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Abstract

Stochastic models and Monte Carlo algorithms for simulation of 
ow through

porous media beyond the small hydraulic conductivity 
uctuation assumptions are

developed. The hydraulic conductivity is modelled as an isotropic random �eld

with a lognormal distribution and prescribed correlation or spectral functions. It is

sampled by a Monte Carlo method based on a randomized spectral representation.

The Darcy and continuity equations with the random hydraulic conductivity are

solved numerically, using the successive over relaxation method in order to extract

statistical characteristics of the 
ow. Hybrid averaging is used: we combine spatial

and ensemble avergaing to get eÆcient numerical procedure.

We provide some conceptual and numerical comparison of various stochastic

simulation techniques, and focus on the prediction of applicability of the random-

ized spectral models derived under the assumption of small hydraulic conductivity


uctuations.

1. Introduction

The porosity study has received renewed attention in recent years. Motivations for

studying porosity came from many applied �elds, in particular, from material science,

biomedicine, geology, environment, etc. Simulating 
ows in natural porous media such

as soils, aquifers, oil and gas reservoirs is drastically complicated by the extreme hetero-

geneities and with insuÆcient data characterizing the medium.

Generally the porous media is characterized by high irregularities of the size and the form

of pores. To approximate the corresponding 
ow equations, a huge number of nodes is re-

quired to get practically relevant results. It should be noted that a reasonable description

of the hydraulic conductivity behaviour by a deterministic function meets with serious

diÆculties. Therefore, a natural choice used in this �eld is the statistical description of

the hydraulic conductivity via random �eld with a given statistical structure.

Random �elds provide a useful mathematical framework for representing disordered het-

erogeneous media in theoretical and computational studies. Another example is in tur-

bulent transport, where the velocity �eld representing the turbulent 
ow is modelled as

a random �eld with statistics encoding important empirical features, and the temporal

dynamics of the position of immersed particles is then governed by equations involving

this random �eld, see e.g., [21], [31],[36].

Freeze [10] has analyzed the available data and has found out, that the �eld of hydraulic

conductivity is well described by the random lognormal distribution. In hydrogeology this

approach is often used for the 
ow analysis in saturated zone, or for the transport of a

dissolved pollutant in a saturated aquifer [34], [35], [11], [22], [12], [6], [1], [38]. See also

the overview in the books [3], [8] and [13].
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Generally when dealing with boundary value problems for PDEs with random parameters,

one uses two main instruments to analyse the statistical characteristics of the solution:

the small perturbation method (based on �rst- or higher order approximation) applied in

the case of small parameter 
uctuations, and the direct numerical solution of PDEs for

the given samples of the random inputs.

The methods derived in the �rst order approximation under small hydraulic conductivity


uctuation assumption are used widely [2], [12]. However they have strong restrictions,

and as a rule, the applicability conditions are uncertain. Therefore it is important to

develop a general direct numerical method which is able to provide calculations beyond

the small 
uctuation assumptions; in addition, it can be used to validate the small per-

turbation results. On the other hand, the results obtained by the �rst approximation

method are very useful since they are explicit, and can be therefore used as a benchmark

for testing the complicated direct numerical method.

In [29] we have constructed a randomized spectral model (RSM) for simulation of a steady


ow in porous media in 3D case under small 
uctuation assumptions. The method follows

the scheme: �rst we derive explicitly the spectral tensor of the velocity from that of the

hydraulic conductivity; then we construct a Monte Carlo simulation technique for the

random velocity with the derived spectral tensor.

Note that a small perturbation analysis using a simulation formula inspired by [17], based

on a numerical evaluation of the random �eld representation through the spectral mea-

sure, was applied also in Schwarze et al. [32]. In this approach, when constructing the

realizations of random �eld, the wave vectors are sampled in the whole space. This may

cause a poor statistics representation for large wave vectors which in turn may lead to

large errors for small scale evaluations like the mean squared separation of two parti-

cles. We suggest a di�erent simulation technique which uses a strati�ed sampling of wave

vectors described in [21] and further developed in [18].

Concerning the higher order corrections of the spectral expansion method, we mention

that Dagan [7] derived a second-order correction of the head covariances in 3D case. He

noted that the �rst-order approximation is very robust even for a log-conductivity variance

equal to unity, the second-order correction of the head variance is smaller than 10% of

the �rst-order approximation. Thus, for small to moderate values of �2f , it is suggested

that the �rst-order approximation is accurate enough. A similar research for the velocity

covariance has been carried out in [9]. These authors explored the accuracy of the �rst

order approximation and reported that for �2f << 1, the second order corrections to the

velocity covariance are unimportant, but as �2f approaches unity they become signi�cant.

We mention a high-order perturbation approach via Karhunen-Loeve decomposition re-

ported in [39]. In this method, the log hydraulic conductivity Y is decomposed into an

in�nite series on the basis of a set of non-correlated gaussian standard random variables.

The coeÆcients of the series are related to eigenvalues and eigenfunctions of the covari-

ance function of the log hydraulic conductivity. The advantage of this method is that it

suggests an approximation up to fourth-order in �Y . However its practical use is limited

by the need to solve the complicated eigenvalue problem.

In the general case when the 
uctuations are not small, the only rigorous way to tackle

the problem is the direct numerical simulation which allows to analyze 
ows in complex

domains though it demands large computing resources.
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There are some attempts to develop direct numerical simulation for the problem of trans-

port in porous media. In [34] and [35] an analysis of one- and two-dimensional steady

groundwater 
ows in bounded domain is carried out. The modelling domain has a block

structure with a prescribed correlations of the hydraulic conductivity in the neighboring

blocks.

Thus for such a simple piecewise-constant approximation of the hydraulic conductivity

the authors [34], [35] solved the Darcy equation by a �nite-di�erence method to get

samples of the hydraulic potential. It should be noted that their method neither guaranties

homogeneity of the generated �elds nor a speci�ed correlation structure. An improved

version based on a direct matrix inversion method is used in [4] which however is still

time consuming.

Another attempt to construct a model of three-dimensional stationary saturated 
ow

beyond the small hydraulic conductivity 
uctuations assumption has been made in [1].

In this paper, the estimation of the head variance has been calculated and a comparison

with the �rst order approximation results was carried out. However the authors faced

with the demand of large computer resources: it was concluded that to obtain reasonable

computational results, the domain and the number of nodes should be increased up to an

unrealistic level (about 106 nodes).

Statistical characteristics of the velocity �eld were estimated by direct numerical simu-

lation also in [19] where the authors have developed a stochastic Lagrangian model for

the transport in a statistically isotropic porous medium. However the accuracy in these

simulations also was not high enough to make de�nite conclusions desired.

The applicability of the �rst-order approximation models for the velocity covariance in

the mean 
ow direction in the two-dimensional case was examined in [14]. It was found

that these models give very accurate results for the longitudinal velocity covariance for

the values of �f up to unity. However, the transversal velocity covariance deviates from

the direct numerical simulation results as �f approaches unity.

Chin and Wang [5] used Monte Carlo simulation for a three-dimensional 
ow to investigate

the accuracy of the �rst-order approximation, in relation to the Eulerian-Lagrangian

covariance relationship. They have used the turning bands algorithm due to Thompson

et al. [37]. This method superimposes independent random processes constructed along

lines; this is a kind of projection methods constructed from the one-dimensional spectral

representations. It also cannot be considered as an eÆcient simulation method, and in [5]

the authors had to restrict the calculations on a crude mesh.

In this paper we develop a direct simulation model in three dimensions which is based

on a numerical evaluation of the random realizations of the hydraulic conductivity by the

successive over relaxation method (DSM-SOR method). The samples of the hydraulic

log-conductivity are constructed by a randomized spectral method. Since the DSM-SOR

method works for arbitrary large 
uctuations we are able to investigate the applicability

of the models derived in the �rst order approximation. The results extracted from the

numerical simulations are also useful for the parametrization of the Lagrangian stochastic

model developed in [19].

Note that both in DSM-SOR method and in the �rst order approximation approach,

we use the randomized spectral method to simulate the random �elds with the desired
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spectral tensor. Hence, the construction of an eÆcient random �eld simulation method is

a very important issue in this study.

Interesting insights into the dynamics of transport in disordered media can be achieved

already through relatively simple random models for the velocity �eld, such a �nite su-

perposition of Fourier modes, with each amplitude independently evolving according to

an Ornstein-Uhlenbeck process [26, 33]. We will use instead randomized spectral methods

for scalar and vector gaussian �elds described in [30] and further developed in [18].

The paper is organized as follows. We start by formulating the stochastic boundary value

problem in section 2. The DSM-SOR method is described in section 3. The �rst or-

der approximation and the relevant randomized spectral model are presented in section

4. Section 5 includes calculations aimed at testing the DSM-SOR method by compar-

ing with the results obtained by the randomized spectral model under small 
uctuation

assumptions. The main numerical simulation results obtained by DSM-SOR method for

the general case of hydraulic conductivity 
uctuations are presented in section 6.

2. Formulation of the problem

We consider a steady 
ow through saturated porous formation. For a stationary 3D 
ow,

the speci�c discharge is determined by the Darcy law

q(x) = �(x)u(x) = �K(x)r('(x)); x 2 D � IR3 (2.1)

where q is the so-called Darcy's velocity, or speci�c discharge, u is the pore velocity, �,

the porosity, ', the hydraulic potential ' = p

�g
+ z, p is the 
uid pressure, z is the height,

and K is the hydraulic conductivity assumed to be a homogeneous lognormal random

�eld with a given spectral density.

Thus q is a random �eld de�ned by (2.1) where ' is the solution of the following conser-

vation of mass equation

3X
j=1

@

@xj

�
K(x)

@'

@xj

�
= 0 : (2.2)

The functions K and � are the key parameters of the 
ow. Experimental measurements

show a high heterogeneous behaviour of K in space with the following remarkable prop-

erty: when considering K as a random �eld, its distribution is well approximated by a

log-normal law (e.g., see [10]).

The porosity � is also often considered in some models as a random �eld. However its

variability is in the problems we tackle generally much smaller than that of K. We assume

therefore �(x) = � = const.

We will consider the hydraulic log-conductivity lnK = F + f as a statistically homoge-

neous random �eld with gaussian distribution N(mf ; �f). Here mf = F is the mean, and

�f is the standard deviation. We denote by

Cff(r) = hf(x)f(x + r)i

4



the auto-correlation function, where r is the separation vector.

Moreover we assume �rst that f is statistically homogeneous and isotropic with the ex-

ponential auto-correlation function

Cff (r) = �
2
fexp(�r=If) ; (2.3)

where r = jrj, If is a given correlation length.

The equation (2.2 ) will be solved in a �nite domain, with the relevant boundary value

conditions formulated in the next section.

3. Direct numerical simulation method: DSM-SOR

In this section we present the direct simulation method based on the successive over

relaxation iterative solution of the relevant PDE. For brevity, we will call it DSM-SOR

method.

In numerical simulations we deal with the following boundary value problem in the domain

D = [0 : L1]� [0 : L2]� [0 : L3]:

3X
j=1

@

@xj

�
K(x)

@'

@xj

�
= 0 ; (3.1)

with the constant head (on the left and right bounds: x1 = 0 and x1 = L1) and impervious

(on other bounds of the domain D) boundary conditions:8<
:

'(x) = '0 ; x1 = 0

'(x) = '0 � JL1 ; x1 = L1
@'(x)

@n
= 0 ; x2 = 0; x2 = L2; x3 = 0; x3 = L3

: (3.2)

Here Jj = �@h'i=@xj is the mean hydraulic gradient in xj-direction, J = (J1; J2; J3) is

taken in this paper as a constant vector J = (J; 0; 0), and '0 being a constant. The

hydraulic log-conductivity lnK is assumed to be a gaussian isotropic random �eld with

the mean F = 3:4012 and the auto-covariance (2.3).

To construct the solution of the equation (3.1), for a chosen sample of K(x) and satisfying

the boundary conditions (3.2) we use the following �nite-di�erence scheme in the interior

nodes [16]

h
Ki� 1

2
jl +Ki+ 1

2
jl +Kij� 1

2
l +Kij+ 1

2
l +Kijl� 1

2

+Kijl+ 1

2

i
'ijl �Ki� 1

2
jl'i�1jl

�Ki+ 1

2
jl'i+1jl �Kij� 1

2
l'ij�1l �Kij+ 1

2
l'ij+1l �Kij� 1

2
l'ijl�1 �Kij+ 1

2
l'ijl+1 = 0

with the uniform grid h1 = h2 = h3 = h.

The normal derivative on the boundary was approximated by simply using the �rst order

approximation along the normal vector.
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The �nite-di�erence scheme can be written in a matrix form

A'h = (Diag(A)� L� U)'h = fh (3.3)

where 'h is the approximating solution vector which depends on the indexation, fh is

the vector in the right-hand side; Diag(A) is the diagonal matrix whose entries coincide

with the diagonal elements of the matrix A; analogously, L and U are the left and right

triangular matrices extracted from the matrix A. We use the successive over relaxation

(SOR) iterative method for solving (3.3):

'
n
h = w [Diag(A)]�1(fh + L'

n
h + U'

n�1
h + (1 �w)'n�1

h :

In [27], [28], the in
uence of boundary conditions in a two-dimensional case was investi-

gated. It was shown that beyond 3 or 4 correltaion lengths (for constant head boundary

conditions, or even less for impervious boundary conditions) the in
uence of boundary

e�ects on the second moment of the hydraulic potential can be neglected. The in
u-

ence of the impervious boundary conditions on the head covariances in three-dimensional


ow is quite small and restricted to the neighborhood of the boundary [24], [8]. The

head increments are even less sensitive to the boundary conditions. In [19], all the

statistical characteristics were calculated in a domain placed 5 correlation lengths far

from the head constant or impervious boundaries of the domain D. In our calcula-

tions, 4 correlation lengths were enough for correct evaluation of the velocity correlations.

Thus we consider two domains: the region D = [0 : L1] � [0 : L2] � [0 : L3], and
~D = [4If : L1 � 4If ] � [4If : L2 � 4If ] � [4If : L3 � 4If ]. In the region D the equa-

tions (2.1), (2.2) are solved numerically by the SOR method, and the desired statistical

characteristics are calculated in the domain ~D.

The hydraulic potential is chosen as '0 = 100m. To reproduce the �eld K, in [19] is

recommended to choose the grid size h at least not larger than If=4; in [1] this value was

recommended as If=5. We have taken the grid size equal to h = If=5 and h = If=6, and

the time step was �t = 0:25h= < u >.

4. Randomized Spectral model (RSM)

In this section we present the randomized spectral model (RSM) applied along with the

�rst order approximation expansion under small 
uctuation assumptions. So let us �rst

describe the �rst order approximation model; small random perturbation about the mean

values for the potential, speci�c discharge and pore velocity components are assumed:

' =< ' > +'0 = H + h ; qj =< qj > +q0j; uj =< uj > +u0

j; j = 1; 2; 3 :

The auto-covariance (2.3) has the spectrum

Sff(k) = I
3
f�

2
f=[�

2(1 + I
2
fk

2)2] ; (4.1)

where k = (k1; k2; k3) is the wave number vector, and k = jkj.

Under the assumption of small hydraulic conductivity 
uctuations the spectrum of speci�c

discharge has the form [12]:
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Sqjql(k) = K
2
GJmJn(Æjm �

kjkm

k2
)(Æln �

klkn

k2
)Sff(k) : (4.2)

In [29] the randomized simulation approach developed in [30] is used to construct a di-

vergenceless vector �eld with a given spectral tensor. We have constructed Monte Carlo

simulation formulas for the speci�c discharge perturbation q0, and hence the velocity per-

turbation u
0. We simulate i = 1; 2; : : : N independent random �elds with S(k), then we

set

u
0(N)(x) =

1
p
N

NX
i=1

"
1p
p(ki)

(�0ki(a) cos(ki;x) + �0

ki(a) sin(ki;x))

#
;

where

�0ki(a) = �ki a(k) ; �0

ki
(a) = �ki a(k) ;

aj(k) =
KG

�

�
Jj �

kjJmkm

k2

�
(Sff(k))

1=2
; j = 1; 2; 3;

�ki and �ki being random variables with zero mean and unit variance, and ki, �ki, �ki
are all sampled independently. Here k is sampled according to the density p(k) which

is, generally, an arbitrary density function which can be chosen from rather di�erent

arguments. For instance, it is recommended in [30], to use p(k) = a
2(k)=

R
R3 a

2(k)dk.

The central limit theorem ensures, under some general assumption [20], that u0(N)(x)

converges to an ergodic gaussian random �eld with the spectral tensor S(k), as N !1.

Under small perturbations assumption, < q >= KGJ (see [8]), so the velocity is modelled

as u(x) = (KGJ)=� + u
0(x).

More general randomized spectral simulation method is constructed by introducing a

strati�ed sampling of the wave numbers, see [21] and [18]. Let us present the simulation

formula in its general form.

Let u(x) = u1(x; : : : ; ul(x))
T , x 2 IR

d be a homogeneous vector gaussian random �eld

with the given spectral tensor F (k) which is related to the correlation tensor B(r) =

hu(x+ r)uT (x)i by

B(r) =

Z
IRd

expf2� ikrgF (k) dk ; F (k) =

Z
IRd

expf�2� ikrgB(r) dr : (4.3)

Here ()T is used for the notation of transpose operation.

Let

p(k) =

lX
j=1

Fjj(k)

and assume that �2 =
R
IRd

p(k) dk <1.
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We will use the Holeski decomposition

F (k) = p(k)Q(k)Q�(k) ; (4.4)

where the matrix Q� is de�ned as a complex conjugate transposition Q
� = QT .

We denote by Q
0 and Q

00 the real and imaginare parts of the tensor Q: Q(k) = Q
0(k) +

iQ00(k).

Let us denote by � = supp(p) the support of the spectral density p(k). We choose a

subdivision of �: � =
nP
i=1

�i.

Let ki1; : : : ;kin0 be a family of mutually independent identically distributed random points

lying in �i sampled from the pdf

fi(k) =

(
p(k)

�2i
; k 2 �i;

0; else ;
�
2
i =

Z
�i

p(k) dk : (4.5)

The randomization spectral model can be written in the form

unn0(x) =

nX
i=1

�ip
n0

n0X
j=1

n
�ij

h
Q

0(kij) cos �ij �Q
00(kij) sin �ij

i

+�ij

h
Q

00(kij) cos �ij +Q
0(kij) sin �ij

io
; (4.6)

where �ij = 2� kij � x, and �ij ; �ij; i = 1; : : : ; n; j = 1; : : : ; n0 are mutually independent

and independent of the family kij standard l � dimensional gaussian random variables

(with zero mean and unity covariance matrix): �ij = (�
(1)

ij ; : : : ; �
(l)
ij ); �ij = (�

(1)

ij ; : : : ; �
(l)
ij ).

5. Testing the simulation procedure

In this section we test the direct numerical technique by comparing the results against

the calculations obtained by RSM. Obviously RSM is a reasonable approach for small


uctuations, so we compare the results mainly for �2f = 0:01, and �x � = 1:0 and If = 1.

For testing the DNS-SOR method we calculate the correlation functions

Cujul(r) = huj(x)ul(x+ r)i

by the direct numerical simulation based on the SOR iterative procedure, and compare

them with the results obtained by the randomized spectral model constructed in [29] for

the spectrum (4.2 ). As concluded in [29], RSM has shown a good agreement with the

exact results presented through a numerical integration in the spectral representation

Cujul(r) =

Z
R3

Sjl(k)e
i(r;k)

dk ; (5.1)

where Simpson's rule was used to evaluate the integral (5.1 ). The expectations in RSM

were evaluated by averaging over N = 105 samples.

8



0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

−6

r
1

C
u

1
 u

1

(r
1
)

Spectral model
Direct simulation

0 0.5 1 1.5 2 2.5 3
−1

0

1

2

3

4

5

6

7
x 10

−7

r
1

C
u 2

 u
2

(r
1)

Spectral model
Direct simulation

Figure 1: The auto-correlation function Cu1u1(r) (left panel) and Cu2u2(r) (right panel) in

longitudinal direction.

For evaluation of statistical characteristics of a stochastic 
ow one usually uses two di�er-

ent averaging procedures: (1) space averaging [1], [38], [19], and (2) ensemble averaging

[34], [35], [5], [14]. To use the space averaging, we have to be sure that our randomized

spectral model has good ergodic properties. As reported in [18], this is the case if the

number of harmonics is suÆciently large, say, over one thousand.

A compromise which seeks to avoid the problems of both types of averaging is the hybrid

method, or a combined averaging: �rst the space averaging is taken, and then the result

is averaged over n independent samples, n being not so large as in the pure ensemble

averaging.

In calculations presented in Fig.1{5 of section 5 we use the ensemble averaging while in

section 6 we use the combined averaging.

In Figure 1 we plot the function Cu1u1 (left panel) and Cu2u2 (right panel) calculated

by the DSM-SOR method (solid lines) and by RSM (dashed lines); both functions are

presented for the longitudinal direction r1, J = 0:01, and the expectation is calculated as

an arithmetic mean over N = 104 samples. The maximal relative di�erence between the

results of two methods for r1 = 1 was 3% for the curves presented in the left panel and

9% in the right panel. The statistical error of the direct simulation results was about 7%,

and 12%, respectively; the statistical error of RSM was less than 3%.

The statistical error in calculating an ensemble average of a random estimator � was

measured by "(�) = 3��=
p
N where �2� is the variance of the random estimator �. From

Figure 1 it is seen, that the di�erence between the solid and dashed curves is small

everywhere except for small values of the separated vector. This is presumably caused by

the limit space resolution of the DSM-SOR method.

To control the space resolution, which is related to the large values of the wave number

k in the log-conductivity power spectrum, we introduce a cut-o� in the spectrum, so

that the spectrum Sff(k) is de�ned on the interval [0; kmax]. In Figure 2 we plot similar
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Figure 2: The auto-correlation functions Cu1u1(r) (left panel) and Cu2u2(r) (right panel) in

longitudinal direction. Spectrum Sff(k) is de�ned on the interval [0; 15].

results for the spectrum (4.1 ) de�ned on the interval [0,15]. The total energy of this

spectrum is more than 91:5% of the total energy of the full power spectrum on [0;1).

The relative error (measured as the relative di�erence with the results obtained by RSM)

in calculations of Cu1u1(0), Cu2u2(0) is decreased from 8% (left panel) and 6:5% (right

panel) to 3%. This indicates obviously that for spectra with rapidly decaying tails, we

can expect that the accuracy of the direct numerical method will be higher.

Indeed, in [29] we used also a log-conductivity random �eld with the gaussian form of the

covariance

Cff(r) = �
2
fexp(�

r
2

l
2
f

)

whose spectrum has also a gaussian form:

Sff (k) =
�
2
f l
3
f

�5=2
exp(�

l
2
fk

2

4
); (5.2)

where If = lf

p
�=2. From Figure 3 it is seen that the velocity �eld corresponding to this

log-conductivity spectrum with lf = 1 is simulated more precisely than in the case of the

exponential auto-correlation function (2.3).

As the 
uctuations of the hydraulic conductivity are getting smaller (�f ! 0) then, anal-

ogously to the case analysed by RSM, the velocities tend to have gaussian distributions.

In Figures 4,5 the probability density functions of longitudinal and transversal velocities

are shown for two di�erent (small and large) values of �f . As predicted, for �f = 0:01

the modelled densities (solid lines) are well approximated by gaussian densities (dashed

lines) with the mean < u1 >= KGJ and �u1 = 2:1991392E � 03, �u2 = 7:7482074E � 04

(left panels). For large variance value (�f = 1) the velocity distributions are strongly

nongaussian (right panels).

Note that the cross-correlation functions Cu1u2(r), Cu2u3(r) are identically equal to zero for

10
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�f = 1 (right panel).

arbitrary longitudinal and transversal separated vectors. This property was well con�rmed

by our calculations.

6. Evaluation of Eulerian and Lagrangian statistical

characteristics by DNS-SOR method

In this section we present the results of direct numerical simulation for some Eulerian and

Lagrangian statistical characteristics of the 
ow. The key results are presented in Figure

7 where the Eulerian velocity auto-correlation functions are shown for di�erent intensity


uctuations of the hydraulic conductivity, compared against the results obtained by the

randomized spectral method under small 
uctuation assumptions. From these curves

one easily extracts the region of applicability of the small perturbation approach and

RSM. Another important result is presented in Figure 12: here we show the behaviour of

the mean square separation of two particles. This complicated two particle Lagrangian

statistical characteristic plays a crucial role in the turbulent di�usion study [23]. In the

Kolmogorov inertial subrange the behaviour of the mean square separation is described

by the well known Richardson's law which predicts a cubic dependence on time. In our

case, we cannot extract a universal structure for the function �
2(t), not depending on

the initial separation. However it has shown an interesting subdi�usion behaviour in

transverse direction, and a superdi�usion picture in longitudinal direction.

In the two subsections which follow, we calculate the expectations by the hybrid averaging:

we combine spatial and ensemble averaging to get eÆcient numerical procedure. The

Eulerian statistical characteristics were calculated �rst by spatial averaging over 213 nodes,

and then by averaging over 300 independent samples of random velocities. The Lagrangian

statistical characteristics were calculated by averaging over 252 trajectories per one sample

of the random velocity, with subsequent averaging over 400 realizations of the velocity

12
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�eld. In all cases, the number of harmonics in the randomized spectral method was taken

as n0 = 100.

6.1. Eulerian statistical characteristics

Here we present the results of calculations of the mean Eulerian velocity and velocity auto-

correlation functions. The spectrum Sff(k) is chosen in the form (4.1) which corresponds

to the exponential decorrelation.

In Figure 6 we plot the mean velocity in a normalized form
hu1i�

KGJ
� 1, for di�erent values

of �f . This normalization is convenient since the small perturbation method concludes

that the mean velocity equals to KG J=�.

Note that for �f = 1, our mean longitudinal velocity agrees well with that obtained in

[19], being approximately 4% larger. For values of �f up to 1:5, the mean velocity was

also calculated in [5] where the relative di�erence with the result predicted by the �rst

order approximation was about 15%. This di�erence in our calculations was 26%, and

22% - in [19].

Figure 7 shows how good the small perturbation method and RSM work. This can be seen

by comparing the RSM results with the data obtained by DSM-SOR method. Here we

plot the dimensionless functions Cu1u1 (left panel) and Cu2u2 (right panel) in longitudinal

direction r01 = r1=If , for �f = 0:3; 0:6 and �f = 1. The left panel: as expected, the relative

di�erence between the RSM and DSM-SOR results is rapidly increasing with the growth

of the 
uctuation intensity, i.e., as �f increases. So, for r01 = 1, this di�erence behaves

like 9%, 29% and 84% for �f = 0:3; 0:6 and 1, respectively. As to the statistical error of

these calculations, it was less than 1% for DSM-SOR method, and 2% - for RSM.

Right panel: the relative di�erence between the two methods (again, for r01 = 1) is less

than 6%, 31% and 108% for �f = 0:3; 0:6 and 1, respectively. The statistical error: less

than 2% for DSM-SOR method, and 3% for RSM.
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Figure 7: The dimensionless functions Cu1u1(r=If) (left panel) and Cu2u2(r=If) (right panel) in

longitudinal direction at di�erent values �f in comparison against results of spectral model.

Thus the curves shown in Figure 7 present a clear picture about the region where the

small perturbation approach and RSM can be applied, and how fast this approximation

fails as the 
uctuation intensity increases.

6.2. Lagrangian statistical characteristics

In this section we present the results of numerical simulations for some Lagrangian sta-

tistical characteristics of the 
ow, �f = 1 is �xed. The calculations were carried out

for the exponential correlations controlled by the spectrum (4.1 ), and by the gaussian

correlations with the spectrum (5.2).

The random Lagrangian trajectory X(t) = (X1(t);X2(t);X3(t)) starting at a point x0 is

de�ned as a function satisfying the following stochastic equation

dX

dt
= u(X); X(0) = x0 : (6.1)

The displacement covariances are de�ned by

Djl(t) = h(Xj(t)� hXji(t))(Xl(t)� hXli(t))i :

In what follows we deal with the normalized quantities:

D
0

jl = Djl=I
2
f ; j; l = 1; 2; 3 ;

and dimensionless time t0 = t U=If , where U =< u1 >, and KG = exp(F ).

In Figure 8, the dispersions D0

11(t
0)=�2f (left panel), and D

0

22(t
0)=�2f (right panel) are shown.

The curves seem to follow a linear law in time from, say, t0 = 3 which would be in

accordance with the classical Taylor's formula. To con�rm this, we have extended these
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Figure 8: The dimensionless functions D0

11(t
0)=�2f and D0

22(t
0)=�2f (right panel). Small time.

calculations to the times up to t0 = 30, see Figure 9. From these results we can conclude

that the linear law happens to be true after the time t0 = 5, both for the longitudinal and

transverse dispersions.

Important Lagrangian statistical characteristic is the Lagrangian correlation tensor of

velocity:

Rjl(� ) = h[(uj(X(t))� huj(X(t))i] [(ul(X(t+ � ))� hul(X(t+ � ))i]i

where X(t) is a Lagrangian trajectory started at the time t.

In Figure 10 we show the longitudinal (left panel) and transverse (right panel) Lagrangian

correlation functions. Note that the transverse correlations have negative values after

t
0 � 1, which may be connected with a trapping, and which can lead to a deviation from

the linear law of the transverse dispersion. To check it, we have calculated (see Figure

11) the integral

Ajj(� ) =

Z �

0

Rjj(�
0)d� 0 :

These results are in a good qualitative agreement with the results obtained by D. Chin

and T. Wang in [5], although their calculations were limited by the grid size h = If=2

which is too large to provide high accuracy. Thus the D. Chin and T. Wang results

underestimate the longitudinal dispersivity (left panel) to about 30%, and the transverse

dispersivity - to about 15% compared to our results.

Recall that Taylor's formula relating the dispersion tensor and the Lagrangian velocity

covariance

Djl(t) = 2

tZ
0

(t� � )Rjl(� ) d�

indicates that for large times, the integral Ajj should not vanish (the linear dispersion

behaviour for large times). This is con�rmed by the calculations presented in Figure 11.
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Gaussian spectrum Sff , (5.2).
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Important Lagrangian statistical characteristic is the mean square separation for two

particles. Let X(t0) = (X1(t
0);X2(t

0);X3(t
0)) and Y(t0) = (Y1(t

0); Y2(t
0); Y3(t

0)) be the

Lagrangian trajectories of two particles initially separated by a vector r0. The mean

square separation �
2(t0) is de�ned as

�
2(t0) = h(Y1 �X1)

2 + (Y2 �X2)
2 + (Y3 �X3)

2i:

Hence �2(t0) = �
2
l (t

0)+�
2
t (t

0) where �2l (t
0) = h(Y1�X1)

2i, and �
2
l (t

0) = h(Y2�X2)
2+(Y3�

X3)
2i are the longitudinal and transverse mean square separations, respectively.

We show the functions �2t (t
0) (left panel) and �

2
l (t

0) (right panel) in Figure 12. Clearly,

for suÆciently large time t0 the two particles move independently, so we can expect that

�
2(t0) = 2(Dl + Dt) t

0, according to classical dispersion law where Dl and Dt are the

longitudinal and transverse di�usion coeÆcients, respectively. However for smaller times,

the motion of two particles is correlated, and the dependence of �2l (t
0) and �

2
t (t

0) on t
0 is

not linear. From the results presented in Figure 12 it can be estimated that the linear

law is true approximately after t0 = 10. For times t0 < 10, the longitudinal dispersion is

superdi�usional �2l (t
0) = Ct t

01:4 with Ct = 0:85. More complicated is the structure of the

transverse dispersion. There is a time interval t0 < 2 where �2t (t
0) seems to follow a linear

behaviour, and then it switches to the subdi�usional behaviour in 2 � t
0 � 10:

�
2
t (t

0) = 1:32 + Cl(t
0 � 2)0:7 (6.2)

with Cl = 0:145. This agrees well with the behaviour of the Lagrangian correlation

functions presented in Figure 10, right panel. Indeed, it suggests that the �rst time

interval of rapidly decaying correlation corresponds to the interval of linear behaviour of

�
2
t (t

0), i.e., the di�usion regime is reached. Then, when the negative correlation reaches

its maximum (about t0 = 2), the trapping of particles results in the change of the function

�
2
t (t

0) from the linear behaviour, to the subdi�usional regime (6.2).

7. Conclusions and Discussion

Stochastic numerical simulation technique for 
ow simulation through a 3D statistically

isotropic porous media is developed without small perturbation assumptions. The hy-

draulic conductivity is modelled as an isotropic random �eld with a lognormal distribu-

tion and prescribed structure of the spectral functions. It is sampled by a Monte Carlo

method based on a randomized spectral representation. The Darcy and continuity equa-

tions with the random hydraulic conductivity are solved numerically, using the successive

over relaxation method in order to extract statistical characteristics of the 
ow. Hybrid

averaging is used: we combine spatial and ensemble averaging to get eÆcient numerical

procedure. The method proposed enables us to predict the applicability of the �rst order

approximation model derived under the assumption of small hydraulic conductivity 
uc-

tuations. Calculations of the longitudinal and transverse dispersions, the dispersivity, and

the Lagrangian correlation functions have been carried out to extract the main statistical

features of the 
ow. In particular, the calculations predict a subdi�usional behaviour of

the transverse dispersion, and superdi�usional behaviour of the longitudinal dispersion.

It should be noted that the calculations take a lot of computer time since the stochastic

PDE is solved repetitively for many independent samples of the hydraulic conductivity
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�eld with the subsequent ensemble averaging to evaluate the desired statistical character-

istics of the solution. A reasonable alternative would be a spatial averaging, but to make

this approach realistic, the random �eld must have good ergodic properties. We applied a

hybrid averaging by combining the ensemble and spatial averaging which has considerably

decreased the cost of the algorithm. However we have not included here a detailed anal-

ysis of the ergodic properties of the randomized spectral models in 3D case; preliminary

estimations show that the number of harmonics should be increased simultaneously with

the re�nement of the mesh used in the �nite-di�erence method. This analysis will be

presented in the forthcoming paper.
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