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Abstract

We derive a novel thin film equation for linear viscoelastic media describ-
able by generalized Maxwell or Jeffreys models. As a first application of this
equation we discuss the shape of a liquid rim near a dewetting front. Al-
though the dynamics of the liquid is equivalent to that of a phenomenological
model recently proposed by Herminghaus et al. [19], the liquid rim profile
in our model always shows oscillatory behaviour, contrary to that obtained
in the former. Our finding supports recent conclusions, based on calcula-
tions for Newtonian liquids, that the monotonely decaying rim profiles are a
consequence of large slip effects in thin polymer films.

1 Introduction

The understanding of the dynamics and in particular the stability of thin polymeric
films on substrates has advanced considerably in recent years [1, 2]. This achieve-
ment is to a large part the result of the development of novel experimental methods
and model systems, and a direct involvement of quantitative theoretical modeling.

On the theoretical side, the use of thin film equations, based on the lubrication
approximation to the hydrodynamic equations for Newtonian liquids has been par-
ticularly successful [3]. As a consequence of this success, however, the inherent lim-
itations of the classical lubrication approach to polymeric film have become evident
as well. In the range where the polymer chain length begins to become compara-
ble with the film thickness, the entanglement of the polymers in the film begins to
influence the thin film dynamics, in particular at film rupture [4]. An example for
such a signature is the profile of a decaying film in the vicinity of a hole opening in
the film. This profile can, depending on polymer chain length and film thickness,
be oscillatory or monotonely decaying. These effects have been related to the vis-
coelastic dynamics of the polymer films, and if this is correct, require an extension
of the existing lubrication models to include these properties of the liquid.

In order to describe this and other non-Newtonian effects in thin films, various
models have been discussed in the literature. They can roughly be grouped into three
different classes (but mixtures of these appear as well). In the first, non-Newtonian
behaviour is accounted for by assuming a nontrivial frequency dependence of the
stress-strain relation in the form

τ (ω) = η(ω)γ̇(ω) (1)
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where η is the shear viscosity of the liquid [5, 6]. In the second class, more general
linear relationships between τ and γ̇ are assumed; a typical example is the model put
forward by Herminghaus et al. [19] which will be referred to in the paper [7, 8, 10].
These models can be extended to also account for so-called convective nonlinearities
[9]. Nonlinearities become important when the shear in the film becomes large such
that the stress tensor gets advected by the flow and rotated by the vorticity. The
key case for which we want to apply the thin film equation is the decay of a capillary
ridge. This experimentally well studied case does not involve large flow in the region
in which we use the thin film equation. The same is true for the early dewetting
dynamics of spinodal dewetting, for which our thin film equation can be applied as
well. Therefore, we here restrict ourselves to linear relationships only.

In the third class, special assumptions are made on a nonlinear relationship between
τ and γ̇. This is e.g. the case for the power law fluids in which

τ = Kγ̇n (2)

is assumed, with n often determined from fits to experimental data. This class
comprises the case of shear-thinning and shear-thickening fluids, and since it allows
a simple generalization of the thin film equations for Newtonian fluids, it has been
frequently considered in the discussion of thin film phenomena [11, 12, 13, 14, 15].

All of these modelling approaches are often used in conjunction with additional
ad hoc or phenomenological modelling assumptions. This has lead to conflicting
interpretations of experimental results. As the models are fairly complex, often
nonlinear, and do contain a number of different parameters which are often also
unknown, the value of the conclusions drawn from these approaches remains hard
to judge.

Given the success of the lubrication approximation for the dynamics of thin films
of Newtonian character, we were prompted to look at this issue for the case of non-
Newtonian liquids from a more general conceptual point of view. Here, we are not
immediately concerned with the explanation of experimental results, but we rather
pose the question of the derivation of a thin-film equation based on the lubrication
approximation for the hydrodynamics of viscoelastic fluids.

The plan of this paper is thus as follows. We first define the class of viscoelastic
model liquids which we will use throughout the paper and put it in the context
of the phenomenological models recently discussed in the literature (Section 2).
We then introduce some elementary concepts needed for the derivation of a thin
film lubrication equation, which we subsequently obtain from a scaling analysis of
the equations of viscoelastic hydrodynamics (Section 3). In Section 4, we study the
shape of a liquid rim in a dewetting film, and conclude in Section 5 with a discussion
of our finding in the context of recent results in the literature.
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2 Viscoelastic hydrodynamics

2.1 Conservation laws

We here first state the hydrodynamic equations of viscoelastic media, and begin with
the conservation laws. For the situations we will address, the liquid can be assumed
to be incompressible with mass density ρ. The equation of mass conservation thus
reduces to

∇ · u = 0, (3)

with the velocity field u = (ux, uy, uz). The equation of momentum conservation is
given by

ρ
du

dt
= −∇pR + ∇ · τ , (4)

with the reduced pressure pR = p + V . In this expression, p is the hydrostatic
pressure, while the pressure induced by forces such as gravity or van der Waals type
dispersion forces is given by V . The deviatoric (traceless) part of the stress tensor
is τ (which is symmetric). With d/dt = ∂t +u ·∇ we denote the material (or total)
derivative, and with ∇ = (∂x, ∂y, ∂z) the gradient operator.

2.2 Constitutive equations

In a Newtonian liquid τ is proportional to the strain rate γ̇, i.e. to the gradient
of the velocity field γ̇ij = ∂iuj + ∂jui (which holds for incompressible fluids). In
a purely (linearly) elastic medium the stress would be proportional to the strain
and not the strain rate. In order to describe a viscoelastic fluid one therefore needs
a model constitutive relation for the dependence τ (γ̇) which interpolates between
purely viscous and purely elastic behavior.

A frequently used example for such a viscoelastic model is the linear Jeffreys model
(see [16, 17, 18])

τ + λ1 ∂tτ = η (γ̇ + λ2 ∂tγ̇) , (5)

which contains two relaxation time constants λ1 and λ2 as well as the shear viscosity
η. This model is sufficiently rich as it allows a purely viscous response of the liquid:
sudden deformations allow for arbitrarily high stresses in the liquid. We note that
it is equivalent to a special case of the generalized Maxwell model

τ = τ 1 + τ 2 (6)

τ 	 + β	 ∂tτ 	 = µ	 γ̇, � = 1, 2 (7)

with a relaxation time constant β1 = λ1 and β2 = 0 and the two shear viscosities
µ1, µ2. The relationship between the generalized Maxwell and the Jeffreys model
follows from the differentiation of τ 2 = µ2γ̇ with respect to time; this yields the
relationship between the parameters

λ1 = β1 , η = µ1 + µ2 , λ2 = λ1
µ2

µ1 + µ2
. (8)
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Since the latter fraction obviously is always less than or equal to one, we generally
have λ1 ≥ λ2.

We note that in particular the model introduced by Herminghaus et al [7, 19] is
equivalent to our model. The authors assume, like us, a stress tensor of the form of
eq.(6) where τ 1 = µ1γ̇, while τ 2 = ES. Here E is the elasticity module and Sij a
tensor obeying the equation

(∂t + ω0)Sij = ∂iuj + ∂jui . (9)

Identifying the relaxation frequency ω0 with λ−1
2 and defining µ2 = Eλ2 then estab-

lishes the relationship between the models.

3 Lubrication approximation

We now turn to the derivation of a lubrication equation for the viscoelastic dynamics
of the linear Jeffreys model, and begin by stating some general relationships we will
use for this purpose in the following.

3.1 Parametrizing the thin film

For a flat liquid film on top of a solid substrate (we choose the coordinate system
such that the xy-plane is the substrate surface) we can parameterize the surface of
the liquid by a local film thickness z = h(x, y, t). For incompressible liquids the time
derivative of h(x, y, t) is coupled to the flow field according to

∂th = −∇|| ·
∫ h

0

u|| dz, (10)

with the index || denoting the xy-components of a vector parallel to the substrate;
for example ∇|| = (∂x, ∂y) and u|| = (ux, uy).

At the free film surface the components of the stress tensor tangential to the surface
vanish because we neglect the vapor phase (we consider a film effectively in vacuum).
The normal component of the stress tensor is given by the Laplace pressure

(τ − p1) · n = 2σ κn, (11)

with the surface tension σ and the local normal vector pointing out of the fluid

n =
1√

1 + (∇||h)2
(−∇||h, 1

)
. (12)

In eq.(11) we denote by 1 the 3× 3 unit matrix; κ is the local mean curvature with
the sign chosen such that the curvature of a spherical droplet of liquid is negative.
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We further define the two tangential vectors t and p for later use such that all three
vectors are mutually orthogonal and t points towards the up-hill direction

t =
1√

(∇||h)2
[
1 + (∇||h)2

]
( ∇||h

(∇||h)2

)
(13)

p =
1√

(∇||h)2


 −∂yh

∂xh
0


 . (14)

Finally, the substrate is supposed impermeable and we assume a Navier slip bound-
ary condition for the velocity components parallel to the substrate

uz = 0 and ui =
b

η
τiz , (15)

with i = x, y and the slip length b.

3.2 Scaling

For very thin films the length scale of the film thickness H is much smaller than
the lateral length scale L parallel to the substrate surface. Thus ε = H/L � 1 is
a natural small parameter which we will used to simplify the system presented in
Sec. 2.

In order to retain the incompressibility condition (3) in every order in ε, the velocity
scale normal to the substrate is ε times the velocity scale in the substrate plane U .
The time scale is then given by T = L/U . We balance pressure, viscous forces and
surface tension so that the pressure scale is

η

T ε2
=
U η

H ε
(16)

and the scale for the surface tension is U η/ε3.

The scaling of the strain rate tensor components γ̇ij are determined by the scalings
of velocity and length. If in addition corresponding components of the stress and
strain rate tensor are on the same order (a scaling also used in [20] in the lubrication
region) we get the following scaling relationships

$r|| = L$r∗|| (z, h, b) = H (z∗, h∗, b∗) (17)

$u|| = U$u∗|| (t, λ1, λ2) = T (t∗, λ∗1, λ
∗
2) (18)

uz = εU u∗z (p, V, pR) =
η

T ε2
(p∗, V ∗, p∗R) (19)

σ =
U η

ε3
(20)


 τxx τxy τxz

τyx τyy τyz

τzx τzy τzz


 =

η

T



τ ∗xx τ ∗xy

τ∗
xz

ε

τ ∗yx τ ∗yy
τ∗
yz

ε
τ∗
zx

ε

τ∗
zy

ε
τ ∗zz


 , (21)

5



with the superscript “∗” denoting the dimensionless quantities. The scaling of the
stress tensor components τij is, although physically motivated, not the only one used
in the literature. In [21, 22], the in-plane components τij with i, j ∈ {x, y} are scaled
as τij = (η/ε2 τ ) τ ∗ij . For the nonlinear model used in [21, 22] this prescription is
necessary in order to get a well-defined thin film limit. In the following, in order to
avoid clumsy notation we drop the “∗”; if not stated otherwise, all quantities from
now on are to be considered dimensionless.

3.3 Dimensionless equations

The dimensionless form of the mass conservation (3) is

∇ · u = 0. (22)

For the component of the momentum equation (4) parallel to the substrate we have

ε2 Re
dui

dt
= ε2 (∂x τxi + ∂y τyi) + ∂z τzi − ∂i pR, (23)

with i = x, y and for the normal component

ε4 Re
duz

dt
= ε2 (∂x τxz + ∂y τyz + ∂z τzz)− ∂z pR. (24)

Here Re = ρU L/η is the Reynolds number which we assume to be of order unity or
smaller. In dimensionless form the linear Jeffreys model (5) is given by (i = x, y, z)

τii + λ1 ∂tτii = 2 (∂iui + λ2 ∂t∂iui) (25)

τxy + λ1 ∂tτxy = γ̇xy + λ2 ∂tγ̇xy (26)

τxz + λ1 ∂tτxz = ∂zux + λ2 ∂t∂zux + (∂xuz + λ2 ∂t∂xuz) ε
2 (27)

τyz + λ1 ∂tτyz = ∂zuy + λ2 ∂t∂zuy + (∂yuz + λ2 ∂t∂yuz) ε
2 (28)

with γ̇xy = ∂xuy + ∂yux. The other occurrences of components of γ̇ have been
expanded in derivatives of $u.

The kinetic condition at the film surface (10) is invariant under rescaling, while the
boundary condition at the substrate (15) becomes

uz = 0 and ui = b τiz, (29)

for i = x, y.

For the boundary condition at the film surface (11) we distinguish between the
normal component

τzz − 2 (τxz ∂xh+ τyz ∂yh)

1 + ε2 (∇||h)2
+ ε2 [τxx (∂xh)

2 + τyy (∂yh)
2 + 2τxy ∂xh∂yh]

1 + ε2 (∇||h)2
− pR

ε2

=
σ

ε2

∇2
|| h + ε2

[
∂2
xh (∂yh)

2 − 2∂xh∂yh ∂x∂yh+ ∂2
y h (∂xh)

2
]

[
1 + ε2 (∇||h)2

] 3
2

(30)
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and the two tangential components. Multiplying (11) with t and p from the left,
we get

0 =
[
1− ε2 (∇||h)

2
]
(∂xh τxz + ∂yh τyz)

+ ε2
[
τzz (∇||h)

2 − τxx (∂xh)
2 − τyy (∂yh)

2 − 2 τxy ∂xh∂yh
]

(31)

and

0 = τyz ∂xh − τxz ∂yh + ε2
{[

(∂yh)
2 − (∂xh)

2
]
τxy + (τxx − τyy) ∂xh∂yh

}
(32)

respectively.

3.4 The thin film equation

We now pass to the lubrication equation which can be obtained as the lowest order
equation in h. For the parallel and normal momentum equation (23) and (24) we
have

∂zτzi = ∂ipR (33)

0 = ∂zpR, (34)

respectively, with i = x, y. The constitutive equations (25) to (26) do not contain
ε’s. The leading order terms in (27) and (28) are

τxz + λ1 ∂tτxz = ∂zux + λ2 ∂t∂zux (35a)

τyz + λ1 ∂tτyz = ∂zuy + λ2 ∂t∂zuy. (35b)

The boundary conditions at the film surface z = h(x, y, t) (30) to (32) are to leading
order

pR = −∇2
|| h+ V (h), (36)

0 = ∂xh τxz + ∂yh τyz (37)

0 = ∂xh τyz − ∂yh τxz, (38)

respectively. For ∇||h 
= $0 the last two conditions can be summarized to

0 = τxz = τyz . (39)

At this point it is useful to note the following: the flow field $u, the pressure p and
therefore also the film shape h do only depend on τxz and τyz . Neither the constitutive
equations for these fields (35a) and (35b) nor the boundary conditions (39) couple
to the other stress components. We thus have a closed system of equations for $u, p,
h, τxz, and τyz only.

To proceed further, we first note that according to the normal component of the mo-
mentum equation (34), pR is independent of z. Integrating the parallel components
of the momentum equation (33) with respect to z from z to h(x, y, t) then yields

τiz = (z − h) ∂ipR. (40)
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Upon substitution of (40) into the linear constitutive relation (35) we obtain

(1 + λ2 ∂t) ∂zui = (1 + λ1 ∂t) [(z − h) ∂ipR] . (41)

If we integrate this expression from 0 to z, use the boundary condition (29) for ui

and the value of τiz at z = 0 from (41) we obtain

(1 + λ2 ∂t) (ui + b h ∂ipR) = (1 + λ1 ∂t)

[(
z2

2
− hz

)
∂ipR

]
. (42)

Integrating this one more time from z = 0 to z = h(x, y, t) we find

(1 + λ2 ∂t)




h∫
0

ui dz + b h2 ∂ipR


 − λ2 ∂th

(
ui|z=h

+ b h ∂ipR

)

= − (1 + λ1∂t)

(
h3

3
∂ipR

)
+ λ1

h2

2
∂th∂ipR. (43)

Using the kinematic condition (10) in (43) we obtain as the lubrication approxima-
tion to the linear Jeffreys model the equation

∂th+ λ2

[
∂2

t h+ ∇|| ·
(
u|||z=h

∂th
)]

= ∇|| ·
{[

(1 + λ1 ∂t)
h3

3
+ (1 + λ2 ∂t) b h

2

]
∇|| pR

}

−∇|| ·
[(

h2

2
λ1 + b hλ2

)
∂th∇||pR

]
(44)

with pR at the film surface given by (36).

We are now left to find an expression for u|z=h
in terms of h(x, y, t). Observing that

(42) can be written as an ordinary differential equation in time

ui + λ2∂tui = gi (45)

where

gi := −(1 + λ2∂t) bh∂ipR + (1 + λ1∂t)

[(
z2

2
− hz

)
∂ipR

]
,

(46)

we can represent the solution as

ui =
1

λ2

∫ t

−∞
e
− t−t′

λ2 gi(x, y, z, t
′) dt′ =:

1

λ2
L[gi]. (47)

Integration by parts can be used to simplify (47) at z = h(x, y, t) to the form

λ2$u|||z=h
= −

(
λ1
h2

2
+ λ2bh

)
∇||pR + (λ2 − λ1)

(
h2

2
Q|| − hP||

)
, (48)
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where

Q|| =
1

λ2
L [∇||pR

]
, R|| =

1

λ2
L [
h∇||pR

]
, (49)

or equivalently

Q|| + λ2∂tQ|| = ∇||pR, R|| + λ2∂tR|| = h∇||pR. (50)

Using this in (44) we find the lubrication equation

(1 + λ2∂t)∂th+ (λ2 − λ1)∇|| ·
[(

h2

2
Q|| − hR||

)
∂th

]

= ∇|| ·
{[

(1 + λ1 ∂t)
h3

3
+ (1 + λ2 ∂t) b h

2

]
∇|| pR

}

(51)

The system of eqs. (50) and (51) is the central result of the paper. It constitutes
a lubrication equation for the linear Jeffreys (generalized Maxwell) model without
any further assumptions on the flow of the viscoelastic medium on the surface.

It is worth to note some general features of this novel lubrication model. Firstly, the
dependence of the Jeffreys model on higher order derivatives of the stress and strain
rate tensors is reflected by a second derivative of the film height. Secondly, even for
this simple model system the equations are more involved due to the presence of
nonlinear terms with mixed time and space derivatives.

We finally comment on the limiting cases the equation assumes in specific limits.
For λ2 → 0 it collapses to a single equation. This limit corresponds to the simplest
Maxwell model with only one stress tensor contribution. In the case λ1 = λ2 we
recover the thin film equation of Newtonian liquid, multiplied on both sides by a
factor (1 + λ1 ∂t).

4 The shape of a rim in a dewetting film

As an application of the novel lubrication equation we investigate the issue of the
shape of the rim of a dewetting viscoelastic thin film. In ref.[19], Herminghaus et al.
have shown that in viscoelastic thin films based on the generalized Maxwell model,
both oscillatory rim profiles as well as monotonely decaying profiles are possible, in
accord with experiment.

In order to address this question we consider the linear stability of the system (50)
and (51). For this it is enough to consider the 2D situation of a cross-section of the
rim. Since we are not interested in the behaviour near the contact-line, we further
neglect Van der Waals forces represented by V (h).

Technically, we perform an analysis on the same level as in [19]. We only look at
the linear problem of the decay of the capillary response the opening hole creates
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towards the flat film state. For this we shift the coordinate system to the frame
co-moving with the rim, i.e. we let

h(x, t) = h(ξ, t), Q(x, t) = Q(ξ, t), R(x, t) = R(ξ, t), (52)

with ξ = x − s(t) and where Q is the first component of Q|| and R is the first
component of R|| in 2D. This yields

∂th− ṡ∂ξh+ λ2

(
∂2

t h− 2ṡ∂t∂ξh+ ṡ2∂2
ξ h− s̈∂ξh

)
+(λ2 − λ1)∂ξ

[
(∂th− ṡ∂ξh)

(
h2

2
Q− hR

)]

= ∂ξ

[
−

(
h3

3
+ bh2

)
∂3
ξ h− ∂t

{(
λ1
h3

3
+ λ2bh

2

)
∂3
ξ h

}

+ṡ∂ξ

{(
λ1
h3

3
+ λ2bh

2

)
∂3
ξ h

}]
, (53)

together with
Q+ λ2∂tQ− λ2ṡ∂ξQ = −∂3

ξ h (54)

and
R+ λ2∂tR − λ2ṡ∂ξR = −h∂3

ξ h (55)

If we then perturb around a flat reference state with h0 = const., Q = 0 and R = 0,
by setting

h = h0 + δ · ϕ, Q = δ · ψ1, R = δ · ψ2 (56)

and by assuming a quasi-steady state in which the shape of the rim changes only
slowly and the speed ṡ is constant, we find for the perturbation equations for (53),
(54), (55), keeping only the O(δ) terms

−ṡ∂ξϕ+ λ2ṡ
2∂2

ξ ϕ+

(
h3

0

3
+ bh2

0

)
∂4
ξ ϕ− ṡ

(
λ1
h3

0

3
+ λ2bh

2
0

)
∂5
ξ ϕ = 0 (57)

and
ψ1 − λ2ṡ∂ξψ1 = −∂3

ξ ϕ, ψ2 − λ2ṡ∂ξψ2 = −h0∂
3
ξ ϕ. (58)

Note that equation (57) does not contain any contributions from ψ1 or ψ2 and hence
we can simply solve it by making the normal mode ansatz ϕ = eωξ, requiring that
the solutions decay to ϕ → 0, since h → h0, Q = 0 and R = 0 as ξ → ∞. Hence,
the solutions must always have ω with a negative real part.

However, we find that in the equation for the growth rate

−ṡ+ λ2ṡ
2ω +

(
h3

0

3
+ bh2

0

)
ω3 − ṡ

(
λ1
h3

0

3
+ λ2bh

2
0

)
ω4 = 0 (59)

all coefficients ṡ
(
λ1

h3
0

3
+ λ2bh

2
0

)
,

(
h3
0

3
+ bh2

0

)
, λ2ṡ

2 and ṡ are positive constants.

From the form of the polynomial we can thus conclude that normal modes with
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negative real ω will never be a solution of equation (59). Consequently, the solu-
tions which decay to zero as ξ → ∞ have to be oscillatory, as in the special case of
the Newtonian fluid with λ1 = λ2. This is in contrast to the results by [19], where
it is argued that viscoelasticity will introduce a change in shape to a monotone
decaying rim towards the undisturbed portion of the film.

5 Conclusions

In this paper, we have derived a novel thin film equation for viscoelastic media based
on a linear Jeffreys model. As a first application of this equation we have studied the
rim profile in a dewetting thin film, and find that it always has oscillatory behaviour.
This result is in contrast to the finding by Herminghaus et al.[19] which is based on
the same viscoelastic model of the liquid, but which is then subjected to additonal
assumptions.

We believe that this apparent discrepancy can be related to the treatment of slip.
In refs.[23], [24] two of us (A.M. and B.W.), together with others, have studied
the properties of a lubrication model which can be derived when the slip-length
is larger than the thickness of the undisturbed film. This model, which is based
on a Newtonian dynamics of the liquid, exhibits a transition from solutions with
oscillatory decay of the profile to those with a monotone decay.

Therefore we are led to conclude that the essential mechanism underlying the mor-
phology change in the rim profiles is not due to the bulk properties of the liquid
(be they Newtonian or not), but rather determined by its hydrodyamic interaction
with the underlying substrate. However, in order to fully understand the dynamic
behaviour of rupturing thin films, the model derived here needs to be extended to
account for convective nonlinearities, which may indeed become relevant near the
contact line [?].
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[14] F. Saulnier, E. Raphaël, P. G. de Gennes, Phys. Rev. Lett. 88, 196101 (2002)

[15] V. Shenoy, A. Sharma, Phys. Rev. Lett. 88, 236101 (2002)

[16] R. B. Bird, R. C. Armstrong, O. Hassager, Dynamics of Polymeric Fluids, Vol.
1, Wiley & Sons, New York (1977)
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