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AbstratBased on options data at the market the problem of alibrating an exponential L�evy modelfor the underlying asset is investigated. It is shown that this statistial inverse problem is ingeneral severely ill-posed and exat minimax rates of onvergene are derived. The estimationproedure we propose is based on the expliit inversion of the option prie formula in thespetral domain and a ut-o� sheme for high frequenies as regularisation. Its performaneis illustrated by numerial simulations.1 IntrodutionAlready shortly after the introdution of the Blak-Sholes model Merton (1976) argued thatbased on empirial evidene share prie models should inorporate a jump omponent. Nowadays,standard problems of mathematial �nane like derivative priing have been suessfully solvedfor many general L�evy models, as has beome manifest in the monograph by Cont and Tankov(2004a). On the other hand, the investigation of alibration methods for L�evy models has mainlyfoused on ertain parametrisations of the underlying L�evy proess. Sine the harateristi tripletof a L�evy proess is a priori an in�nite-dimensional objet, this approah is always exposed to theproblem of misspei�ation, in partiular when there is no inherent eonomi foundation of theparameters and they are only used to generate di�erent shapes of possible jump distributions.The goal of this paper is to investigate mathematially the problem of nonparametri inferene forthe L�evy triplet when the asset prie (St) follows an exponential L�evy modelSt = Sert+Xt with a L�evy proess Xt for t > 0: (1.1)We suppose that at time t = 0 we dispose of pries for vanilla European all and put options onthis asset with di�erent strike pries and possibly di�erent maturities. By basing our estimationon option data we draw inferene on the underlying risk neutral prie proess, whih in generalannot be determined from historial prie data due to the inompleteness of the L�evy market.The observed option pries will be slightly unpreise due to bid-ask spreads or other fritions in themarket. It is well known that in the ideal ase of preise observations for all possible strike priesthe state prie density and hene the L�evy triplet an be uniquely identi�ed, see e.g. A��t-Sahaliaand Duarte (2003). Under the realisti model of �nitely many noisy observations we annot hopeto determine the triplet orretly, we should rather try to provide an estimator whih is as goodas possible for the given auray of the data. This optimality property is usually assessed by theminimax paradigm, whih measures the inherent omplexity of the statistial problem lass. Onemain result of the present paper is a lower bound, showing that already in the simple exponentialL�evy model the estimation problem is in general severely ill-posed, that is, the estimation error forany part of the L�evy triplet as a funtion of the auray of the observations will only onvergewith a logarithmi rate for any oneivable estimation proedure.On the other hand, we propose an expliit onstrution of an estimator that attains this optimalminimax rate. The proedure is based on the inversion of the expliit priing formula via Fouriertransforms by Carr and Madan (1999) and a regularisation in the spetral domain. Using the FastFourier Transformation, the proedure is easy to implement and yields good results in simulationsin view of the severe ill-posedness. In omparison with standard statistial ill-posed problems, the1



main hallenges are the nonlinearity involved and the omplex interplay between the jumpmeasureas nonparametri part and the drift and di�usion oeÆient as parametri parts.The exponential L�evy model reets the assumption that the log returns of the asset evolve in-dependently and with idential distribution for the same time steps, whih is plausible for liquidmarkets and not too long time horizons. This basi model lass has been onsidered reently fora variety of priing and optimisation problems in �nane. Let us mention here Mordeki (2002)for priing Amerian-type perpetual options, Cont and Volthkova (2005) for priing other path-dependent options and Eberlein and Papapantoleon (2004) for a good survey and generalisationsto the time-inhomogeneous ase. Kallsen (2000) and Emmer and Kl�uppelberg (2004) study marketmodels in a multidimensional framework.When no model for the prie proess is spei�ed, alibration from option data an be used toestimate the state prie density, see A��t-Sahalia and Duarte (2003). This density yields the dis-tribution of the asset prie at the times of maturity, but does not provide any information on theevolution of the prie in time. A strutural assumption on the prie proess allows to �nd priesfor path-dependent options or to perform a dynami risk management. In �nanial engineeringinformation about the time evolution expeted at the market is obtained by smoothing impliedBlak-Sholes volatilities, f. Fengler, H�ardle, and Mammen (2003). For the generalised Blak-Sholes model Dupire's formula permits the alibration from option pries, see e.g. Jakson, S�uli,and Howison (1999) for a numerial approah and Cr�epey (2003) for a theoretial study. The al-ibration of parametri exponential L�evy models has been studied for example by Eberlein, Keller,and Prause (1998) and Carr, Geman, Madan, and Yor (2002).The study by Cont and Tankov (2004b), also desribed in Cont and Tankov (2004a), is losestto our nonparametri approah for exponential L�evy models. In order to ope with the involvedill-posedness, these authors employ a least squares method penalized by the relative entropy withrespet to an a priori hosen L�evy triplet. This type of penalisation has ertain genuine features:the method takes into aount prior information and the resulting funtional is onvex. However,the value of the di�usion oeÆient is thus �xed in advane, and the regularising e�et does nottake plae for independent random errors in the observations, essentially beause white noise anonly be onsidered as an element in a Sobolev spae of negative regularity, f. the Hilbert salesapproah in Engl, Hanke, and Neubauer (1996). In ontrast, we strive for a method that hasonly few tuning parameters, permits the alibration of the di�usion oeÆient and is suited forobservations with random errors. The method we present below will have all these properties andis in addition provably rate-optimal over standard smoothness lasses. Instead of minimizing somedata-dependent riterion, for whih in eah step the option prie for the urrent triplet value hasto be evaluated, we prefer using the expliit nonlinear inversion diretly. This results in an eÆientstraight-forward algorithm. Combining this method with a stage-wise aggregation proedure, arobust data-driven method is obtained.After introduing the �nanial and statistial model in Setion 2, the estimation method for the�nite intensity ase is developed in Setion 3. The main theoretial results are formulated inSetion 4. A typial in�nite intensity ase is treated in Setion 5 and we onlude in Setion 6.The proofs of the upper and lower bounds are deferred to Setions 7 and 8, respetively, while theAppendix provides some further tehnial results.2 The model2.1 The exponential L�evy model and option priesWe suppose that the prie St of an asset at time t follows the L�evy model (1.1), where S > 0 is thepresent value of the asset and r > 0 is the riskless interest rate, whih is assumed to be known andonstant. An exellent referene for this model in �nane is the monograph by Cont and Tankov2



(2004a). In this paper we shall only onsider L�evy proesses X with a jump omponent of �nitevariation and absolutely ontinuous jump distribution. Its harateristi funtion is given by theL�evy-Khinthine representation'T (u) := E [exp(iuXT )℄ = exp�T���22 u2 + iu + Z 1�1(eiux � 1)�(x) dx��: (2.1)� > 0 is alled volatility,  2 Rdrift and the non-negative funtion �, satisfying R (jxj^1)�(x) dx <1, is the jump density. Its jump intensity is de�ned as � := k�kL1(R). The harateristi tripletT := (�2; ; �) has for �nite � the intuitive explanation that X is the sum of three independentlassial proesses, namely a Wiener proess of volatility �, a deterministi linear proess withtrend  and a ompound Poisson proess of intensity � with jump distribution �=�. Proesseswith in�nite ativity are obtained by a limiting proedure and their sample paths have in�nitelymany jumps, but with jump sizes aumulating at zero. By exluding L�evy proesses of unboundedvariation we ensure an intuitive explanation of the parameters and we are in line with the empirialparametri �ndings of Carr, Geman,Madan, and Yor (2002), though some useful parametri modelslike generalized hyperboli distributions are exluded.A European all option with maturity T and strike K for an underlying asset grants the holderthe right to buy the asset at the future time T for the prie K. A risk neutral prie at time t = 0for this option is given by C(K;T ) = e�rT EQ[(ST �K)+℄; (2.2)where (A)+ := max(A; 0) and Q is a martingale measure equivalent to the real world probabilityP. By onsidering option pries we immediately draw inferene on this priing measure Q andwe assume from now on that S follows an exponential L�evy model (1.1) under Q and that thedisounted prie proess e�rtSt is a martingale on the �ltered probability spae (
;F ;Q; (Ft)),�xed throughout the paper. As is standard in the alibration literature, the measure Q is assumedto be settled by the market and to be idential for all options traded.By the independene of inrements in X the martingale ondition may be expliitly stated as8 t > 0 : E [eXt℄ = 1 () �22 +  + Z 1�1(ex � 1)�(x) dx = 0: (2.3)Observe that we have imposed impliitly the exponential moment ondition R10 (ex�1)�(x) dx <1to ensure the existene of E [St℄. Another onsequene is that the harateristi funtion 'T isde�ned on the whole strip fz 2 C j Im(z) 2 [�1; 0℄g in the omplex plane, whih will be importantlater. We redue the number of parameters by introduing the negative log-forward moneynessx := log(K=S) � rT;suh that the all prie in terms of x is given byC(x; T ) = S E [(eXT � ex)+℄:The analogous formula for the prie of a put option, whih gives the owner the right to sell an assetat time T for the prie K, is P(x; T ) = S E [(ex � eXT )+℄. Then the well-known put-all parity iseasily established: C(x; T )�P(x; T ) = S E [eXT � ex℄ = S(1 � ex): (2.4)2.2 The observationsWe fous on the alibration from options with a �xed maturity T > 0 and mention the straight-forward extension to several maturities in Setion 3.1. We observe the pries of N all options(or by the put-all parity (2.4) alternatively put options) at di�erent strikes Kj , j = 1; : : : ; N ,orrupted by noise Yj = C(Kj; T ) + �j"j; j = 1; : : : ; N: (2.5)3



We assume the observational noise ("j) to onsist of independent entred random variables withE ["2j ℄ = 1 and supj E ["4j ℄ < 1. The noise levels (�j) are assumed to be positive and known. Thisrandom observation model reets the bid-ask spread and other fritions at the market.As we need to employ Fourier tehniques, we introdue the funtionO(x) := (S�1C(x; T ); x > 0;S�1P(x; T ); x < 0 (2.6)in the spirit of Carr and Madan (1999). O reords normalised all pries for x > 0 and normalisedput pries for x 6 0. The following important properties of O are proved in the Appendix.Proposition 2.1.(a) We have O(x) = S�1C(x; T )� (1� ex)+ for all x 2 R.(b) O(x) 2 [0; 1^ ex℄ holds for all x 2 R.() If C� := E [e�XT ℄ is �nite for some � > 1, then O(x) 6 C�e(1��)x holds for all x > 0.(d) At any x 2 Rnf0g, respetively x 2 Rnf0; Tg in the ase � = 0 and � <1, the funtion Ois twie di�erentiable with ZRnf0;TgjO00(x)j dx 6 3:The �rst derivative O0 has a jump of height �1 at zero and, in the ase � = 0 and � < 1,a jump of height +eT (��) ours in O0 at T .(e) The Fourier transform of O satis�esFO(v) = 1� 'T (v � i)v(v � i) ; v 2 R: (2.7)This identity extends to all omplex values v with Im(v) 2 [0; 1℄. Note the properties 'T (0) =1 and 'T (�i) = 1 derived from the general property of harateristi funtions and themartingale ondition (2.3), respetively.We transform our observations (Yj) and preditors (Kj) toOj := Yj=S � (1�Kje�rT=S)+ = O(xj) + Æj"j ; (2.8)xj := log(Kj=S) � rT; (2.9)where Æj = S�1�j. In pratie, the design (xj) will be rather dense around x = 0 and sparse foroptions further out of the money or in the money, f. Fengler, H�ardle, and Mammen (2003) for astudy on the German DAX index.In order to failitate the subsequent analysis we make a mild moment assumption on the prieproess, whih guarantees by Proposition 2.1(b,) the exponential deay of O.Assumption 1. We assume that C2 := E [e2XT ℄ is �nite. This is equivalent to postulating for theasset prie a �nite seond moment: E [S2T ℄ <1.3 The estimation for bounded jump densitiesLet us assume here that the L�evy proess has �nite intensity �. Later we shall impose also a ertainregularity on the jump density �. We make use of the exat inversion formula, that is the mapping4



from the option pries to the parameters. This has the advantage that no numerial minimizationtehnique needs to be employed and the propagation of errors is more transparent.Sine our asset follows an exponential L�evy model, the jumps in the L�evy proess appear exponen-tially transformed in the asset pries and it is intuitive that inferene on the exponentially weightedjump measure �(x) := ex�(x); x 2 R;will lead to spatiallymore homogeneous properties of the estimator than for � itself. Our alibrationproedure relies essentially upon the formula (v) := 1T log�1 + iv(1 + iv)FO(v)� = 1T log('T (v � i))= ��2v22 + i(�2 + )v + (�2=2 +  � �) +F�(v); (3.1)whih is a simple onsequene of the formulae (2.1) and (2.7). Note that the funtion  is up toa shift in the argument the umulant-generating funtion of the L�evy proess and a ontinuousversion of the logarithm must be taken suh that  (0) = 0, whih is implied by the martingaleondition. Formula (3.1) shows that the L�evy triplet is uniquely identi�able given the observationof the whole option prie funtion O without noise: F�(v) tends to zero as jvj ! 1 due to theRiemann-Lebesgue Lemma and �2, , � are identi�able as oeÆients in the polynomial, whih inturn yields the funtion F�(v). A properly re�ned appliation of this approah will equip us withestimators for the whole triplet T = (�2; ; �) (we parametrize L�evy triplets equivalently with �or �).3.1 The basi proedureLet us formulate the basi algorithm to be used when a ertain smoothness property is imposed on�, that is under the prior knowledge � 2 G, where G is a smoothness lass. The proedure onsistsof four steps: (a) we build an approximation ~O of O from the data; (b) we obtain an approximation~ of  by formula (3.1); () we estimate the oeÆients of the quadrati polynomial on the right-hand side in (3.1) from ~ under the presene of a noise omponent and the nonparametri nuisanepart F�; (d) we obtain an estimator for F� by onsidering the remainder.The model (3.1) has a similar struture as the well-known partial linear models, but in fat there isone substantial di�erene: the funtion F� is not supposed to be smooth, but instead it is deayingfor high frequenies beause we work in the spetral domain. This is also why we shall regularizethe problem by utting o� frequenies jvj higher than a ertain threshold level U , whih dependson the noise level and the smoothness assumptions in G.We now give a detailed desription of the di�erent steps in the proedure.(a) We approximate the funtion O by building ~O from the observations (Oj) in the form~O(x) = �0(x) + NXj=1Ojbj(x); x 2 R;and onsequently FO byF ~O(u) = F�0(u) + NXj=1OjFbj(u); u 2 R;where (bj) are some basis funtions to be hosen and the funtion �0 is added to take areof the jump in the derivative of O at zero: �00(0+) � �00(0�) = �1. Taking into aount the5



deay properties of O, we interpolate the data by speifying8x 2 R : bk(x) 2 [0; 1℄; 8 j; k = 1; :::; N : bk(xj) = Æjk; limjuj!1 bk(u) = 0:We stress here that step (a) should not be understood as a smoothing step, but rather as ameans to �nd a reasonable approximation of FO based on disrete data. As an be seen inthe theoretial analysis and the numerial simulations below, it suÆes to use simple linearB-splines as basis funtions. Theoretially, we need that the results of Proposition 7.1 andestimate (7.7) are satis�ed.(b) For �(v) 2 (0; 1), spei�ed later in (4.1), we alulate~ (v) := 1T log>�(v)�1 + iv(1 + iv)F ~O(v)�; v 2 R; (3.2)where the funtion log>� : C n f0g ! C is given bylog>�(z) := (log(z); jzj � �log(� z=jzj); jzj < � (3.3)and log(�) is taken in suh a way that ~ (v) is ontinuous with ~ (0) = 0 (almost surely theargument of the logarithm in (3.2) does not vanish). If we observe option pries for di�erentmaturities Tk, we perform the steps (a) and (b) for eah Tk separately and aggregate at thispoint the di�erent estimators for  to obtain one estimator with less variane.() With an estimate ~ of  at hand, we obtain estimators for the parametri part (�2; ; �) byan averaging proedure taking into aount the polynomial struture in (3.1). Upon �xingthe spetral ut-o� value U = U (G; (Æj); (xj)), we set�̂2 := Z U�U Re( ~ (u))wU� (u) du; (3.4)̂ := ��̂2+ Z U�U Im( ~ (u))wU (u) du; (3.5)�̂ := �̂22 + ̂� Z U�U Re( ~ (u))wU� (u) du; (3.6)where the weight funtions wU� ; wU and wU� satisfyZ U�U wU� (u) du = 0; Z U�U u2wU� (u) du = �2; Z U�U uwU (u) du = 1; (3.7)Z U�U u2wU� (u) du = 0; Z U�U wU� (u) du = 1: (3.8)For standard smoothness lasses G asymptotially optimal hoies of the ut-o� value U andthe weight funtions are given in (4.9) and (4.2)-(4.4). The estimate of the oeÆients anbe understood as an orthogonal projetion estimate with respet to an L2-salar produtweighted aording to the supposed deay property of F�.(d) Finally, we de�ne the estimate for � as the inverse Fourier transform of the remainder:�̂(u) := F�1 h� ~ (�) + �̂22 (�� i)2 � î(�� i) + �̂�1[�U;U ℄(�)i (u); u 2 R: (3.9)Note that the omputational omplexity of this basi estimation proedure is very low. The onlytime onsuming steps are the three integrations in step () and the inverse Fourier transform6



(inverse FFT) in step (d). In step (a) we just take a data-dependent linear ombination of thefuntions Fbk and the funtion F�0, whih with our hoie as linear B-splines an be omputedexpliitly:Fbk(u) := u�2�eiuxk � eiuxk�1xk � xk�1 �eiuxk+1 � eiuxkxk+1 � xk �; F�0(u) = u�2�1+eiuxj0xj0�1 � eiuxj0�1xj0xj0 � xj0�1 �(3.10)with k = 1; : : : ; N , some extrapolated design points x0 and xN+1, where we set ~O(x0) = ~O(xN+1) =0, and with the index j0 de�ned by xj0�1 < 0 6 xj0 .3.2 A data-driven estimator for the jump densityLet us briey desribe the onstrution of a data-driven proedure whih requires no prior smooth-ness assumptions on � to adjust the tuning parameters. The idea is to �lter out the parametri partand to obtain a standard 'funtion in noise'-estimation problem in the spetral domain. Insteadof hoosing one ut-o� value U , we take a geometri grid U1 > U2 > � � � > UJ of ut-o� values andaggregate the orresponding estimators adaptively.For �ltering quadrati polynomials we introdue the onvolution operatorAgf(x) := f(x) � 12� Z 1�1 f(y)Fg(x � y) dy (3.11)with a suÆiently regular and niely deaying funtion g : R! R satisfyingZ 1�1 Fg(y) dy = 1; Z 1�1 ykFg(y) dy = 0; k = 1; 2, that is g(0) = 1; g0(0) = g00(0) = 0: (3.12)The �rst two steps of the data-driven proedure are idential to the steps (a) and (b) of the basiproedure. The subsequent steps are as follows:() We apply the operator Ag to ~ and obtain ~ g(v) := Ag ~ (v), whih by (3.1) is a reasonableestimate of Ag (v) = AgF�(v) = F(�(1 � g))(v).(d) We onsider the family of basi estimators ~�(j)g given by~�(j)g := F�1� ~ g1[�Uj;Uj ℄�(y); j = 1; : : : ; J:(e) We onstrut the aggregated estimator �̂g as a onvex ombination of (~�(j)g )j=1;:::;J withdata-dependent weights. These weights are obtained by the following algorithm:(i) Initialize �̂(1)g = ~�(1)g .(ii) For j = 2; :::; J sequentially de�ne�̂(j)g := �j ~�(j)g + (1� �j)�̂(j�1)g ;where �j = K(m(j)=�) for some � > 0, a ompatly supported kernel K andm(j) := k~�(j)g � �̂(j�1)g k2L2kVar[~�(j)g ℄kL1 :(iii) Put �̂g := �̂(J)g .Although Var[~�(j)g ℄ is not known exatly, it an be easily estimated from above. The param-eter � is taken in aordane with the suggestions given in Belomestny and Spokoiny (2004),where the whole aggregation proedure is explained in detail.7
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Figure 1: Kou model. Left: Sample (Oj) and true funtion O (dashed line). Center: True �(dashed) and estimated �̂ (blak) modi�ed L�evy densities. Right: Box plot for the data-drivenand the basi proedure based on 1000 Monte-Carlo simulations.(f) The �nal estimator for �(x) is de�ned as �̂(x) = �̂g(x)=(1�g(x)) for all x 2 Rwith g(x) 6= 1.Example 1. A possible family of funtions g satisfying (3.12) is given by g�(x) = 1�(1�e�x2=�2)2,x 2 R, � > 0, whih gives rise to the onvolution �lter Fg�(u) = �p� e��2u2=4 � �p8� e��2u2=8.Observe that 1 � g� only vanishes at zero and that for smaller values of � the weight 1 � g� isloser to one outside the origin, but the �lter Fg� does not deay so rapidly.3.3 Numerial ExampleTwo empirial phenomena in �nanial data have attrated muh attention reently: the leptokurtireturn distribution of assets with a higher peak and two (asymmetri) heavier tails than those ofthe normal distribution, and the implied volatility smile. To inorporate these features, the doubleexponential jump di�usion model was proposed by Kou (2002). In his model the L�evy triplet isspei�ed by the jump density�(x) = ��p�+e��+x1[0;1)(x) + (1� p)��e��x1(�1;0)(x)�; x 2 R;and the parameters �; �; �+; �� > 0 and p 2 [0; 1℄, while  is uniquely determined by the martin-gale ondition. We simulate the Kou model with parameters � = 0:1; � = 5; �� = 4; �+ = 8; p =1=3 and apply the nonparametri estimation proedure given the observation of noisy Europeanoption data with T = 0:25, N = 50, r = 0:06 and Æj = O(xj)=10.In Figure 1 (left) the simulated observations (Oj) and the true urve O are depited as funtionsof the log-forward moneyness. The estimated transformed L�evy density � in the enter is obtainedusing the basi proedure, as spei�ed in the mathematial analysis, with a human-driven hoieof the ut-o� parameter U . The parameters were estimated as �̂ = 0:035; �̂ = 7:56; ̂ = 0:556 ( =0:423). We observe that the estimated transformed L�evy density reovers the main features of theKou model like the mode at zero and the skewness. From the funtional form of the estimator wean easily derive estimates for other important quantities, e.g. for the proportion of negative jumpsby alulating �̂�1 R 0�1 �̂(x) dx = �̂�1 R 0�1 e�x�̂(x) dx, whih in the simulation example evaluatesto 0:72 (true value: 1� p = 2=3).In the right part of Figure 1 we ompare the performane of the data-driven aggregated estimatorwith the orale estimator (i.e, hoosing the best possible U ) obtained from the basi proedure interms of the empirial L2-loss. A box plot is shown for 1000 Monte-Carlo repliations. In this plot,as provided by the statistial software pakage R, the box strethes from the 25% perentile tothe 75% perentile, rossed by the median, and the position of the remaining 50% of the values isindiated. The fat that the data-driven estimator frequently even outperforms the orale estimator8



is to some part due to the hard ut-o� at frequeny U , whih is smoothed out by aggregating thebasi estimators. As pointed out by Cavalier and Golubev (2004), standard data-driven estimationproedures often perform badly for inverse problems suh that the method of aggregation used herean be onsidered as omparatively very stable.4 Risk bounds for bounded jump densities4.1 Mathematial resultsWe shall use throughout the notation A . B if A is bounded by a onstant multiple of B,independent of the parameters involved, that is, in the Landau notation A = O(B). EquallyA & B means B . A and A s B stands for A . B and A & B simultaneously.In order to assess the quality of the estimators, we quantify their risks under a Sobolev-typesmoothness ondition of order s on the transformed jump density �.De�nition 4.1. For s 2 N and R; �max > 0 let Gs(R; �max) denote the set of all L�evy tripletsT = (�2; ; �), satisfying the martingale ondition and Assumption 1 with C2 6 R, suh that � iss-times (weakly) di�erentiable and� 2 [0; �max℄; jj; � 2 [0; R℄; max06k6sk�(k)kL2(R) 6 R; k�(s)kL1(R) 6 R:We have enfored j ~ T (v)j > log(�(v)) in (3.2) to prevent unboundedness in the ase of largestohasti errors. For L�evy triplets in Gs(R; �max) a reasonable hoie for �(v) an be obtainedfrom the following alulation using the identity �22 +  +F�(0) = � derived from the martingaleondition (2.3): 12 j'T (v � i)j = 12 exp��T �22 v2 � TF�(0) + T Re(F�(v))�> 12 exp��T �2max2 v2 � 4TR� =: �(v): (4.1)The only reason for the fator 1=2 is the mathematial tratability giving later the bound of Lemma7.2.Conerning the hoie of the weight funtions, we take advantage of the smoothness s of � bytaking funtions w suh that Fw has s vanishing moments. Equivalently expressed in the spetraldomain, the weight funtions w(u) grow with frequenies juj like jujs to pro�t from the deay ofjF�(u)j. Hene, we de�ne for all U > 0 families of weight funtions by resaling those funtionssatisfying restritions (3.7) and (3.8) for U = 1:wU� (u) = U�3w1�(U�1u) with w1� satisfying (3.7) and kF(w1�(u)=us)kL1 <1; (4.2)wU (u) = U�2w1(U�1u) with w1 satisfying (3.7) and kF(w1(u)=us)kL1 <1; (4.3)wU� (u) = U�1w1�(U�1u) with w1� satisfying (3.8) and kF(w1�(u)=us)kL1 <1: (4.4)In these de�nitions it is understood that the support of the weight funtions is ontained in [�U;U ℄.Note that the property F(w(u)=us) 2 L1(R) means in partiular that w(u)=us is ontinuous andbounded suh thatjwU� (u)j . U�(s+3)jujs; jwU (u)j . U�(s+2)jujs and jwU� (u)j . U�(s+1)jujs: (4.5)For the simulations we have used symmetri weight funtions that are onstant multiples of u2exept for three (at 0 and �U for ) respetively four (at �U 0;�U with some U 0 < U for �2, �)smoothed out jumps to satisfy the restritions (3.7), (3.8).9



Sine the underlying L�evy triplet is only identi�able if O(x) is known for all x 2 R, we onsiderthe asymptotis of a growing number of observations with� := maxj=2;:::;N(xj � xj�1)! 0 and A := min(xN ;�x1)!1: (4.6)We use linear B-splines for the basis funtions (bk) and the funtion �0. To ease the mathematialtreatment of the extrapolation error, we assume that all data is ontained in the interval (�A ��; A+�) and add the arti�ial observations x0 = �A��, xN+1 = A+� with O0 = ON+1 = 0.The reason why we hoose a pieewise linear approximation is that this yields rate-optimal in-terpolation errors for ~O, knowing that O is twie di�erentiable exept at �nitely many points,f. Proposition 7.1 below. Of ourse, when assuming some positive regularity on � or by someadaptive method, the numerial approximation rate with respet to � an be aelerated, but thisimprovement is only valid for a very small disretisation distane � when the stohasti observa-tion error is usually dominant anyway. In ontrast to standard regression estimates we shall alwaystrak expliitly the dependene on the level (Æk) of the noise in the observations, whih is usuallyrather small for observed option pries.The subsequent analysis an ertainly be improved for a onrete design (xj) and onrete noiselevels (Æj), but for revealing the main features it is more transparent and onise to state the resultsin terms of the abstrat noise level " := �3=2 +�1=2kÆkl1 ; (4.7)omprising the level of the numerial interpolation error and of the stohasti error simultaneously.Here and in the sequel we use the norms kÆkl1 := supk Æk and kÆk2l2 :=Pk Æ2k.We are now in a position to state the main results about the risk upper bounds of the estimatorsobtained by the basi proedure and about the risk lower bounds valid for any estimation proedurewhatsoever. The proofs are given in Setions 7 and 8 for the upper and lower bounds, respetively.Theorem 4.2. Assume e�A . �2 and �kÆk2l2 . kÆk2l1 . Choosing for some �� > �max the ut-o�U�� := ���1(2 log("�1)=T )1=2, we obtain for the risk of �̂2 the uniform onvergene ratesupT =(�2;;�)2Gs(R;�max) ET [j�̂2 � �2j2℄1=2 . ��s+3(log("�1))�(s+3)=2: (4.8)The asymptoti risk in the estimation of the other unknown quantities shows a dihotomy. Whileusually it is larger than the risk for �̂2, it is muh smaller if we know that � = 0 holds, that is, forthe ompound Poisson ase.Theorem 4.3. Assume e�A . �2 and �kÆk2l2 . kÆk2l1 . For any �� > �max we hooseU�� := ���1�2 log("�1)=T �1=2; U0 := "�2=(2s+5); (4.9)in the ases �max > 0 and �max = 0, respetively. Then the risk bounds for ̂ and �̂ aresupT =(�2;;�)2Gs(R;�max) ET [ĵ � j2℄1=2 . (��s+2(log("�1))�(s+2)=2; � 2 [0; �max℄ unknown;"(2s+4)=(2s+5); � = �max = 0; (4.10)supT =(�2;;�)2Gs(R;�max) ET [j�̂� �j2℄1=2 . (��s+1(log("�1))�(s+1)=2; � 2 [0; �max℄ unknown,"(2s+2)=(2s+5); � = �max = 0: (4.11)Theorem 4.4. Assume e�A . �2 and �kÆk2l2 . kÆk2l1 . For some �� > �max we hoose U�� andU0 as in (4.9) to obtain the following risk estimates for �̂:supT =(�2;;�)2Gs(R;�max) ET h Z 1�1j�̂(x)��(x)j2 dxi1=2 . (��s(log("�1))�s=2; � 2 [0; �max℄ unknown,"2s=(2s+5); � = �max = 0: (4.12)10



The two assumptions in eah theorem are not very severe: beause of the exponential deay of Othe width A of the design only needs to grow logarithmially and the error levels (Æk) need onlybe square summable after renormalisation. The latter ondition an ertainly be further relaxedsine this term is aused by a rough bound on the quadrati remainder term.For the lower bounds we appeal to the equivalene between the regression and the Gaussian whitenoise model, as established by Brown and Low (1996), and onsider merely the idealized observationmodel dZ(x) = O(x) dx+ " dW (x); x 2 R; (4.13)with the noise level asymptotis " ! 0, a two-sided Brownian motion W and with O = OTdenoting the option prie funtion from (2.6) for the given triplet T . This simpli�ation avoidstedious numerial approximations in the proofs.Theorem 4.5. Let s 2 N, R > 0 and �max > 0 be given. For the observation model (4.13) andany quantity q 2 f�2; ; �; �g the following asymptoti risk lower bounds hold:inf̂q supT 2Gs(R;�max) ET [kq̂� qk2℄1=2 & vq;�max ;where k�k denotes the absolute value for q 2 f�2; ; �g and the L2(R)-norm for q = �, the in�mumis always taken over all estimators, that is all measurable funtions of the observation Z, and therate vq;�max is given in the following table:�2  � ��max > 0 log("�1)�(s+3)=2 log("�1)�(s+2)=2 log("�1)�(s+1)=2 log("�1)�s=2�max = 0 0 "(2s+4)=(2s+5) "(2s+2)=(2s+5) "2s=(2s+5)4.2 DisussionWe have seen that for � > 0 the rate orresponds to a severely ill-posed problem (f. Engl,Hanke, and Neubauer (1996) and the referenes there), while for known � = 0 the rates are muhbetter, but still ill-posed ompared to those obtained in lassial nonparametri regression. Thereason for the severe ill-posedness for � > 0 is that we fae an underlying deonvolution problemwith a Gaussian distribution: the law of the di�usion part of XT is onvolved with that of theompound Poisson part to give the density of XT . This type of estimation problem has beenstudied thoroughly by Butuea and Matias (2005) in an idealized density estimation setup. Notethe general order in whih the (asymptoti) quality of estimation dereases: �2, , � and �nally�, whih is related to the domination property formulated in A��t-Sahalia and Jaod (2004). In theupper bounds we have kept trak of the dependene on � beause for small values of � and �nitesamples the performane is not so bad, ompare the simulations in Setion 3.3; it just needs a lotmore observations to improve on that.At �rst sight the rates for the parametri estimation part in the ase � = 0 are astonishing.They are worse than in usual semi-parametri problems whih also indiates that misspei�edparametri models will give unreliable estimates for the volatility and jump intensity. These ratesare, however, easily understood when employing the language of distributions. With Æ0 denotingthe Dira distribution in zero and Æ00 its derivative we havelog('T (u)) = TF�Æ00 + � � �Æ0�(u):Estimating the density of XT and similarly its harateristi funtion from the noisy observationsof O amounts roughly to di�erentiate the observed funtion twie, f. A��t-Sahalia and Duarte(2003) and the remark after equation (7.6) below. This gives the minimax rate for � and � as thatof estimating the seond derivative of a regression funtion of regularity s + 2. For the parameter� it suÆes to estimate the jump in the antiderivative of F�1(log('T )), whih orresponds to11



a pointwise estimation problem in the �rst derivative of a regression funtion, while for  theanalogy is the estimation of the regression funtion itself at zero. This explains also why in thelass Gs we have measured the regularity not only in L2, but also uniformly. In fat, if we onlyassume an L2-Sobolev ondition, then the same lower bound tehniques will yield slower rates forthe parameters, as is typial for pointwise estimation problems. An interesting way to estimatediretly  and � is suggested by Proposition 2.1(d): a hange point detetion algorithm for jumpsin the derivative of O, as proposed by Goldenshluger, Tsybakov, and Zeevi (2004), an equip uswith an estimate of  and a subsequent estimate of the jump size yields an estimate of �, whihgives the same minimax rates.As usual, the estimation proedure needs ertain tuning parameters. The approximate size of �maxand the noise level is in general known to the pratitioner. The stabilisation of the logarithm bythe funtion �(v) was enfored mainly for theoretial reasons to prevent explosions due to largedeviations. The usually unknown order s of smoothness of the transformed jump density, however,is needed to determine a good hoie of the ut-o� frequeny U and also appears in the weightsw1�; w1 ; w1�. Yet, for the latter it suÆes to use weight funtions satisfying (4.2)-(4.4) for somelarge smax like in standard nonparametris where the order of the kernel must only be suÆientlylarge. We are thus left with only one tuning parameter U , whih is the same for all four estimationproblems. The data-driven proedure presented in Setion 3.2 is one way to ope with this problemfor the jump density. Note, however, that a proper mathematial analysis for the general problemseems hallenging due to the underlying nonlinear 'hange point detetion'-struture, for whih adata-driven algorithm even in the idealized linear setting of Goldenshluger, Tsybakov, and Zeevi(2004) is not yet available. Finally, observe that the estimation of the jump density at zero is onlypossible by imposing a ertain regularity there, otherwise it is learly not possible to detet jumpsof height zero.5 Estimation for unbounded jump densitiesLet us now disuss the ase that � is a jump density with a singularity at zero. For simpliity werestrit the presentation to the ase � = 0, whih is also in agreement with the empirial parametri�ndings by Carr, Geman, Madan, and Yor (2002). We then dedue as before for �(x) = ex�(x)using (2.3), (2.7) and the de�nition (3.1) of  in terms of O (v) = iv + Z 1�1(eivx � 1)�(x) dx = iv + Z v0 F(ix�(x))(w) dw:Under Assumption 1 x�(x) 2 L1(R) holds. By taking derivatives we �nd 0(v) = (i � 2v)FO(v) � (v � iv2)F(xO(x))(v)T (1 + (iv � v2)FO(v)) = i +F(ix�(x))(v):We �rst onsider the problem of estimating � in some weighted L2-loss with a weight funtionvanishing in zero. More preisely, we aim at estimating �g(x) = �(x)(1 � g(x)) in L2(R)-loss forsome di�erentiable niely deaying funtion g : R! [0; 1℄ with g(0) = 1. We obtain �g 2 L1(R)and F�g(v) = 12�iF(ix�(x)) � F((1� g(x))=x)(�v)= g0(0) + 12�i� (i � 2�)FO � (�+ i�2)F(xO(x))T (1 + (i�� �2)FO) � � �F((1� g(x))=x)�(�v) (5.1)The onvolution kernel F((1 � g(x))=x) deays rapidly for smooth funtions g suh that for agood approximation of F�g(v) it suÆes to know the funtions FO and F(xO(x)) in a loseneighbourhood of �v. 12



Consequently, we an estimate F�g(v) for v 2 [�U;U ℄ by substituting the empirial ounterpart~O of O into formula (5.1) and using some g with g0(0) = 0. The noise level for frequenies v inthe empirial ounterpart of (5.1) will be of order v2 in the �nite intensity ase � = k�kL1(R) <1exatly as in the previous analysis for � = 0. For � = 1 the harateristi funtion tends to zeroand the estimation error will deteriorate signi�antly, see the disussion below.When drawing inferene on the behaviour of � near zero, we have to speify the kind of singularityand smoothness we expet there. Let us therefore postulate that�(x) = ��(x)jxj� with � 2 (0; 2) and jF��(u)j . (1 + juj)�(s+1); s 2 N : (5.2)To avoid additional onsiderations we assume that � 6= 1. Note that this model inludes forexample tempered stable proesses with regularity index s = 1, when their transformed jumpdensity is given by�(x) = ex�(x) = C�e(1+��)xjxj� 1(�1;0)(x) + e(1��+)xjxj� 1(0;1)(x)�; C; �� > 0; �+ > 1; x 2 R;f. Chapter 4 in Cont and Tankov (2004a) whih also gives further examples. Under the model(5.2) an interesting information on the behaviour of � near zero is given by the value ��(0),for whih we now want to derive an estimation proedure. Beause of x�(x) = x1����(x) (weunderstand always x� := jxj� sgn(x)) we an draw inferene on F(x1����(x)), but this Fouriertransform deays slowly due to its non-di�erentiable argument and will not yield a well performingestimator. Consequently, we have to use more re�ned frational di�erentiation results for thepreise struture of this Fourier transform. The following result is derived in the Appendix.Proposition 5.1. The following asymptoti estimate holds for juj ! 1:���F(ix1����(x))(u)� 2�(2� �) sin(��=2) s�1Xk=0��� 2k ��(k)� (0)iku��2�k��� . juj�s�min(1;2��);where � denotes the Euler Gamma funtion.Hene, we an expand  0 in a non-integer power series: 0(u) = i + 2�(2� �) sin(��=2) s�1Xk=0��� 2k ��(k)� (0)iku��2�k +R(u)with the remainder satisfying jR(u)j . juj�s�max(1;2��). Exatly as in the expansion (3.1), thispermits to estimate ��(0) based on an estimator ~ by �̂�(0) := R U�U ~ 0(u)wU��(u) du with a weightfuntion wU�� satisfyingZ U�U u��2wU��(u) du = 12�(2� �) sin(��=2); Z U�U u�wU��(u) du = 0 for � = 0; � = �� 2� kwith k 2 f1; : : : ; s � 1g. For this estimator a similar analysis as in the ase of bounded jumpdensities an be performed. The main digression is that for � > 1, the in�nite intensity ase, theharateristi funtion is not bounded away from zero anymore and the risk will be essentiallydetermined by the growth of j'T (u� i)j�1 with juj ! 1, whih is usually exponential (ejuj��1 inthe tempered stable ase) and thus yields again a severely ill-posed problem.6 ConlusionWe have developed an estimation proedure for the nonparametri alibration of exponential L�evymodels whih is mathematially very satisfying beause of its minimax properties and whih yields13



a straight-forward algorithm for the implementation. The orresponding lower bound results showthat the alibration is in general a hard problem to solve, at least if very high auray is desired.Nevertheless the estimation proedure is well suited to gain general insight into the size of theparameters and the struture of the jump density. Even if reasonable parametri models exist thatan be better �tted, a goodness-of-�t test based on our nonparametri approah should always beused to hek against misspei�ation.As already seen in the ase of unbounded jump densities, our proedure an be adapted to dif-ferent models as long as the inverse transformation from the option pries to the harateristifuntion an be alulated and the unknown quantities an be determined from the struture ofthe harateristi funtion. As empirial option data suggests, the risk neutral prie proess is nothomogeneous in time and the exponential L�evy model should be extended in that diretion. A suit-able model lass is for instane given by the aÆne models of DuÆe, Filipovi, and Shahermayer(2003). We believe that the question of alibration for models in �nanial mathematis should beaddressed with the same rigour and intensity as other primary questions like priing, hedging andrisk management.7 Proof of the upper boundsAll alulations take plae in the setting of Setion 4. As general referene for Fourier tehniqueslike the Planherel identity and norm estimates we reommend Rudin (1991). To failitate thealulations we introdue the exponentially inreasing funtionE(x) := ex � 1x ; x > 0; and set E(0) := 1: (7.1)Using linear B-splines (f. Setion 3.1) we enounter the following linear interpolation of OOl(x) := E [ ~O(x)℄ = NXj=1O(xj)bj(x) + �0(x); x 2 R: (7.2)7.1 A numerial approximation resultProposition 7.1. Under the hypothesis e�A . �2 we obtain uniformly over all L�evy tripletssatisfying Assumption 1supu2RjE [F ~O(u)� FO(u)℄j = supu2RjFOl(u)� FO(u)j . �2: (7.3)Proof. By standard Fourier estimates the assertion follows one we have proved kOl�OkL1 . �2.Note that O � �0 is twie di�erentiable exept at the points xj0�1; 0; xj0 and possibly T byProposition 2.1(d). While the disontinuities of (Ol � �0)0 at the knot points do not do any harm,O� �0 has a derivative near zero whih is uniformly bounded by a onstant C0 aording to (9.1).Starting with the ase � > 0, that is without a jump at T , we obtain using the mean valuetheorem with suitable �j 2 (xj�1; xj):Z xNx1 j ~Ol(x)�O(x)j dx= NXj=2 Z xjxj�1 ���(O � �0)(xj) x� xj�1xj � xj�1 + (O � �0)(xj�1) xj � xxj � xj�1 + �0(x) �O(x)��� dx14



= N+1Xj=1 Z xjxj�1 ���Z xxj�1 ((O � �0)0(�j)� (O � �0)0(y)) dy��� dx6 Xj2f2;:::;Ngnfj0g Z xjxj�1 Z xxj�1 Z xjxj�1 jO00(z)j dz dy dx+ 2C0�26 kO00kL1�2 + 2C0�2:By Assumption 1 and Proposition 2.1(b,) the extrapolation error is bounded byZ[x0;x1℄[[xN ;xN+1 ℄jE [ ~O(x)� O(x)℄j dx 6 4C2�e�(A��):An appliation of Proposition 2.1(d) therefore shows for � > 0Z 1�1jE [ ~O(x)� O(x)℄j dx 6 e�A + 3�2 + 2C0�2 + 4C2�e�(A��) . �2:In the ase � = 0 we onsider the index j� with xj��1 6 T < xj� and fae an additional errorestimated byZ xj�xj��1 jE [ ~O(x)� O(x)℄j dx 6 Z xj�xj��1k(O � �0)0kL1���2(x� xj��1)(xj� � x)xj� � xj��1 ��� dx6 k(O � �0)0kL1(xj� � xj��1)2With a look at (9.1) we infer that this error term is also of order �2 and thus does not enlarge theonvergene rate.7.2 Proof of Theorem 4.2The asserted rate (4.8) follows one the general risk estimateE [j�̂2 � �2j2℄ . U�2(s+3) + E(T�2U2)U�1"2 + E(T�2maxU2)2U4"4 (7.4)has been shown for U . ��1 uniformly over Gs(R; �max), sine the expliit hoie of U rendersthe seond and third term asymptotially negligible.Consider in the de�nition (3.2) of ~ separately the linearisation L, negleting the stabilisation by�, and the remainder term R:L(u) := T�1'T (u� i)�1(u� i)uF( ~O � O)(u); (7.5)R(u) := ~ (u)�  (u)� L(u): (7.6)When negleting the remainder term, we may view ~ (u) as observation of  (u) in additive noise,whose intensity grows like j'T (u� i)j�1j(u� i)uj s u2eT�2u2 for juj ! 1. This heteroskedastiityreets the degree of ill-posedness of the estimation problem.Lemma 7.2. For all u 2 R the remainder term satis�esjR(u)j 6 T�1�(u)�2(u4 + u2)jF( ~O � O)(u)j2:Proof. Let us set ~'T (u� i) := 1�u(u� i)F ~O(u) whih equals eT ~ (u) if j ~'T (u� i)j > �(u). UsingjeT ~ (u)j > �(u), u 2 R, we obtain by a seond-order expansion of the logarithmjT ~ (u)� log('T (u� i))) � 'T (u� i)�1(eT ~ (u) � 'T (u� i))j 6 12�(u)�2jeT ~ (u) � 'T (u� i)j2:15



This gives the result whenever j ~'T (u � i)j > �(u). For the other values u we use j ~'T (u � i)j <�(u) 6 j'T (u� i)j=2 to inferj'T (u� i)�1(eT ~ (u) � ~'T (u� i))j 6 12�(u)�1jeT ~ (u) � ~'T (u� i)j�j ~'T (u� i) � 'T (u � i)j�(u)�1�6 12�(u)�2j ~'T (u� i)� 'T (u� i)j2= 12�(u)�2(u4 + u2)jF( ~O � O)(u)j2:Together with the previous result this gives for all u 2 R the assertion of the lemma.We shall frequently use the following norm bounds for the B-splines (bk), whih follow fromkbkk1 = 1 and jxk+1 � xk�1j 6 2�:kFbkkL2 = p2�kbkkL2 6 (4��)1=2; kFbkk1 6 kbkkL1 6 2�: (7.7)We deompose �̂2 in terms of L and R from (7.5) and (7.6):�̂2 = Z U�U���22 (u2 � 1) +  + Re(F�(u))� �+ Re(L(u) +R(u))�wU� (u) du= �2 + Z U�U Re�F�(u) + L(u) +R(u)�wU� (u) du; (7.8)whih yieldsE [j�̂2��2j2℄ 6 3���Z U�U F�(u)wU� (u) du���2+3 Eh���Z U�U L(u)wU� (u) du���2i+3 Eh���Z U�U R(u)wU� (u) du���2i:Let us onsider the three terms in the sum separately. The nuisane of F� auses a deterministierror whih an be bounded using (iu)sF�(u) = F�(s)(u) and the Planherel isometry:���Z U�U F�(u)wU� (u) du��� = 2����Z 1�1 �(s)(x)F�1(wU� (u)=(iu)s)(x) dx��� 6 k�(s)k1kF(w1�(u)=us)kL1U s+3 :(7.9)The linear error term an be split into a bias and a variane part (Var[Z℄ := E [jZ � E [Z℄j2℄):Eh���Z U�U L(u)wU� (u) du���2i = ���Z U�U 'T (u� i)�1(u� i)u E [F( ~O � O)(u)℄wU� (u) du���2+ VarhZ U�U 'T (u� i)�1(u� i)uF ~O(u)wU� (u) dui=: L2b + Lv:The bias term is easily bounded by Proposition 7.1, using the uniform bound on U s+3wU� (u)=us:jLbj 6 kF(Ol � O)k1 Z U�U j'T (u� i)j�1(u4 + u2)1=2jwU� (u)j du. �2U�(s+3) Z U�U eT �22 u2+2Tk�kL1 jujs+2 du:Making use of R U0 2ueu2 du = eU2�1 = E(U2)U2 for any  > 0, we estimate the last integral byZ U�U eT �22 u2+2Tk�kL1 jujs+2 du 6 e2Tk�kL1U s+3E(T �22 U2)16



and derive from k�kL1 = F�(0) 6 2R for the bias part in the linear termjLbj . �2E(T �22 U2): (7.10)For the variane part of the linear error term we use the support properties supp(wU� ) 2 [�U;U ℄and supp(bk) = [xk�1; xk+1℄. Several appliations of the Planherel identity, the Cauhy-Shwarzinequality and estimate (7.7) then yieldLv = Z U�U Z U�U Cov �'T (u� i)�1(u� i)uF ~O(u); 'T (v � i)�1(v � i)vF ~O(v)�wU� (u)wU� (v) du dv= NXk=1 Æ2k���Z U�U 'T (u � i)�1(u� i)uFbk(u)wU� (u) du���2= 2� NXk=1 Æ2k���Z 1�1F�1�'T (u� i)�1(u� i)uwU� (u)�(x)bk(�x) dx���26 2� NXk=1 Æ2k Z xk+1xk�1 ���F�1�'T (u� i)�1(u� i)uwU� (u)�(�x)���2 dx kbkk2L2. �kÆk2l1 Z 1�1 ���F�1�'T (u� i)�1(u� i)uwU� (u)�(�x)���2 dxs �kÆk2l1 Z U�U j'T (u� i)j�2(u4 + u2)wU� (u)2 du. �U�1E(T�2U2)kÆk2l1 :Altogether we obtain for the linear error termEh���Z U�U L(u)wU� (u) du���2i . E(T�2U2)��4 + U�1�kÆk2l1�: (7.11)It remains to estimate the quadrati remainder term. We use Lemma 7.2, Proposition 7.1, theindependene of ("k), the �niteness of their fourth order moments and estimates (4.5), (7.7):Eh���Z U�U R(u)wU� (u) du���2i. Z U�U Z U�U Eh���F( ~O �O)(u)F( ~O � O)(v)���2iu4wU� (u)v4wU� (v)�(u)2�(v)2 du dv. Z U�U Z U�U�kF(Ol �O)k41 + E [jF( ~O �Ol)(u)F( ~O �Ol)(v)j2℄�u4wU� (u)v4wU� (v)�(u)2�(v)2 du dv. Z U�U Z U�U��8 + E h��� NXk;l=1 ÆkÆl"k"lFbk(u)Fbl(v)���2i�u4wU� (u)v4wU� (v)�(u)2�(v)2 du dv. Z U�U Z U�U��8 + NXk;l=1 Æ2kÆ2l jFbk(u)j2jFbl(v)j2�u4wU� (u)v4wU� (v)�(u)2�(v)2 du= ��4 Z U�U u4wU� (u)�(u)2 du�2 + �Z U�U NXk=1 Æ2kjFbk(u)j2u4wU� (u)�(u)2 du�2. ��8U4 +�4U4kÆk2l2�E(T�2maxU2)2:This gives the result that the total risk of �̂2 is of orderE [j�̂2 � �2j2℄ . U�2(s+3) + ��4 + U�1�kÆk2l1�E(T�2U2) + ��8U4 +�4U4kÆk2l2�E(T�2maxU2)2:17



Beause of U . ��1 and �kÆk2l2 . kÆk2l1 the bound simpli�es to (7.4).7.3 Proof of Theorem 4.3The rates (4.10) and (4.11) follow from the rate-optimal hoie (4.9) of U and the Gs(R; �max)-uniform risk estimatesE [ĵ � j2℄ . U�2(s+2) + E(T�2U2)U"2 + E(T�2maxU2)2U6"4; (7.12)E [j�̂� �j2℄ . U�2(s+1) + E(T�2U2)U3"2 + E(T�2maxU2)2U8"4; (7.13)when inserting � = 0 in the ase �max = 0.Sine the laimed risk bound for ̂ is larger than for �̂2, we only need to estimate the risk of ̂+ �̂22instead of that for ̂. Equally, we an restrit to �̂� �̂22 � ̂ instead of �̂. Then the proof followsexatly the lines of the proof for �̂2, the only di�erene being the di�erent norming in estimate(4.5) giving rise to a fator U for  and a fator U2 for �. It remains to note that we obtain thebounds in the ompound Poisson ase by setting � = �max = 0 and onsidering the ontinuousextension of the bounds for that ase: For ̂ we obtain as bias���Z U�U F�(u)wU (u) du��� . U�(s+2): (7.14)The linear error term is estimated byEh�Z U�U L(u)wU (u) du�2i . (E(T�2U2)�U2�4 + U�kÆk2l1�; � 2 [0; �max℄ unknown,U2�4 + U�kÆk2l1 ; � = �max = 0: (7.15)and the remainder satis�esEh���Z U�U R(u)wU (u) du���2i . (��8U6 +�4U6kÆk2l2E(T�2maxU2)2; � 2 [0; �max℄ unknown,�8U6 +�4U6kÆk2l2 ; � = �max = 0: (7.16)Altogether we obtain the risk estimate (7.12).For �̂ we obtain the same asymptoti error bounds as for ̂, but multiplied by U when regardingthe root mean square error. This gives (7.13) and (4.11).7.4 Proof of Theorem 4.4The assertion follows as soon as the following Gs(R; �max)-uniform risk bound for general U holds:E h Z 1�1j�̂(x) � �(x)j2 dxi . U�2s + E(T�2U2)U5"2 + E(2T�2maxU2)U9"4: (7.17)The bias in estimating � due to the uto� at U an be estimated byZ 1�1jF�(u)(1� 1[�U;U ℄)j2 du 6 U�2s Z 1�1juj2sjF�(u)j2 du = U�2sk�(s)k2L2 : (7.18)The variane term an be split up aording to the di�erent risk ontributions. For u 2 [�U;U ℄we obtainE [jF(�̂� �)(u)j2℄ 6 4 E [j ~ (u)�  (u))j2℄ + 4(u2 + 1)2 E [j�̂2 � �2j2℄+ 4(u2 + 1) E [ĵ � j2℄ + 4 E [j�̂� �j2℄. E [jL(u)j2℄ + E [jR(u)j2℄ + U4 E [j�̂2 � �2j2℄ + U2 E [ĵ � j2℄ + E [j�̂� �j2℄. E [jL(u)j2℄ + E [jR(u)j2℄ + U�2(s+1) + E(T�2U2)U3"2 + E(T�2maxU2)2U8"4:18



In analogy to the previous estimates when proving Theorem 4.2, we �ndE [jL(u)j2℄ 6 j'T (u� i)j�2(u4 + u2)(kF(O � Ol)k21 +Var[F ~O(u)℄) . eT�2u2u4��4 +�2kÆk2l2�:With a look at Lemma 7.2 we estimate the remainder byE [jR(u)j2℄ 6 16�(u)�4(u4 + u2)2 E [jF(Ol �O)(u)j4 + jF( ~O � Ol)(u)j4℄. e2T�2maxu2u8��8 +�4kÆk4l2�:The Planherel identity and these estimates yield together (7.17) viaZ 1�1 E [j�̂(x) � �(x)j2℄ dx . U�2s + E(T�2U2)U5"2 + E(2T�2maxU2)U9"4+ E(T�2U2)U4"2 + E(T�2maxU2)2U9"4s U�2s + E(�2U2)U5"2 + E(2T�2maxU2)U9"4:8 Proof of the lower boundsWe follow the usual Bayes prior tehnique, see e.g. Korostelev and Tsybakov (1993), and perturb a�xed L�evy triplet T0 = (0; 0; �0) in the interior of Gs(R; �max) suh that the perturbations remainin Gs(R; �max).8.1 Lower bound for � in the ase � = 0Fix a positive integer j. Let  (j) 2 C1(R) be some funtion with support in [0; 1℄ satisfyingk (j)kL2 = 1, R  (j)(x)e�2�jx dx = 0 and R jF (j)(u)u�2j2 du <1. Certainly, there are in�nitelymany funtions  (j) ful�lling these requirements; the last property follows for instane if  is theseond derivative of an L2-funtion. Introdue the wavelet-like notation jk(x) := 2j=2 (j)(2jx� k); j > 0; k = 0; : : : ; 2j � 1:Consider for any r = (rk) 2 f�1;+1g2j and some � > 0 the perturbed L�evy triplets Tr = (0; 0; �r)with �r(x) = �0(x) + �2�j(s+1=2) 2jXk=1 rk jk(x); x 2 R:We note that due to F jk(0) = 0 and R e�x jk(x) dx = 0 the triplet Tr satis�es the martingaleondition suh that Tr 2 Gs(R; 0) holds for a suÆiently small hoie of the onstant � > 0.The Gaussian likelihood ratio of the observations under the probabilities orresponding to Tr0 andTr under the law of Tr for some r; r0 with rk = r0k for all k exept one k0 is given by�(r0; r) = exp�Z 1�1(Or0 �Or)(x)"�1 dW (x)� 12 Z 1�1jOr0 �Or)(x)j2"�2 dx�:Hene, the Kullbak-Leibler divergene (relative entropy) between the two observation modelsequals KL(Tr0 jTr) = 12 Z 1�1j(Or0 �Or)(x)j2"�2 dx:The standard Assouad Lemma (Korostelev and Tsybakov 1993, Thm. 2.6.4) now yields the lowerbound for the risk of any estimator �̂ of �inf�̂ supT=(0;;�)2Gs(R;0)ET hZ j�̂(x)� �(x)j2 dxi & 2jk�r � �r0k2L2 s 2�2js;19



provided the Kullbak-Leibler divergene KL(Tr0 jTr) stays uniformly bounded by a small onstant.It remains to determine a minimal rate for 2j !1 suh that this holds when the noise level tendsto zero.Arguing in the spetral domain and using the general estimate jez�1j 6 2jzj, for jzj 6 Æ and somesmall Æ > 0, together with k'T;r0='T;rk1 ! 1 for 2j !1, we obtain for all suÆiently large jKL(Tr0 jTr) = 14�"2 Z 1�1jF(Or0 � Or)(u)j2 du6 "�2 Z 1�1 ���'T;r(u� i)� 'T;r0(u� i)u(u� i) ���2 du6 4"�2 Z 1�1j'T;r(u� i)j2T 2jF(�r � �r0 )(u)j2(u4 + u2)�1 du. "�22�j(2s+1) Z 1�1jF jk0(u)j2u�4 du= "�22�j(2s+5) Z 1�1jF (j)(v)j2v�4 dv:Hene, for 2j(2s+5) s "2 with a suÆiently large onstant the Kullbak-Leibler divergene remainsbounded and the asymptoti lower bound for � follows.8.2 Lower bound for  and � in the ase � = 0Let us start with the lower bound for . We proeed as before by perturbing a triplet T0 = (0; 0; �0)from the interior of Gs(R; 0), but this time we only onsider one alternative T1 = (0; 1; �1) andhoose the perturbation in suh a way that the harateristi funtion 'T (u � i) does not hangefor small values of juj. For any Æ > 0 and U > 0 put1 := 0 + Æ; F�1(u) := F�0(u)� Æi(u� i)e�u2=U2 ; u 2 R:Then the funtion �1 is real-valued. Moreover, the martingale ondition (2.3) is satis�ed:1 +F�1(0)� F�1(i) = 0 + Æ + F�0(0)� Æ �F�0(i) + 0 = 0:Beause ofk�(s)1 � �(s)0 k1 6 2� Z 1�1jujsjF(�1 � �0)(u)j du . Æ Z 1�1jujs+1e�u2=U2 du s ÆU s+2and even better bounds for k�(k)1 � �(k)0 kL2 , k = 0; : : : ; s, it suÆes to hoose U s Æ�1=(s+2) smallenough to ensure that T1 still lies in our nonparametri lass Gs(R; 0). The basi lower boundresult (Korostelev and Tsybakov 1993, Prop. 2.2.2) then yieldsinf̂ sup(0;;�)2Gs(R;0)E;�[ĵ � j2℄ & Æ2;provided the Kullbak-Leibler divergene between T1 and T0 remains asymptotially bounded. Asin the lower bound proof for � we obtain asymptotiallyKL(T1jT0)6 4"�2 Z 1�1j'0;T (u� i)j2T 2ji(1 � 0)(u� i) + F(�1 � �0)(u)� F(�1 � �0)(i)j2(u4 + u2)�1 du. "�2Æ2 Z 1�1ji(u� i)(1� e�u2=U2)j2(u4 + u2)�1 du= "�2Æ2 Z 1�1(1� e�v2)2U�2v�2U dv. "�2Æ2U�1 s "�2Æ(2s+5)=(s+2): 20



The latter remains small for Æ s "(2s+4)=(2s+5) with a small onstant, whih gives the asymptotilower bound for .For the lower bound of � we perturb the triplet T0 leaving 0 and �0 = 0 �xed and puttingF�1(u) := F�0(u) + Æe�u(u�i)=U2:Then �1 is real-valued, �1 � �0 = F(�1 � �0)(i) = Æ and the triplet T1 = (0; 0; �1) satis�es themartingale ondition. For U s Æ�1=(s+1) with a suÆiently small onstant the perturbation �1 liesin Gs(R; 0) due to k�(s)1 � �(s)0 k1 . Æ Z 1�1jujse�u2=U2 du s ÆU s+1and even better bounds for k�(k)1 � �(k)0 kL2, k = 0; : : : ; s. The Kullbak-Leibler divergene isasymptotially bounded byKL(T1jT0) 6 4"�2 Z 1�1j'0;T (u� i)j�2T 2jF(�1 � �0)(u) �F(�1 � �0)(i)j2(u4 + u2)�1 du. "�2Æ2 Z 1�1j1� e�u(u�i)=U2 j2(u4 + u2)�1 du= "�2Æ2 Z 1�1j1� e�v2+iv=U j2(U4v4 + U2v2)�1U dv. "�2Æ2U�3 s "�2Æ(2s+5)=(s+1)and we obtain the asymptoti lower bound for �.8.3 Lower bound for � in the ase � > 0The interesting deviation from standard proofs of lower bounds (see e.g. Butuea and Matias(2005)) for severely ill-posed problems is that we fae the restrition that F� is analyti in astrip parallel to the real line and is uniquely identi�able from its values on any open set. So, letT0 = (�20; 0; �0) with �0 > 0 be a L�evy triplet from the interior of Gs(R; �max). Consider theperturbation T1 = (�20; 0; �1) withF�1(u) := F�0(u) + Æm1=4e�(T�20u2=m)m=2(T�20=m)mum(u� i)m; u 2 R:for m 2 N, Æ > 0. Then we have uniformly for m!1 and Æ ! 0k�1 � �0k2L2 = 2�kF(�1 � �0)k2L2 = 2�Æ2pT�20 Z 10 e�vv(1+2m)=2m(1 +m�1v�1=m)m dv s Æ2:Similarly, for k = 1; : : : ; s we derive uniformly in m and Æk�(k)1 � �(k)0 kL2 = p2�kukF(�1 � �0)(u)kL2 s Æmk=2;k�(s)1 � �(s)0 k1 6 kusF(�1 � �0)(u)kL1 6 Æms=2�1=4:Therefore hoosing Æ s m�s=2 with a small onstant yields T1 2 Gs(R; �max) beause we then alsohave that �1 is real-valued and T1 satis�es the martingale ondition and Assumption 1.By the same arguments as before and by Stirling's formula to estimate the Gamma funtion, theKullbak-Leibler divergene between the observations under T0 and under T1 is asymptotially21



bounded byKL(T1jT0) 6 4"�2 Z 1�1j'0;T (u� i)j2T 2jF(�1 � �0)(u)j2(u4 + u2)�1 du. "�2Æ2 Z 1�1 e�T�20u2m1=2e�(T�20u2=m)m (T�20=m)2mu2m�2ju� ij2m�2 du= "�2Æ2m�7=2(T�20m)�1=2 Z 10 e�mv1=me�vv(2m�1)=2m(1 +m�1v�1=m)m�1 dv. "�2Æ2m�4 Z 10 e�mv1=m dv= "�2Æ2m�4 Z 10 e�zzm�1m1�m dz= "�2Æ2m�m�3�(m) . "�2Æ2m�m�3(m� 1)m�1=2e1�m s "�2m�3�se�mConsequently, the Kullbak-Leibler divergene remains small when hoosing m > 2 log("�1), butm . log("�1), whih gives Æ s log("�1)�s=2. From the basi general lower bound result wetherefore obtain the asymptoti lower bound for �.8.4 Lower bound for �2,  and � in the ase � > 0Let us start with the lower bound for . We proeed as in the ase � = 0 by perturbing the tripletT0 = (�0; 0; �0) with �0 > 0 in suh a way that the harateristi funtion 'T (u � i) does nothange muh for small values of juj. For any Æ put1 := 0 + Æ; F�1(u) := F�0(u) � Æi(u � i)e�u2m=U2m :Then �1 is real-valued and the martingale ondition (2.3) is satis�ed. Beause ofk�(s)1 � �(s)0 k1 6 Z jujsjF(�1 � �0)(u)j du . Æ Z 1�1jujs+1e�u2m=U2m du s ÆU s+2and smaller bounds for k�(k)1 � �(k)0 kL2 , k = 0; : : : ; s, we hoose U s Æ�1=(s+2) small enough toensure that the perturbed triplet T1 still lies in Gs(R; �max). In the same manner as before andusing j1� e�xj 6 jxj, x > 0, as well as Stirling's formula, we obtainKL(T1jT0) 6 4"�2 Z 1�1j'0;T (u� i)j2T 2ji(1 � 0)(u � i)++F(�1 � �0)(u) �F(�1 � �0)(i)j2(u4 + u2)�1 du. "�2Æ2 Z 1�1 e�T�20u2 ji(u� i)(1 � e�u2m=(2U2m))j2(u4 + u2)�1 du. "�2Æ2 Z 1�1 e�T�20u2u4mU�4mu�2 dus "�2Æ2U�4m�(2m � 12 )s "�2Æ2+4m=(s+2)(2m)2me�2mTo keep the Kullbak-Leibler divergene small, we hooseÆ(2s+4m+4)=(s+2) s "2(2m)�2me2mand thus obtain uniformly over m the boundinf̂ supT=(�2;;�)2Gs(R;�max ) ET [ĵ � j2℄1=2 & �"2(2m)�2me2m�(s+2)=(2s+4m+4):22



The maximizer of this expression m� s log("�1) then yields the asymptoti lower bound for .For � we perturb the triplet T0 leaving �0 and 0 �xed and putting for an even integer mF�1(u) := F�0(u) + Æe�um(u�i)m=U2m :Then �1��0 = F(�1��0)(i) = Æ and the triplet T1 = (�0; 0; �1) satis�es the martingale ondition.For U s Æ�1=(s+1) with a suÆiently small onstant the perturbation �1 lies in Gs(R; �max). Asbefore we prove that the Kullbak-Leibler divergene remains bounded wheneverÆ(2s+4m+2)=(s+1) s "2(2m)�2m+1e2m:Choosing m� s log("�1) as before gives the asymptoti lower bound for �.For �2 we perturb the triplet T0 leaving 0 invariant and putting�21 := �20 + 2Æ; F�1(u) := F�0(u) + Æ(u� i)2e�u2m=U2m :Then the martingale ondition (2.3) is satis�ed and for U s Æ�1=(s+3) suÆiently small we remainin Gs(R; �max). It is again routine to prove that the Kullbak-Leibler divergene remains boundedwhenever Æ(2s+4m+6)=(s+3) s "2(2m)�2m�1e2m:Choosing m� as before gives the asymptoti lower bound for �2.9 Appendix9.1 Proof of Proposition 2.1(a) This follows from the put-all parity (2.4).(b) O(x) > 0 follows diretly from (2.6) while O(x) 6 E [eXT ℄� (1� ex)+ = 1 ^ ex follows from(a) and the martingale ondition.() We onlude by H�older's and Markov's inequality for x > 0O(x) 6 E [eX�1fX�>xg℄ 6 C1=�� P(X� > x)(��1)=� 6 C1=�� �C�e�x�(��1)=� = C�e(1��)x:(d) Let us denote by fT the density of the absolutely ontinuous part of the distribution of XT .The only atom in the distribution of XT an our at T , namely in the ompound Poissonase when no jump until T has taken plae. For x 6= 0 we haveO0(x) = � E [(eXT � ex)1fXT>xg℄�0 + ex1fx<0g = ex��P(XT > x) + 1fx<0g�: (9.1)This yields O0(0+) �O0(0�) = �1 and in the ase � = 0, � <1,  6= 0 alsoO0(T+) � O0(T�) = eT P(XT = T ) = e(��)T :At all points x 6= 0 where the law of XT has no atom we obtainO00(x) = ��exP(XT > x)�0 + ex1fx<0g = ex�P(XT < x) + fT (x)� 1fx>0g�:Consequently, by partial integration and using E [eXT ℄ = 1 we arrive atZRnf0;TgjO00(x)j dx = O0(0�) + Z 10 ex���P(XT < x)� 1 + fT (x)���dx6 P(XT < 0) + Z 10 ex(1�P(XT < x)) dx+ E �1fXT>0geXT �= 2P(XT < 0)� 1 + 2 E �1fXT>0geXT �6 1 + 2 E [eXT ℄ = 3:23



(e) By de�nition we haveFO(v) = S�1�Z 0�1 eivxPT (x) dx+ Z 10 eivxCT (x) dx�= Z 0�1 eivx E �1fXT6xg(ex � eXT )� dx+ Z 10 eivx E �1fXT>xg(eXT � ex)� dx:By partial integration we obtainZ 0�1 e(iv+1)xP(XT 6 x) dx = 11 + iv P(XT 6 0)� 11 + iv E �1fXT60ge(1+iv)XT �;Z 0�1 eivx E �1fXT6xgeXT � dx = 1iv E �1fXT60geXT � � 1iv E �1fXT60ge(1+iv)XT �and onsequentlyZ 0�1 eivx E �1fXT6xg(ex � eXT )� dx = 11 + iv P(XT 6 0)� 11 + iv E �1fXT60ge(1+iv)XT �� 1iv E �1fXT60geXT � + 1iv E �1fXT60ge(1+iv)XT �:In the same way we deriveZ 10 eivx E �1fXT>xg(eXT � ex)� dx = � 1iv E �1fXT>0geXT �+ 1iv E �1fXT>0ge(1+iv)XT �+ 11 + iv P(XT > 0)� 11 + iv E �1fXT>0ge(1+iv)XT �:Taking into aount E [eXT ℄ = 1, we obtain formula (2.7).9.2 Proof of Proposition 5.1We only sketh the main steps in the proof, the reasoning being similar to that for frationalderivatives, f. Samko, Kilbas, and Marihev (1993). The following formula is easily establishedand losely related to equation (5.8) in Samko, Kilbas, and Marihev (1993):F(��(x)x1��)(u) = �(2� �) sin(��=2)�i Z 10 z��2�F��(u+ z)� F��(u� z)� dz:Let us only onsider the ase u > 0 and setGu(x) := 1(s � 1)! Z x0 (x� �)s�1F��(u+ �) d� + 2�1(�1;�u℄(x) s�1Xk=0�(k)� (0) (�i)k(u+ x)s�k�1(s� k � 1)!k!Then we have in a distributional senseG(k)u (0) = 0; k = 0; : : : ; s� 1; G(s)u (x) = F��(u+ x) + 2� s�1Xk=0�(k)� (0) (�i)kÆ(k)�u(x)k! :Hene, by s-fold partial integration we obtainZ 10 z��2�F��(u+ z)� F��(u� z)� dz � 2� s�1Xk=0�(k)� (0)ik��� 2k �u��2�k= Z 10 z��2�G(s)u (z) �G(s)u (�z)� dz = � sYk=1(k + 1� �)�Z 10 Gu(z) � (�1)sGu(�z)zs+2�� dz:It therefore suÆes to show that the last integral is of order juj�s�min(1;2��), whih is aom-plished by splitting the integration interval into the parts [0; 1℄, [1; u℄ and [u;1) and making useof jF��(u)j . (1 + juj)�s�1 and of the properties of Gu established above. We omit the details.24
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