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1. INTRODUCTION 

The method of trigonometric sums is one of the few general methods which allows 
to solve a large class of different problems in number theory and its applications. 

A trigonometric sum is a sum of the form 
p 

Sp = L e27rif(x) 

x=l 

where the summation is over some set of natural numbers and f( x) is an arbitrary 
function which takes real values for natural numbers. 

The most important trigonometric sums are those with f ( x) - a polynomial of 
degree n E N. Those sums are called Weyl sums. 

The central question in this theory is to get as effective as possible upper bounds 
for the absolute value of Weyl sums. 

Under some conditions on the coefficients of the polynomial f ( x) the first non-
trivial estimates where derived by H. Weyl (1] and I.M. Winogradov [2], who gave 
the bounds 

Is I < Cpl-_J__ 
p - n.2 !n.n. ' respectively 

(! > 0, C > 0 - are constants). 
In [3] and [4] L.D. Pustyl'nikov found effective bounds not depending on n for 

almost all polynomials of large enough degree: 

jSpj :::; C(n)P1-p 

for all p E (0, ~)and n > n 0 (p). Moreover, he considered an approximation process 
which allows to get effective bounds for all polynomials of large enough degree. 
These investigations were continued in [5]. All these estimates are made for Weyl 
sums over infinite or finite intervals of consecutive natural numbers. But a lot of 
problems in number theory are connected with subsets of natural numbers as for 
instance the prime numbers and therefore they demand estiamtions of Weyl sums 
over subsets of natural numbers. This will be the aim of this paper. Namely, for a 
given subsequence M : m 1 < m 2 < m 3 < ... of the naturals and Q E N we are 
looking for upper bounds of sums of the type 

Q+P 
Slf.p = L e27rif(m1c) 

k=Q+l 

with f ( x) - a polynomial of degree n. We are able to derive estimations corre-
sponding to those of L.D. Pustyl'nikov. A special example of such subsequences is 
the sequence of primes. 

The proof of these estimates consists of two parts. 
The first part (§2) starts with a slight modified version of Mordell's method used 

in [6] and then follows exactly the number theoretical part in [3]. 
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The second part (§4) uses a "non-invariant ergodic theory" of translations of the 
n-dimensional torus developed in §3. 

In §5 we give some applications to the law of the distribution of the fractional 
part of a polynomial. 

(1) 
2. DEFINITIONS AND NOTATIONS 

Tn denotes the n-dimensional torus considered as Tn 
al < 1, ... , 0 :::; an :::; 1}. 

(2) mes is the usual Lebesque (Haar) measure on Tn. 
(3) For a real number /3 we write {/3} and (/3] for the fractional part and the 

integer part of /3, respectively. 
( 4) For natural n 2:: m > 0 (:) denotes the binomial coefficient. 
( 5) Let n > 1 be natural and an be a fixed real number. The transformation 

An-1 = An-1 (an) : Tn-l -t Tn-l is defined by 

where 

n-s (S + 11) 
a~ = ?; 11 as+v mod 1, l:::;s:::;n-1. (1) 

This transformation is a skew translation of Tn-l and hence invertible. The 
inverse is given by 

a,= n~
1

(8:v)(-1ta:+v+(n:s)Hra~ modi. (2) 

( 6) We call a subset of a complete metric space residual if it contains a countable 
intersection of open and dense sets. The complement of a residual set is called 
meager. 

(7) For a Borel set B its characteristic function is denoted by XB· 

3. THE NUMBER THEORETICAL PART 

In this chapter we use a modified version of Mordell's lemma used in (6]. After 
this we can completely follow the number theoretical part in [3]. For reasons of 
completenes we will repeat the main arguments used there. 

Lemma 1. (Mordell) Consider the simultaneous diophantine equations: 

X1 + · · · + Xn = Yl + · · · + Yn 

(3) 
x~ + · · · + x: = y~ + · · · + y~ 

where Xi, Yi ( i = 1, ... , n) can take values in { m 1 , ..• , mp} independently. Then 
the number of solutions of {3) does not exceed n!Pn. 

2 



The proof is essentially contained in [6]. D 

Lemma 2. For f(x) = anxn + · · · + a1x and y EN we set 

then 

f(x + y) - J(y) = anxn + Yn-1(y)xn-l + · · ·.+ Yi(y)x 
Y(y) = (Yi(y ), ... , Yn-1 (y )) 

Y(y) = J1!_1(a1, ... , an-1) 

where A!_1 is the y th power of the lift of the transformation An-l to IR.n- 1 . 

Proof. By induction (see f.i. [3]). D 

Let Wn be a complex valued function with l'lln(x)I ~ 1. For PEN we set 

s~p = s~p(a) = 
p 

= L Wn(mk)e2?ri(o:1m1c+ .. +o:n.m~) 

k=l 

Lemma 3. 
1 1 

(4) 

J· · · j js~j 2

n da1 ••• dan < n!Pn. (5) 
0 0 

Proof. Writing Wn for the complex conjugate of Wn and Nv (v = 1, ... , n) for the 
expression xr + ... + x~ - yr - ... - y~ we rewrite 

1 1 J· · · j js~pj 2

n da1 ... dan = 
0 0 

where the summation runs over all x1, Yi out of the set {mi, ... , mp}. Now the 
integral on the right hand side of the equations is vanishing if at least one of the 

· Ni ( i = 1, ... , n) is non-zero and equals 1 if all Ni = 0. Hence the integral can't 
exceed the number of solutions of (3). But l'l'nl ~ 1. This proves (5). D 
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Lemma 4. For given 0 < p < ~ and P E N we can find an open set Ilp with the 
properties 

i) 
1 

mes (Ilp) ::; pn(I-2p) and 

ii) !S~p(a)I::; (n!)2~p1 -p 

Proof. Let Ilp c Tn be the open set such that 

IS~p( a)j > (n!)2~ pt-p for a E Ilp. 

or 

1s~p(a)j2n > n!P2n(t-p) 

By application of lemma 3 we can derive 

n!P2n(I-p)mes (Ilp) ::; n!Pn. 

This together with (8) gives 

1 
mes (Ilp) ::; pn(I-2p)' 

0 

(6) 

(7) 

(8) 

(9) 

(10) 

Theorem 1. Let Q EN, p be a real number in (0, t) and f(x) = aix + ... anxn a 
" 00 

polynomial of degree n > (1 + 1!2 ] . Then for ITq = U Ilp the following properties 
P P=Q 

hold: 

i) " 2 
mes (ITq) ::; Qn(l-2p)-t < 1 

ii) IS~(a)I ::; (n!) 2~pl-p for all p ~ Q if a E rn\ITq. 

Proof. By virtue of lemma 4 

" 00 1 00 

mes (ITq) < ~ < j(x - l)-n(I-2p)dx. - L.t pn(l-2p) -
P=Q Q 

The assumption of the theorem implies that n(l - 2p) > 2 and consequently 

" 2 
mes (ITq) < Qn(I-2p)-1 < 1. 

(11) 

(12) 

The second statement follows immediately from the definition of ITq and Ilp. 0 
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4. PSEUDO-ERGODICITY 

The main idea in [3] to obtain the bounds on Weyl sums is to use the ergod-
icity of the transformation An-1 = An-1 (an) as long as the main coefficient an is 
irrational. This attempt is not succesful for our purposes because, as we will see 
in §5, we have to take in account only iterates A:~1 of An-l which are indicized 
by the subsequence M and not the entire natural series. Moreover, we can't apply 
ergodic theory to some iterate of An-l not knowing whether M contains an infinite 
arithmetic sequence. The aim of this chapter is to overcome these difficulties by 
mean of some "pseudo ergodic" properties, which we will desribe below. In contrast 
to usual ergodicity we are not dealing with invariant sets but with sets consisting 
of entire orbits of points under A:_~\, mk E M. 

Definition 1. Let E : X ~ X be an invertible map of a topological space with 
invariant Borel-probability-measureµ. We say E is pseudo-ergodic with respect 
to the increasing subsequence of the natural numbers M = { m 1, m2, ... } if for each 
Borel set B C X of positive measure the set of points x E X for which 

1 N 
lim NL XB(Em1c(x)) = µ(B) 

N-+oo k=l 
(13) 

has full measure (property PE for the set B). 

Remark. ( 1) The notion of pseudo-ergodicity is stronger than the usual notion 
of ergodicity (It is the same if mk = k, k = 1, 2, ... ). 

(2) Let iJ = LJ~1 Em1c(B). By the invariance ofµ we have 

J xrAEm1c(x))dµ = J Xf3(x)dµ = µ(B n Em1c(B)) 
B Et'n1c(B) (14) 

=µ(Em1c(B)) = µ(B). 

If E is pseudo-ergodic this implies 

µ(B)µ(B) = j Iim NI t Xf3(Em1c(x ))dµ = 
N-+oo k B =1 

1 NJ lim NL XfJ(Em1c(x))dµ = 
N-+oo k =lB 

1 N 
lim - L µ(B) = µ(B). 

N-+oo N k=l 

Hence, for all Borel sets B of positive measure 

µ(iJ) == 1. 
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In the following we will show that given M for almost all a E [O, 1) the trans-
formation An_1(a) is pseudo-ergodic w.r.t.M. 

Definition 2. The pseudo-ergodicity set P E(M) C (0, 1) of the subsequence M 
with respect to the transformation An-l (a) is defined as 

PE(M) ={a E (O,l)IAn_1(a): Tn-l--+ Tn-l is pseudo-ergodic w.r.t.M}. 

Fork EN let us consider the following mapping ak(a) of the circle 3 1 = JR/Z: 

ak(a) = ka (mod 1). 

This mapping assigns to each a E (0, 1) the image of the origin projected to the 
first coordinate under a skew rotation A of the torus Tn-l of the form 

A(a1, · · ·, O:n-1) = (0:1 + k1a, ... , O:n-1 + ln-1,10:1 + · · · + ln-l,n-20:n-2 + kn-1o:)(mod 1) 
li,j E Z i = 2, ... , n - 1; j = 1, ... , n - 2 

Proposition 1. Let U = [6, e2] c S1 and a sequence of mappings {akJ be given. 
If the conditions 

(17) 

are satisfied then the set 

N(U) ={a E (0, l)laki t/. U for all i} (18) 

is meager and has zero Lebesque measure. 

The proof relies on the following lemma. 

Lemma 5. Let U as in proposition 1, L = [ a 1 , ,81] U · · · U [ O:r, ,Br] be a finite union 
of intervals in 3 1 . Then for c > 0 there is a number K = K(c, L) such that for all 
a1c with 

k>K 
and 

N~U, L) ={a E (0, l)ja EL and ak(a) t/. U} (19) 

mes (N~U, L)) ~ (1 + c)mes (L)(l - mes (U)) (20) 

holds. Moreover Nlc(U, L) again is a finite union of intervals with diameters not 
larger than k-1 . 
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Proof. First we fix c > 0, U and L. Let 8 > 0 be specified later. 
Let eM be the center of the complement of the interval [6, e2]· By elementary 

properties of the map al : Q ~ la( mod 1) the preimages of ek under al are exactly 
l points in S1 where neighbors have distance f · Moreover, the full preimage of the 
complements of (6, 6] are l intervals of length l-mcs/e1

•
6 ) centered at the preimages 

of eM-. 
From this extremely uniform distribution we see that for a given interval [a, ,B] 

Hence, if 

(21) 

then 

(1 -5)mes (L) ~ #{ak
1

(~M) EL} ~ (1+5)mes (L). (22) 

The set Nk is contained in the union 

-k - u ( -1- mes (e1,6) 1 -mes (6,e2)) 
N - T 2k 'T + 2k . 

rEai:1(eM )nL 

By the above estimates 

(1 - 5)mes ( L )(1 - mes (e1' 6)) < mes (Nk) = L 1 - me~ (ei, e2
) < 

TEa,;;1(eM)nL 

< (1+8)mes (L)(l - mes (6, 6)). 

D 

Proof of the proposition: We fix U and a sequence { akJ subject to the 
assumptions of the proposition. We will inductively construct a nested sequence 
Jr, r = 1, 2, ... , of unions of intervals fulfilling 

m(r) 
(1) Jr = u 1ir)' where 1ir) are intervals in S1 

k=l 
(2) Jr+l CJ. Jr 
(3) lim mes (Jr)= 0 

r-+oo 
00 

(4) N(U) c n Jr. 
r=l 

The statement of the proposition follows immediately from 1.-4. 
We set J1 = S1 and fix 0 < c < 1 ~~b"). Let K be the number defined in the 

lemma applied to L = S 1 . 

By the assumption we can find an i 2 E N such that 

k;.2 > K. 
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The lemma then tells us the set J 2 = Nki2 ( U, 5 1 ) is a union of intervals in 5 1 

satisfying 

mes (J2 ) < (1 + e)(l - mes (U))mes (Ji) 
< (1 + e)(l - mes (U)) 

Let us assume we have already constructed J1 :J · · · :J Jr-l with the properties 
1. Ji is the finite union of intervals 

3.' mes (Ji+ 1 ) ~ (1 + c;)(l - mes (U))mes (Ji) 
4.' Nki1 (U, Ji) = Ji-1 

Again, applying the lemma to the set Jr-l we find a number Kr. To this number 
Kr there is a mapping akir in the sequence for which 

Then the lemma states that for Jr = Nkir ( U, Jr-l) 

mes (Jr)~ (1 + e)(l - mes (U))mes (Jr_i). 

So far we have constructed a sequence {Jr} having properties 1., 2., 3.', 4.'. Since 

00 00 

N(U) c n Nkir(U, Jr-1) = n Jr 
r=l r=l 

property 4. holds. 
By virtue of 3.' and 0 < e < 1 :1X:se~~b) we have 

mes (N(U)) < mes (Jr)~ (1 + e)(l - mes (U))mes (Jr_i) 
< ((1 + e)(l - mes (U))y- 1mes (J1 ) 

< ((1 + e)(l - mes (U)y-1 ~ 0 (r ~ oo) 

This completes the proof of the proposition. 0 

Theorem 2. Let M = {mk} be a subsequence of the natural series. Then P E(M) 
is a residual set of full measure. 

Proof. The proof consists of 5 parts. In the first part we derive an expression of 
the orbit of a point under A( an)· In the second part we apply proposition 1. Part 
(3) and ( 4) - which will be proved below - give property PE for elementary open 
sets (parallelipeds) and in ( 5) we derive PE for all Borel sets of positive measure 
as long as an is in a residual set of full measure. 

(1) In this step we use a recursive formula for the M-orbit of a point under A 
to get explicit expressions for this M-orbit. 
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(23) 

(k+l) _ (k) + (2) (k) + + ( n ) 0:1 -0:1 0:2 ''' O:n 
1 n-1 

with initial conditions 

j==l, ... ,n-l. 

By inductive insertion the solution from aSk~i into aSk~i-l' j = 1, ... , n - 1 we 
derive: 

and 
a~k~i == O:n-j + PL;+1(k)an-i+1 + · · · + P~=i(k)an-1 + P~(k)an 

where P;(k) (s = 1, ... , n; r = 1, ... , s - 1) are polynomials with integer coeffi-
cients of degree r. 

(2) By (1) the projection 7rn-l of Am1c(a)(O) to the (n-1)-st coordinate has the 
form 

a(k) = 7rn-1(Am1c(a))O)) = mk · n ·a. 
Therefore, proposition 1 implies that for all intervals U in S 1 the set N( U) for the 
sequence {7rn_1(Am11 (a)(O))} is meager and has zero measure. Choosing a countable 
base {Ui}r' of the topology consisting of intervals we see that the set 

00 

N = {a E 5 1 la(k) is not dense in 5 1
} C LJ N(Ui) 

is meager and has zero measure. This means the set 

D = {a E 5 1 ja(k) is dense} 

is residual and has full measure. 

i=l 

(3) If a E D we can find a subsequence mk; = l; of mk such that for all h, NE N 

1 ~ 27riha.(1c;) c( h) 
-L.Je <--
N i=1 N 

(24) 

for some constant c depending only on h. 

( 4) If a E D and l; is the subsequence from (3) then the sequence 
{Al; (a)( a1, ... , O:n-1)} is uniformly distributed (with respect to mes (n-l)) on Tn-l 
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for mes (n-l) - a.e. ( a 1, ... , an_i) E rn-1, i.e. for a.e. ( ai, ... , an-l) and all paral-
lelepipeds II = ( eL ei) x ... x ( er-1

' e~-l) 

lim Nl t xn(A1i(a)(a1, ... , an-1)) =µ(II), (25) 
N--+oo . J=l 

where xn is the characteristic function of II. 

(5) Here we want to show that (13) holds for any set of positive measure. This 
immediately implies the theorem. First let U be an arbitrary open set and e be 
fixed. For MEN we can decompose U into 

r(M) 

U = LJ IIaUV, where mes (n-l)(V) < ~ and IIs are disjoint parallelepipeds. 

by ( 4) for a.e. (al, ... , an-1) 

lim Nl txu(A1i(a)(a1, ... ,an-1));::: lim Nl txun.(A1i(ai, ... ,an-1D) 
N--+oo le N--+oo le =1 =1 

r e 
= µ( LJ Ils) ;::: µ( U) - M. 

a=l 

On the other hand, by the invariance of mes (n-l) 

lim I Nl t xv(Ali(a)(a1, ... ) an-1))dmes (n-l)(ai, ... ) an-1) = 
N--+oo 

Tn.-1 k=l 

- l" }:_ ~ J (Ali( )( )d (n-1)( ) _ - 1m N L....J Xv a a 1, ... , an-l mes ai, ... , an-l -
N--+oo k=l 

1 N e 
= lim - L mes (n-l)(V) =mes (n-l)(V) < -. 

N k=l M 
By Chebyshev's inequality 

mes (n-1l{( 0:1, ... , °'n-1 )[ lim ~ t xv(A1i( a:)( 0:1, ... , °'n-1)) > 
k=l 

1 > M ·mes (n-l)(V)}::; M. 

Therefore, for (al, ... , an- l) in a set of measure 1 - J:t 

lim t xu(A1i(a)(a1, ... , an-1))::; lim Nl t Xun,(Al;(a)(a1, ... , an-1)) + 
N --+oo k=l N--+oo k=l 

+ lim }:_ t xv(Al;(a)(ai, ... , an-1))::; 
N--+oo N k=l 

r (26) 
::; mes (n-l)( LJ II,,)+ Mmes (n-l)(V) < 

< mes (n-l)(U) + e. 
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Because M and € were arbitrary we have (13) to hold for all open sets and hence 
for all sets (XTn-1\u = 1 - xu ). For an arbitrary set B of positive measure using 
the regularity of mes (n-l) we can find for any 8 > 0 open sets U0 and closed sets 
K 0 with 

Us ::J B ::J Fs 
mes n-1(Us) - 8 <mes n-1 (B) <mes n-1 (Fs) + 8. 

Since (13) holds for all Us and Fs and 

xu6 ~ XB ~ XF6 

(13) is proved for all sets B of positive measure. 

Proof of (3) 
Let /3 be irrational. We consider the sequence 

bi= j · /3( mod 1) j = 1, 2, ... 

then for h E Z\ {O} 

1 N 1 N . . 1 le21rihNf3 - 1 I C(h) _ L e21rihb; = _ L e27rih1f3 = _ < __ (27) 
N i=l N i=l .N le21rihf3 - ll - N . 

The Taylor expansion of the exponential function gives 

I e21rih(f3+8) - e2"'"ihf3 I :::;; 27r hB + o( B). (28) 

Since a(k) is dense in S1 we can find a subsequence a(k;) satisfying 

l
b· - a(k;)I < ~ 

1 - 21 j=l,2, .... (29) 

Combining (27), (28) and (29) we get 

1. ~ 2rih{3. + ( 1 ~ 21riho:( le;) 1 ~ 2?rih{3.) < = -L....Je 1 -L....Je --L....Je 1 

N i=l N i=l N i=l 

< C(h) + _!_ ~ (27rh~ + o(~)) < c(h) 
- N N~ 21 21 - N 

1=1 

(30) 

D 

Proof of (5) 
The proof is an application of the multidimensional Weyl criterion on rn-1 : 

{ A1i (an)( a1 , ... , an_1 )}~1 is uniformly distributed in rn-1 iff for allinteger vectors 
fl= (h1,. · .,hn-1) =/= (0,. ·. ,0) 

lim Nl f: exP{ 21ri(h,_, A1
; (an)( a1, .. ., a..-1))} = 0 

N-t-oo . 
1 1= 

(31) 
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where (fl,~) = h1s1 + · · · + hn-lSn-l · For given fl 'f:. (0, ... , 0) we consider the sums 
l N+Q-1 

S(N, Q, a1, ... , an-1) = N L exp{27ri(f1, Ali(an)(a1, ... , an-1))} Q EN. 
i=Q (32) 

Using the expressions from (1) for A1i (an)( a 1, ... , an-l) we can proceed 

j js(N, Q, a1, ... , an_i),
2
da1, ... , dan-1 = 

l N+Q-1 

= N 2 ~ j exp { 27ri(!J..Az11 (an)(a1, ... , an-l) -
k,1=Q Tn-1 

- A1i( an)( a1, ... , an_i)) }da1,. ·., an-1 = 

= ~2 ~~: j, exP{ 27ri [~ hr ( an-r + E P:-r+• ( lk )an-r+•) -

- ~ hr ( lln-r + E P:-r+• ( l; )C>n-r+•)] }da1, · · . , da,._1 = 

(33) 

1 N+Q-1 { n-1 } 
= N 2 k~Q exp 27ri ?; hr ( P~ ( h)an - P~ ( l; )an) X 

The integral on the right-hand-side takes value 1 if 
r-1 

L hr (P~-r+a(lk) - PLr+a(li)) = 0, (34) 
a=l 

simultaneously for all r = 1, ... , n - 1. Otherwise its value is zero. 
Lets fix !J.. and assume that at least for one r E [2, ... , n - 1] hr -=J. 0. Since all 

the P~-r+a are polynomials, we can find a natural Q = Q(h) such that (34) holds 
(under the above assumption) if and only if k = j (If we choose Q large then all 
lk, = Q, Q + 1, ... , N + Q, are large). Consequently, in this case 

j IS(N, Q, ai, ..• , C>n-1)!
2 
da1, ... , dan-l = ~-

Tn.-1 

In the opposite case h2 == h3 == · · · == hn- l == 0 and 

j js(N, 1, a1, ... , an_i)j
2 
da1, ... , dan-1 = 

Tn-1 

12 

(35) 

_ L e2·inh1cxn. • 
( 

1 N . (l;)) 
N jOl 



where the bar stands for complex conjugation. By virtue of (3) the integral can be 
estimated by 

J I 1
2 ( c( h)) 2 

• 
rn-1 S(N, 1, a1, ... 'an-1) da1, ... ' da,._1 s; N . If an ED. 

This implies that for all h. :j; (0, ... , 0) there is an Q such that 

00 2 I: jS(N2, Q, a1, ... , an_i), < oo for mes (n-l) - a.e.(a1, ... , an_i) and an ED. 
N=l 

Therefore 

lim S(N2 ,Q,a1, ... ,an_i) = 0 for mes (n-l)a.e.(a1, ... ,an-1) and an ED. 
N-+oo 

Now if M 2 ::; N < (M + 1)2 then 

. I ( 2 2M IS(N,Q,a1, ... ,an_i) ::; ISM ,Q,a1, ... ,an-1)I + N ::; 

S: IS(M2,Q,ai, ... ,an-i)I + ~· 
Remarking that 

lim S(N, 1, a1, ... , an_i) = lim S(N, Q, a1, ... , an_i) 
N-+oo N-+oo 

(these infinite Cesaro means do not depend on the beginning.) We have shown that 
if a E D for given fl. (31) holds for a.e. ( a1, ... , an-1). From the countability of 
integer vectors fl. follows (31) for a.e. ( a 1, ... , an-l) independent of h_. D 

5. ESTIMATION OF WEYL SUMS 

We are now ready to state and prove the main theorems. 

Theorem 3. Let M = { mk} be a subsequence of the natural numbers, 

an+i E P E(M), 
1 

0 < p < 2' n > no = no (p) = [1 + 4 ] . 1- 2p 

Then there is a set BM c rn of full measure such that for (a1, ... ,an) E BM there 
is a Q EN with 

Q+P +1 2: e21ri(a1m .. + ... +an+1m~ ) < (n!)2~p1-p for all P > Q. 
k=Q+l 

13 



Proof. Let us consider the following sequences Mi= M, M2 = {mk-m1h=2, ... ,Mi= 
A A 00 

{ mk - mi-1 }k0=i> ... and let rri be the set rri = u Ilp from theorem 1 for the 
P=i+l 

• n+l - 00 A sequence Mi and the function '11 n ( x) = e 2-irian+ 1 x . Then the set 11 = U Ili has 
i=l 

the following properties 

- 00 A 00 2 
1. mes (rr) ~ :E mes (Ili) ~ :E ·n(l-2p)-l ~ 

i=l i=l 1, 

2 < <1 - 2n(l-2p)-2 

(here we used n > [1 + 1!2P] and theorem 1.) 
and 

2. Is~;,'= It e2-irian+i(m.1c+i-mi)n+l. e2-iri(a1(mi+.1c-mi)+ ... +an(mi+.1c-mi)nl 

k=l 

(36) 

~ (n.1) 2ln pl-p ( ) \- (37) for all P > i and ai, ... ,an E Tn IT. 

Because mes (Tn\fi) > 0, by virtue of the definition of P E(M) the set 

BM= {(a1, ... ,an) E Tnj3k such that Am"(a1, ... ,an) E Tn\fi} 

has full measure. 
Now for ( a 1 , ... , an) E BM, Q such that A mQ ( a 1, ... , an) E Tn \IT we consider the 

sum 
p SQ,P = :E e2-iri(f((m.1c+Q-mQ)+mQ)-f(mQ)) 

k=l 

with J(x) = aix + ... + an+lxn+l. 
Then 

jsQ,PI = js~PI and 
p 

SI - '"'""ffr (m - m )e2?ri(Y1(mq)(mJc+Q-mq)+ ... +Yn(mQ)(m1c+Q-mQ)n) 
Q,P - ~ '±'n k+Q Q . (38) 

k=l 

where Yi(y) is defined by ( 4 ). This means by (37) 

ls~pl = jsQ,PI = ls~~j ~ (n!)2~p1 -p for all P > Q. 

This completes the proof of the theorem. 0 

We will now state two theorems which are conclusions of the above considerations 
and theorem 3. Their proofs are analogous to those in [3], [4] and therefore omitted. 

Theorem 4. Assume that the assumptions of theorem 3 hold. Let us write the 
vector a= (a1, ... , an-i) E Tn-l as 

14 



-j-p 
If lajl ::; 2!(n-l) then for n > no(P ), an E PE( M), and 2 ::; P ::; q 

I~ e2 .. i(a,,m.+··+anm·)I ::::; ( mk + (n _ l)!)·<n,_t) + 1) pl-p 

Remark. This theorem points to an approximation process for the coefficients of 
the polynomial where the degree of the approximation determines the estimation 
of the corresponding Weyl sum. 

The next theorem concerns the remainder term in the law of distributions of the 
fractional part of a polynomial. 

Theorem 5. Assume the conditions of theorem 3 to hold. Let 0 <a::; 1, DQ,P(a) 
be the number of integers Q ::; k ::; P satisfying { almk + · · · + anmk} < a, an E 
P E(M), 0 < p < ~ and n >no. Then for almost all ( ai, ... , an_1 ) E rn- 1 there 
is a Q == Q (al, ... , an, n) E N such that 

DQ,P(a) =Pa+ .:\p(a) 
with 

j).p(a)I::; cP1
-P, c == c(n, p). 

6. CONCLUDING REMARKS 

One of the most interesting applications of the above results are the one to the 
sequence of the primes. Then theorem 3 gives estimation of Weyl sums over primes 
and may lead to bounds on the number of solutions to diophantine equations in 
prime numbers. 

Theorem 5 states that for almost all polynomials their values at the prime num-
bers are uniformly distributed modulo 1 in [O, 1) and the discrepancy Ap satisfies 
I .:\PI ::; cPl-p. 

In [5] it was shown that these estimations are valid only for a large set in the 
sense of Lebesque measure. Indeed it can be shown that for given an the set of 
coefficients ( a 1 , .•• , an-l) for which the above estimations are violated is residual 
in rn-l. 

Finally we want to formulate a conjecture and give heuristic arguments for it 
to hold. We believe that these arguments can be made rigorous by a cautious and 
more detailed analysis of the proofs in this paper. 

Let us consider a sequence { mk} which has a certain density property: 
There is a c > 0 such that 

m% < k. (39) 
Notice that the primes and all polynomial sequences are subject to this condition. 
If we can carry out the construction in the proofs of lemma 5 and proposition 1 
for all numbers in the sequence {mk} rather than for a subsequence {mkJ we have 
that Jk is contained in approximately 

mes ( Jk-1) · mk 
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intervals of length l-:s (U). Together with (22) this indicates that the exponential 
growth rate of the numter of intervals should be not greater than that of the term 

(1 - mes (U))k · mk ::; (1 - mes (U))k · k~ 
which tends to zero. The reason why we can estimate only the exponential growth 
rate is the influence of "boundary" effects which we could neglect in the proofs by 
considering sparse subsequences. 

These heuristics lead to the following conjecture. 

Conjecture 1. Let M satisfy (36). Then 

dimH(S1\P E(M)) = 0. 

We think that even a stronger conjecture may be true. 

Conjecture 2. Let M satisfy (36). Then the set S1\P E(M) is countable. 

If Mis the entire natural series then S1\P E(M) are the rational numbers and 
the conjectures are true. 
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