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Abstract

Based on options data at the market the problem of calibrating an exponential Lévy model
for the underlying asset is investigated. It is shown that this statistical inverse problem is in
general severely ill-posed and exact minimax rates of convergence are derived. The estimation
procedure we propose is based on the explicit inversion of the option price formula in the
spectral domain and a cut-off scheme for high frequencies as regularisation. Its performance
is illustrated by numerical simulations.

1 Introduction

Already shortly after the introduction of the Black-Scholes model Merton (1976) argued that
based on empirical evidence share price models should incorporate a jump component. Nowadays,
standard problems of mathematical finance like derivative pricing have been successfully solved
for many general Lévy models, as has become manifest in the monograph by Cont and Tankov
(2004a). On the other hand, the investigation of calibration methods for Lévy models has mainly
focused on certain parametrisations of the underlying Lévy process. Since the characteristic triplet
of a Lévy process is a priori an infinite-dimensional object, this approach is always exposed to the
problem of misspecification, in particular when there is no inherent economic foundation of the
parameters and they are only used to generate different shapes of possible jump distributions.

The goal of this paper is to investigate mathematically the problem of nonparametric inference for
the Lévy triplet when the asset price (S:) follows an exponential Lévy model

S, = Se™* X+ with a Lévy process X, for t > 0. (1.1)

We suppose that at time ¢ = 0 we dispose of prices for vanilla European call and put options on
this asset with different strike prices and possibly different maturities. By basing our estimation
on option data we draw inference on the underlying risk neutral price process, which in general
cannot be determined from historical price data due to the incompleteness of the Lévy market.

The observed option prices will be slightly unprecise due to bid-ask spreads or other frictions in the
market. It is well known that in the ideal case of precise observations for all possible strike prices
the state price density and hence the Lévy triplet can be uniquely identified, see e.g. Ait-Sahalia
and Duarte (2003). Under the realistic model of finitely many noisy observations we cannot hope
to determine the triplet correctly, we should rather try to provide an estimator which is as good
as possible for the given accuracy of the data. This optimality property is usually assessed by the
minimax paradigm, which measures the inherent complexity of the statistical problem class. One
main result of the present paper is a lower bound, showing that already in the simple exponential
Lévy model the estimation problem is in general severely ill-posed, that is, the estimation error for
any part of the Lévy triplet as a function of the accuracy of the observations will only converge
with a logarithmic rate for any conceivable estimation procedure.

On the other hand, we propose an explicit construction of an estimator that attains this optimal
minimax rate. The procedure is based on the inversion of the explicit pricing formula via Fourier
transforms by Carr and Madan (1999) and a regularisation in the spectral domain. Using the Fast
Fourier Transformation, the procedure is easy to implement and yields good results in simulations
in view of the severe ill-posedness. In comparison with standard statistical ill-posed problems, the



main challenges are the nonlinearity involved and the complex interplay between the jump measure
as nonparametric part and the drift and diffusion coefficient as parametric parts.

The exponential Lévy model reflects the assumption that the log returns of the asset evolve in-
dependently and with identical distribution for the same time steps, which is plausible for liquid
markets and not too long time horizons. This basic model class has been considered recently for
a variety of pricing and optimisation problems in finance. Let us mention here Mordecki (2002)
for pricing American-type perpetual options, Cont and Voltchkova (2005) for pricing other path-
dependent options and Eberlein and Papapantoleon (2004) for a good survey and generalisations
to the time-inhomogeneous case. Kallsen (2000) and Emmer and Kliippelberg (2004) study market
models in a multidimensional framework.

When no model for the price process is specified, calibration from option data can be used to
estimate the state price density, see Ait-Sahalia and Duarte (2003). This density yields the dis-
tribution of the asset price at the times of maturity, but does not provide any information on the
evolution of the price in time. A structural assumption on the price process allows to find prices
for path-dependent options or to perform a dynamic risk management. In financial engineering
information about the time evolution expected at the market is obtained by smoothing implied
Black-Scholes volatilities, cf. Fengler, Hardle, and Mammen (2003). For the generalised Black-
Scholes model Dupire’s formula permits the calibration from option prices, see e.g. Jackson, Siili,
and Howison (1999) for a numerical approach and Crépey (2003) for a theoretical study. The cal-
ibration of parametric exponential Lévy models has been studied for example by Eberlein, Keller,
and Prause (1998) and Carr, Geman, Madan, and Yor (2002).

The study by Cont and Tankov (2004b), also described in Cont and Tankov (2004a), is closest
to our nonparametric approach for exponential Lévy models. In order to cope with the involved
ill-posedness, these authors employ a least squares method penalized by the relative entropy with
respect to an a priori chosen Lévy triplet. This type of penalisation has certain genuine features:
the method takes into account prior information and the resulting functional is convex. However,
the value of the diffusion coeflicient is thus fixed in advance, and the regularising effect does not
take place for independent random errors in the observations, essentially because white noise can
only be considered as an element in a Sobolev space of negative regularity, cf. the Hilbert scales
approach in Engl, Hanke, and Neubauer (1996). In contrast, we strive for a method that has
only few tuning parameters, permits the calibration of the diffusion coefficient and is suited for
observations with random errors. The method we present below will have all these properties and
is in addition provably rate-optimal over standard smoothness classes. Instead of minimizing some
data-dependent criterion, for which in each step the option price for the current triplet value has
to be evaluated, we prefer using the explicit nonlinear inversion directly. This results in an efficient
straight-forward algorithm. Combining this method with a stage-wise aggregation procedure, a
robust data-driven method is obtained.

After introducing the financial and statistical model in Section 2, the estimation method for the
finite intensity case is developed in Section 3. The main theoretical results are formulated in
Section 4. A typical infinite intensity case is treated in Section 5 and we conclude in Section 6.
The proofs of the upper and lower bounds are deferred to Sections 7 and 8, respectively, while the
Appendix provides some further technical results.

2 The model

2.1 The exponential Lévy model and option prices

We suppose that the price S; of an asset at time ¢ follows the Lévy model (1.1), where S > 0 is the
present value of the asset and r > 0 is the riskless interest rate, which is assumed to be known and
constant. An excellent reference for this model in finance is the monograph by Cont and Tankov



(2004a). In this paper we shall only consider Lévy processes X with a jump component of finite
variation and absolutely continuous jump distribution. Its characteristic function is given by the
Lévy-Khintchine representation

2 [o's]
o7 (u) := Elexp(iuXr)] = exp (T(—%Uz + dyu + / (eium — () dx)) (2.1)

— 00
o > 0 is called volatility, ¥ € R drift and the non-negative function v, satisfying f(|z|A1)v(z)de <
00, is the jump density. Its jump intensity is defined as A := |[v||z1(g). The characteristic triplet
T := (02,7, v) has for finite A the intuitive explanation that X is the sum of three independent
classical processes, namely a Wiener process of volatility o, a deterministic linear process with
trend v and a compound Poisson process of intensity A with jump distribution v/A. Processes
with infinite activity are obtained by a limiting procedure and their sample paths have infinitely
many jumps, but with jump sizes accumulating at zero. By excluding Lévy processes of unbounded
variation we ensure an intuitive explanation of the parameters and we are in line with the empirical
parametric findings of Carr, Geman, Madan, and Yor (2002), though some useful parametric models

like generalized hyperbolic distributions are excluded.

A Furopean call option with maturity 7" and strike K for an underlying asset grants the holder
the right to buy the asset at the future time T for the price K. A risk neutral price at time £ = 0
for this option is given by

C(K,T) = T Bgl(Sz — K)*], (2.2)

where (A)* := max(A4,0) and Q is a martingale measure equivalent to the real world probability
[P. By considering option prices we immediately draw inference on this pricing measure (Q and
we assume from now on that S follows an exponential Lévy model (1.1) under @ and that the
discounted price process e~"*S; is a martingale on the filtered probability space (2, F,Q, (F)),
fixed throughout the paper. As is standard in the calibration literature, the measure (Q is assumed
to be settled by the market and to be identical for all options traded.

By the independence of increments in X the martingale condition may be explicitly stated as

2 oo
Vi>0: EeX]=1 < %-I—‘/—I—/ (e® — )v(z)dz = 0. (2.3)
— 00
Observe that we have imposed implicitly the exponential moment condition fooo (e*—1)v(x)de < 0o
to ensure the existence of E[S;]. Another consequence is that the characteristic function @7 is
defined on the whole strip {z € C | Im(z) € [—1, 0]} in the complex plane, which will be important
later. We reduce the number of parameters by introducing the negative log-forward moneyness

z:=log(K/S) —rT,
such that the call price in terms of x is given by
C(z,T) = SE[(e®T — ) 7].

The analogous formula for the price of a put option, which gives the owner the right to sell an asset
at time 7 for the price K, is P(z,T) = SE[(e® — eX7)T]. Then the well-known put-call parity is
ecasily established:

C(z,T) — P(z,T) = SE[e*T — %] = S(1 — €°). (2.4)

2.2 The observations

We focus on the calibration from options with a fixed maturity 7" > 0 and mention the straight-
forward extension to several maturities in Section 3.1. We observe the prices of N call options
(or by the put-call parity (2.4) alternatively put options) at different strikes K;, j = 1,..., N,
corrupted by noise

}?:C(K]’,T)—I—Ujé?j, j=1,...,N. (2.5)



We assume the observational noise (g;) to consist of independent centred random variables with

E[e?] = 1 and sup; [E[e}] < co. The noise levels (o) are assumed to be positive and known. This

random observation model reflects the bid-ask spread and other frictions at the market.

As we need to employ Fourier techniques, we introduce the function

O(a) = {5— C(z,T), 30, 2.6)

S=P(z,T), <0

in the spirit of Carr and Madan (1999). O records normalised call prices for z > 0 and normalised
put prices for z < 0. The following important properties of O are proved in the Appendix.

Proposition 2.1.

(a) We have O(z) = S71C(z,T) — (1 — ®)* for all z € R.
(b) O(x) € [0,1A€%] holds for all x € R.
(c) If Cq :=TE[e*%7] is finite for some a > 1, then O(z) < Cuelt=2)® holds for all z > 0.

(d) At any © € R\{0}, respectively x € R\{0,~vT} in the case 0 = 0 and A < oo, the function O

is twice differentiable with
/ |0 (z)]dz < 3.
R\{0T}

The first derivative Q' has a jump of height —1 at zero and, in the case ¢ = 0 and A < oo,
a jump of height +eT(V=2) occurs in O at ~T.

(e) The Fourier transform of O satisfies

_1—or(v—1i)

FO() = — 2, veR. (2.7)

This identity extends to all complez values v with Im(v) € [0,1]. Note the properties pr(0) =
1 and pr(—i) = 1 derived from the general property of characteristic functions and the
martingale condition (2.3), respectively.

We transform our observations (Y;) and predictors (Kj) to
05 = 3/8 = (1 = Kz [S)* = O(a;) + by, (2.5)
z; := log(K;/S) — rT, (2.9)

where §; = S™'o;. In practice, the design (z;) will be rather dense around # = 0 and sparse for
options further out of the money or in the money, cf. Fengler, Hardle, and Mammen (2003) for a
study on the German DAX index.

In order to facilitate the subsequent analysis we make a mild moment assumption on the price
process, which guarantees by Proposition 2.1(b,c) the exponential decay of O.

Assumption 1. We assume that Cy := E[e?X7] is finite. This is equivalent to postulating for the
asset price a finite second moment: E[S2] < oo.

3 The estimation for bounded jump densities

Let us assume here that the Lévy process has finite intensity A. Later we shall impose also a certain
regularity on the jump density v. We make use of the exact inversion formula, that is the mapping



from the option prices to the parameters. This has the advantage that no numerical minimization
technique needs to be employed and the propagation of errors is more transparent.

Since our asset follows an exponential Lévy model, the jumps in the Lévy process appear exponen-
tially transformed in the asset prices and it is intuitive that inference on the exponentially weighted
jump measure

p(z) :=e®v(z), z€eR,

will lead to spatially more homogeneous properties of the estimator than for v itself. Our calibration
procedure relies essentially upon the formula

P(v) = %log(l +iv(l + iv)}"(’)(v)) = %log(g@T(v —14)
- _“22”2 +i(0? + 7)o+ (02/24 7 — A) + Fu(v), (3.1)

which is a simple consequence of the formulae (2.1) and (2.7). Note that the function ¢ is up to
a shift in the argument the cumulant-generating function of the Lévy process and a continuous
version of the logarithm must be taken such that ¢(0) = 0, which is implied by the martingale
condition. Formula (3.1) shows that the Lévy triplet is uniquely identifiable given the observation
of the whole option price function O without noise: Fpu(v) tends to zero as |v| — oo due to the
Riemann-Lebesgue Lemma and o2, v, A are identifiable as coefficients in the polynomial, which in
turn yields the function Fu(v). A properly refined application of this approach will equip us with
estimators for the whole triplet 7 = (02, v, u) (we parametrize Lévy triplets equivalently with p
or v).

3.1 The basic procedure

Let us formulate the basic algorithm to be used when a certain smoothness property is imposed on
1, that is under the prior knowledge p € G, where G is a smoothness class. The procedure consists
of four steps: (a) we build an approximation O of O from the data; (b) we obtain an approximation
¥ of ¥ by formula (3.1); (c) we estimate the coefficients of the quadratic polynomial on the right-
hand side in (3.1) from 15 under the presence of a noise component and the nonparametric nuisance
part Fu; (d) we obtain an estimator for Fu by considering the remainder.

The model (3.1) has a similar structure as the well-known partial linear models, but in fact there is
one substantial difference: the function Fp is not supposed to be smooth, but instead it is decaying
for high frequencies because we work in the spectral domain. This is also why we shall regularize
the problem by cutting off frequencies |v| higher than a certain threshold level U, which depends
on the noise level and the smoothness assumptions in G.

We now give a detailed description of the different steps in the procedure.

(a) We approximate the function O by building O from the observations (O;) in the form
) N
O(w) = Bo(w) + Y _ Obi(x), w€R,
j=1
and consequently FO by
) N
FO(u) = Ffo(u) + > 0;Fb;(u), u€eR,
7j=1

where (b;) are some basis functions to be chosen and the function Gy is added to take care
of the jump in the derivative of O at zero: 3{(04) — 8{(0—) = —1. Taking into account the



decay properties of O, we interpolate the data by specifying

VeeR: by(z) €[0,1], Vjk=1,...,N: be(x;) =, lim bx(u)=0.

|u| o0

We stress here that step (a) should not be understood as a smoothing step, but rather as a
means to find a reasonable approximation of FO based on discrete data. As can be seen in
the theoretical analysis and the numerical simulations below, it suffices to use simple linear
B-splines as basis functions. Theoretically, we need that the results of Proposition 7.1 and
estimate (7.7) are satisfied.

(b) For s(v) € (0, 1), specified later in (4.1), we calculate

B(v) = %log;n(u) (1+i(1+i)FO(), vek, (3.2)

where the function logy, : C\ {0} — C is given by

o ) = log(z2), |2| > &
: g;n( ): {log(mz/|z|), |2] < & (3:3)

and log(e) is taken in such a way that 15(1)) is continuous with 15(0) = 0 (almost surely the
argument of the logarithm in (3.2) does not vanish). If we observe option prices for different
maturities Tk, we perform the steps (a) and (b) for each Ty separately and aggregate at this
point the different estimators for ¥ to obtain one estimator with less variance.

(c) With an estimate 1 of ¢ at hand, we obtain estimators for the parametric part (a2,v, A) by
an averaging procedure taking into account the polynomial structure in (3.1). Upon fixing
the spectral cut-off value U = U(G, (4;), (z;)), we set

U
6% = / Re (¢ (u))wY (u) du, (3.4)
-U
U ~
A= —5-2+/ Im(¢(u))w7U(u) du, (3.5)
-U
. &2 U -
A= 5 + ?/—/ Re(¢(u))wy (u) du, (3.6)
-U
where the weight functions wg , wWU and wY satisfy

U U U
U U
/ w?wY (u) du = 0, / wY (u) du = 1. (3.8)
U -U

For standard smoothness classes G asymptotically optimal choices of the cut-off value U and
the weight functions are given in (4.9) and (4.2)-(4.4). The estimate of the coefficients can
be understood as an orthogonal projection estimate with respect to an L2-scalar product
weighted according to the supposed decay property of Fpu.

(d) Finally, we define the estimate for p as the inverse Fourier transform of the remainder:
() = F1 W(.) L iR e i)+ x)1[_U,U](.)} (u), weER. (3.9)

Note that the computational complexity of this basic estimation procedure is very low. The only
time consuming steps are the three integrations in step (c) and the inverse Fourier transform



(inverse FFT) in step (d). In step (a) we just take a data-dependent linear combination of the
functions Fb; and the function F 3y, which with our choice as linear B-splines can be computed
explicitly:

TUT TUTE_1 eiumk+1 _ eiumk

B TUT 5 i L RUT 1.,
o (SIS S
kT TRt Tht1— Th Zjo — Ljo—1
~ ~ (3.10)
with & = 1,..., N, some extrapolated design points 2 and 2y 41, where we set O(0) = O(xn41) =

0, and with the index jo defined by z;,-1 < 0 < z;,.

3.2 A data-driven estimator for the jump density

Let us briefly describe the construction of a data-driven procedure which requires no prior smooth-
ness assumptions on p to adjust the tuning parameters. The idea is to filter out the parametric part
and to obtain a standard ’function in noise’-estimation problem in the spectral domain. Instead
of choosing one cut-off value U, we take a geometric grid Uy > Ug > --- > U of cut-off values and
aggregate the corresponding estimators adaptively.

For filtering quadratic polynomials we introduce the convolution operator
1 [ee]
Agf(z) = f(2) — o= [ f(W)Fg(z —y)dy (3.11)

— 00

with a sufficiently regular and nicely decaying function g : R — R satisfying
/ Fgly)dy =1, / Y Fgly)dy =0, k=1,2, thatis g(0) =1, ¢'(0) = ¢"”(0) = 0. (3.12)

The first two steps of the data-driven procedure are identical to the steps (a) and (b) of the basic
procedure. The subsequent steps are as follows:

(c) We apply the operator A4 to ¥ and obtain &g(v) = Agiz(v), which by (3.1) is a reasonable
estimate of Agih(v) = AgFu(v) = F(u(l — g))(v).

(d) We consider the family of basic estimators ﬂ_gj) given by
Rl (R T 1O/ R E N

() We construct the aggregated estimator fi; as a convex combination of (,&_gj))jzl,___,_] with
data-dependent weights. These weights are obtained by the following algorithm:

(i) Initialize ﬂ_gl) = ,&5(;1).
(i1) For j = 2, ..., J sequentially define
A = ;i) + (1 - a;)a§ Y,
where o = K (mU)/X) for some A > 0, a compactly supported kernel K and

RO 1 A i

| Var[#$ ]|z,

(iii) Put g, == a$’).

Although Var[ﬂ_gj)] is not known exactly, it can be easily estimated from above. The param-
eter A is taken in accordance with the suggestions given in Belomestny and Spokoiny (2004),
where the whole aggregation procedure is explained in detail.
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Figure 1: Kou model. Left: Sample (O;) and true function O (dashed line). Center: True p
(dashed) and estimated g (black) modified Lévy densities. Right: Box plot for the data-driven
and the basic procedure based on 1000 Monte-Carlo simulations.

(f) The final estimator for p(z) is defined as f(z) = fig(2)/(1—g(z)) for all 2 € R with g(z) # 1.

Example 1. A possible family of functions g satisfying (3.12) is given by go(x) = 1—(1—6_;’:2/0‘2)2,
r € R, a > 0, which gives rise to the convolution filter Fgo(u) = %e_"‘Z“Z/‘I — \/Lge_"‘zuz/s.
Observe that 1 — g, only vanishes at zero and that for smaller values of o the weight 1 — g4 s
closer to one outside the origin, but the filter Fg, does not decay so rapidly.

3.3 Numerical Example

Two empirical phenomena in financial data have attracted much attention recently: the leptokurtic
return distribution of assets with a higher peak and two (asymmetric) heavier tails than those of
the normal distribution, and the implied volatility smile. To incorporate these features, the double
exponential jump diffusion model was proposed by Kou (2002). In his model the Lévy triplet is
specified by the jump density

v(z) = /\(p/\+e_>‘+m1[0,oo)(x) +(1- p)A_eA—ml(_oo,o)(x)), r €R,

and the parameters o, A\, Ay, A_ > 0 and p € [0, 1], while v is uniquely determined by the martin-
gale condition. We simulate the Kou model with parameters ¢ = 0.1,A =5,A_ =4, ; = 8,p =
1/3 and apply the nonparametric estimation procedure given the observation of noisy European
option data with T'= 0.25, N = 50, r = 0.06 and &; = O(z;)/10.

In Figure 1 (left) the simulated observations (O;) and the true curve O are depicted as functions
of the log-forward moneyness. The estimated transformed Lévy density g in the center is obtained
using the basic procedure, as specified in the mathematical analysis, with a human-driven choice
of the cut-off parameter U. The parameters were estimated as & = 0.035, A= 7.56, ¥ = 0.556 (y =
0.423). We observe that the estimated transformed Lévy density recovers the main features of the
Kou model like the mode at zero and the skewness. From the functional form of the estimator we
can easily derive estimates for other important quantities, e.g. for the proportion of negative jumps
by calculating A1 ffoo v(z)de = At ffoo e ?i(z) dz, which in the simulation example evaluates
to 0.72 (true value: 1 —p =2/3).

In the right part of Figure 1 we compare the performance of the data-driven aggregated estimator
with the oracle estimator (i.e, choosing the best possible U) obtained from the basic procedure in
terms of the empirical L?-loss. A box plot is shown for 1000 Monte-Carlo replications. In this plot,
as provided by the statistical software package R, the box stretches from the 25% percentile to
the 75% percentile, crossed by the median, and the position of the remaining 50% of the values is
indicated. The fact that the data-driven estimator frequently even outperforms the oracle estimator



is to some part due to the hard cut-off at frequency U, which is smoothed out by aggregating the
basic estimators. As pointed out by Cavalier and Golubev (2004), standard data-driven estimation
procedures often perform badly for inverse problems such that the method of aggregation used here
can be considered as comparatively very stable.

4 Risk bounds for bounded jump densities

4.1 Mathematical results

We shall use throughout the notation A < B if A is bounded by a constant multiple of B,
independent of the parameters involved, that is, in the Landau notation A = O(B). Equally
A2 B means B < A and A ~ B stands for A < B and A > B simultaneously.

In order to assess the quality of the estimators, we quantify their risks under a Sobolev-type
smoothness condition of order s on the transformed jump density p.

Definition 4.1. For s € N and R, 0maz > 0 let Gs(R, 0mqz) denote the set of all Lévy triplets
T = (02,7, 1), satisfying the martingale condition and Assumption 1 with Cy < R, such that u is
s-times (weakly) differentiable and

o€ [Ovo-mam]v |7|7 A€ [07 R]v 01?32(5||M(k)||112(m) <R, ||IU‘(S)||L°°(IR§) <R

We have enforced |7 (v)| > log(k(v)) in (3.2) to prevent unboundedness in the case of large
stochastic errors. For Lévy triplets in G;(R, 0mqz) a reasonable choice for k(v) can be obtained

from the following calculation using the identity "2—2 + v+ Fu(0) = A derived from the martingale
condition (2.3):

Tlor(v—i)| = Lexp (—To;v2 — TFu(0) + TRe(}",u(v)))

2
> Lexp (—To-”;iv2 - 4TR) =: k(v). (4.1)

The only reason for the factor 1/2 is the mathematical tractability giving later the bound of Lemma
7.2.

Concerning the choice of the weight functions, we take advantage of the smoothness s of u by
taking functions w such that Fw has s vanishing moments. Equivalently expressed in the spectral
domain, the weight functions w(u) grow with frequencies |u| like |u|* to profit from the decay of
|F(u)|. Hence, we define for all U > 0 families of weight functions by rescaling those functions
satisfying restrictions (3.7) and (3.8) for U = 1:

wY (u) = U=3wk(U~u) with wl satisfying (3.7) and ||F(wk(u)/u®)||z: < oo, (4.2)
wg(u) = U_zwi(U_lu) with w; satisfying (3.7) and ||}"(w;(u)/us)||l,1 < o0, (4.3)
wY (u) = U~ w} (U~ u) with w} satisfying (3.8) and || F (w3 (v)/u®)||z: < oco. (4.4)

In these definitions it is understood that the support of the weight functions is contained in [-U, U].
Note that the property F(w(u)/u®) € L*(IR) means in particular that w(u)/u® is continuous and
bounded such that

wg ()] SUTCNul’, [ (W) SUTCDNul and - Jwf (u)] LU uf’, (4.5)

For the simulations we have used symmetric weight functions that are constant multiples of u?
except for three (at 0 and U for 7) respectively four (at £U’, £U with some U’ < U for o2, A)
smoothed out jumps to satisfy the restrictions (3.7), (3.8).



Since the underlying Lévy triplet is only identifiable if O(z) is known for all 2 € R, we consider
the asymptotics of a growing number of observations with
A= n;axN(mj —zj_1) =0 and A :=min(zy, —x1) = 0. (4.6)
J=2,...,
We use linear B-splines for the basis functions (bx) and the function Bg. To ease the mathematical

treatment of the extrapolation error, we assume that all data is contained in the interval (—4 —
A, A+ A) and add the artificial observations o = —A — A, x41 = A+ A with Og = Onx41 = 0.

The reason why we choose a piecewise linear approximation is that this yields rate-optimal in-
terpolation errors for O, knowing that O is twice differentiable except at finitely many points,
cf. Proposition 7.1 below. Of course, when assuming some positive regularity on g or by some
adaptive method, the numerical approximation rate with respect to A can be accelerated, but this
improvement is only valid for a very small discretisation distance A when the stochastic observa-
tion error is usually dominant anyway. In contrast to standard regression estimates we shall always
track explicitly the dependence on the level (dx) of the noise in the observations, which is usually
rather small for observed option prices.

The subsequent analysis can certainly be improved for a concrete design (z;) and concrete noise
levels (d,), but for revealing the main features it is more transparent and concise to state the results
in terms of the abstract noise level

e := A2 4 AY2)|§||jo0, (4.7)
comprising the level of the numerical interpolation error and of the stochastic error simultaneously.

Here and in the sequel we use the norms ||6]|; := supy, & and ||6]|2 := >, 62.

We are now in a position to state the main results about the risk upper bounds of the estimators
obtained by the basic procedure and about the risk lower bounds valid for any estimation procedure
whatsoever. The proofs are given in Sections 7 and 8 for the upper and lower bounds, respectively.
Theorem 4.2. Assume e~ < A? and A||(5||2"2 < ||6||2 . Choosing for some G > Omag the cut-off
Us := " (2log(e=1)/T)*/?, we obtain for the risk of 62 the uniform convergence rate

sup Er[|6? — 02|2]l/2 < 65+3(10g(s_1))_(5+3)/2. (4.8)
T=(027,4)€EG:(R,0maz)

The asymptotic risk in the estimation of the other unknown quantities shows a dichotomy. While
usually it is larger than the risk for 62, it is much smaller if we know that o = 0 holds, that is, for
the compound Poisson case.

Theorem 4.3. Assume ¢~ 4 < A? and A||(5||;"2 < I6]|2 . For any & > Omaqs we choose
U; = 6'_1(2 log(s_l)/T) 1/2, Up 1= e~ 2/(245) (4.9)
in the cases Opmae > 0 and omae = 0, respectively. Then the risk bounds for 4 and \ are
7 t2(log(e=1)) =422 5 € [0, 0pnaz] unknown,

. 271/2
sup Er{ly —~I7] / < {E(2s+4)/(2s+5)

T:(02777#)Eg5(R70’mam) 0 = Omaz — 0’

(4.10)
—s5+1 —1\\—(s+1)/2
. 211/2 ¥ (log(e 1)) , 0 €[0,0maz] unknown,
sup E7[[A=A)] / 5 { (254+2)/(2s+5) — -0
T=(02,7,1)€G:(R,0masz) € ) 9 = Imaz = V-
(4.11)

Theorem 4.4. Assume e~ 4 < A? and A||(5||;"2 < |6||2 . For some & > Omaqz we choose Us and
U as in (4.9) to obtain the following risk estimates for fi:

co 1/2 a4 (log(e1))~*/%, & € [0, 0maz] unknown,
sup Er / () —p(2)|? dz < /(2e
T=(02,7,1)€G:(R,0maz) |: — 00 i| e? /(2 +5), O = Omagz = 0.

(4.12)
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The two assumptions in each theorem are not very severe: because of the exponential decay of O
the width A of the design only needs to grow logarithmically and the error levels (dx) need only
be square summable after renormalisation. The latter condition can certainly be further relaxed
since this term is caused by a rough bound on the quadratic remainder term.

For the lower bounds we appeal to the equivalence between the regression and the Gaussian white
noise model, as established by Brown and Low (1996), and consider merely the idealized observation
model

dZ(z) = O(z)dx + edW(z), =z €R, (4.13)

with the noise level asymptotics € — 0, a two-sided Brownian motion W and with O = Oy
denoting the option price function from (2.6) for the given triplet 7. This simplification avoids
tedious numerical approximations in the proofs.

Theorem 4.5. Let s € N, R > 0 and 0maz > 0 be given. For the observation model (4.13) and
any quantity q € {2, v, \, u} the following asymptotic risk lower bounds hold:

inf sup Er[lld—qlP’I? 2 vgomen
9 T€G(Ryomas)

where ||o|| denotes the absolute value for ¢ € {o?,v, A} and the L%(R)-norm for q = u, the infimum
is always taken over all estimators, that is all measurable functions of the observation 7, and the
rate vq 5,... 15 given in the following table:

| | I R T Y
Omae > 0 log(s_l)_(s+3)/2 log(s_l)_(s‘l'z)/z log(s_l)_(s‘l'l)/z log(s_l)_s/z
Omae = 0 0 6(2s+4)/(2s+5) 6(2s+2)/(2s+5) 625/(2s+5)

4.2 Discussion

We have seen that for o > 0 the rate corresponds to a severely ill-posed problem (cf. Engl,
Hanke, and Neubauer (1996) and the references there), while for known o = 0 the rates are much
better, but still ill-posed compared to those obtained in classical nonparametric regression. The
reason for the severe ill-posedness for o > 0 is that we face an underlying deconvolution problem
with a Gaussian distribution: the law of the diffusion part of X7 is convolved with that of the
compound Poisson part to give the density of Xg. This type of estimation problem has been
studied thoroughly by Butucea and Matias (2005) in an idealized density estimation setup. Note
the general order in which the (asymptotic) quality of estimation decreases: o2, v, A and finally
, which is related to the domination property formulated in Ait-Sahalia and Jacod (2004). In the
upper bounds we have kept track of the dependence on o because for small values of o and finite
samples the performance is not so bad, compare the simulations in Section 3.3; it just needs a lot
more observations to improve on that.

At first sight the rates for the parametric estimation part in the case ¢ = 0 are astonishing.
They are worse than in usual semi-parametric problems which also indicates that misspecified
parametric models will give unreliable estimates for the volatility and jump intensity. These rates
are, however, easily understood when employing the language of distributions. With dg denoting
the Dirac distribution in zero and & its derivative we have

log(or (u)) = T}"(v(% +v— /\(50) (u).

Estimating the density of X7 and similarly its characteristic function from the noisy observations
of O amounts roughly to differentiate the observed function twice, cf. Ait-Sahalia and Duarte
(2003) and the remark after equation (7.6) below. This gives the minimax rate for v and p as that
of estimating the second derivative of a regression function of regularity s + 2. For the parameter
A it suffices to estimate the jump in the antiderivative of F~!(log(¢r)), which corresponds to
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a pointwise estimation problem in the first derivative of a regression function, while for v the
analogy is the estimation of the regression function itself at zero. This explains also why in the
class G, we have measured the regularity not only in L?, but also uniformly. In fact, if we only
assume an L2-Sobolev condition, then the same lower bound techniques will yield slower rates for
the parameters, as is typical for pointwise estimation problems. An interesting way to estimate
directly v and X is suggested by Proposition 2.1(d): a change point detection algorithm for jumps
in the derivative of O, as proposed by Goldenshluger, Tsybakov, and Zeevi (2004), can equip us
with an estimate of v and a subsequent estimate of the jump size yields an estimate of A, which
gives the same minimax rates.

As usual, the estimation procedure needs certain tuning parameters. The approximate size of Gz
and the noise level is in general known to the practitioner. The stabilisation of the logarithm by
the function x(v) was enforced mainly for theoretical reasons to prevent explosions due to large
deviations. The usually unknown order s of smoothness of the transformed jump density, however,
is needed to determine a good choice of the cut-off frequency U and also appears in the weights
wl, w%, wi. Yet, for the latter it suffices to use weight functions satisfying (4.2)-(4.4) for some
large Syq; like in standard nonparametrics where the order of the kernel must only be sufficiently
large. We are thus left with only one tuning parameter U, which is the same for all four estimation
problems. The data-driven procedure presented in Section 3.2 is one way to cope with this problem
for the jump density. Note, however, that a proper mathematical analysis for the general problem
seems challenging due to the underlying nonlinear ‘change point detection’-structure, for which a
data-driven algorithm even in the idealized linear setting of Goldenshluger, Tsybakov, and Zeevi
(2004) is not yet available. Finally, observe that the estimation of the jump density at zero is only
possible by imposing a certain regularity there, otherwise it is clearly not possible to detect jumps
of height zero.

5 Estimation for unbounded jump densities

Let us now discuss the case that v is a jump density with a singularity at zero. For simplicity we
restrict the presentation to the case o = 0, which is also in agreement with the empirical parametric
findings by Carr, Geman, Madan, and Yor (2002). We then deduce as before for p(z) = e*v(x)
using (2.3), (2.7) and the definition (3.1) of ¢ in terms of O

o0

(o) = ivw + /

(™" — Dp(z)dz = iyv + / Flizp(z))(w) dw.
oo 0
Under Assumption 1 zu(z) € L*(R) holds. By taking derivatives we find

(i — 20)FO(v) — (v — iv?) F(zO(z))(v)
T(1 4+ (iv — v2)FO(v))

¥ (v) = = iy + Flizu(z)) (v).

We first consider the problem of estimating u in some weighted L2-loss with a weight function
vanishing in zero. More precisely, we aim at estimating pg(z) = p(z)(1 — g(z)) in L?(R)-loss for
some differentiable nicely decaying function g : R — [0, 1] with g(0) = 1. We obtain uy € L*(R)
and

Fpg(v) = g F (izp(@)) = F((1 - g(2)) /) (-v)

=20/ (0) + 5 (L2 2L BN (51— g(a)f)) (o) (5)

27i
The convolution kernel F((1 — g(x))/#) decays rapidly for smooth functions g such that for a
good approximation of Fpug(v) it suffices to know the functions FO and F(zO(z)) in a close
neighbourhood of —w.

12



Consequently, we can estimate Fpug(v) for v € [—U, U] by substituting the empirical counterpart
O of O into formula (5.1) and using some g with g’(0) = 0. The noise level for frequencies v in
the empirical counterpart of (5.1) will be of order v? in the finite intensity case A = |¥||22(r) < o0
exactly as in the previous analysis for o = 0. For A = oo the characteristic function tends to zero
and the estimation error will deteriorate significantly, see the discussion below.

When drawing inference on the behaviour of p near zero, we have to specify the kind of singularity
and smoothness we expect there. Let us therefore postulate that

T .
u(z) = “";('a) with @ € (0,2) and |Fpua(u)] < (1+ [u)"C+D s eN. (5.2)
To avoid additional considerations we assume that « # 1. Note that this model includes for
example tempered stable processes with regularity index s = 1, when their transformed jump
density is given by

e(1+>\_)m 6(1—A+)m
plz) =e®v(z) = C(

Wl(_OO’())(Q?) + Wl(o’m)(x)), C,A_ >0, /\_|_ > 1, z € R,

cf. Chapter 4 in Cont and Tankov (2004a) which also gives further examples. Under the model
(5.2) an interesting information on the behaviour of p near zero is given by the value pq(0),
for which we now want to derive an estimation procedure. Because of zu(z) = z'=%us(z) (we
understand always z? := |z|fsgn(z)) we can draw inference on F(2z'~%*us(z)), but this Fourier
transform decays slowly due to its non-differentiable argument and will not yield a well performing
estimator. Consequently, we have to use more refined fractional differentiation results for the
precise structure of this Fourier transform. The following result is derived in the Appendix.

Proposition 5.1. The following asymptotic estimate holds for |u| — oo:

s—1

Flio'~ha(o)) )~ 20(2 — apsinfan/2) S (7 %) @)t ue=14] < fufe i,
k=0

where I' denotes the Fuler Gamma function.

Hence, we can expand %’ in a non-integer power series:

Y (u) = iy + 2T(2 — ) sin(am/2) z_: (a ; 2) u&k)(o)iku"‘_z_k + R(u)

with the remainder satisfying |R(u)| < |u|*~™L2-2) Exactly as in the expansion (3.1), this

permits to estimate pq(0) based on an estimator ¥ by fa(0) := fYU &'(u)wf{a (u) du with a weight
7

function w
e

satisfying

U 1 U
/_U u"‘_"’wf{a(u) du = 2I'(2 — ) sin(aﬂ'/Q); /_U upwga(u) du=Oforp=0ip=a=2-k
with £ € {1,...,s — 1}. For this estimator a similar analysis as in the case of bounded jump
densities can be performed. The main digression is that for e > 1, the infinite intensity case, the
characteristic function is not bounded away from zero anymore and the risk will be essentially
determined by the growth of |7 (u — i)|~! with |u| — oo, which is usually exponential (e'“'cl_1 in
the tempered stable case) and thus yields again a severely ill-posed problem.

6 Conclusion

We have developed an estimation procedure for the nonparametric calibration of exponential Lévy
models which is mathematically very satisfying because of its minimax properties and which yields
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a straight-forward algorithm for the implementation. The corresponding lower bound results show
that the calibration is in general a hard problem to solve, at least if very high accuracy is desired.
Nevertheless the estimation procedure is well suited to gain general insight into the size of the
parameters and the structure of the jump density. Even if reasonable parametric models exist that
can be better fitted, a goodness-of-fit test based on our nonparametric approach should always be
used to check against misspecification.

As already seen in the case of unbounded jump densities, our procedure can be adapted to dif-
ferent models as long as the inverse transformation from the option prices to the characteristic
function can be calculated and the unknown quantities can be determined from the structure of
the characteristic function. As empirical option data suggests, the risk neutral price process is not
homogeneous in time and the exponential Lévy model should be extended in that direction. A suit-
able model class is for instance given by the affine models of Duflie, Filipovic, and Schachermayer
(2003). We believe that the question of calibration for models in financial mathematics should be
addressed with the same rigour and intensity as other primary questions like pricing, hedging and
risk management.

7 Proof of the upper bounds

All calculations take place in the setting of Section 4. As general reference for Fourier techniques
like the Plancherel identity and norm estimates we recommend Rudin (1991). To facilitate the
calculations we introduce the exponentially increasing function

1
E(x) = > > 0, and set £(0) := 1. (7.1)

Using linear B-splines (cf. Section 3.1) we encounter the following linear interpolation of O

Oy(w) :=F[O(z)] = Y O(;)b; () + Bo(w), = €R. (7.2)

7j=1

7.1 A numerical approximation result

Proposition 7.1. Under the hypothesis e~ < A? we obtain uniformly over all Lévy triplets
satisfying Assumption 1

sup |E[]:(7)(u) — FO(u)]| = sup | FO (u) — FO(u)| < A2 (7.3)
uER uER

Proof. By standard Fourier estimates the assertion follows once we have proved ||O; — O|p2 < A%,

Note that O — 3y is twice differentiable except at the points z;,-1,0,z;, and possibly v71' by
Proposition 2.1(d). While the discontinuities of (O, — 3)’ at the knot points do not do any harm,
O — (o has a derivative near zero which is uniformly bounded by a constant Cy according to (9.1).

Starting with the case o > 0, that is without a jump at v7', we obtain using the mean value
theorem with suitable §; € (z,;_1, z;):

:Z/%j ‘(O_/@O)(xj)m'i'(O_/@O)(xj—l)%-l-,@o(x)—(’)(x) de

Tj — Tj-1 jTTi-1
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N+1

- ; /a:il ‘/:_1((0 — o) (&) — (O = Bo)'(y)) dy| dz
S / / / |07(2)| dz dy da + 2CoA?

F€{2 s N1\ {do}
<Oz A% 4+ 2Co A%,

By Assumption 1 and Proposition 2.1(b,c) the extrapolation error is bounded by
/ IE[O(z) — O(x)]] dz < 4C;Ae™(A4),
[zo,z1]U[z N,z N +1]
An application of Proposition 2.1(d) therefore shows for o > 0

/ |E[O(z) — O(2)]] dz < e™* + 3A% 4 2CoA7 + 4CoAe~(A7A) < A2

— 00

In the case 0 = 0 we consider the index j, with z;, _1 < ¥T < z;, and face an additional error
estimated by

/m:‘* |E[@(x)—0(r)]ldr</ (0 = oY || |28 = Zae =)

Ty, — Tj.-1
< IO = Bo)' ||z (25, — z4,-1)*

With a look at (9.1) we infer that this error term is also of order A? and thus does not enlarge the
convergence rate. O

Tiw Ti, —
*

?) dz

7.2 Proof of Theorem 4.2

The asserted rate (4.8) follows once the general risk estimate

E[j6? — o] S U3 L g(To?Ut) U™ Ye? + E(Tol,,,U) U (7.4)

maz

has been shown for U < A~ uniformly over Gs(R, 0maz), since the explicit choice of U renders
the second and third term asymptotically negligible.

Consider in the definition (3.2) of 15 separately the linearisation £, neglecting the stabilisation by
%, and the remainder term R:

L(u):

“ror(u— i) u — )uF(O — O)(u), (7.5)
R(u) : —

T
() = v(u) — L(u). (7.6)

When neglecting the remainder term, we may view &(u) as observation of ¥(u) in additive noise,
whose intensity grows like |op (u— )| 7] (u — i)u| ~ u2e7°° " for |u| — oo. This heteroskedasticity
reflects the degree of ill-posedness of the estimation problem.

Lemma 7.2. For all u € R the remainder term satisfies

[R(u)] < T~ (u) 72 (u* +u?)| F(O — O) (u) .

Proof. Let us set or(u—1) :=1—u(u— Z)T@(u) which equals eTP() if |7 (u—4)| > k(u). Using

|eT1/:(“)| > k(u), u € R, we obtain by a second-order expansion of the logarithm

T (u) — log(er (u — i) — pr(u— i) " ™™ — op(u— i) < Tr(u) 2™ — op(u — i)
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This gives the result whenever |or(u — 4)| > &(u). For the other values u we use |or(u — )| <
k() < |er(u—1i)|/2 to infer

[ (u— )7} — @p(u — i) < Fa(w) ) — G (u— )| (187 (u — i) — or(u—i)|n() )
< 56(u) 2 or (v — i) — pr(u— )
= Li(u)"2(u* + u?)|F(O - O) (w2,

Together with the previous result this gives for all 4 € R the assertion of the lemma. O

We shall frequently use the following norm bounds for the B-splines (bg), which follow from
||bk||oo =1 and |#r41 — ze—1] < 2A:

1 Fbellze = v2rlbellze < (4mA)Y2, | Fbelloo < [ballze < 2, (7.7)

We decompose 62 in terms of £ and R from (7.5) and (7.6):

7t = [ (-0 = 1)+ Re(Fuu)) = A+ Rel£(u) + R(w)) v 1) du

=o? + /_U Re(}",u(u) + L(u) + ’R(u))waU(u) du, (7.8)

which yields

E[6? — 02 3‘/ Fulu du‘ +3E ‘/ du‘z]—i—?)E ‘/ R(u (u)du‘z}.

Let us consider the three terms in the sum separately. The nuisance of Fu causes a deterministic
error which can be bounded using (iu)® Fu(u) = Ful®)(u) and the Plancherel isometry:

o I loo 17 (w3 (w) /0*) 12
\ [/s+3 :

" Futuu? () du| = 22| [ ) F I ) ) )
(7.9)

The linear error term can be split into a bias and a variance part (Var[Z] := E[|Z — E[Z]|?]):

‘/ duﬁ - ‘/j] or(u— i)~ u — JuE[F(O — 0)(w)]uw? (u) du‘z
+ Var {/_[; or(u—1)"(u— i) uFO(u)wY (u) du}
= L§+£U.

s

The bias term is easily bounded by Proposition 7.1, using the uniform bound on U*T3wY (u)/u’:
U
Lo < [[F (O - O)Hoo/Uls@T(U =) 7wt + u?) g (u)| du
U 2
Nl I
~ U

2
u?_y

Making use of fOU 2ue’ du = ¢ = E(cUH)U? for any ¢ > 0, we estimate the last integral by

U 2
/ T T 2Tl pr |y 542 gy 2T NMIILe U5+35(T<T2_ZU2)
U
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and derive from ||p||r: = Fp(0) < 2R for the bias part in the linear term
2
1] < A2E(TSU?). (7.10)
For the variance part of the linear error term we use the support properties supp(w?y) € [~U, U]

and supp(bg) = [#r_1, Zx+1]. Several applications of the Plancherel identity, the Cauchy Schwarz
inequality and estimate (7.7) then yield

to= [ ] Covlentu=i)HumurOiu)erlo— i) (0 = uFO ) uf (o (1) dudo

= ﬁ:ég‘/_[; or(u — )" u — HuFbg (v)wl (u) du‘

N 00 2
= 271'2 (5,3‘/ F1 (goT(u — i) Hu - l)quU(u)) (2)bg(—2) dx‘
k=1 -
N
2 Ert -1 N—1 . U 2 2
<yt [ (entu ) - uel () (<o) do e
k=1 Th—1
oo 2
<Al [ (entu— i - unt ) (o) o
_U
~ A3 [ Jonlu— 120 + ) (w)? du
-U
S AUTE(To?U?)||6]|fs -
Altogether we obtain for the linear error term
2
‘/ du‘ | s eorv?) (At +UtaA)s)R). (7.11)

It remains to estimate the quadratic remainder term. We use Lemma 7.2, Proposition 7.1, the
independence of (e ), the finiteness of their fourth order moments and estimates (4.5), (7.7):

‘/ R(u du‘ }
< /_U/_UEH}"(@—O)(u)T(@—(’))(v)

/ / AS-I-E Z O drerer Fby (u) Fby(v) D u%z;%iz;ﬁzi;%(v) dudv
/ / AS—I— Z 807 | Fbi () |*| Fr (v) | )“412%151;322")%(”) du
(o[ [ Emoraiay

S, (A8U4 + A4(]4”6”[2)5( mamUz)
This gives the result that the total risk of 62 is of order
U?)>2.

maa:

E[j6? — 0?2 < U~2+3) 4 (A4 n U‘1A||6||fw)€(TozU2) n (A8U4 n A4U4||6||f2)8(
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Because of U < A1 and A||(5||;"2 < ||(5||ﬁx, the bound simplifies to (7.4).

7.3 Proof of Theorem 4.3

The rates (4.10) and (4.11) follow from the rate-optimal choice (4.9) of U and the G;(R, 0maz)-
uniform risk estimates

B3 — 7% S U4 4 g(To?U)UE? + €(To?,, U2 USE, (7.12)
E[A = X2 S U726 4 g(To?UU3E? + £(Ta?,,, U2 UBEY, (7.13)
when inserting o = 0 in the case opmge = 0.

Since the claimed risk bound for 4 is larger than for 62, we only need to estimate the risk of ¥ + "2—2

instead of that for 4. Equally, we can restrict to A — "2—2 — # instead of A. Then the proof follows
exactly the lines of the proof for 62, the only difference being the different norming in estimate
(4.5) giving rise to a factor U for v and a factor U2 for A. It remains to note that we obtain the
bounds in the compound Poisson case by setting ¢ = opmqee; = 0 and considering the continuous
extension of the bounds for that case: For 4 we obtain as bias

U
‘ / Fu(u)w? (u) du‘ < U=+, (7.14)
-U
The linear error term is estimated by
U 21 [e(ro?u?) (U2at + U5 0, Cmag] unk
2([ ctwudyan)’] g 7N ST TR ) o €D o unknomn, g 5
-U U2A* + UA|§]|2%, 0 = Omaz = 0.
and the remainder satisfies

‘/ Rue? (0 d ‘ < (ABUS + AYUS||§]2€(T02,0,U%)?, o € [0, 0maa] unknown,
u
ABUS 1 AYTS||6][2, o = Opmas = 0.
(7.16)

Altogether we obtain the risk estimate (7.12).

For A we obtain the same asymptotic error bounds as for 4, but multiplied by U when regarding
the root mean square error. This gives (7.13) and (4.11).

7.4 Proof of Theorem 4.4

The assertion follows as soon as the following G, (R, 0 )-uniform risk bound for general U holds:

E {/ i(z) — u(z )|2dx} < U2 4 &(To2U)USE? + £(2T02,, UUEL, (7.17)
The bias in estimating g due to the cutoff at U can be estimated by
J L T e B T O L PR e [P (AT

The variance term can be split up according to the different risk contributions. For u € [-U, U]
we obtain

E[|F(f — ) (u) P] < 4El¢(w) — (u))]*] + 4(u® + 1) E[|6? — o7|]

+4(u? + 1) E[[5 — 7] + 4E[A - AP
S EIL(w) 1] + E[IR (u) P] + U* E[|6® — o®P] + U E[l§ — 7[*] + E[|]A - A?]
SENL(w) ]+ E[IR (u) 7] + U206+ 4 (ToU)UE? + €(To7,,,U%) U™,
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In analogy to the previous estimates when proving Theorem 4.2, we find
EII£(w) ] < o (u— i) [ 72 (u* + u?) (|IF(0 — O0)|[% + VarFO(u)]) < 7 u? (A% + AZ||g][2).
With a look at Lemma 7.2 we estimate the remainder by
E[[R(u)P] € 16r(u)~*(u* + u?)? E[|F(O; — O)(u)|* + |7 (O — O1) (u)[]
T mes’y® (A® 1 A|6][1).

/

A

The Plancherel identity and these estimates yield together (7.17) via

/ El|p(z) — p(z)?]de SUT? + E(To?U?)U? + €(2T02,,,U%)U%*

+ E(TT*UAHU*E? + £(To?,,  U*)?U%*
~ U™ 4 £(c?U U + £(2T 02, ,, U U

maz

8 Proof of the lower bounds

We follow the usual Bayes prior technique, see e.g. Korostelev and Tsybakov (1993), and perturb a
fixed Lévy triplet To = (0,70, ¥o) in the interior of G;(R, 0maz) such that the perturbations remain
in gs (Ra Umaz:)-

8.1 Lower bound for y in the case 0 =0

Fix a positive integer j. Let %) € C*®(R) be some function with support in [0,1] satisfying
||¢(j)||Lz =1, fib(j)(x)e_z_Jm dz =0 and f|}"¢(j)(u)u_2|2du < oo. Certainly, there are infinitely
many functions 1Y) fulfilling these requirements; the last property follows for instance if ¢ is the
second derivative of an L?-function. Introduce the wavelet-like notation

big(z) = 21290 ( P — k), j20,k=0,...,2 — 1.

Consider for any r = (rx) € {—1,+1}?" and some 8 > 0 the perturbed Lévy triplets 7, = (0, ¥o, ftr)
with
2.7
pr (2) = po() + B2V N "regpp (), @ €R.
k=1
We note that due to Fp,5(0) = 0 and [ e ®¢,x(z) dz = 0 the triplet 7, satisfies the martingale
condition such that 7, € G;(R, 0) holds for a sufficiently small choice of the constant 8 > 0.

The Gaussian likelihood ratio of the observations under the probabilities corresponding to 7, and
7, under the law of 7, for some r, 7’ with 75 = 7} for all k£ except one ko is given by

Ar) = exp( [ (Ou = 0@ aw(e) 5 [ 100 - 0.)(@) P da).

Hence, the Kullback-Leibler divergence (relative entropy) between the two observation models
equals

1 [ee]
KL(To|T,) = 5/ (O — O,)(z)[22 da.

o0

The standard Assouad Lemma (Korostelev and Tsybakov 1993, Thm. 2.6.4) now yields the lower
bound for the risk of any estimator g of u

inf sup Er {/m(x) - ,u(m)|2dx} > 27| gt — prr||3s ~ 2~
£ T=(0,7,4)€G:(R,0)
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provided the Kullback-Leibler divergence K L(7,/|T,) stays uniformly bounded by a small constant.
It remains to determine a minimal rate for 2/ — oo such that this holds when the noise level tends
to zero.

Arguing in the spectral domain and using the general estimate |e* — 1| £ 2]|z|, for |z] < § and some
small § > 0, together with ||@7 /@71 r|lcc — 1 for 27 — oo, we obtain for all sufficiently large j

KUTolT) = 1z [ 17(00 - 0)(u) P da

2
4me 0o

o [ et =enate=f,
— 00

u(u — i)

< [ fome(u= ) PTF (e — o) (P +07) " du

o0

e [y )Pt du
= g~ 2973(245) /Oo |Fp0) (0) 20~ du.

Hence, for 27(25+5) ~ ¢2 with a sufficiently large constant the Kullback-Leibler divergence remains
bounded and the asymptotic lower bound for u follows.

8.2 Lower bound for v and X in the case 0 =0

Let us start with the lower bound for v. We proceed as before by perturbing a triplet 7o = (0, vo, o)
from the interior of G;(R,0), but this time we only consider one alternative 73 = (0,1, p1) and
choose the perturbation in such a way that the characteristic function ¢7(u — i) does not change
for small values of |u|. For any § > 0 and U > 0 put

1= 0 +8, Fur(u) = Fpo(u) — di(u—i)e ™V, ueR.
Then the function p is real-valued. Moreover, the martingale condition (2.3) is satisfied:

Y1+ Fur(0) — Fui(é) =v0 + 6 + Fuo(0) — 6 — Fuo(i) + 0= 0.
Because of

) = 1 oo < 2 [l s = o)) du S8 [ Jule e du e

and even better bounds for ||,u(1k) - ,u(()k)HLz, kE=0,...,s, it suffices to choose U ~ §~1/(5+2) gmall
enough to ensure that 77 still lies in our nonparametric class G;(R,0). The basic lower bound
result (Korostelev and Tsybakov 1993, Prop. 2.2.2) then yields

inf sup By ufly 1% 2 6%
v (07'7uu‘)eg5(R70)

provided the Kullback-Leibler divergence between 77 and 7o remains asymptotically bounded. As
in the lower bound proof for y we obtain asymptotically

K L(71[70)
< 45_2/_ |0,z (u — i) *T?|i(y1 = y0) (u — 4) + F (1 — po) (u) — F(p1 — o) (3) | (u* + u*) ™" du

< 5—252/ li(w—i)(1 — e * /") 2 (ut + u®) "' du
= 6_2(52/ (1-— e_”2)2U_2v_2Udv

5 6—262U—1 ~ 6—26(2s+5)/(s+2)‘

20



The latter remains small for § ~ &(25t4)/(25+5) with a small constant, which gives the asymptotic
lower bound for ~.

For the lower bound of A we perturb the triplet 7 leaving 7o and o9 = 0 fixed and putting
Fua(u) := Fuo(u) + e~ ulu=/U?,

Then g1 is real-valued, Ay — Ag = F(p1 — po)(i) = d and the triplet 71 = (0, vo, pt1) satisfies the
martingale condition. For U ~ §~/(5+1) with a sufficiently small constant the perturbation p lies
in G;(R,0) due to

1687 = 15100 < 5/ ulfe= "1V du ~ SUF

and even better bounds for ||,u(1k) - ,u(()k)HLz, k = 0,...,s5. The Kullback-Leibler divergence is
asymptotically bounded by

KL(T1|To) < 477 /Oo |07 (u — i) |7 T2 F (1 — o) (u) — F(p1 — po) ()]* (u* + u*) ™ du

— 00

< 5_262/ 11— e—u(u—i)/U2|2(u4 + uz)—l du

o0

26—262/ |1_6_U2+iu/U|2(U4U4_|_U2U2)—1Udv

5 6—262U—3 ~ 6—26(2s+5)/(s+1)

and we obtain the asymptotic lower bound for A.

8.3 Lower bound for y in the case ¢ > 0

The interesting deviation from standard proofs of lower bounds (see e.g. Butucea and Matias
(2005)) for severely ill-posed problems is that we face the restriction that Fp is analytic in a
strip parallel to the real line and is uniquely identifiable from its values on any open set. So, let
To = (02,70, fto) With oo > 0 be a Lévy triplet from the interior of Gs(R, Omaz). Consider the
perturbation 71 = (02,0, 1) with

Fpi(u) := Fuo(u) + 6m1/4e_(T"§“2/m)m/2(Tog/m)mum(u —9™, ueR.
for m € N, § > 0. Then we have uniformly for m — oo and § — 0

2742

i = ol = 2P~ ol = T [ 7Rt o 6
0 0

Similarly, for k = 1,..., s we derive uniformly in m and ¢

1687 = 1§ Nlzs = V2rlju F(u1 — o) (u)l|za ~ m*72,

118 = 1 loo < 0 F iz = po) (w)|z2 < Sm® /2712,
Therefore choosing § ~ m~/2 with a small constant yields 71 € Gs(R, 0maz) because we then also
have that pq is real-valued and 77 satisfies the martingale condition and Assumption 1.

By the same arguments as before and by Stirling’s formula to estimate the Gamma function, the
Kullback-Leibler divergence between the observations under 7o and under 77 is asymptotically
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bounded by

o0

KLTIT) <4572 [ o (u= P11 (s — o) (0) P(u? + 02) du

o0

2,2 2,2 m . _

5 6—262/ e~ Togu m1/2e—(TUDu /m) (To_g/m)2mu2m—2|u_ l|2m 2du
— 00

[ee]
_ s_zézm_”z(Togm)_l/z/ e—mul/me—uv(2m—1)/2m(1 +m—1v—1/m)m—1 dw
0
[ee]
<7252yt =™ 4y

0
oo

— 6—262m—4 e—zzm—lml—m dz
0
— 6—262m—m—3r(m) 5 6—262m—m—3(m_ 1)m—1/261—m ~ e 235 ™

Consequently, the Kullback-Leibler divergence remains small when choosing m > 2log(e~1), but
m < log(e™1), which gives § ~ log(e=1)=*/2. From the basic general lower bound result we
therefore obtain the asymptotic lower bound for p.

8.4 Lower bound for o2, v and ) in the case o > 0

Let us start with the lower bound for v. We proceed as in the case o = 0 by perturbing the triplet
To = (00, Y0, o) With og > 0 in such a way that the characteristic function ¢z (v — 7) does not
change much for small values of |u|. For any ¢ put

Y1:=7v%+6, Fui(u):= Fpo(u) — di(u — i)e_um/Um.

Then g1 is real-valued and the martingale condition (2.3) is satisfied. Because of
18 = 1l < [0l 1702 = o) @] du 3 [ fufs e qu e g

and smaller bounds for ||,u(1k) - ,u(()k)HLz, E=0,...,s, we choose U ~ §~1/(5+2) gmall enough to

ensure that the perturbed triplet 7y still lies in Gs(R, 0mae). In the same manner as before and
using |1 — e~ %] < ||, > 0, as well as Stirling’s formula, we obtain

KL(Ti|To) < 4e™2 / 9o,z (1 — ) [PT2i(m — 0 (s — i)+

— 00

+ F(pr — po) (w) — F(p1 — po) ()| (u* +u*) " du

5 6—262/ e—Ta§u2|l-(u _ l)(l _ e—uE’"/(2U2"”))|2(u4 + u2)—1 du

5 6—262/ e—TU§u2u4mU—4mu—2 du
~ e 352U (2m — %)
~ 6—262+4m/(s+2)(2m)2m6—2m

To keep the Kullback-Leibler divergence small, we choose

6(2s+4m+4)/(s+2) ~ 62 (zm)—2me2m

and thus obtain uniformly over m the bound
(s+2)/(25s+4m+4)
inf sup Er[l4 — 7|2]1/2 > (62(2m)_2m62m) ‘
T T=(02,7,4)EG:(R,0maz)
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The maximizer of this expression m* ~ log(e~!) then yields the asymptotic lower bound for +.
For A we perturb the triplet 7o leaving oo and = fixed and putting for an even integer m
Fpi(u) := Fuo(u) + e~ =) (U™

Then Ay —Ag = F(pp1— o) () = & and the triplet 71 = (00, Yo, p41) satisfies the martingale condition.
For U ~ §~(s+1) with a sufficiently small constant the perturbation pi lies in G5 (R, 0maz). As
before we prove that the Kullback-Leibler divergence remains bounded whenever

§(2s+am+2)/(s+1) e2(2m)~2mH1e2m
Choosing m* ~ log(¢~1) as before gives the asymptotic lower bound for .
For 02 we perturb the triplet 7o leaving v invariant and putting
0% =08+ 28, Fui(u):= Fuo(u) +(u — i)ze_“m/Um.

Then the martingale condition (2.3) is satisfied and for U ~ §—1/(s+3) sufficiently small we remain
in G; (R, 0maz)- It is again routine to prove that the Kullback-Leibler divergence remains bounded

whenever
6(2s+4m+6)/(s+3) ~ 62 (2m)—2m—162m‘

Choosing m* as before gives the asymptotic lower bound for o2.

9 Appendix

9.1 Proof of Proposition 2.1

(a) This follows from the put-call parity (2.4).

(b) O(z) > 0 follows directly from (2.6) while O(z) < E[eX7] — (1 — ¢®)* = 1 A ¢® follows from
(a) and the martingale condition.

(c) We conclude by Holder’s and Markov’s inequality for « > 0

Cy\(a—1)/a
O(z) E[€XT1{XT>1:}] L CYep(X, > g)a D/ ¢ ol/= (_)

eam

— Cae(l—a)a:‘

(d) Let us denote by fr the density of the absolutely continuous part of the distribution of X7.
The only atom in the distribution of X7 can occur at v7T', namely in the compound Poisson
case when no jump until 7 has taken place. For z # 0 we have

!
O/(x) = (E[(eXT — em)l{X’I‘Zm}]) 4+ 6ml{m<0} =ée® ( — ]P(XT P~ m) + 1{m<0}) . (9.1)
This yields O'(0+) — O’(0—) = —1 and in the case ¢ = 0, A < oo, v # 0 also
O'(yT+) — O'(vT=) = T P(Xp = AT) = 7~ NT,
At all points z # 0 where the law of X7 has no atom we obtain
!
0" (z) = —(em P(Xt > m)) +e®1igco) = €° (]P’(XT <)+ fr(z) — 1{m>0}).

Consequently, by partial integration and using E[eX7] = 1 we arrive at

/ |0 (z)|dz = O'(0-) + / e’
R\{0,7T} 0

<E(r <00+ [ e (1= B(Xr < ) do+ B [Lpers0 7]
0

P(Xp < z) — 1+fT($)‘dx

=2P(X7 < 0) — 1+ 2E [L{x,301¢*7]
<14 2E[e*7] =3.
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(e) By definition we have

FO(v) = 5—1(/

— 00

0 [ee]
= / eVt [1{XT<E}((3“: — eXT)] dx + / e [1{XT>E}(6XT — em)] dz.
0

— 00

0 oo
ei”’PT(m) dr + / ei”CT(x) dx)
0

By partial integration we obtain

1 1
P(Xr £0) —
1+ v (Xr <0)

(1+iU)XT:|’

0
/ elivtl)z P(Xr £ z)de = E [1{XT<0}6

0
) 1 )
/ Ve R [1{XT$E}6XT] de = E E [1{XT$0}6XT] _ E F [1{XT<0}6(1+’LU)X’I‘:|

— 00

and consequently

0
. 1 1 .
we z X 1+4+49)X.
/_006 E[1{xrga}(e® — )] dz = 1+w P(Xr <0) - 1+iUE[1{XT<0}€( ]

1 U
_ EE [1{XT<0}6 ] + EE [1{XT<0}6(1+ )XT].

In the same way we derive

® 1 .
/ e“’mE[l{X’I‘>m}(€XT _em)] dx = _EE[]'{XT>0}6 ] + EE[]-{XT>O}6(1+W)XT]
0

1 1 v
+ T]P’(XT >0) — TE [1(xp 0yt XT],

Taking into account E[eX7] = 1, we obtain formula (2.7).

9.2 Proof of Proposition 5.1

We only sketch the main steps in the proof, the reasoning being similar to that for fractional
derivatives, cf. Samko, Kilbas, and Marichev (1993). The following formula is easily established
and closely related to equation (5.8) in Samko, Kilbas, and Marichev (1993):

F(N’a(x)xl—a)(u) _ F(Z - a) Sin(aﬂ-/z) Am L

T4
Let us only consider the case u > 0 and set

2(}",ua(u—|— z) — Fpa(u— z)) dz.

Gu(z) '_#\/m(x—f)s_lf (u+€)dé + 271 Z (k) U+$)5 k-1
=T, & (oon=ul(#) 2 17 (O)
Then we have in a distributional sense
s—1 . (k)
s (=)0 (=)
Gi(tk)(O) =0, k=0,...,5s—1; Gi(t )(x) = Fpalu+z)+ QWZ;L&’“’)(O)T.
k=0

Hence, by s-fold partial integration we obtain

00 a—2 _ _ (k) a—2 a—-2—k
/0 z (}",ua(u—l—z) Fio(u z))dz 27rz,u (k )u

k=0

= /Oo 272G (2) - G (=) ) da = (H(k +1-a)) /Oo Gu(2) _Zf:_):G“(_Z) dz.

0 k=1 0

It therefore suffices to show that the last integral is of order |u|=*~™iM1:2-2) \which is accom-
plished by splitting the integration interval into the parts [0, 1], [1, 4] and [u, o0) and making use
of |Fpa(u)| < (14 |ul)7*~! and of the properties of G, established above. We omit the details.
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