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Abstract

We discuss rate-independent engineering models for multi-dimensional behav-

ior of ferroelectric materials. These models capture the non-linear and hysteretic

behavior of such materials. We show that these models can be formulated in an

energetic framework which is based on the elastic and the electric displacements as

reversible variables and interior, irreversible variables like the remanent polariza-

tion. We provide quite general conditions on the constitutive laws which guarantee

the existence of a solution. Under more restrictive assumptions we are also able to

establish uniqueness results.

1 Introduction

Ceramic materials and single crystals showing ferroelectric behavior are being used in

many applications in electronics and optics. A crystal is ferroelectric if it has a sponta-

neous polarization which can be reversed in sense or reoriented by the application of an

electric �eld, larger than the coercive �eld. Reversal is also known as switching. A large

number of applications of ferroelectric ceramics also exploit properties that are an indirect

consequence of ferroelectricity, such as dielectric, piezoelectric, pyroelectric, and electro-

optic properties. Piezoelectricity is the ability of certain crystalline materials to develop

an electrical charge proportional to a mechanical stress. It was discovered by the Curie

brothers in 1880. Piezoelectric materials also show a converse e�ect, where a geometric

strain (deformation) is produced on the application of a voltage. The permanent electric

dipole moment possessed by all pyroelectric (polar) materials may, in certain cases, be

reoriented by the application of an electric �eld. The above comments are meant to point

out that ferroelectric crystals are necessarily both pyroelectric and piezoelectric.

Ferroelectricity is a phenomenon which was discovered in 1921. The name refers to

certain magnetic analogies, though it is somewhat misleading, as it has no connection with

iron (ferrum) at all. Ferroelectricity has also been called Seignette electricity, as Seignette

or Rochelle Salt (RS) was the �rst material found to show ferroelectric properties, such as

a spontaneous polarization on cooling below the Curie point, ferroelectric domains, and

a ferroelectric hysteresis loop. A huge leap in the research on ferroelectric materials came

in the 1950's, leading to the widespread use of barium titanate (BaTiO3) based ceramics

in capacitor applications and piezoelectric transducer devices. Since then, many other

ferroelectric ceramics including lead titanate (PbTiO3), lead zirconate titanate (PZT),

lead lanthanum zirconate titanate (PLZT), and relaxor ferroelectrics like lead magnesium

niobate (PMN), have been developed and utilized for a variety of applications. With the

development of ceramic processing and thin �lm technology, many new applications have

emerged. The biggest uses of ferroelectric ceramics have been in areas such as dielectric

ceramics for capacitor applications, ferroelectric thin �lms for non volatile memories,

piezoelectric materials for medical ultrasound imaging and actuators, and electro-optic

materials for data storage and displays.

The model proposed in Section 2 captures these speci�c features of the non-linear

behavior of ferroelectrics, by keeping in the mean time the general perspective for treat-

ing multi-axial behavior and complex geometries. It is based on the rate-independent,

three-dimensional models used in the engineering literature, see [MB89, KJ98, HFLM99,

Kam01, HF01, SB01, ML02, KW03, RS04]. These models work in the framework of small

deformations and the quasistatic approximation for the elastic and electrostatic equilibria.
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However, certain internal variables Q, like the remanent polarization, are history depen-

dent by an activation threshold and thus, lead to a rate-independent evolution process.

We show that, using as primary reversible variables the elastic displacement u : 
!

R
d and the electric displacement D : Rd! R

d, the process can be written in an energetic

formulation which is based on the stored-energy functional

E(t; u;D;Q) =

Z



W (x; "(u);D;Q) + �(x;rQ)dx+

Z
Rdn


1

2�0
jDj2dx� h`(t); (u;D)i

and an dissipation potential of the form

R( _Q(t)) =

Z



R(x; _Q(t; x))dx:

This energetic formulation was originally developed for shape-memory alloys in [MT99,

MTL02], but is now shown to apply for many di�erent rate-independent material models

such as �nite-strain elastoplasticity, damage, brittle fracture, delamination and vortex

pinning in superconductors, see [Mie04b] for a survey.

The theory is based on a purely static stability condition (S) and the energy balance

(E) which have to hold for all t 2 [0; T ]:

(S) E(t; u(t);D(t); Q(t)) � E(t; bu; bD; bQ) +R( bQ�Q(t)) for all bu; bD; bQ;
(E) E(t; u(t);D(t); Q(t)) +

R t
0
R( _Q(s)))ds

= E(0; u(0);D(0); Q(0)) �
R t
0
h _̀(s); (u(s);D(s))ids:

The major advantage of the formulation is that it does involve neither derivatives of

the constitutive functions W;� and R nor derivatives of the solution (u;D;Q), since the

dissipation integral
R t
0
R( _Q(s)))ds can be reformulated as a total variation.

We employ the abstract existence result for (S) & (E) from [MM05, FM04, Mie04b],

which is reported in in Section 3, and apply it to our ferroelectric model at hand in Section

4. We provide conditions on the constitutive functionsW;� and R which allow us to prove

existence of solutions for (S) & (E) in suitable function spaces. In the last Section 5 we

discuss the question of uniqueness, which leads to severe restrictions on the constitutive

functions W and �.

2 Modeling for ferroelectric materials

Here we give a general description of a class of time-dependent models for ferroelectric

materials. These models are rate-independent and thus do not display any time relaxation

e�ects, however they are able to capture history dependence or hysteresis via internal

variables which need a nonzero activation energy to invoke changes. The models are in

fact a subclass of the theory of standard generalized materials like plasticity, and what is

called a yields function there is called the switching function here.

Our class of models is stimulated by the engineering models from [KJ98, Kam01,

ML02, KW03, RS04]. However, we will rephrase the theory there in a such a way that it

can be formulated in terms of two energetic functionals, namely the stored energy E and

the pseudo-potential R for the dissipation. Thus, we will be able to take advantage of the
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recently developed energetic approach to rate-independent models, see [MT04, MM05,

FM04] and the survey [Mie04b].

The basic quantities in the theory are the elastic displacement �eld u : 
 ! R
d and

the electric displacement �eld D : Rd! R
d. Here the electric displacement is also de�ned

outside the body, as interior polarization of a ferroelectric material generates an electric

�eld E and displacementD in all of Rd via the static Maxwell equation in Rd. Commonly,

the polarization P is used for modeling, it is de�ned via

D = �0E + P;

where �0 the dielectric constant (or permetivity) in the medium surrounding the body


. In contrast to D and E, the polarization P is de�ned only inside the body 
 and set

equal to 0 outside. Our formulation stays with D, since it leads to a simple and consistent

thermomechanical model.

In addition we use internal variables Q : 
! R
dQ which, for instance, may be taken

as a remanent strain "rem or a remanent polarization Prem.

The stored-energy functional has the following form:

E(t; u;D;Q) =

Z



�
W (x; "(u);D;Q) + �(x;rQ)

�
dx+

Z
Rdn


1

2�0
jDj2dx� h`(t); (u;D)i;

(2.1)

where W is the Helmholtz free energy and "(u) is the in�nitesimal strain tensor given by

"(u) =
1

2
(ru+ruT) 2 Rd�d

sym := f " 2 R
d�d : " = "

T
g: (2.2)

The nonlocal term �(x;rQ) in E usually takes the form �
2
jrQj2 with � > 0. This

term penalizes rapid changes of the internal variable by introducing a length scale which

determines the minimal width of interfaces between domains of di�erent polarization.

The external loading `(t) depends on the process time t and is usually given by

h`(t); (u;D)i =

Z
Rd

Eext(t; x)�D(x)dx+

Z



fvol(t; x)�u(x)dx+

Z
�Neu

fsurf(t; x)�u(x)da(x);

where Eext, fvol and fsurf are applied, external �elds.

For the dissipation potential R we take the very simple ansatz

R( _Q) =

Z



R(x; _Q(x))dx; (2.3)

where R(x; �) : RdQ ! [0;1) is a convex function which is positively homogeneous of

degree 1. Note that the dissipation potential acts on the rate _Q = @
@t
Q of the internal

variable only. The classical way to describe dissipation in ferroelectrics is a switching

function in the form

�(x;XQ) � 0 with XQ =
@

@Q
W � div(D�(x;rQ)):

This is equivalent to our dissipation potential R by the relation

R(x; _Q) = maxf _Q�XQ : �(x;XQ) � 0 g:
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To formulate the rate-independent evolution law we use the thermomechanically con-

jugated forces

� =
@

@"
W 2 R

d�d
sym; E =

(
@
@D
W on 
;

1
�0
D on Rdn


; XQ 2 R
dQ;

where � is the stress tensor and E the electric �eld. The elastic equilibrium equation and

the Maxwell equations read

�div � + fvol(t; �) = 0 in 
;

divD = 0 and curl(E � Eext(t; �)) = 0 in Rd;
(2.4)

where curlE is de�ned as rE�(rE)T for general dimensions. Thus, these equations are

static and respond instantaneously to changes of the loadings fvol(t; �) and Eext(t; �).

The evolution of Q follows a force balance which uses the multi-valued dissipational

force

@R(x; _Q) = fX 2 R
dQ : R(x; V ) � R(x; _Q) +X�(V� _Q) for all V 2 R

dQ g;

which is the subdi�erential of the convex function R(x; �). The force balance takes the

simple form

0 2 @R(x; _Q) +XQ : (2.5)

We now want to rewrite these equations, at least formally, as equations in function

spaces. For this purpose we introduce a suitable state space Y = F � Q as follows. The

space F contains the functions u and D and takes the form

F = H� L2div(R
d); where L2div(R

d) := f 2 L2(Rd;Rd) : div = 0 g

and H is a closed aÆne subspace of H1(
;Rd). The space Q contains the internal state

functions Q and is taken to be W1;qQ(
;RdQ) for a suitable qQ > 1.

The de�nition of the space L2div(R
d) already includes Gau�' law, which is part of our

Maxwell's equations. Using the well-known fact (cf. [Tem84, Thm. 1.4]) that the total

space L2(Rd;Rd) decomposes in an orthogonal way into the two closed subspaces L2div(R
d)

and

L2curl(R
d) = f 2 L2(Rd;Rd) : curl = 0 g

we obtain the following result.

Proposition 2.1 Denote by DDE(t; u;D;Q)[ bD] the Gâteaux derivative of E in the direc-

tion bD. Then, we have�
8 bD 2 L2div(R

d) : DDE(t; u;D;Q)[ bD] = 0
�
() curl(

@

@D
fW � Eext(t; �)) = 0 in Rd;

where fW = W for x 2 
 and fW = 1
2�0
jDj2 else.

Proof: The directional derivative takes the form

DDE(t; u;D;Q)[ bD] =

Z



� @
@D

W � Eext(t)
�
� bDdx+

Z
Rdn


� 1
�0
D � Eext

�
� bDdx;
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where bD is allowed to vary in all of L2div(R
d). Hence, the integrand is orthogonal to this

space, which means that it lies in L2curl(R
d) as desired.

Thus, we implement the Maxwell equations simply by choosing a suitable function

space and the condition DDE(t; u;D;Q) = 0.

Similarly, the elastic equilibrium is obtained by DuE(t; u;D;Q) = 0, as by the sym-

metry of � the operator \div" is adjoint to u 7! "(u). The dissipative force balance can

also be rewritten in functional form and thus the full problem may be written as

DuE(t; u(t);D(t); Q(t)) = 0; DDE(t; u(t);D(t); Q(t)) = 0;

0 2 @R( _Q(t)) + DQE(t; u(t);D(t); Q(t)):
(2.6)

Here the total derivative DQE takes the form

DQE(t; u(t);D(t); Q(t)) =
@

@Q
W (x; u;D;Q)� div

�
D�(x;rQ)

�
:

In fact, our theory is not based on the force balance (2.6). Instead, following [MT99,

MTL02, MT04], we use a weaker formulation which is based on energies only. This en-

ergetic formulation avoids derivatives of E and of the solution (u;D;Q). Under suitable

smoothness and convexity assumptions (see Section 5) the energetic formulation is equiv-

alent to (2.6). We call (u;D;Q) an energetic solution of the problem associated with

E and R, if for all t 2 [0; T ] the stability condition (S) and the energy balance (E) hold:

(S) E(t; u(t);D(t); Q(t)) � E(t; bu; bD; bQ) +R( bQ�Q(t)) for all bu; bD; bQ;
(E) E(t; u(t);D(t); Q(t)) +

R t
0
R( _Q(s)))ds

= E(0; u(0);D(0); Q(0)) �
R t
0
h _̀(s); (u(s);D(s))ids:

(2.7)

Using the abstract result from Section 3, we will show in Section 4 that the energetic

formulation (S) & (E) has solutions for suitable initial data, if the constitutive functions

W , � and R satisfy reasonable continuity and convexity assumptions. In Section 5 we

will discuss stronger conditions which imply uniqueness.

Before this, we want to display the constitutive choices given in the above-mentioned

engineering works. Note that most of these papers are not based on the Helmholtz free

energy W (denoted by  in the engineering literature, cf. [ML02]), they use either the

Gibbs energy g = eG(�;E;Q) de�ned via g = �:"+E�D�W (cf. [KJ98, Kam01, KW03])

or the enthalpy function h = H("; E;Q) with h = W�E�D (cf. [SG04, RS04]). The latter

choice has the advantage that the physically more relevant quantities ("(u);D;Q) can be

treated as the basic unknowns but there is the disadvantage that H has a saddle-point

structure rather than convexity. Our choice of treating ("(u);D;Q) has the advantage that

it is reasonable to assume that the Helmholtz free energy is convex; and thus minimization

techniques are available.

To put the models in the above-mentioned papers into our framework we transform

everything into the variables ("(u);D;Q) and use W . The basic assumption is that the

strain " and the electric displacement D can be split additively into an \elastic" and a

\remanent" part

" = "el + "rem(Q) and D = Del + Prem(Q)
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and that " and D occur in W only via the elastic part. Moreover, "rem = "rem(Q) and

Prem = Prem(Q) are assumed to be given constitutive functions of the internal variables.

Thus, in all the works the special choice

W (";D;Q) =fW ("�"rem(Q);D�Prem(Q); Q)

is made.

The papers [ML02, RS04] use the special choices

Prem = Q and "rem(Q) = c1 dev(Q
Q)

and the constitutive functions take the form

fW ("el;Del; Q) =
1

2

* 
C(Q) �B(Q)

�B(Q)T A(Q)

!�
"el

Del

�
;

�
"el

Del

�+
+Whard(Q): (2.8)

Here C is the elastic tensor of order 4, B is the piezoelectric tensor of order 3 and A the

inverse of the dielectric tensor of order 2. Whereas C and A may be chosen independently

of Q, the dependence ofB on Q crucial for the ferroelectric e�ect. For treating polarization

induced piezoelectricity a typical choice is

Bijk(Prem) =
1

Psat jPremj2

�
dkPrem iPrem jPrem k + d?(jPremj

2Æij�Prem iPrem j)Prem k

+ d=
2

�
(jPremj

2Æki�Prem kPrem i)Prem j + (jPremj
2Ækj�Prem kPrem j)Prem i

��
:

(2.9)

with material parameters dk; d? and d= and some functional dependence Prem = bP (Q).
The hardening contributionWhard is used to con�ne Q into reasonable bounds. In a system

of uni-axial polarization the hardening contribution Whard may be chosen to depend on

Pa = Q�a for a given direction a with jaj = 1 only. Well-established choices are

Whard(Q) = hP 2
sat

h
ln
�
1� Pa

Psat

�
+ Pa

Psat

i
or

Whard(Q) = h
�
PaArtanh(Pa=Psat) +

Psat
2

ln(1 � (Pa=Psat)
2)
�
:

(2.10)

cf. [HF01, ML02] or [RS04], respectively. Note that these choices imply jPaj < Psat.

In the papers [KJ98, Kam01, KW03] the choices are quite di�erent an motivated by

microscopic distributions of polarization directions. The simplest model assumes

Q = (�; 
) 2 R2; "rem(Q) =
���ref

1��ref
"sat and Prem = 
Psat;

where Psat 2 R
d and "sat 2 R

d�d are �xed and (�; 
) is restricted to the set G = f (�; 
) 2

R
2 : 0 � j
j � � � 1 g by adding a suitable constraint to the function Whard. More

elaborate multi-axial versions are discussed in [KW03].

None of the models mentioned so far, include the nonlocal term
R


�(x;rQ)dx, which

penalizes formation of fast changes in the internal parameters. However, as is indicated

in [SB01, Dav01] these contributions may be important to avoid the possible formation

of microstructure. Thus, this part is used to limit the smallness of spatial scales and thus

prevents the formation of microstructure. In fact, it is well known that rate-independent

material models like for shape-memory alloys or for �nite-strain elastoplasticity may not
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have solutions because of formation of microstructure, see [OR99, CHM02, Mie04a]. Thus,

we include the regularizing term which is a crucial term to provide the desired compactness

for the construction of solutions, see [FM04].

All the papers use very simple switching functions � and thus dissipation potentials,

namely

�(x;X) = jXj2 �X0(x)
2

() R(x; _Q) = r(x)j _Qj with r(x) = 1=X0(x):

3 Existence of solutions in the general case

Here we obtain the existence of energetic solutions for our mathematical problem. We

next recall the concept of energetic solution. For more details see [Mie04b, Mai05, FM04,

MM05].

Consider the set Y = F �Z as the basic state space. Whenever possible we will write

y instead of ('; z) to shorten notation. Note that the splitting is done such that changes

in z involve dissipation whereas those of ' do not. In the section above (u;D) takes the

rôle of ' and Q is the internal variable z.

The state space Y is equipped with a Hausdor� topology T = TF �TZ and we denote

by yk
Y
! y, 'k

F
! ' and zk

Z
! z the corresponding convergence of sequences.

The �rst ingredient of the energetic formulation is the dissipation distance D : Z�Z !

[0;1], which is a semi-distance (see (A1) below). For a given curve z : [0; T ] ! Z we

de�ne the total dissipation on [s; t] via

DissD(z; [s; t]) = supf
PN

1
D(z(�j�1); z(�j)) : N2N; s=�0<�1< � � �<�N=t g: (3.1)

The second ingredient is the energy-storage functional E : [0; T ]�Y ! R1 := R[f1g.

Here t 2 [0; T ] plays the rôle of a (very slow) process time which changes the underlying

system via changing loading conditions. We assume that for all y� with E(t; y�) <1, the

function R 3 t 7! E(t; y�) 2 R is di�erentiable.

De�nition 3.1 A curve y = ('; z) : [0; T ]! Y = F�Z is called an energetic solution

of the rate-independent system associated with (D; E), if t 7! @tE(t; y(t)) is integrable and

if the global stability (S) and the energy balance (E) hold for all t 2 [0; T ]:

(S) For all by = (b'; bz) 2 Y we have E(t; y(t)) � E(t; by) +D(z(t); bz).
(E) E(t; y(t)) + DissD(z; [0; t]) = E(0; y(0)) +

R t
0
@tE(�; y(� ))d� .

The de�nition of solutions of (S) & (E) is such that it implies the two natural require-

ments for evolutionary problems, namely that restrictions and concatenations of solutions

remain solutions. To be more precise, for any solution y : [0; T ]! Y and any subinterval

[s; t] � [0; T ], the restriction yj[s;t] solves (S) & (E) with initial datum y(s). Moreover, if

y1 : [0; t�] ! Y and y2 : [t�; T ] ! Y solve (S) & (E) on the respective intervals and if

y1(t�) = y2(t�), then the concatenation y : [0; T ]! Y solves (S) & (E) as well.

To prove our existence result we impose the conditions (A1), (A2) and (A3) on the

dissipation distance D:

(i) 8 z1; z2 2 Z : D(z1; z2) = 0 () z1 = z2;

(ii) 8 z1; z2; z3 2 Z : D(z1; z3) � D(z1; z2) +D(z2; z3):
(A1)

8



Here (i) is the classical positivity of a distance and (ii) the triangle inequality. Note that

we allow the value 1 and that we do not enforce symmetry, i.e., D(z1; z2) 6= D(z2; z1) is

allowed, as this is needed in many applications.

For any sequence (zk)k and any z in Z we have:

minfD(zk; z);D(z; zk)g ! 0 for k !1 =) zk
Z
! z for k !1:

(A2)

D : Z �Z ! [0;1] is continuous. (A3)

For the energy functional E we impose the conditions (A4), (A5) and (A6):

E(t; �) : Y ! R1 has compact sublevels 8t 2 [0; T ]: (A4)

Here the sublevels Lt;e of E(t; �) are de�ned as usual by Lt;e := f y 2 Y : E(t; y) � e g. A

classical fact is that compactness of sublevels implies lower semi-continuity and coercivity.

There exist c
(1)

E ; c
(0)

E > 0 such that for all y� 2 Y :

If E(t; y�) <1; then @tE(�; y�) : [0; T ]! R is measurable

and j@tE(t; y�)j � c
(1)

E (E(t; y�)+c
(0)

E ):

(A5)

8E� > 0 8 " > 0 9 Æ > 0 : E(t; y) � E� and jt� sj � Æ

=) j@tE(t; y)�@tE(s; y)j < ":
(A6)

The following existence result is proved in [FM04, Mie04b].

Theorem 3.2 Assume that E and D satisfy the hypotheses (A1){(A6) and that the initial

datum y0 2 Y is stable (i.e., y0 satis�es (S) at t = 0), then there exists a solution

y = ('; z) : [0; T ]! Y of (S) & (E) with y(0) = y0.

Moreover, any solution of (S) & (E) with y(0) = y0 satis�es the a priori estimates

E(t; y(t)) � (c
(0)

E +E(0; y0)) e
c
(1)

E
t � c

(0)

E

DissD(y; [0; t]) � (c
(0)

E +E(0; y0)) e
c
(1)
E
t

9=; for t 2 [0; T ]:

4 Existence for ferroelectric models

To apply abstract theory of the previous section we need the following standard result in

linearized elasticity. It allows us to obtain the desired coercivity of the energy functional

which is used to establish condition (A4).

Proposition 4.1 (Korn's inequality) Let 
 � R
d be a nonempty connected open bounded

set, with Lipschitz boundary �, and let �Dir be a measurable subset of �, such thatR
�Dir

1da > 0. Given a function u 2 H1(
;Rd), the linearized strain tensor " is de�ned by

(2.2). Then, there exists a constant k > 0, such that

kuk2H1 � k

Z



j"(u)j2dx for all u 2 H1
�Dir

(
;Rd) := f v 2 H1(
;Rd) : vj�Dir � 0 g: (4.1)
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We now provide conditions on the constitutive functions W , � and R, such that he

above abstract theory can be applied for our ferroelectricity model de�ned via the energy

functional E in (2.1) and the dissipation potential R in (2.3).

The �rst assumption concerns the domain and the Dirichlet boundary:


 and �Dir satisfy the assumptions of Proposition 4.1: (B0)

The function R : 
�R
dQ ! [0;1) satis�es

R 2 C0(
 �R
dQ) and 9 cR; CR > 0 8V 2 R

dQ : cRjV j � R(x; V ) � CRjV j: (B1)

8x 2 
 : R(x; �) : RdQ ! [0;1) is 1-homogeneous and convex: (B2)

The functions W and � have to ful�ll the following three conditions:

W : 
�R
d�d
sym �R

d�R
dQ ! [0;1] is a Caratheodory function;

� : 
 �R
dQ�d ! [0;1] is a Caratheodory function;

(B3)

which means for W that for each (";D;Q) the function W (�; ";D;Q) is measurable on 


and for a.e. x 2 
 the mappingW (x; �; �; �) is continuous on Rd�d
sym�R

d�RdQ and similarly

for �. Further we need coercivity and convexity assumptions:

9 cE; CE > 0; q > 1 8 (x; ";D;Q; V ) 2 Rd�d
sym �R

d�R
dQ �R

dQ�d :

W (x; ";D;Q) + �(x; V ) � cE(j"j
2 + jDj2 + jQjq + jV jq)� CE:

(B4)

8 (x;Q) 2 
�R
dQ : W (x; �; �; Q) : Rd�d

sym�R
d! [0;1] is convex;

8x 2 
 : �(x; �) : RdQ�d ! [0;1] is convex
(B5)

The fact that convexity in the variable Q is not needed is the basis for the ability to

model the ferroelectric e�ect, since the choices of W presented in Section 2 certain are

not convex in Q.

For the external loading `(t) we assume

` 2 C1([0; T ]; (H1
�Dir

(
;Rd))� � L2div(R
d)�): (B6)

We now relate the concrete ferroelectric model to the abstract one by choosing the

function spaces �rst:

F = H1
�Dir

(
;Rd)weak � L2div(R
d)weak and Z = L1(
;RdQ)strong:

Here the subscripts \weak" and \strong" indicate whether we use the weak or the strong

(norm) topology in the corresponding Banach spaces. The dissipation distanceD is related

to R by

D(Q0; Q1) = R(Q1�Q0) =

Z



R(x;Q1(x)�Q0(x))dx: (4.2)

The functional E is de�ned on [0; T ]�F �Z via (2.1) where E(t; u;D;Q) takes the value

+1, if Q 62 W1;q(
;RdQ) or if the integrand is not in L1(
). With these choices the

abstract energetic problem of De�nition 3.1 leads us exactly to the energetic problem

(S) & (E) for the ferroelectric model as de�ned in (2.7).

Thus, our �rst main result will be proved by checking the assumptions of the abstract

existence theorem 3.2 from above.
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Theorem 4.2 (Existence theorem)

If the assumptions (B0){(B6) hold, then for each stable initial condition (u0;D0; Q0) 2

F � Z the energetic problem (S) & (E) in (2.7) has a solution (u;D;Q) : [0; T ]! F �Z

with (u(0);D(0); Q(0)) = (u0;D0; Q0), which satis�es

(u;D;Q) 2 L1([0; T ];H1
�Dir

(
;Rd)� L2div(R
d)�W1;q(
;RdQ)):

We have divided the proof into three lemmas, and we start with the properties of D.

Lemma 4.3 If (B1) and (B2) hold, then D, de�ned in (4.2), satis�es

cRkz2 � z1kL1 � D(z1; z2) � CRkz2 � z1kL1 8z1; z2 2 Z; (4.3)

and consequently, (A1), (A2), (A3) hold.

Proof: It is easily seen that (4.3) follows from (B1).

ad (A1): R is subadditive, since it is convex and positively homogeneous. By (4.2),

the triangle inequality for D becomes clear. Now let z1; z2 2 Z, such that D(z1; z2) = 0.

By the left inequality from (4.3) we get z1 = z2. This completes the proof of (A1).

ad (A3): By (4.2) we see that D is continuous, if and only if so is the partial map

D(�; 0). As R is subadditive, so is D. This together with the right inequality from (4.3)

yields the continuity of D(�; 0), and hence that of D.

ad (A2): Let (zk)k and z in Z, such that minfD(zk; z);D(z; zk)g ! 0 for k !1. By

the left inequality from (4.3) we obtain cRkzk�zkL1 � minfD(zk; z);D(z; zk)g, and hence

zk
Z
! z for k !1, which proves (A2).

The second condition concerns the coercivity and the weak lower semi-continuity of

the energy functional E.

Lemma 4.4 Let (B0) and (B3){(B5). Then, the functionals E(t; �) : F � Z ! R1

are sequentially lower semicontinuous (in the given topology of F � Z) and there exist

constants c0; C0 > 0 such the functional E(t; �) satis�es the coercivity estimate

E(t; u;D;Q) � c0(kuk
2
H1 + kDk

2
L2 + kQk

q

W1;q )� k`(t)k�k(u;D)kH1�L2 � C0: (4.4)

In particular, the sublevels Lt;e are sequentially compact, i.e., (A4) holds.

Proof: We �rst establish the coercivity estimate. Using (B0) and (B4) we �nd

E(t; u;D;Q) �
R


cE(j"(u)j

2 + jDj2 + jQjq + jrQjq)� CE dx� k`(t)k�k(u;D)kH1�L2

�
cE
k
kuk2

H1 + cE(kDk
2
L2
+kQkq

W1;q )�CEvol(
)� k`(t)k�k(u;D)kH1�L2 ;

where we have used Korn's inequality fromProposition 4.1. This gives the desired estimate

(4.4) and we conclude that all sublevels Lt;e = f y 2 Y : E(t; y) � e g are bounded in

Yq := H1
�Dir

(
;Rd)� L2div(R
d)�W1;q(
;RdQ) � F �Z.

Next we show that the sublevels Lt;e are sequentially compact in Y. Let (yk)k2N �

Lt;e be given. Hence the sequence is bounded in Yq, which is a re
exive Banach space.

Hence there exists a weakly convergent subsequence, which we do not relabel. Hence,

we may assume (uk;Dk) * (u;D) in H1(
;Rd) � L2(Rd;Rd) (weakly) and Qk * Q in

W1;q(
;RdQ). By the compact embedding of W11; q(
;RdQ) into L1(
;RdQ) we conclude

11



Qk ! Q in L1(
;RdQ) (strongly). This implies convergence in Y. It remains to be shown

that y = (u;D;Q) lies in Lt;e.

Using the weak convergence of the sequence yk = (uk;Dk; Qk) in the Yq we can employ

a classical result from the theory for the direct method in the calculus of variations (see

e.g., [Dac89, Thm. 3.4]), namely that E(t; �) : Yq ! R1 is sequentially weakly lower

semi-continuous, i.e.,

(uk;Dk; Qk)* (u;D;Q) =) E(t; u;D;Q) � lim inf
k!1

E(t; uk;Dk; Qk):

For this we use that our condition (B5) provides the suÆcient convexity conditions for

the weakly converging parts ("k;Dk;rQk). Using E(t; uk;Dk; Qk) � e we conclude

E(t; u;D;Q) � e and obtain y = (u;D;Q) 2 Lt;e.

Standard arguments in the calculus of variations show that compactness of the sub-

levels implies lower semicontinuity.

Finally we control the power of the external forces @tE(t; u;D;Q).

Lemma 4.5 If E satis�es the coercivity (4.4) and if the loading satis�es (B6) hold, then

E and @t satisfy (A5) and (A6).

Proof: We �rst note that ` 2 C1([0; T ];Y�) implies

@tE(t; u;D;Q) = h _̀(t); (u;D)i =) j@tE(t; u;D;Q)j � K1k(u;D)kH1�L2;

where K1 = maxt2[0;T ] k _̀(t)k�. Letting K0 = maxt2[0;T ] k`(t)k� and using the coercivity

(4.4) of E we obtain

j@tE(t; y)j � K1k(u;D)kH1�L2 � c0k(u;D)k
2
H1�L2�C0�K0k(u;D)kH1�L2+M � E(t; y)+M;

where M = C0 + (K0+K1)
2=(4c0). Hence, (A5) holds with c

(0)

E =M and c
(1)

E = 1.

Since _̀ is uniformly continuous on the compact interval [0; T ], the uniform boundedness

of the sublevels Lt;e for t 2 [0; T ] shows condition (A6).

Proof of Theorem 4.2: The above three lemmas show that the assumptions (B0){

(B6) of Theorem 4.2 imply that all hypotheses (A1){(A6) of the abstract Theorem 3.2

are veri�ed. We thus obtain the existence of an energetic solution (u;D;Q) : [0; T ] !

Y = H1
�Dir

(
;Rd)� L2div(R
d) � L1(
;RdQ) of the rate-independent, energetic formulation

(S) & (E) associated with D and E de�ned in (4.2) and (2.1), respectively.

The a priori bounds E(t; u(t);D(t); Q(t)) � ET and
R T
0
R( _Q(s)) ds � ET provided at

the end of Theorem 3.2 imply together with (4.4) that the function t 7! (u(t);D(t); Q(t)) 2

H1
�Dir

(
;Rd)� L2div(R
d)�W1;q(
;RdQ) is also bounded.

From
R T
0
R( _Q(s))ds <1 it follows that t 7! Q(t) 2 L1(
) has total variation, which

implies that it is continuous except for an at most countable set of jump points. Combining

this with the boundedness in W1;q we conclude weak measurability of t 7! Q(t) 2 W1;q.

However, in the re
exive, separable Banach space W1;q weak and strong measurability

coincide (see [Yos68, Ch.V.4]) and we conclude Q 2 L1([0; T ];W1;q(
;RdQ).

Similar arguments do not apply for the bounded map t 7! (u(t);D(t)) 2 H1
�Dir

(
;Rd)�

L2div(R
d). The measurability here has to be obtained by a intricate choice of the approx-

imating functions in the construction of the solution and cannot be restored afterwards,

see [Mai05].
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We may now relate our conditions (B0){(B6) to the special choices of W and R

which are used in the engineering models mentioned in Section 2. Conditions (B0){

(B3) are easily satis�ed and the same for the loading condition (B6). Moreover, the

convexity condition (B5) holds if we choose �(x;rQ) = �
2
jrQj2 and assume that W has

the form given in (2.8). For convexity, we only have to guarantee that the combined

tensor
�

A

�BT

�B
C

�
is positive semi-de�nite for all Q. Additionally the tensors A;B;C and

the functions "rem; Prem and Whard have to be continuous in Q, which is the case in the

examples (2.9) and (2.10) given above.

Important is still the coercivity condition (B4). For W in the form (2.8) this holds if

the tensor
�

A

�BT

�B
C

�
is uniformly strictly positive de�nite for all Q with Whard(Q) < 1

and if the hardening function Whard is coercive as well, i.e., Whard(Q) � cW jQj
q � CW for

all Q. In fact, most engineering models let Whard(Q) = +1 for j bP (Q)j � Psat and thus

coercivity in Q follows.

5 Uniqueness of solutions

Uniqueness results in rate-independent hysteresis models are rather exceptional, as they

need strong assumptions on the nonlinearities, see [MT04, BKS04, MR04] and the survey

in [Mie04b]. Building on the results in [MT04, Sect. 7] we now show that suitable restric-

tions on our ferroelectric model leads to uniqueness of solutions. However, it is unclear

whether these restrictions are still compatible with models which are useful in practice.

First of all the theory has to be restricted to a Hilbert space setting and we let

Y2 = H1
�Dir

(
;Rd)� L2div(R
d)�H1(
;RdQ):

We still assume that the conditions (B0){(B6) hold, but now with q = 2. We will add

further condition below, such that we are able to apply the following abstract result

[MT04, Thm. 7.4].

It is formulated on a general Hilbert space YH with functionals E : [0; T ]� YH ! R

and R : YH ! R. The following conditions are imposed:

R : YH ! [0;1) is continuous, convex and 1-homogeneous. (C1)

E 2 C
2;Lip
loc ([0; T ]� YH ;R) and

8 e0 9C > 0 8 yj with E(0; yj) � e0 : kDE(t; y1)k; kD
2E(t; y1)k � C;

kD2E(t; y1)�D
2E(t; y2)k � Cky1�y2k:

(C2)

9� > 0 8 v; y 2 YH : hD2
E(t; y)v; vi � �kvk2: (C3)

The last condition is a uniform convexity condition which seems to be crucial for unique-

ness results. Condition (C2) is a regularity conditions which cannot be avoided at present.

The following existence and uniqueness result works totally without compactness assump-

tions, in contrast to the more general existence theory in Section 3.

Theorem 5.1 If the conditions (C1){(C3) and (A5) hold, then the energetic problem

(S) & (E) has for each stable initial datum y0 2 YH a unique solution y : [0; T ]! YH with

y(0) = y0. This solution satis�es y 2 CLip([0; T ];YH) and depends Lipschitz continuously

on the initial data. Moreover, these solutions satisfy the di�erential inclusion

0 2 @R( _y(t)) + DE(t; y(t)) for a.e. t 2 [0; T ];
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which is equivalent to the quasi-variational inequality�
8 v 2 YH : hDE(t; y(t)); v� _y(t)i+R( _y(t)) � 0

�
for a.e. t 2 [0; T ]:

The proof of this theorem is the content of [MT04, Sect. 7]. There the condition E 2 C3

is imposed, but a check of the calculations there reveals that only Lipschitz continuity of

the second derivative is needed. Having added condition (A5), we have the usual a priori

estimate show energetic boundedness of solutions and all approximate solutions used in

the proof. Thus our boundedness assumptions in (C2), which are only on sublevels, are

suÆcient as well.

We now have to discuss how the new assumptions (C1){(C3) can be satis�ed in our

ferroelectric model. Condition (C1) on the dissipation potential R is a direct consequence

of the previous assumptions (B1) and (B2).

The conditions on the energy-storage functional E are more critical. First, the dif-

ferentiability of functionals needs that the integrands W and � have the same order of

di�erentiability. However, there is an additional constraint concerning the Lebesgue inte-

grability. For instance, a functional

I : Lp(
)! R;� 7!

Z



f(x; �(x))dx;

is in Ck;Lip(Lp(
);R) if and only if f 2 Ck(R;R), p � k+1 and

9C > 0 8u1; u2 2 R : jf (k)(u1)�f
(k)(u2)j � C

�
1+(ju1j+ju2j)

p�k�1
�
ju1�u2j a.e. on 
:

This is easily seen when using the formula

Dk
I(�)[�1; : : : ; �k] =

Z



f (k)(�(x))�1(x) � � � �k(x)dx

and H�older's inequality. There is only one exception which allows for p < k+1, namely if

f (k) � const.

As we are forced into the Hilbert space setting with q = 2 but need a functional which

is C2;Lip we conclude that only quadratic terms may appear:

�(x;rQ) =
1

2
hAQ(x)rQ;rQi with a01 � AQ(x) � a11 a.e. on 
; (5.1)

where a1 � a0 > 0. The same problem occurs in the Helmholtz free energyW , which must

be quadratic in the variables (";D) as the corresponding function space is L2(
;Rd�d
sym)�

L2div(R
d). Thus, we conclude that assumption (C2) can be satis�ed only if W has the

quadratic form given in (2.8).

However, we obtain further restrictions concerning the dependence on Q. Note that

H1(
;RdQ) embeds continuously into C0(
;RdQ) for d = 1, into any Lq(
;RdQ), q � 1,

for d = 2 and into Lpd(
;RdQ) with pd = 2d=(d�2) for d � 3. To avoid notational

inconveniences for the case d = 2, we choose p2 as a very big �xed number (e.g., p = 1000).

The case d = 1 is trivial, as the electric displacement D always vanishes because of

D 2 L2 and divD = 0. Thus, we consider only the cases d � 2, where H1(
;RdQ) does
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not embed into C0(
;RdQ) but only into Lpd(
;RdQ). Clearly, E 2 C2 implies that the

stress mapping

(";D;Q) 7!

�
�

E

�
=

�
A(Q)

�BT(Q)

�B(Q)

C(Q)

��
"

D

�
is a C1 mapping from L2(
;Rd�d

sym�R
d)�H1(
;RdQ) into L2(
;Rd�d

sym�R
d). This implies

that no dependence on Q is allowed in the whole tensor
�

A

�BT

�B
C

�
.

Thus, we now restrict the form of W as follows:

W (x; ";D;Q) =
1

2
hA (x)

�
"�"rem(x;Q)

D�Prem(x;Q)

�
;

�
"�"rem(x;Q)

D�Prem(x;Q)

�
i +Whard(x; Prem); (5.2)

where A (x) =
�

A(x)

�BT(x)

�B(x)

C(x)

�
is assumed to be bounded and uniformly positive de�nite

on Rd�d
sym �R

d.

The conditions on the function Whard follow as indicated on the functional I above,

by replacing f through Whard:

Whard 2 L1(
;C3(RdQ) and 9C > 0 8x;Q : jD3
QW (x;Q)j � C(1+jQj)pd�3: (5.3)

The restriction for the functions "rem and Prem are more severe, as the mapping Q 7!

("rem(Q); Prem(Q)) must map smoothly from Lqd(
;RdQ) into L2. We impose

("rem; Prem) 2 L1(
;C3(RdQ;Rd�d
sym�R

d)); pd � 6 and

9C > 0 8x;Q : jD3
Q"rem(x;Q)j; jD

3
QPrem(x;Q)j � C(1+jQj)(pd�6)=2:

(5.4)

Note that the restriction pd = 2d=(d�2) � 6 leads to the restriction d � 3.

The above discussion provides the following result.

Proposition 5.2 If ` 2 C2;Lip([0; T ]; H1
�Dir

(
;Rd))� � L2div(R
d)�) and if W and � satisfy

(5.1){(5.4) and (B4) with q = 2, then E satis�es (C2).

The �nal condition to be added is a uniform convexity on the sum of W and �:

9 c0 > 0 8x; ";D;Q : D2
";D;QW (x; ";D;Q) � c01: (5.5)

Note that this condition is stronger than (B5) where convexity in Q was not needed.

Together with the convexity of � from (5.1) we immediately �nd the desired condition

(C3). Thus, we conclude with the second main result, which is now a direct application

of Theorem 5.1.

Theorem 5.3 Assume d 2 f2; 3g and ` 2 C2([0; T ]; H1
�Dir

(
;Rd))� � L2div(R
d)�). More-

over, let the conditions (B0){(B4) with q = 2 and the conditions (5.1){(5.5) be satis-

�ed. Then, the energetic formulation (S) & (E) has for each stable initial datum y0 =

(u0;D0; Q0) a unique solution y = (u;D;Q) : [0; T ] ! Y2 = H1
�Dir

(
;Rd) � L2div(R
d) �

H1(
;RdQ).

Moreover, other conclusions of Theorem 5.1 hold as well.
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We �nally show that there are constitutive laws which satisfy all these assumptions.

As in Section 2 we let

Prem = Q; "rem(Q) = c0 dev(Q
Q) and Whard(Q) =
w1

2
jQj2 +

w2

q
jQjq; with q 2 [4; 6];

and choose a �xed positive de�nite tensor A =
�

A

�BT

�B
C

�
in (2.8). The only condition to

be checked is the uniform convexity of W . For this we use the explicit form of the second

derivative
D2W (";D;Q)[(b"; bD; bQ); (b"; bD; bQ)]
= hA

�
b"�MQ

bQ

bD� bQ

�
;
�
b"�MQ

bQ

bD� bQ

�
i + 2hA

�
"�"rem(Q)
D�Q

�
;
�
�c0 dev( bQ
 bQ)

0

�
i

+ w1j
bQj2 + w2jQj

q�4
�
jQj2j bQj2 + (q�2)(Q� bQ)2�;

whereMQ
bQ = c0 dev(Q
 bQ+ bQ
Q). Because of the linear terms in " and D, it is easy to

see that uniform positive de�niteness can only be achieved for c0 = 0. But then making

w1 and w2 suÆciently large gives the desired de�niteness.

As a general rule, the functions "rem(Q) and Prem(Q) have to be linear and all nonlin-

earity has to be moved into Whard.

As a conclusion we may say that it is possible to prove existence results for slight

modi�cations of the engineering models. However, for the presently developed uniqueness

theory the conditions are very restrictive and seem to contradict most useful models.
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