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Abstract. This paper is aimed at analyzing the existence and convergence of approx-

imate solutions in shape optimization. Two questions arise when one applies a Ritz-

Galerkin discretization to solve the necessary condition: does there exists an approximate

solution and how good does it approximate the solution of the original in�nite dimen-

sional problem? We motivate a general setting by some illustrative examples, taking

into account the so-called two norm discrepancy. Provided that the in�nite dimensional

shape problem admits a stable second order optimizer, we are able to prove the existence

of approximate solutions and compute the rate of convergence. Finally, we verify the

predicted rate of convergence by numerical results.

1. Introduction

Shape optimization is quite indispensable for designing and constructing industrial com-

ponents. Many problems that arise in application, particularly in structural mechanics

and in the optimal control of distributed parameter systems, can be formulated as the

minimization of functionals de�ned over a class of admissible domains. Therefore, such

problems have been intensively studied in the literature throughout the last 25{30 years

(see [26, 28, 33, 36], and the references therein). However, only few attempts have been

made to investigate the convergence of approximate solutions to the solution of the orig-

inal shape optimization problem in more detail.

In [14, 15, 16, 18, 19, 20, 21], we considered the numerical solution of several elliptic

shape optimization problems. There, a simple boundary variational approach was used in

combination with boundary integral representations of the shape gradient and the shape

Hessian. It allows the embedding of related shape problem into a Banach space by iden-

tifying the domain with the parametrization of its boundary. Then, a Ritz-Galerkin-like

discretization of the shape optimization problem was introduced. All ingredients of the

shape gradient and shape Hessian, that arise from the state equation, were computed

with suÆciently high accuracy by a fast wavelet boundary element method. This concept

decouples the discretization of the shape from the discretization of the state equation.

As an important consequence, this enables us to consider the convergence of the semidis-

cretized shape problems, that is, only the discretization with respect to the shape has to

be considered. Whereas the numerical results con�rm a good approximation behaviour

to solutions of the original problems, the question of convergence analysis remains still

open.

Identifying the domain with its parametrization with respect to a �xed reference mani-

fold, a shape calculus which is based on �xed variational �elds leads to a second order

Frech�et calculus in a Banach space, cf. [11, 12, 13]. Given now a stationary domain of the

optimization problem under consideration, optimality can be guaranteed often by some

coercivity of the second order Frech�et derivative. However, it turns out that coercivity can

be realized only in a weaker space, usually in the context of elliptic shape optimization a

Sobolev space Hs. This lack of regularity is known from other pde-constrained optimal

control problems as the so-called two norm discrepancy, cf. [3, 4, 23, 24]. The two norm

discrepancy in shape optimization has been observed �rst in [6, 7, 8, 11, 13].
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Section 2 is dedicated to overview on second order shape calculus. Additionally, we

give some examples to illustrate particular cases of the two norm discrepancy. First, we

consider shape functionals based on a simple domain or boundary integral. Then, we treat

pde-constraint shape optimization problems by means of elliptic free boundary problems.

Finally, for sake of completeness, we shall also have a look to shape optimization problems

with additional functional constraints.

Motivated by these examples, we present in Section 3 an abstract setting for the inves-

tigation of the second order suÆcient optimality condition to verify stable minimizers.

Then, we introduce suitable trial spaces to discretize the shape optimization problem by

means of a Ritz-Galerkin method for solving the necessary condition. The Ritz-Galerkin

method solves a �nite dimensional optimization problem, that arises from restricting the

class of admissible domains to those domains given by the trial space. We show that there

exist approximate solutions provided that the level of discretization is suÆciently large

and prove convergence of the approximate solutions 
N to 
?, the optimal solution of the

original in�nite dimensional shape problem. The approximate solution behaves like the

best approximation in the trial space to 
?, with respect to the natural space of coercivity

of the shape Hessian. Therefore, the computation of the rate of convergence is along the

lines of a conventional approximation theory.

In Section 4, we present two numerical examples that con�rm our analysis. The �rst

one is a simple shape problem based on a domain integral minimization, which is mainly

incorporated for illustration. The second is a more advanced pde-constrained shape op-

timization problem, with several additional functional constraints. Both examples are

chosen such that the optimal domain is known a priori. We observe rates of convergence

which verify to the present theory.

2. Motivation and Background

2.1. Shape Calculus. Shape optimization is concerned with the minimization of the

shape functional

(2.1) J(
) =

Z



j(u;ru;x)dx! min; 
 2 �;

where � is a suitable class of admissible domains 
 2 Rn. The so-called state u satis�es

an abstract free boundary problem

(2.2)
Lu = 0; in 
;

Bu = 0; on �;

where L corresponds to a well posed elliptic boundary value problem in the domain 


and B operates on the functions supported at the free boundary � � @
. For sake of

simplicity, we restrict ourselves to �nding solutions with known topology and assume all

involved functions and data suÆciently smooth.

Generally, the problem (2.1) is highly implicit with respect to the shape of the domain and

has to be solved iteratively. The canonical way to solve the minimization problem is to
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determine its stationary points. Then, via the second order optimality condition regular

minimizers of second order are veri�ed. To this end, we will briey survey on shape

calculus. In particular, we refer the reader for example to Murat and Simon [30, 35],

Pironneau [33], Sokolowski and Zolesio [36], Delfour and Zolesio [10], and the references

therein. Herein, two basic concepts are considered, namely, the perturbation of identity

(Murat and Simon) and the speed method (Sokolowski and Zolesio).

For example, the perturbation of identity exploits a smooth perturbation �eldU : 
! R
n

and de�nes the standard domain perturbation as


"[U] := f(I+ "U)(x) : x 2 
g:
Then, the directional derivative of J(
) is computed as

rJ(
)[U] := lim
"!0

J(
"[U])� J(
)

"
:

It is known since Hadamard [25] that rJ(
)[U] is a distribution living only on the free

boundary of the domain 
 provided that J(
) is shape di�erentiable, see also [9].

The latter observation leads to the idea to consider simply boundary variations for the

update in the optimization algorithms. Hence, it is quite convenient to apply directly

boundary variations for the computation of the boundary integral representations of the

shape gradient and Hessian. To this end, we introduce an n-dimensional reference mani-

fold �0 and consider a �xed boundary perturbation �eld, for example in direction of the

outer normal n0. We suppose that the free boundary of each domain 
 2 � can be

parameterized via a suÆciently smooth function r in terms of

 : �0 ! �; (x) = x+ r(x)n0(x):

That is, we can identify a domain with the scalar function r. De�ning the standard

variation


"
: �0 ! �"; 

"
(x) := (x) + "dr(x)n0(x);

where dr is again a suÆciently smooth scalar function, we obtain the perturbed domain


". Consequently, both, the shape and its increment, can be seen as elements of a Banach

space X. We will specify the notion \suÆciently smooth" in the next subsections.

2.2. Optimization of Domain or Boundary Integrals. First we introduce some no-

tation. For a given domain D 2 Rn the space C2(D) consists of all two times continuously

di�erentiable functions f : D ! R
m. A function f 2 C2(D) belongs to C2;�(D), if the

(spatial) Hessian r2f is H�older continuous with coeÆcient 0 < � � 1. A domain D 2 Rn

is of class C2;� if for each x 2 @D a neighborhood U(x) � @
 and a di�eomorphism

 : [0; 1]n�1 ! U(x) exists such that  2 C2;�([0; 1]n�1), see [38] for example.

For sake of clearness, we present here two elementary shape problems, since both, the

shape calculus and the analysis, become much more evident in comparison to the more

advanced shape optimization problems presented in the subsequent subsections. To this
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end, let n = 2, 
 2 C1, and consider the following shape optimization problem of domain

integral type

(2.3) J(
) =

Z



h(x)dx! min;

where h 2 C1(R2) are given data. We choose the class of admissible domains as the set

of all domains which are starshaped with respect to the origin. Then, we can choose �0

as the unit circle. Equivalently, we can parameterize � = @
 via polar coordinates

� :=
n
(�) = r(�)

�
cos�
sin�

�
: � 2 [0; 2�]

o
;

where r 2 C1
per([0; 2�]) is a positive function. Here and in the sequel, the space Ck;�

per is

de�ned as

Ck;�

per ([0; 2�]) = ff 2 Ck;�([0; 2�]) : f (i)(0) = f (i)(2�) for all i = 0; : : : ; kg;
and likewise Ck

per([0; 2�]). Let us further remark that the tangent and the outer normal

at � are computed by

(2.4) t =
r0
�
cos�
sin�

�
+ r

�
� sin�
cos�

�
p
r2 + r02

; n =
r0
�

sin�
� cos�

�
+ r

�
cos�
sin�

�
p
r2 + r02

:

We consider dr 2 C1
per([0; 2�]) as standard variation for perturbed domains 
" and bound-

aries �", respectively, de�ned by r"(�) = r(�)+"dr(�), where 
"
(�) = r"(�)n0(�) is always

a Jordan curve. Herein, n0(�) = [cos�; sin�]T denotes the outer normal vector to the

reference manifold �0.

Lemma 2.1 ([12]). The shape functional from (2.3) is twice Frech�et di�erentiable with

respect to C1
per([0; 2�]), where the shape gradient and Hessian read as

rJ(
)[dr] =
Z 2�

0

r(�)dr(�)h
�
r(�); �

�
d�;

r2J(
)[dr1; dr2] =

Z 2�

0

dr1(�)dr2(�)

�
h
�
r(�); �

�
+ r(�)

@h

@n0

�
r(�); �

��
d�:

Consider now a stationary domain 
?, which meansrJ(
?)[dr] = 0 for all dr 2 C1([0; 2�]).

Of course, the latter equation implies that hj�? � 0. Hence, as one readily veri�es, it holds

r2J(
?)[dr1; dr2] =

Z 2�

0

dr1(�)dr2(�)

(
r?2(�)p

r?2(�) + r?02(�)

@h

@n

�
r?(�); �

�)
d�:

Optimality can be guaranteed often by some coercivity of the second order Frech�et deriv-

ative. However, it is impossible to realize coercivity with respect to C1
per([0; 2�]), only an

estimate

r2J(
?)[dr; dr] � cEkdrk2L2([0;2�])

for some cE > 0 can be expected. Note that we have such an estimate if (@h=@n)j�? �
cE > 0. This lack of regularity is known from other control problems as the so-called two
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Figure 2.1. The domain 
 and its boundaries � and �.

norm discrepancy. Nevertheless, the bilinear form imposed by the shape Hessian r2J(
)

is obviously also continuous on L2([0; 2�])� L2([0; 2�]), that is

jr2J(
)[dr1; dr2]j � cS(
)kdr1kL2([0;2�])kdr2kL2([0;2�])

for all dr1; dr2 2 L2([0; 2�]). Notice that it is generally impossible to extend the domain of

de�nition C1([0; 2�]) to L2([0; 2�]). In other words, J is only densely de�ned with respect

to L2([0; 2�]).

Also in the case of shape optimization problem of boundary integral type

(2.5) J(
) =

Z
�

g(x)d� ! min;

where g 2 C2(R2) are given data, one makes the above observations concerning the

coercivity. Likewise to above, coercivity cannot be realized in C1
per([0; 2�]). The energy

space of the bilinear form imposed by the shape Hessian r2J(
) is the Sobolev space

H1
per([0; 2�]), see [12] for the details.

2.3. PDE-Constrained Shape Optimization Problems. We shall consider free el-

liptic boundary problems as the most illustrational model problem for pde-constrained

shape optimization problems. Let T � R
n denote a bounded domain with boundary

@T = �. Inside the domain T we assume the existence of a simply connected subdomain

S � T with �xed boundary @S = �. We denote the annular domain T n S by 
, see also

Figure 2.3.

We consider the following overdetermined boundary value problem in the annular domain




(2.6)

�u = 0 in 
;

kruk = g on �;

u = 0 on �;

u = h on �;

where g; h > 0 are suÆciently smooth functions such that the shape di�erentiability of

the objective (2.7) is provided up to second order. We like to stress that the positivity of
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these data implies that u is positive in 
. Hence, denoting by n the outer normal at �

with respect to 
, given by (2.4), there holds the identity

kruk � �@u

@n
on �

since u admits homogeneous Dirichlet data on �.

We arrive at a free boundary problem since the boundary � is the unknown. In other

words, we seek a domain 
 with �xed boundary � and unknown boundary � such that the

overdetermined boundary value problem (2.6) is solvable. For the existence of solutions

we refer the reader to e.g. [1, 22].

Shape optimization provides an eÆcient tool to solve such free boundary value problems,

cf. [10, 27, 36, 37]. Considering the cost functional

(2.7) J(
) =

Z



kruk2 + g2dx

with underlying state equation

(2.8)

�u = 0 in 
;

u = 0 on �;

u = h on �;

the solution of the free boundary problem is equivalent to the shape optimization problem

(2.9) J(
)! min :

This issues from the necessary condition of a minimizer of the cost functional (2.7), that

is,

(2.10) rJ(
)[U] =

Z
�

hU;ni
�
g2 �

�
@u

@n

�2�
d� = 0

has to be valid for all suÆciently smooth perturbation �elds U. Hence, via shape opti-

mization a variational formulation of the condition

(2.11)
@u

@n
= �g on �

is induced. However, a stationary domain 
? of the minimization problem (2.7),(2.8) will

be a stable minimum if and only if the shape Hessian is strictly H1=2([0; 2�])-coercive at

this domain (see below).

It suÆces to consider S 2 C0;1 but due to a second order boundary perturbation calculus,

we have to assume T 2 C2;� for some �xed � 2 (0; 1). We assume likewise to the previous

subsection the domain T to be starshaped with respect to 0 and apply the same shape

calculus. The shape gradient of the cost functional in (2.7) becomes in polar coordinates

(2.12) hrJ(
); dri =
Z 2�

0

dr r

�
g2 �

�
@u

@n

�2�
d�:

6



The shape Hessian reads in accordance with [11, 12] as

hr2J(
) � dr1; dr2i =
Z 2�

0

dr1dr2

(
g2 �

�
@u

@n

�2
+ 2rghrg;n0i(2.13)

� 2rp
r2 + r02

@u

@n

�
r
@2u

@n2
+ r0

@2u

@n@t

�)
� 2r dr1

@u

@n
� @du[dr2]

@n
d�:

Herein, the local shape derivative du = du[dr2] of the state function satis�es

(2.14)

�du = 0 in 
;

du = 0 on �;

du = �dr2 hn0;ni @u@n on �:

Notice that @2u=@n2 := hr2u � n;ni and @2u=(@n@t) := hr2u � n; ti.
Lemma 2.2 ([11, 21]). The shape Hessian r2J(
) de�nes a continuous bilinear form on

H1=2([0; 2�])�H1=2([0; 2�]), that is, there exists a constant cS(
) depending only on the

actual domain 
 such that

jr2J(
)[dr1; dr2]j � cS(
)kdr1kH1=2([0;2�])kdr2kH1=2([0;2�]):

In accordance with this lemma, we observe that the shape Hessian is a pseudodi�erential

of order one, i.e. r2J(
) : H1=2([0; 2�])! H�1=2([0; 2�]). In particular, the last term in

(2.13) implies that the shape Hessian is a nonlocal operator.

According to [21] the following suÆcient criterion concerning the H1=2([0; 2�])-coercivity

holds.

Lemma 2.3. The shape Hessian r2J(
?) is H1=2([0; 2�])-coercive, that is, there exists a

constant cE > 0 such that

r2J(
?)[dr; dr] � cEkdrk2H1=2([0;2�])
;

if

�+

�
@g

@n

�.
g � 0 on �:

In particular, in the case g � const:, the shape Hessian is H1=2([0; 2�])-coercive if the

boundary �? is convex (seen from inside).

The problem under consideration can be viewed as the prototype of a free boundary prob-

lem arising in many applications. For example, the growth of anodes in electrochemical

processing might be modeled like above with g; h � 1.

In the two dimensional exterior magnetic shaping of liquid metals the state equation is

an exterior Poisson equation and the uniqueness is ensured by a volume constraint of the

domain 
 [5, 16, 31, 32], cf. the following subsection. However, since the shape functional

involves the perimeter, which corresponds to the surface tension of the liquid, the energy

space of the Ritz-Galerkin scheme will be H1([0; 2�]).
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The detection of voids or inclusions in 2d or 3d electrical impedance tomography is slightly

di�erent since the roles of � and � are interchanged [19, 20, 34]. Particularly, this inverse

problem is severely ill-posed, in contrary to the present class of problems. It has been

proven in [19] that the shape Hessian is not strictly coercive in any Hs([0; 2�]) for all

s 2 R.

2.4. Shape Problems with Additional Functional Constraints. We consider the

following shape optimization problem

J(
) =

Z



j(u;ru;x)dx! min;

subject to N domain respective boundary integral equality constraints

Ji(
) =

Z



hi(x)dx = ci; 1 � i �M;

Ji(
) =

Z
�

gi(x)d� = ci; M < i � N:

We suppose that all functionals J and Ji, 1 � i � N , are twice Frech�et di�erentiable in a

certain Banach space X. Moreover, let the Sobolev space Hs denote the strongest energy

space of the bilinear forms imposed by the shape Hessians of all above shape functionals.

Along the lines of standard optimization theory, one considers the free minimization of

the Lagrangian

L(
; �1; : : : ; �N ) := J(
) +

NX
i=1

�i
�
Ji(
)� ci

�
;

if Kuhn-Tucker regularity is provided. Hence, it is well known that the necessary and

suÆcient optimality condition for a regular local optimal shape 
? reads as

Lemma 2.4. Let 
? 2 X satisfy

rL(
?; �?1; : : : ; �
?

N
)[dr] = 0 for all dr 2 X

for certain �?
i
2 R. Moreover, de�ne the linearizing cone

Y := fdr 2 X : rJi(
?)[dr] = 0 for all 1 � i � Ng � X:

Then, 
? is a regular local minimizer of second order if and only if the following coercivity

condition is satis�ed

r2L(
?; �?1; : : : ; �
?

N
)[dr; dr] � cEkdrk2Hs for all dr 2 Y :

Consequently, the general concept developed in Section 3 keeps applicable with respect to

the Banach space Y . We mention that the treatment of inequality constraints is obvious

and related modi�cations are well established in theory.

8



3. Approximation Theory in Shape Optimization

3.1. Assumptions on the Optimization Problem. Let us �rst introduce the abstract

setting which we will need for our theory. To this end, letX denote a Banach space, where

we shall denote the ball fh 2 X : kr � hkX < Æg by BX

Æ
(r).

We consider the following optimization problem in the Banach space X

(P ) J(r)! min; r 2 X:

Herein, J : X 7! R de�nes a two times continuously di�erentiable functional, i.e., the

gradient rJ(r) 2 X? as well as the Hessian r2J(r) 2 L(X;X?) exist for all r 2 X, and

the mappings rJ(�) : X ! X?, rJ2(�) : X ! L(X;X?) are continuous.

We assume that in r? the necessary �rst order optimality condition holds

(A1) rJ(r?)[dr] = 0 for all dr 2 X:

As illustrated in the previous section, we have to take the two norm discrepancy into

account, i.e., the coercivity estimate hold only in a weaker Sobolev space Hs � X, s � 0.

Therefore, we shall assume that there is a constant 0 < cs, depending only on the actual

variable r, such that the continuos bilinear form imposed by the shape Hessian on X �X

extends continuosly to a bilinear form on Hs �Hs, i.e.,

(A2) jr2J(r)[h1; h2]j � cS(r)kh1kHskh2kHs; for all h1; h2 2 Hs;

if r 2 BX

Æ
(r?). Of course, there exists an absolute constant CS, de�ned by

(3.15) CS = max
�
cS(r) : r 2 BX

Æ
(r?)

	
;

such that cS(r) � CS for all r 2 BX

Æ
(r?). Moreover, we assume that r2J is strongly

coercive at r?, that is

(A3) r2J(r?)[h; h] � cEkhk2Hs for all h 2 Hs

for some cE > 0.

Remark 3.1. We want to mention in addition that the existence of a continuous extension

for the objective J from X to Hs is not assumed throughout this paper, since this is not

realistic for shape problems in general, see also related remarks in subsection 2.2. That

is, J remains only \densely de�ned" with respect to Hs, similarly for rJ; r2J . As it

turns out by our investigations, a complete convergence analysis will be possible without

assuming such a continuation property.

As a �rst consequence from our assumptions we conclude the following lemma concerning

Lipschitz continuity of the shape gradient with respect to topologies, induced by the

coercivity spaces of the shape Hessian.

Lemma 3.2. The gradient is locally Lipschitz as a mapping in the (H�s;Hs)-duality

(H�s := (Hs)0), that is

(3.16) krJ(r+ h)�rJ(r)kH�s � CSkhkHs

9



for all r; r + h 2 BX

Æ
(r?). Herein, the constant CS is given by (3.15).

Proof. The assertion follows immediately from the following estimate.

jrJ(r + h)[dr]�rJ(r)[dr]j =
����
Z 1

0

hr2J(r + th) � h; dridt
���� � CSkhkHskdrkHs

for all h 2 X, dr 2 Hs. �

Note that the twice di�erentiability of J provides only the Lipschitz continuity of the

shape gradient in the (X?;X)-duality, i.e.,

krJ(r+ h)�rJ(r)kX? � CSkhkX:
for all r; r+ h 2 BX

Æ
(r?).

3.2. SuÆcient Conditions. The above assumptions allow the following statement on

the regular local optimality of second order for r?. Whereas this is rather standard from

a general optimization point of view, we recall it for convenience.

Theorem 3.3 (SuÆcient second-order optimality condition). Let the necessary condition

(A1) hold for a certain r? 2 X. Suppose that the bilinear form imposed by the shape

Hessian satis�es (A2) for all r 2 BX

Æ
(r?). The domain r? is a strong regular local optimum

of second order

J(r)� J(r?) � cE

4
kr � r?k2

Hs for all r 2 BX

Æ
(r?);

if and only if the shape Hessian satis�es the strong coercivity estimate (A3) and the

following remainder estimate

(A4) jr2J(r)[h1; h2]�r2J(r?)[h1; h2]j � �(kr�r?kX)kh1kHskh2kHs for all h1; h2 2 Hs

holds for all r 2 BX

Æ
(r?), where �(t)! 0 if t! 0.

Proof. For all r = r? + h 2 BX

Æ
(r?) the following Taylor expansion holds

J(r)� J(r?) = 0 +
1

2
r2J(r? + �h)[h; h]; � 2 (0; 1):

According to (3.17) and (A4) we infer

J(r)� J(r?) � 1

2
r2J(r?)[h; h]� jr2J(r? + �h)[h; h]�r2J(r?)[h1; h2]j

� 1

2
r2J(r?)[h; h]� �(khkX)khk2Hs

� 1

2

�
cE � �(khkX)

�khk2
Hs:

Supposing Æ > 0 to be chosen such that �(khkX) � cE=2 for all h 2 BX

Æ
(r?), we arrive at

J(r)� J(r?) � cE

4
kr � r?k2

Hs;

which implies the assertion. �
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Let us remark that the veri�cation of (A4) turns out to be rather technical in case of pde-

constrained shape optimization problems. However, for the presented model problems

(A4) has been proven in [6, 7, 8].

Combining estimate (A4) together with the coercivity (A3) leads to the next lemma.

Corollary 3.4. There exists a Æ > 0 such that the shape Hessian is strongly coercive in

the whole ball BX

Æ
(r?), that is

(3.17) r2J(r)[h; h] � cE

2
khk2

Hs for all h 2 Hs:

Proof. Consider r 2 BX

Æ
(r?). Then, from (A4) we conclude

jr2J(r)[h; h]�r2J(r?)[h; h]j � �(kr � r?kX)khk2Hs for all h 2 Hs:

Choosing Æ > 0 such that �(kr � r?kX) � cE=2 for all r 2 BX

Æ
(0) the assertion follows

immediately from (3.17) and

r2J(r)[h; h] � r2J(r?)[h; h]� �(kr � r?kX)khk2Hs � cE

2
khk2

Hs:

�

Remark 3.5. Combining the continuity of the shape Hessian (A2) with (3.15) we con-

clude in addition the estimate

(3.18)
cE

4
kr � r?k2

Hs � J(r)� J(r?) � CS

2
kr � r?k2

Hs

for all r 2 BX

Æ
(r?).

3.3. Ritz-Galerkin Discretization. We shall consider a Ritz-Galerkin scheme to solve

the necessary condition (A1), i.e., we replace the given in�nite dimensional optimization

problem by a �nite dimensional problem. The trial space should provide some addi-

tional regularity in order to approximate functions in X. To that end, we introduce an

appropriate Hilbert space Hk � X, continuously embedded in X

(V1) krkX � cHk!XkrkHk for all r 2 Hk:

Then, we shall consider a sequence of nested �nite dimensional trial spaces

(V2) V0 � V1 � : : : � VN � : : : � Hk � X;
\
N�0

VN = V0;
[
N�0

VN
Hk

= Hk;

providing the following inverse estimate

(V3) krNkHk � E(N)krNkHs for all rN 2 VN :

Moreover, we assume that there exists an L > k such that the following approximation

property holds

(V4) inf
rN2VN

kr � rNkHs = o
� 1

E(N)

�
krkH` if r 2 H` (k < ` � L):

Herein, the Landau symbol g(x) = o(f(x)) means that limx!1 g(x)=f(x) = 0.

11



Remark 3.6. Suppose X = C2;�([0; 1]) for some � 2 (0; 1), then the Sobolev space

Hk([0; 1]) with 3 � k > 2 + � provides a continuous embedding in accordance with (V1).

Choosing VN � C2;1([0; 1]) as the space of smoothest cubic splines on the uniform subdi-

vision with step width hN := 2�N=4, we have the approximation property

inf
rN2VN

kr � rNkHs . h`�s
N
krkH` if r 2 H` (k < ` � 4)

uniformly in N provided that s < k. The inverse estimate reads as

krNkHk . hk�s
N
krNkHs for all rN 2 VN

uniformly in N provided that k � s. Hence, we conclude that the trial spaces (VN )N�0
satisfy (V2){(V4).

The Ritz-Galerkin scheme reads as follows. In order to solve

(PN ) J(rN )! min; rN 2 VN ;

one seeks an approximate solution rN 2 VN such that the discretized necessary condition

(3.19) rJ(rN)[qN ] = 0

holds for all qN 2 VN .

There are di�erent strategies to �nd rN 2 VN such that (3.19) holds. In general, supposed

that rN has N degrees of freedom, i.e., there exist '1; : : : ; 'N such that

VN = spanf'i : i = 1; : : : ; �Ng;
one makes the ansatz rN =

P
N

i=1 ri�i and considers an iterative scheme

(3.20) r(n+1) = r(n) � h(n)M(n)G(n);

where h(n) is a suitable step width and

r(n) =
�
r
(n)

i

�
i=1;:::;N

; G :=
�rJ(r(n)

N
)[�i]

�
i=1;:::;N

:

First order methods are the gradient method (M(n) := I) or the quasi Newton method

where M(n) denotes a suitable approximation to the inverse shape Hessian. Choosing

M(n) :=
�r2J(r

(n)

N
)[�i; �j]

��1
i;j=1;:::;N

we arrive at the Newton method, which converges much faster compared to the �rst order

methods, see [15] for example.

3.4. Existence of Approximate Solutions. We will consider the existence of solu-

tions of (3.19) and the question of the accuracy of approximate solutions r?
N
. Since the

solutions of (3.19) are only stationary points, it is reasonable to consider only local opti-

mization problems. Therefore, we replace the global problems (P ) and (PN ) by the local

optimization problem

(P Æ) J(r)! min; r 2 BX

Æ
(r?)

12



and its discrete variant

(P Æ

N
) J(rN)! min; rN 2 VN \BX

Æ
(r?):

The solution of (P Æ) is r? since J is strictly coercive on the convex set BX

Æ
(r?) Likewise,

(P Æ

N
) admits always a solution r?

N
2 VN \BX

Æ
(r?). Any point r?

N
2 VN \BX

Æ
(r?) satisfying

(3.19) is a local regular optimizer of second order. Moreover, the coercivity implies the

uniqueness of r?
N
. Nevertheless, for a complete convergence analysis, we have to ensure

that r?
N
is an interior point of the convex set VN \BX

Æ
(r?), i.e.,

kr?
N
� r?kX < Æ:

Theorem 3.7. Let (A1){(A4) and (V1){(V4) hold. Then, if r? 2 H` for some ` > k,

there exists an N0 such that

r?
N
2 VN \BX

Æ
(r?) for all N � N0:

Proof. We split the proof into four parts.

(i). We de�ne PN : L2 ! VN as the L2-orthogonal projection onto VN . Then, by our

assumptions (V1),(V2) we have

kPN (r?)� r?kX � cHk!XkPN (r?)� r?kHk . inf
rN2VN

krN � r?kHk

N!1�! 0

and likewise by (V4)

kPN (r?)� r?kHs . inf
rN2VN

krN � r?kHs

N!1�! 0:

Hence, we deduce that there exists an N0 such that VN \ BX

Æ
(r?) 6= ; for all N � N0.

Without loss of generality we assume that N0 = 0.

(ii). Recall that

J(r?) = inf
�
J(r) : r 2 BX

Æ
(r?)

	
;

J(r?
N
) = inf

�
J(rN) : rN 2 VN \BX

Æ
(r?)

	
;

and de�ne JÆ(N) � J(r?
N
) � J(r?) via

JÆ(N) := inf
�
J(rN) : rN 2 VN \ @BX

Æ
(r?)

	
:

Since J
�
PN (r

?)
� � J(r?

N
), we conclude the assertion kr?

N
� r?kX < Æ if we can proof

(3.21) JÆ(N) > J
�
PN (r

?)
�

for all N � N0:

On the one hand, (3.18) implies

(3.22) J
�
PN (r

?)
�� J(r?) � CS

2
kr? � PN (r

?)k2
Hs:

On the other hand, introducing the quantity

FX

Æ
(N) := inf

�krN � r?kHs : rN 2 VN \ @BX

Æ
(r?)

	
= inf

�krN � r?kHs : rN 2 VN nBX

Æ
(r?)

	
13



we derive from (3.18)

(3.23) JÆ(N)� J(r?) � cE

4
FX

Æ
(N)2:

Combining (3.22) and (3.23), the inequality

(3.24) kr? � PN (r
?)kHs < C? � FX

Æ
(N); C? :=

r
cE

2CS

;

implies (3.21) and, thus, kr?
N
� r?kX < Æ.

(iii). We shall establish a relation between FX

Æ
(N), kr?�PN (r

?)kHs, and E(N) from the

inverse estimate (V3). For sake of simplicity, we assume without loss of generality the

constant cHk!X from (V1) to be less than one such that

(3.25) BH
k

Æ
(r?) � BX

Æ
(r?):

Introducing

FH
k

Æ
(N) := inf

�krN � r?kHs : rN 2 VN \ @BH
k

Æ
(r?)

	
= inf

�krN � r?kHs : rN 2 VN nBH
k

Æ
(r?)

	
;

there follows from (3.25) the relation

FHk

Æ
(N) � FX

Æ
(N):

We shall now compute a lower bound for FH
k

Æ
(N). From

krN � PN (r
?)kHs � kPN (r?)� r?kHs � krN � r?kHs

one infers the inequality

(3.26) FH
k

Æ
(N) � inf

�krN � PN (r
?)kHs : rN 2 VN nBH

k

Æ
(r?)

	� kPN (r?)� r?kHs:

We choose N0 suÆciently large such that

kPN (r?)� r?kHs � Æ=2 for all N � N0:

for all N � N0. Then, it holds B
H
k

Æ=2

�
PN (r

?)
� � BH

k

Æ
(r?) and we arrive at

inf
�krN � PN (r

?)kHs : rN 2 VN nBHk

Æ
(r?)

	
� inf

�krN � PN (r
?)kHs : rN 2 VN nBHk

Æ=2

�
PN (r

?)
�	

� inf
rN2VN

fkrNkHs : krNkHk
= Æ=2g

� Æ

2E(N)
:

Inserting this estimate into (3.26), we deduce

(3.27) FX

Æ
(N) � FH

k

Æ
(N) � Æ

2E(N)
� kPN (r?)� r?kHs for all N � N0:

(iv). Observing

kPN (r?)� r?kHs . inf
rN2VN

krN � r?kHs;

14



we infer from (V4) that we can increase N0 such that

kPN (r?)� r?kHs <
Æ

2E(N)
� C?

C? + 1
for all N � N0:

Thus, we arrive at

kPN (r?)� r?kHs < C?

� Æ

2E(N)
� kPN (r?) � r?kHs

�
< C?FX

Æ
(N);

that is (3.24), for all N � N0, which �nishes the proof according to part (ii). �

Remark 3.8. Obviously, by means of standard optimization theory, (3.3) together with

(3.19), imply well-posedness of the �nite dimensional optimization problems, that is, the

convergence

r
(n)

N
! r?

N
; if n!1;

of the iterative scheme (3.20) is provided.

3.5. Convergence. The above theorem ensures the existence of the approximate solution

r?
N
of the �nite dimensional problems (P Æ

N
) if N is suÆciently large. The next theorem

estimates the distance kr?
N
� r?kHs.

Theorem 3.9. The approximate solution r?
N

of the �nite dimensional problem (P Æ

N
) sat-

is�es the error estimate

kr?
N
� r?kHs � CS

cE
inf

rN2VN

krN � r?kHs

uniformly with the number of unknowns N .

Proof. For sake of clearness in representation let h�; �i denote the continuous extension of

the L2-inner product onto H�s �Hs.

On the one hand, observing (3.16), Galerkin orthogonality implies

hrJ(r?
N
)�rJ(r?); r?

N
� r?i = hrJ(r?

N
)�rJ(r?); rN � r?i

� CSkr?N � r?kHskrN � r?kHs

for all rN 2 VN . On the other hand, introducing

j(t) := hrJ�tr?
N
� (1 � t)r?

�
; r?

N
� r?i;

we derive the estimate

hrJ(r?
N
)�rJ(r?); r?

N
� r?i = j(1) � j(0) =

Z 1

0

j0(t) dt =

=

Z 1

0

hr2J(rt) � (r?N � r?); r?
N
� r?i dt � cEkr?N � r?k2

Hs:

Combining both estimates yields

kr?
N
� r?k2

Hs � CS

cE
kr?

N
� r?kHskrN � r?kHs

for all rN 2 VN , which is equivalent to the assertion. �
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Figure 4.2. L2-error of the approximate solution.

Of course, from this theorem one can determine the rate of convergence, if one estimates

infrN2VN krN � r?kHs.

4. Numerical results

4.1. An Unconstrained Shape Optimization Problem. For comparison reasons we

shall employ model problems where the solution is known analytically. To this end, we

choose the shape optimization problem (2.3) based on the domain integral

J(
) =

Z



�x2
8
+
y2

4
� 2

�
dx

as our �rst numerical example. In accordance to Subsection 2.2, the solution is the ellipse

centered in 0 with semi-axes 2
p
2 and 2.

The numerical setting is as follows. We subdivide the parameter interval [0; 2�] equidis-

tantly intoN intervals. With respect to this subdivision, the radial function r 2 C1
per([0; 2�])

is then approximated periodically by N cubic B-splines B3
i
, i = 1; : : : ; N , that is

rN =

NX
i=1

aiB
3
i
2 C2;1

per([0; 2�]):

We employ a Newton method to solve the necessary condition rJ(
) � 0 iteratively,

using the circle with radius 2 as initial guess.
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Since the energy space for the shape Hessian is L2([0; 2�]), we measure the L2-norm of

the approximation error

kr � rNkL2([0;2�]) =

sZ 2�

0

jr � rN j2d�:

The measurements are visualized in Figure 4.1. We observe the as predicted the rate of

convergence N�4, indicated by the dashed line.

4.2. A Constrained Shape Optimization Problem. We consider next a cylindric

circular bar which is homogeneous and isotropic with a planar, simply connected cross

section 
 2 R2. We follow Banichuk and Karihaloo [2] but normalize the shear modulus

G = 1 and the elastic modulus E = 1. We want to solve the problem of maximizing the

torsional rigidity of the bar subject to given equality constraints on the sti�ness rigidity

and the volume.

First, we briey recall the mathematical formulation of the quantities. The torsional

rigidity is calculated by

T (
) = 2

Z



u(x)dx;

where the stress function u = u(
) satis�es

��u = 2 in 
;

u = 0 on �:

The bending rigidity with respect to a �xed barycentre in the origin is given by

B(
) =

Z



y2dx:

The volume of the domain and its (simpli�ed) barycentre coordinates read as

V (
) =

Z



dx; Sx(
) =

Z



xdx; Sy(
) =

Z



ydx:

Choosing B0 =
p
2�=4, V0 = �, then the necessary condition is ful�lled by the ellipse with

semiaxes hx = 2�1=4 and hy = 21=4. The associated Lagrange multipliers are �B = �4=9,
�V = 8

p
2=9, and �Sx = �Sy = 0, cf. [2]. Despite the fact the suÆcient optimality

conditions have not been proved yet, our experiences indicated coercivity with the energy

space H1=2, cf. [14, 15, 17].

From the identity

T (
) =

Z



kru(x)k2dx;
we deduce that rT (
)[dr] and r2T (
)[dr1; dr2] are given as in (2.12) and (2.13) with

g � 0 and

�du = 0 in 
;

du = �dr2 hn0;ni @u@n on �:

The computation of the other gradients and Hessians is straightforward, cf. [14, 15] for

the details. The energy space of the coercivity estimate is obviously H1=2([0; 2�]).
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The radial function r is approximated likewise to our �rst example by periodic cubic

Splines on the interval [0; 2�]. In order to solve the discretized constrained shape opti-

mization problem, we shall �nd the stationary points of the following augmented Lagrange

functional

L�(
;�) := �T (
) + �
T

2
664
B(
)�B0

V (
)� V0
Sx(
)

Sy(
)

3
775+

�

2



2
664
B(
)�B0

V (
)� V0
Sx(
)

Sy(
)

3
775


2

where � := (�B; �V ; �Sx ; �Sy ) and � > 0 is an appropriate chosen penalty parameter. The

optimization algorithm for the Augmented Lagrangian method reads as follows:

� initialization: choose initial guesses �(0) and 
(0) for �? and 
?, respectively,

� inner iteration: solve 
(n+1) := argminL�(
; �
(n)) with initial guess 
(n),

� outer iteration: update

�(n+1) := �(n) � �

2
664
B(
(n+1))�B0

V (
(n+1))� V0
Sx(


(n+1))

Sy(

(n+1))

3
775 :

In the inner iteration, we employ a Newton scheme combined with a quadratic line-search.

Instead of the �rst order update rule described above, we use a second order Lagrange

multiplier update introduced in [29], see also [17]. The state equation is solved by using a

boundary element method, cf. [14, 15] for the details. Notice that about 2000 boundary

elements are required to solve the state equation suÆciently accurate if we discretize the

free boundary by N = 100 B-splines.

According to our convergence result we shall observe the rate of convergence

kr � rNkH1=2([0;2�]) . N�3:5krkH4([0;2�]):

We measure this norm via the approximation

kr � rNkH1=2([0;2�]) �
sZ 2�

0

jr � rN jjr0 � r0
N
jd�:

The results are presented in Figure 4.2. As predicted, the error decreases likeN�3:5, which

is indicated by the dashed line.

In addition we measured also the L2-norm of the approximation error, visualized in Fig-

ure 4.2. In fact, even though we have not proven the Aubin-Nitsche trick, we observe the

higher rate of convergence N�4, indicated by the dashed line.

4.3. Concluding remarks. In the present paper we established a complete convergence

analysis for approximate solutions of shape optimization problems. In particular, we in-

corporated the two norm discrepancy. We presented numerical results which verify our

analysis quite well. We like to point out that our analysis applies also to p-discretizations
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Figure 4.3. H1=2-error of the approximate solution.
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Figure 4.4. L2-error of the approximate solution.
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of the parametrization, for example �nite dimensional Fourier sequences for the discretiza-

tion of the radial function. For several applications we refer to [5, 14, 15, 16], see also

[18, 20] for related problems in 3D. The treatment of the fully discretized optimization

problem is straighforward by incorporating the error estimates concerned with the nu-

merical solution of the state equation, see e.g. [14,15,18].
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