpart~O of O into formula (5.1) and using some g with g0(0) = 0. The noise level for frequen
ies v inthe empiri
al 
ounterpart of (5.1) will be of order v2 in the �nite intensity 
ase � = k�kL1(R) <1exa
tly as in the previous analysis for � = 0. For � = 1 the 
hara
teristi
 fun
tion tends to zeroand the estimation error will deteriorate signi�
antly, see the dis
ussion below.When drawing inferen
e on the behaviour of � near zero, we have to spe
ify the kind of singularityand smoothness we expe
t there. Let us therefore postulate that�(x) = ��(x)jxj� with � 2 (0; 2) and jF��(u)j . (1 + juj)�(s+1); s 2 N : (5.2)To avoid additional 
onsiderations we assume that � 6= 1. Note that this model in
ludes forexample tempered stable pro
esses with regularity index s = 1, when their transformed jumpdensity is given by�(x) = ex�(x) = C�e(1+��)xjxj� 1(�1;0)(x) + e(1��+)xjxj� 1(0;1)(x)�; C; �� > 0; �+ > 1; x 2 R;
f. Chapter 4 in Cont and Tankov (2004a) whi
h also gives further examples. Under the model(5.2) an interesting information on the behaviour of � near zero is given by the value ��(0),for whi
h we now want to derive an estimation pro
edure. Be
ause of x�(x) = x1����(x) (weunderstand always x� := jxj� sgn(x)) we 
an draw inferen
e on F(x1����(x)), but this Fouriertransform de
ays slowly due to its non-di�erentiable argument and will not yield a well performingestimator. Consequently, we have to use more re�ned fra
tional di�erentiation results for thepre
ise stru
ture of this Fourier transform. The following result is derived in the Appendix.Proposition 5.1. The following asymptoti
 estimate holds for juj ! 1:���F(ix1����(x))(u)� 2�(2� �) sin(��=2) s�1Xk=0��� 2k ��(k)� (0)iku��2�k��� . juj�s�min(1;2��);where � denotes the Euler Gamma fun
tion.Hen
e, we 
an expand  0 in a non-integer power series: 0(u) = i
 + 2�(2� �) sin(��=2) s�1Xk=0��� 2k ��(k)� (0)iku��2�k +R(u)with the remainder satisfying jR(u)j . juj�s�max(1;2��). Exa
tly as in the expansion (3.1), thispermits to estimate ��(0) based on an estimator ~ by �̂�(0) := R U�U ~ 0(u)wU��(u) du with a weightfun
tion wU�� satisfyingZ U�U u��2wU��(u) du = 12�(2� �) sin(��=2); Z U�U u�wU��(u) du = 0 for � = 0; � = �� 2� kwith k 2 f1; : : : ; s � 1g. For this estimator a similar analysis as in the 
ase of bounded jumpdensities 
an be performed. The main digression is that for � > 1, the in�nite intensity 
ase, the
hara
teristi
 fun
tion is not bounded away from zero anymore and the risk will be essentiallydetermined by the growth of j'T (u� i)j�1 with juj ! 1, whi
h is usually exponential (ejuj��1 inthe tempered stable 
ase) and thus yields again a severely ill-posed problem.6 Con
lusionWe have developed an estimation pro
edure for the nonparametri
 
alibration of exponential L�evymodels whi
h is mathemati
ally very satisfying be
ause of its minimax properties and whi
h yields13



a straight-forward algorithm for the implementation. The 
orresponding lower bound results showthat the 
alibration is in general a hard problem to solve, at least if very high a

ura
y is desired.Nevertheless the estimation pro
edure is well suited to gain general insight into the size of theparameters and the stru
ture of the jump density. Even if reasonable parametri
 models exist that
an be better �tted, a goodness-of-�t test based on our nonparametri
 approa
h should always beused to 
he
k against misspe
i�
ation.As already seen in the 
ase of unbounded jump densities, our pro
edure 
an be adapted to dif-ferent models as long as the inverse transformation from the option pri
es to the 
hara
teristi
fun
tion 
an be 
al
ulated and the unknown quantities 
an be determined from the stru
ture ofthe 
hara
teristi
 fun
tion. As empiri
al option data suggests, the risk neutral pri
e pro
ess is nothomogeneous in time and the exponential L�evy model should be extended in that dire
tion. A suit-able model 
lass is for instan
e given by the aÆne models of DuÆe, Filipovi
, and S
ha
hermayer(2003). We believe that the question of 
alibration for models in �nan
ial mathemati
s should beaddressed with the same rigour and intensity as other primary questions like pri
ing, hedging andrisk management.7 Proof of the upper boundsAll 
al
ulations take pla
e in the setting of Se
tion 4. As general referen
e for Fourier te
hniqueslike the Plan
herel identity and norm estimates we re
ommend Rudin (1991). To fa
ilitate the
al
ulations we introdu
e the exponentially in
reasing fun
tionE(x) := ex � 1x ; x > 0; and set E(0) := 1: (7.1)Using linear B-splines (
f. Se
tion 3.1) we en
ounter the following linear interpolation of OOl(x) := E [ ~O(x)℄ = NXj=1O(xj)bj(x) + �0(x); x 2 R: (7.2)7.1 A numeri
al approximation resultProposition 7.1. Under the hypothesis e�A . �2 we obtain uniformly over all L�evy tripletssatisfying Assumption 1supu2RjE [F ~O(u)� FO(u)℄j = supu2RjFOl(u)� FO(u)j . �2: (7.3)Proof. By standard Fourier estimates the assertion follows on
e we have proved kOl�OkL1 . �2.Note that O � �0 is twi
e di�erentiable ex
ept at the points xj0�1; 0; xj0 and possibly 
T byProposition 2.1(d). While the dis
ontinuities of (Ol � �0)0 at the knot points do not do any harm,O� �0 has a derivative near zero whi
h is uniformly bounded by a 
onstant C0 a

ording to (9.1).Starting with the 
ase � > 0, that is without a jump at 
T , we obtain using the mean valuetheorem with suitable �j 2 (xj�1; xj):Z xNx1 j ~Ol(x)�O(x)j dx= NXj=2 Z xjxj�1 ���(O � �0)(xj) x� xj�1xj � xj�1 + (O � �0)(xj�1) xj � xxj � xj�1 + �0(x) �O(x)��� dx14



= N+1Xj=1 Z xjxj�1 ���Z xxj�1 ((O � �0)0(�j)� (O � �0)0(y)) dy��� dx6 Xj2f2;:::;Ngnfj0g Z xjxj�1 Z xxj�1 Z xjxj�1 jO00(z)j dz dy dx+ 2C0�26 kO00kL1�2 + 2C0�2:By Assumption 1 and Proposition 2.1(b,
) the extrapolation error is bounded byZ[x0;x1℄[[xN ;xN+1 ℄jE [ ~O(x)� O(x)℄j dx 6 4C2�e�(A��):An appli
ation of Proposition 2.1(d) therefore shows for � > 0Z 1�1jE [ ~O(x)� O(x)℄j dx 6 e�A + 3�2 + 2C0�2 + 4C2�e�(A��) . �2:In the 
ase � = 0 we 
onsider the index j� with xj��1 6 
T < xj� and fa
e an additional errorestimated byZ xj�xj��1 jE [ ~O(x)� O(x)℄j dx 6 Z xj�xj��1k(O � �0)0kL1���2(x� xj��1)(xj� � x)xj� � xj��1 ��� dx6 k(O � �0)0kL1(xj� � xj��1)2With a look at (9.1) we infer that this error term is also of order �2 and thus does not enlarge the
onvergen
e rate.7.2 Proof of Theorem 4.2The asserted rate (4.8) follows on
e the general risk estimateE [j�̂2 � �2j2℄ . U�2(s+3) + E(T�2U2)U�1"2 + E(T�2maxU2)2U4"4 (7.4)has been shown for U . ��1 uniformly over Gs(R; �max), sin
e the expli
it 
hoi
e of U rendersthe se
ond and third term asymptoti
ally negligible.Consider in the de�nition (3.2) of ~ separately the linearisation L, negle
ting the stabilisation by�, and the remainder term R:L(u) := T�1'T (u� i)�1(u� i)uF( ~O � O)(u); (7.5)R(u) := ~ (u)�  (u)� L(u): (7.6)When negle
ting the remainder term, we may view ~ (u) as observation of  (u) in additive noise,whose intensity grows like j'T (u� i)j�1j(u� i)uj s u2eT�2u2 for juj ! 1. This heteroskedasti
ityre
e
ts the degree of ill-posedness of the estimation problem.Lemma 7.2. For all u 2 R the remainder term satis�esjR(u)j 6 T�1�(u)�2(u4 + u2)jF( ~O � O)(u)j2:Proof. Let us set ~'T (u� i) := 1�u(u� i)F ~O(u) whi
h equals eT ~ (u) if j ~'T (u� i)j > �(u). UsingjeT ~ (u)j > �(u), u 2 R, we obtain by a se
ond-order expansion of the logarithmjT ~ (u)� log('T (u� i))) � 'T (u� i)�1(eT ~ (u) � 'T (u� i))j 6 12�(u)�2jeT ~ (u) � 'T (u� i)j2:15



This gives the result whenever j ~'T (u � i)j > �(u). For the other values u we use j ~'T (u � i)j <�(u) 6 j'T (u� i)j=2 to inferj'T (u� i)�1(eT ~ (u) � ~'T (u� i))j 6 12�(u)�1jeT ~ (u) � ~'T (u� i)j�j ~'T (u� i) � 'T (u � i)j�(u)�1�6 12�(u)�2j ~'T (u� i)� 'T (u� i)j2= 12�(u)�2(u4 + u2)jF( ~O � O)(u)j2:Together with the previous result this gives for all u 2 R the assertion of the lemma.We shall frequently use the following norm bounds for the B-splines (bk), whi
h follow fromkbkk1 = 1 and jxk+1 � xk�1j 6 2�:kFbkkL2 = p2�kbkkL2 6 (4��)1=2; kFbkk1 6 kbkkL1 6 2�: (7.7)We de
ompose �̂2 in terms of L and R from (7.5) and (7.6):�̂2 = Z U�U���22 (u2 � 1) + 
 + Re(F�(u))� �+ Re(L(u) +R(u))�wU� (u) du= �2 + Z U�U Re�F�(u) + L(u) +R(u)�wU� (u) du; (7.8)whi
h yieldsE [j�̂2��2j2℄ 6 3���Z U�U F�(u)wU� (u) du���2+3 Eh���Z U�U L(u)wU� (u) du���2i+3 Eh���Z U�U R(u)wU� (u) du���2i:Let us 
onsider the three terms in the sum separately. The nuisan
e of F� 
auses a deterministi
error whi
h 
an be bounded using (iu)sF�(u) = F�(s)(u) and the Plan
herel isometry:���Z U�U F�(u)wU� (u) du��� = 2����Z 1�1 �(s)(x)F�1(wU� (u)=(iu)s)(x) dx��� 6 k�(s)k1kF(w1�(u)=us)kL1U s+3 :(7.9)The linear error term 
an be split into a bias and a varian
e part (Var[Z℄ := E [jZ � E [Z℄j2℄):Eh���Z U�U L(u)wU� (u) du���2i = ���Z U�U 'T (u� i)�1(u� i)u E [F( ~O � O)(u)℄wU� (u) du���2+ VarhZ U�U 'T (u� i)�1(u� i)uF ~O(u)wU� (u) dui=: L2b + Lv:The bias term is easily bounded by Proposition 7.1, using the uniform bound on U s+3wU� (u)=us:jLbj 6 kF(Ol � O)k1 Z U�U j'T (u� i)j�1(u4 + u2)1=2jwU� (u)j du. �2U�(s+3) Z U�U eT �22 u2+2Tk�kL1 jujs+2 du:Making use of R U0 2ue
u2 du = e
U2�1
 = E(
U2)U2 for any 
 > 0, we estimate the last integral byZ U�U eT �22 u2+2Tk�kL1 jujs+2 du 6 e2Tk�kL1U s+3E(T �22 U2)16



and derive from k�kL1 = F�(0) 6 2R for the bias part in the linear termjLbj . �2E(T �22 U2): (7.10)For the varian
e part of the linear error term we use the support properties supp(wU� ) 2 [�U;U ℄and supp(bk) = [xk�1; xk+1℄. Several appli
ations of the Plan
herel identity, the Cau
hy-S
hwarzinequality and estimate (7.7) then yieldLv = Z U�U Z U�U Cov �'T (u� i)�1(u� i)uF ~O(u); 'T (v � i)�1(v � i)vF ~O(v)�wU� (u)wU� (v) du dv= NXk=1 Æ2k���Z U�U 'T (u � i)�1(u� i)uFbk(u)wU� (u) du���2= 2� NXk=1 Æ2k���Z 1�1F�1�'T (u� i)�1(u� i)uwU� (u)�(x)bk(�x) dx���26 2� NXk=1 Æ2k Z xk+1xk�1 ���F�1�'T (u� i)�1(u� i)uwU� (u)�(�x)���2 dx kbkk2L2. �kÆk2l1 Z 1�1 ���F�1�'T (u� i)�1(u� i)uwU� (u)�(�x)���2 dxs �kÆk2l1 Z U�U j'T (u� i)j�2(u4 + u2)wU� (u)2 du. �U�1E(T�2U2)kÆk2l1 :Altogether we obtain for the linear error termEh���Z U�U L(u)wU� (u) du���2i . E(T�2U2)��4 + U�1�kÆk2l1�: (7.11)It remains to estimate the quadrati
 remainder term. We use Lemma 7.2, Proposition 7.1, theindependen
e of ("k), the �niteness of their fourth order moments and estimates (4.5), (7.7):Eh���Z U�U R(u)wU� (u) du���2i. Z U�U Z U�U Eh���F( ~O �O)(u)F( ~O � O)(v)���2iu4wU� (u)v4wU� (v)�(u)2�(v)2 du dv. Z U�U Z U�U�kF(Ol �O)k41 + E [jF( ~O �Ol)(u)F( ~O �Ol)(v)j2℄�u4wU� (u)v4wU� (v)�(u)2�(v)2 du dv. Z U�U Z U�U��8 + E h��� NXk;l=1 ÆkÆl"k"lFbk(u)Fbl(v)���2i�u4wU� (u)v4wU� (v)�(u)2�(v)2 du dv. Z U�U Z U�U��8 + NXk;l=1 Æ2kÆ2l jFbk(u)j2jFbl(v)j2�u4wU� (u)v4wU� (v)�(u)2�(v)2 du= ��4 Z U�U u4wU� (u)�(u)2 du�2 + �Z U�U NXk=1 Æ2kjFbk(u)j2u4wU� (u)�(u)2 du�2. ��8U4 +�4U4kÆk2l2�E(T�2maxU2)2:This gives the result that the total risk of �̂2 is of orderE [j�̂2 � �2j2℄ . U�2(s+3) + ��4 + U�1�kÆk2l1�E(T�2U2) + ��8U4 +�4U4kÆk2l2�E(T�2maxU2)2:17



Be
ause of U . ��1 and �kÆk2l2 . kÆk2l1 the bound simpli�es to (7.4).7.3 Proof of Theorem 4.3The rates (4.10) and (4.11) follow from the rate-optimal 
hoi
e (4.9) of U and the Gs(R; �max)-uniform risk estimatesE [j
̂ � 
j2℄ . U�2(s+2) + E(T�2U2)U"2 + E(T�2maxU2)2U6"4; (7.12)E [j�̂� �j2℄ . U�2(s+1) + E(T�2U2)U3"2 + E(T�2maxU2)2U8"4; (7.13)when inserting � = 0 in the 
ase �max = 0.Sin
e the 
laimed risk bound for 
̂ is larger than for �̂2, we only need to estimate the risk of 
̂+ �̂22instead of that for 
̂. Equally, we 
an restri
t to �̂� �̂22 � 
̂ instead of �̂. Then the proof followsexa
tly the lines of the proof for �̂2, the only di�eren
e being the di�erent norming in estimate(4.5) giving rise to a fa
tor U for 
 and a fa
tor U2 for �. It remains to note that we obtain thebounds in the 
ompound Poisson 
ase by setting � = �max = 0 and 
onsidering the 
ontinuousextension of the bounds for that 
ase: For 
̂ we obtain as bias���Z U�U F�(u)wU
 (u) du��� . U�(s+2): (7.14)The linear error term is estimated byEh�Z U�U L(u)wU
 (u) du�2i . (E(T�2U2)�U2�4 + U�kÆk2l1�; � 2 [0; �max℄ unknown,U2�4 + U�kÆk2l1 ; � = �max = 0: (7.15)and the remainder satis�esEh���Z U�U R(u)wU
 (u) du���2i . (��8U6 +�4U6kÆk2l2E(T�2maxU2)2; � 2 [0; �max℄ unknown,�8U6 +�4U6kÆk2l2 ; � = �max = 0: (7.16)Altogether we obtain the risk estimate (7.12).For �̂ we obtain the same asymptoti
 error bounds as for 
̂, but multiplied by U when regardingthe root mean square error. This gives (7.13) and (4.11).7.4 Proof of Theorem 4.4The assertion follows as soon as the following Gs(R; �max)-uniform risk bound for general U holds:E h Z 1�1j�̂(x) � �(x)j2 dxi . U�2s + E(T�2U2)U5"2 + E(2T�2maxU2)U9"4: (7.17)The bias in estimating � due to the 
uto� at U 
an be estimated byZ 1�1jF�(u)(1� 1[�U;U ℄)j2 du 6 U�2s Z 1�1juj2sjF�(u)j2 du = U�2sk�(s)k2L2 : (7.18)The varian
e term 
an be split up a

ording to the di�erent risk 
ontributions. For u 2 [�U;U ℄we obtainE [jF(�̂� �)(u)j2℄ 6 4 E [j ~ (u)�  (u))j2℄ + 4(u2 + 1)2 E [j�̂2 � �2j2℄+ 4(u2 + 1) E [j
̂ � 
j2℄ + 4 E [j�̂� �j2℄. E [jL(u)j2℄ + E [jR(u)j2℄ + U4 E [j�̂2 � �2j2℄ + U2 E [j
̂ � 
j2℄ + E [j�̂� �j2℄. E [jL(u)j2℄ + E [jR(u)j2℄ + U�2(s+1) + E(T�2U2)U3"2 + E(T�2maxU2)2U8"4:18



In analogy to the previous estimates when proving Theorem 4.2, we �ndE [jL(u)j2℄ 6 j'T (u� i)j�2(u4 + u2)(kF(O � Ol)k21 +Var[F ~O(u)℄) . eT�2u2u4��4 +�2kÆk2l2�:With a look at Lemma 7.2 we estimate the remainder byE [jR(u)j2℄ 6 16�(u)�4(u4 + u2)2 E [jF(Ol �O)(u)j4 + jF( ~O � Ol)(u)j4℄. e2T�2maxu2u8��8 +�4kÆk4l2�:The Plan
herel identity and these estimates yield together (7.17) viaZ 1�1 E [j�̂(x) � �(x)j2℄ dx . U�2s + E(T�2U2)U5"2 + E(2T�2maxU2)U9"4+ E(T�2U2)U4"2 + E(T�2maxU2)2U9"4s U�2s + E(�2U2)U5"2 + E(2T�2maxU2)U9"4:8 Proof of the lower boundsWe follow the usual Bayes prior te
hnique, see e.g. Korostelev and Tsybakov (1993), and perturb a�xed L�evy triplet T0 = (0; 
0; �0) in the interior of Gs(R; �max) su
h that the perturbations remainin Gs(R; �max).8.1 Lower bound for � in the 
ase � = 0Fix a positive integer j. Let  (j) 2 C1(R) be some fun
tion with support in [0; 1℄ satisfyingk (j)kL2 = 1, R  (j)(x)e�2�jx dx = 0 and R jF (j)(u)u�2j2 du <1. Certainly, there are in�nitelymany fun
tions  (j) ful�lling these requirements; the last property follows for instan
e if  is these
ond derivative of an L2-fun
tion. Introdu
e the wavelet-like notation jk(x) := 2j=2 (j)(2jx� k); j > 0; k = 0; : : : ; 2j � 1:Consider for any r = (rk) 2 f�1;+1g2j and some � > 0 the perturbed L�evy triplets Tr = (0; 
0; �r)with �r(x) = �0(x) + �2�j(s+1=2) 2jXk=1 rk jk(x); x 2 R:We note that due to F jk(0) = 0 and R e�x jk(x) dx = 0 the triplet Tr satis�es the martingale
ondition su
h that Tr 2 Gs(R; 0) holds for a suÆ
iently small 
hoi
e of the 
onstant � > 0.The Gaussian likelihood ratio of the observations under the probabilities 
orresponding to Tr0 andTr under the law of Tr for some r; r0 with rk = r0k for all k ex
ept one k0 is given by�(r0; r) = exp�Z 1�1(Or0 �Or)(x)"�1 dW (x)� 12 Z 1�1jOr0 �Or)(x)j2"�2 dx�:Hen
e, the Kullba
k-Leibler divergen
e (relative entropy) between the two observation modelsequals KL(Tr0 jTr) = 12 Z 1�1j(Or0 �Or)(x)j2"�2 dx:The standard Assouad Lemma (Korostelev and Tsybakov 1993, Thm. 2.6.4) now yields the lowerbound for the risk of any estimator �̂ of �inf�̂ supT=(0;
;�)2Gs(R;0)ET hZ j�̂(x)� �(x)j2 dxi & 2jk�r � �r0k2L2 s 2�2js;19



provided the Kullba
k-Leibler divergen
e KL(Tr0 jTr) stays uniformly bounded by a small 
onstant.It remains to determine a minimal rate for 2j !1 su
h that this holds when the noise level tendsto zero.Arguing in the spe
tral domain and using the general estimate jez�1j 6 2jzj, for jzj 6 Æ and somesmall Æ > 0, together with k'T;r0='T;rk1 ! 1 for 2j !1, we obtain for all suÆ
iently large jKL(Tr0 jTr) = 14�"2 Z 1�1jF(Or0 � Or)(u)j2 du6 "�2 Z 1�1 ���'T;r(u� i)� 'T;r0(u� i)u(u� i) ���2 du6 4"�2 Z 1�1j'T;r(u� i)j2T 2jF(�r � �r0 )(u)j2(u4 + u2)�1 du. "�22�j(2s+1) Z 1�1jF jk0(u)j2u�4 du= "�22�j(2s+5) Z 1�1jF (j)(v)j2v�4 dv:Hen
e, for 2j(2s+5) s "2 with a suÆ
iently large 
onstant the Kullba
k-Leibler divergen
e remainsbounded and the asymptoti
 lower bound for � follows.8.2 Lower bound for 
 and � in the 
ase � = 0Let us start with the lower bound for 
. We pro
eed as before by perturbing a triplet T0 = (0; 
0; �0)from the interior of Gs(R; 0), but this time we only 
onsider one alternative T1 = (0; 
1; �1) and
hoose the perturbation in su
h a way that the 
hara
teristi
 fun
tion 'T (u � i) does not 
hangefor small values of juj. For any Æ > 0 and U > 0 put
1 := 
0 + Æ; F�1(u) := F�0(u)� Æi(u� i)e�u2=U2 ; u 2 R:Then the fun
tion �1 is real-valued. Moreover, the martingale 
ondition (2.3) is satis�ed:
1 +F�1(0)� F�1(i) = 
0 + Æ + F�0(0)� Æ �F�0(i) + 0 = 0:Be
ause ofk�(s)1 � �(s)0 k1 6 2� Z 1�1jujsjF(�1 � �0)(u)j du . Æ Z 1�1jujs+1e�u2=U2 du s ÆU s+2and even better bounds for k�(k)1 � �(k)0 kL2 , k = 0; : : : ; s, it suÆ
es to 
hoose U s Æ�1=(s+2) smallenough to ensure that T1 still lies in our nonparametri
 
lass Gs(R; 0). The basi
 lower boundresult (Korostelev and Tsybakov 1993, Prop. 2.2.2) then yieldsinf
̂ sup(0;
;�)2Gs(R;0)E
;�[j
̂ � 
j2℄ & Æ2;provided the Kullba
k-Leibler divergen
e between T1 and T0 remains asymptoti
ally bounded. Asin the lower bound proof for � we obtain asymptoti
allyKL(T1jT0)6 4"�2 Z 1�1j'0;T (u� i)j2T 2ji(
1 � 
0)(u� i) + F(�1 � �0)(u)� F(�1 � �0)(i)j2(u4 + u2)�1 du. "�2Æ2 Z 1�1ji(u� i)(1� e�u2=U2)j2(u4 + u2)�1 du= "�2Æ2 Z 1�1(1� e�v2)2U�2v�2U dv. "�2Æ2U�1 s "�2Æ(2s+5)=(s+2): 20



The latter remains small for Æ s "(2s+4)=(2s+5) with a small 
onstant, whi
h gives the asymptoti
lower bound for 
.For the lower bound of � we perturb the triplet T0 leaving 
0 and �0 = 0 �xed and puttingF�1(u) := F�0(u) + Æe�u(u�i)=U2:Then �1 is real-valued, �1 � �0 = F(�1 � �0)(i) = Æ and the triplet T1 = (0; 
0; �1) satis�es themartingale 
ondition. For U s Æ�1=(s+1) with a suÆ
iently small 
onstant the perturbation �1 liesin Gs(R; 0) due to k�(s)1 � �(s)0 k1 . Æ Z 1�1jujse�u2=U2 du s ÆU s+1and even better bounds for k�(k)1 � �(k)0 kL2, k = 0; : : : ; s. The Kullba
k-Leibler divergen
e isasymptoti
ally bounded byKL(T1jT0) 6 4"�2 Z 1�1j'0;T (u� i)j�2T 2jF(�1 � �0)(u) �F(�1 � �0)(i)j2(u4 + u2)�1 du. "�2Æ2 Z 1�1j1� e�u(u�i)=U2 j2(u4 + u2)�1 du= "�2Æ2 Z 1�1j1� e�v2+iv=U j2(U4v4 + U2v2)�1U dv. "�2Æ2U�3 s "�2Æ(2s+5)=(s+1)and we obtain the asymptoti
 lower bound for �.8.3 Lower bound for � in the 
ase � > 0The interesting deviation from standard proofs of lower bounds (see e.g. Butu
ea and Matias(2005)) for severely ill-posed problems is that we fa
e the restri
tion that F� is analyti
 in astrip parallel to the real line and is uniquely identi�able from its values on any open set. So, letT0 = (�20; 
0; �0) with �0 > 0 be a L�evy triplet from the interior of Gs(R; �max). Consider theperturbation T1 = (�20; 
0; �1) withF�1(u) := F�0(u) + Æm1=4e�(T�20u2=m)m=2(T�20=m)mum(u� i)m; u 2 R:for m 2 N, Æ > 0. Then we have uniformly for m!1 and Æ ! 0k�1 � �0k2L2 = 2�kF(�1 � �0)k2L2 = 2�Æ2pT�20 Z 10 e�vv(1+2m)=2m(1 +m�1v�1=m)m dv s Æ2:Similarly, for k = 1; : : : ; s we derive uniformly in m and Æk�(k)1 � �(k)0 kL2 = p2�kukF(�1 � �0)(u)kL2 s Æmk=2;k�(s)1 � �(s)0 k1 6 kusF(�1 � �0)(u)kL1 6 Æms=2�1=4:Therefore 
hoosing Æ s m�s=2 with a small 
onstant yields T1 2 Gs(R; �max) be
ause we then alsohave that �1 is real-valued and T1 satis�es the martingale 
ondition and Assumption 1.By the same arguments as before and by Stirling's formula to estimate the Gamma fun
tion, theKullba
k-Leibler divergen
e between the observations under T0 and under T1 is asymptoti
ally21



bounded byKL(T1jT0) 6 4"�2 Z 1�1j'0;T (u� i)j2T 2jF(�1 � �0)(u)j2(u4 + u2)�1 du. "�2Æ2 Z 1�1 e�T�20u2m1=2e�(T�20u2=m)m (T�20=m)2mu2m�2ju� ij2m�2 du= "�2Æ2m�7=2(T�20m)�1=2 Z 10 e�mv1=me�vv(2m�1)=2m(1 +m�1v�1=m)m�1 dv. "�2Æ2m�4 Z 10 e�mv1=m dv= "�2Æ2m�4 Z 10 e�zzm�1m1�m dz= "�2Æ2m�m�3�(m) . "�2Æ2m�m�3(m� 1)m�1=2e1�m s "�2m�3�se�mConsequently, the Kullba
k-Leibler divergen
e remains small when 
hoosing m > 2 log("�1), butm . log("�1), whi
h gives Æ s log("�1)�s=2. From the basi
 general lower bound result wetherefore obtain the asymptoti
 lower bound for �.8.4 Lower bound for �2, 
 and � in the 
ase � > 0Let us start with the lower bound for 
. We pro
eed as in the 
ase � = 0 by perturbing the tripletT0 = (�0; 
0; �0) with �0 > 0 in su
h a way that the 
hara
teristi
 fun
tion 'T (u � i) does not
hange mu
h for small values of juj. For any Æ put
1 := 
0 + Æ; F�1(u) := F�0(u) � Æi(u � i)e�u2m=U2m :Then �1 is real-valued and the martingale 
ondition (2.3) is satis�ed. Be
ause ofk�(s)1 � �(s)0 k1 6 Z jujsjF(�1 � �0)(u)j du . Æ Z 1�1jujs+1e�u2m=U2m du s ÆU s+2and smaller bounds for k�(k)1 � �(k)0 kL2 , k = 0; : : : ; s, we 
hoose U s Æ�1=(s+2) small enough toensure that the perturbed triplet T1 still lies in Gs(R; �max). In the same manner as before andusing j1� e�xj 6 jxj, x > 0, as well as Stirling's formula, we obtainKL(T1jT0) 6 4"�2 Z 1�1j'0;T (u� i)j2T 2ji(
1 � 
0)(u � i)++F(�1 � �0)(u) �F(�1 � �0)(i)j2(u4 + u2)�1 du. "�2Æ2 Z 1�1 e�T�20u2 ji(u� i)(1 � e�u2m=(2U2m))j2(u4 + u2)�1 du. "�2Æ2 Z 1�1 e�T�20u2u4mU�4mu�2 dus "�2Æ2U�4m�(2m � 12 )s "�2Æ2+4m=(s+2)(2m)2me�2mTo keep the Kullba
k-Leibler divergen
e small, we 
hooseÆ(2s+4m+4)=(s+2) s "2(2m)�2me2mand thus obtain uniformly over m the boundinf
̂ supT=(�2;
;�)2Gs(R;�max ) ET [j
̂ � 
j2℄1=2 & �"2(2m)�2me2m�(s+2)=(2s+4m+4):22



The maximizer of this expression m� s log("�1) then yields the asymptoti
 lower bound for 
.For � we perturb the triplet T0 leaving �0 and 
0 �xed and putting for an even integer mF�1(u) := F�0(u) + Æe�um(u�i)m=U2m :Then �1��0 = F(�1��0)(i) = Æ and the triplet T1 = (�0; 
0; �1) satis�es the martingale 
ondition.For U s Æ�1=(s+1) with a suÆ
iently small 
onstant the perturbation �1 lies in Gs(R; �max). Asbefore we prove that the Kullba
k-Leibler divergen
e remains bounded wheneverÆ(2s+4m+2)=(s+1) s "2(2m)�2m+1e2m:Choosing m� s log("�1) as before gives the asymptoti
 lower bound for �.For �2 we perturb the triplet T0 leaving 
0 invariant and putting�21 := �20 + 2Æ; F�1(u) := F�0(u) + Æ(u� i)2e�u2m=U2m :Then the martingale 
ondition (2.3) is satis�ed and for U s Æ�1=(s+3) suÆ
iently small we remainin Gs(R; �max). It is again routine to prove that the Kullba
k-Leibler divergen
e remains boundedwhenever Æ(2s+4m+6)=(s+3) s "2(2m)�2m�1e2m:Choosing m� as before gives the asymptoti
 lower bound for �2.9 Appendix9.1 Proof of Proposition 2.1(a) This follows from the put-
all parity (2.4).(b) O(x) > 0 follows dire
tly from (2.6) while O(x) 6 E [eXT ℄� (1� ex)+ = 1 ^ ex follows from(a) and the martingale 
ondition.(
) We 
on
lude by H�older's and Markov's inequality for x > 0O(x) 6 E [eX�1fX�>xg℄ 6 C1=�� P(X� > x)(��1)=� 6 C1=�� �C�e�x�(��1)=� = C�e(1��)x:(d) Let us denote by fT the density of the absolutely 
ontinuous part of the distribution of XT .The only atom in the distribution of XT 
an o

ur at 
T , namely in the 
ompound Poisson
ase when no jump until T has taken pla
e. For x 6= 0 we haveO0(x) = � E [(eXT � ex)1fXT>xg℄�0 + ex1fx<0g = ex��P(XT > x) + 1fx<0g�: (9.1)This yields O0(0+) �O0(0�) = �1 and in the 
ase � = 0, � <1, 
 6= 0 alsoO0(
T+) � O0(
T�) = e
T P(XT = 
T ) = e(
��)T :At all points x 6= 0 where the law of XT has no atom we obtainO00(x) = ��exP(XT > x)�0 + ex1fx<0g = ex�P(XT < x) + fT (x)� 1fx>0g�:Consequently, by partial integration and using E [eXT ℄ = 1 we arrive atZRnf0;
TgjO00(x)j dx = O0(0�) + Z 10 ex���P(XT < x)� 1 + fT (x)���dx6 P(XT < 0) + Z 10 ex(1�P(XT < x)) dx+ E �1fXT>0geXT �= 2P(XT < 0)� 1 + 2 E �1fXT>0geXT �6 1 + 2 E [eXT ℄ = 3:23



(e) By de�nition we haveFO(v) = S�1�Z 0�1 eivxPT (x) dx+ Z 10 eivxCT (x) dx�= Z 0�1 eivx E �1fXT6xg(ex � eXT )� dx+ Z 10 eivx E �1fXT>xg(eXT � ex)� dx:By partial integration we obtainZ 0�1 e(iv+1)xP(XT 6 x) dx = 11 + iv P(XT 6 0)� 11 + iv E �1fXT60ge(1+iv)XT �;Z 0�1 eivx E �1fXT6xgeXT � dx = 1iv E �1fXT60geXT � � 1iv E �1fXT60ge(1+iv)XT �and 
onsequentlyZ 0�1 eivx E �1fXT6xg(ex � eXT )� dx = 11 + iv P(XT 6 0)� 11 + iv E �1fXT60ge(1+iv)XT �� 1iv E �1fXT60geXT � + 1iv E �1fXT60ge(1+iv)XT �:In the same way we deriveZ 10 eivx E �1fXT>xg(eXT � ex)� dx = � 1iv E �1fXT>0geXT �+ 1iv E �1fXT>0ge(1+iv)XT �+ 11 + iv P(XT > 0)� 11 + iv E �1fXT>0ge(1+iv)XT �:Taking into a

ount E [eXT ℄ = 1, we obtain formula (2.7).9.2 Proof of Proposition 5.1We only sket
h the main steps in the proof, the reasoning being similar to that for fra
tionalderivatives, 
f. Samko, Kilbas, and Mari
hev (1993). The following formula is easily establishedand 
losely related to equation (5.8) in Samko, Kilbas, and Mari
hev (1993):F(��(x)x1��)(u) = �(2� �) sin(��=2)�i Z 10 z��2�F��(u+ z)� F��(u� z)� dz:Let us only 
onsider the 
ase u > 0 and setGu(x) := 1(s � 1)! Z x0 (x� �)s�1F��(u+ �) d� + 2�1(�1;�u℄(x) s�1Xk=0�(k)� (0) (�i)k(u+ x)s�k�1(s� k � 1)!k!Then we have in a distributional senseG(k)u (0) = 0; k = 0; : : : ; s� 1; G(s)u (x) = F��(u+ x) + 2� s�1Xk=0�(k)� (0) (�i)kÆ(k)�u(x)k! :Hen
e, by s-fold partial integration we obtainZ 10 z��2�F��(u+ z)� F��(u� z)� dz � 2� s�1Xk=0�(k)� (0)ik��� 2k �u��2�k= Z 10 z��2�G(s)u (z) �G(s)u (�z)� dz = � sYk=1(k + 1� �)�Z 10 Gu(z) � (�1)sGu(�z)zs+2�� dz:It therefore suÆ
es to show that the last integral is of order juj�s�min(1;2��), whi
h is a

om-plished by splitting the integration interval into the parts [0; 1℄, [1; u℄ and [u;1) and making useof jF��(u)j . (1 + juj)�s�1 and of the properties of Gu established above. We omit the details.24
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