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ABSTRACT: We consider a one-dimensional problem of propagation of acoustic waves in a nonlinear poroelas-
tic saurated material. Stress-strain relations in the skeleton are described by Signorini-type constitutitve equa-
tions. Material parameters depend on the current porosity. The governing set of equations describes changes of
extension of the skeleton, and of the mass density of the fluid, partial velocities of the skeleton and of the fluid
and a porosity. We rely on a second order approximation. Relations of the critical time to an initial porosity
and to an initial amplitude are discussed. The connection to the threshold of liquefaction in granular materials
is indicated.

1 INTRODUCTION, EVOLUTION OF THE AM-
PLITUDE OF ACOUSTIC WAVES

Threshold from the compact granular structure to liq-
uefaction is usually attributed to a critical behavior in
the strain-stress relations (Wood 1990). This is not al-
ways the case and the liquefaction may be dynamical
in nature. The idea of attributing liquefaction of gran-
ular materials to the critical growth of the amplitude
of acoustic waves has been described by Osinov (Os-
inov 1998). He relied in his considerations on the one
component model in which the evolution of stresses is
described by the nonlinear law of hypoplasticity. He
has proven the existence of a critical distance of longi-
tudinal waves after which the continuous solutions no
longer exist. This distance depends on the slope and
curvature of the stress-strain relation in the monotone
loading. Consequently, Osinov could also incorporate
an influence of the fluid component which changes
effective material parameters of the one-component
model.

Similar argument can be made in a two-component
model provided it is hyperbolic and nonlinear. In this
work we use the standard argument related to the exis-
tence of a critical time for weak discontinuity waves.

The liquefaction related to rapid changes of poros-
ity were also investigated in (Wilhelm and Wilmanski
2002) in which, instead of the full nonlinearity, only
the momentum source has been extended on a nonlin-
ear influence of the gradient of porosity.

For the quasilinear hyperbolic system of equations
the following argument leads to the existence of criti-

cal amplitudes. Let us consider an arbitrary set of the
first order hyperbolic partial differential equations

∂uA

∂t
+ AAB

∂uB

∂x
= BA, A,B = 1, ...,N, (1)

whereAAB,BA are differentiable functions ofuA and
the unknown fields of variables(x, t) are defined on
< × <. Hyperbolicity of this system means that the
eigenvalue problem

(AAB − λδAB) rB = 0, (2)

possesses solely real eigenvaluesλ and the right
eigenvectorsrB span the space of solutions. Eigenval-
uesλ describe speeds of propagation in characteristic
directions given in turn by the eigenvectors.

We consider the problem in which the fields are
continuously differentiable everywhere except of a
singular orientable surfaceS on which the fields are
continuous and their first derivatives may possess fi-
nite discontinuities.S is called the surface ofweak
discontinuity. On such a surface the followingcom-
patibility conditions hold

[[uA]] = 0 ⇒
[[

∂uA

∂t

]]
= −c

[[
∂uA

∂x

]]
,

[[
∂2uA

∂x∂t

]]
=

d

dt

[[
∂uA

∂x

]]
− c

[[
∂2uA

∂x2

]]
, etc.,

[[. . .]] = (. . .)+ − (. . .)− , (3)
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wherec is the speed of the surfaceS, d
dt

is the deriv-
ative in the direction of propagation (along the char-
acteristic), and(. . .)+ , (. . .)− denote one-sided limits
on this surface.

We construct the jumps onS in the set (1). It fol-
lows

[[uA]] = 0 ⇒
[[

∂uA

∂t

]]
+ AAB

[[
∂uB

∂x

]]
= 0,

i.e. (AAB − cδAB)

[[
∂uB

∂x

]]
= 0. (4)

Hence the speeds of propagation ofS coincide with
the eigenvalues of the matrixAAB, i.e. they are char-
acteristic, and the jumps

[[
∂uB

∂x

]]
are right eigenvectors

of this matrix. The surface of weak discontinuities
propagates in a characteristic direction. The jumps[[

∂uB

∂x

]]
= ArB, rArA = 1, (5)

are called the amplitudes of discontinuity. It is seen
that theamplitude A determines all discontinuities
once the eigenvalue problem has been solved.

By differentiation of the set (1) with respect to the
variablex, it can be easily shown (e.g. (Wilmanski
1998b)) that the equation for the evolution of the am-
plitudeA can be written in the following form

dA

dt
+ α1A + α2A

2 = 0, (6)

where

α1 :=

[
lA

∂AAB

∂uC

rC
∂uB

∂x

∣∣∣∣∣
+

+

+lA
∂AAB

∂uC

rB
∂uC

∂x

∣∣∣∣∣
+

−
(7)

−lA
∂BA

∂uC

rC + lA
drA

dt

]
1

rDlD
,

α2 := −lA
∂AAB

∂uC

rBrC
1

rDlD
,

...|+ denotes the limit on the positive side of the sur-
face, andlA denotes the left eigenvector ofAAB. Cer-
tainly, both coefficients are functions of the fieldsuA.
However, due to the continuity ofuA across the sur-
faceS they can be evaluated on its positive side (ahead
of the wave ifS is the wave front) where their values
are usually known. Consequently, equation (6) is the
Bernoulli equation for the amplitude of discontinuity
with known coefficients. Its integration yields

1

A
=
[

1

A0

+
∫ t

0
α2e

−
∫ η

0
α1dsdη

]
e
∫ t

0
α1dη, (8)

whereA0 is the initial value of the amplitude of dis-
continuity.

It is shown in the theory of hyperbolic systems that
solutions possessing weak discontinuities may only
exist for a finite time (e.g. (Lax 1964)). At the instant
of time,tc, the so-called critical time, the solution be-
comes singular on the surfaceS and this singularity
is strong, i.e. the amplitude of the weak discontinu-
ity A grows to infinity. The critical time can be easily
found by means of relation (8). Namely, this expres-
sion must go to zero attc, i.e.

1

A0

+
∫ tc

0
α2e

−
∫ η

0
α1dsdη = 0. (9)

This relation determinestc.
The above presented procedure shall be applied to

field equations for poroelastic saturated materials. It
is easily seen that a nontrivial solution for the critical
time does not exist for linear systems in whichα2 ≡ 0,
i.e. if we expect the creation of strong discontinuities
we have to describe the system by means of anonlin-
ear set of equations.

2 GOVERNING EQUATIONS
The two-component model of porous saturated mate-
rial is based on the following choice of fields{

ρF , ρS,vF ,vS,eS, n
}

(10)

whereρF , ρS are current partial mass densities of the
fluid and skeleton, respectively,vF ,vS are the veloc-
ities of components,eS is the Almansi-Hamel strain
tensor of the skeleton, andn denotes the porosity.

We assume that material parameters of the model
depend on the current porosityn. Hence, the model
must be nonlinear. For the purpose of this work we
limit attention to processes in which solely the defor-
mation of the skeleton is large. We neglect nonlinear-
ities related to the deformation of the fluid component
and to the dependence of the permeabilty coefficient
from porosity. The latter can be easily incorporated,
it yields a correction in the source term and, simul-
taneously, does not lead to qualitative changes of the
results. The case of a nonlinear fluid (e.g. gaseous)
in a linear skeleton has been considered elsewhere
(Wilmanski 1998a). Certainly, these assumptions are
related to the fact that the liquefaction yields primar-
ily considerable deformations of the skeleton. There
exists an experimental evidence (e.g. (Wilhelm and
Wilmanski 2002)) that compressibility of the skele-
ton reduces very considerably near the threshold to
liquefaction while, of course, compressibility of flu-
ids like water remains unchanged. Simultaneously, we
leave out relaxation processes of porosity. This means
that the porosity reduces to its equilibrium changes
(Wilmanski 2004) and it can be written in the form

n = n0

(
1 + δ tr eS

)
, (11)
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where δ is the material parameter. The non-
equilibrium contribution to porosity following from
the relative motion could contribute but it can be
shown (Wilmanski 2004) that this contribution is very
small indeed.

We consider the process of transition from the
poroelastic region with compact skeleton to a flu-
idized state as related to a sudden change of porosity.

For basic geometric quantities we make the follow-
ing assumptions

1) the deformation of the skeleton, described by the
Almansi-Hamel deformation tensoreS is small of the
second order, i.e.,

max
{∑

i,j

∣∣∣λ(i)
e λ(j)

e

∣∣∣}� 1,

det
(
eS − λ(i)

e 1
)

= 0,
(12)

2) volume changes of the fluidε are small, i.e.

|ε| � 1, ε :=
ρF
0 −ρF

ρF
0

, (13)

whereρF is the current mass density of the fluid, and
ρF

0 its initial value.
As the mass density of the skeletonρS must satisfy

the mass balance equation, we have

ρS = ρS
0

(
detBS

)− 1
2 , BS−1 := 1− 2eS, (14)

and the above assumption yields

ρS = ρS
0

√
1− 2I − 4II, I := tr eS,

II := 1
2

(
I2 − tr eS2

)
.

(15)

Contributions of the third invariantIII = deteS are
of the third order in eigenvaluesλ(i)

e . Consequently,
the mass density of the skeleton is not an independent
field.

Bearing the above considerations in mind we seek
field equations for the followingfields{

ε,eS,vS,vF
}

. (16)

Field equations follow from the mass conservation for
the fluid, partial momentum balance equations for the
skeleton and for the fluid. They can be written in the
form

∂ε

∂t
+ div (ε− 1)vF = 0, (17)

ρS

(
∂vS

∂t
+ LSvS

)
= divTS + π

(
vF − vS

)
,

ρF

(
∂vF

∂t
+ LF vF

)
= −gradpF − π

(
vF − vS

)
,

whereTS denotes the partial stress tensor in the skele-
ton,

LS := gradvS, LF := gradvF , (18)

and the partial stress tensorTF for the fluid compo-
nent reduces to the pressurepF = −1

3
tr TF .

In addition, we have the kinematic compatibility
equation

∂eS

∂t
+ vS · gradeS = 1

2

(
LS + LST

)
−

−
(
LST eS + eSLS

)
.

(19)

We close the system by constitutive relations which
are based on the Signorini constitutive relations for
the second order model (e.g. (Albers and Wilmanski
1999))

TS = TS
0 +

(
λSI + 1

2

(
λS + µS

)
I2
)

1+

+2
(
µS −

(
λS + µS

)
I
)

eS,

pF = pF
0 − ρF

0 κε, (20)

where the material parametersλS, µS, κ are functions
of the current porosityn. TS

0 , pF
0 are initial (constant)

partial stress in the skeleton and the initial partial
pressure in the fluid, respectively.

Approximations presented above yield the follow-
ing constitutive relations (simple mixture model of
the second order)

TS = TS
0 + λS

0 I1+ 2µS
0 eS+

+
(
δ ∂λS

∂n

∣∣∣
0
n0I

2 + 1
2

(
λS

0 + µS
0

)
I2
)

1+

+2
(
δ ∂µS

∂n

∣∣∣
0
n0I −

(
λS

0 + µS
0

)
I
)

eS,

(21)

pF = pF
0 − ρF

0 κ0ε− ρF
0 δ ∂κ

∂n

∣∣∣
0
n0Iε, (22)

where the constantδ describes equilibrium changes of
porosity (see: (11)) and the index0 indicates evalua-
tion at the porosityn0. Simultaneously,

ρS ≈ ρS
0

(
1− I + 1

2
(I2 + 4II)

)
. (23)

This completes the set of relations for the second or-
der model under considerations.

3 ONE-DIMENSIONAL MODEL
We proceed to consider a one-dimensional problem
with the longitudinal motion in theex-direction. Then

vS = vSex, vF = vF ex,
eS = eSex ⊗ ex, |ex| = 1,

(24)

and
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I = eS, II = 0, LS =
∂vS

∂x
ex ⊗ ex,

LF =
∂vF

∂x
ex ⊗ ex.

(25)

Hence

ρS = ρS
0

(
1− eS + 1

2
eS2
)
,

ρF = ρF
0 (1− ε) , n = n0

(
1 + δeS

)
.

(26)

The partial stresses reduce in this case to the follow-
ing nontrivial contributions

σS = T S
x = σS

0 +
(
λS + 2µS

)
eS−

−3
2

(
λS

0 + µS
0

)
eS2 + O

(∣∣∣eS
∣∣∣3) (27)

pF = pF
0 − ρF

0 κε,

with
λS + 2µS = λS

0 + 2µS
0 + (28)

+δn0
∂

∂n

(
λS + 2µS

)∣∣∣∣∣
0

eS + O
(∣∣∣eS

∣∣∣2) ,

κ = κ0 + δn0
∂κ

∂n

∣∣∣∣∣
0

eS + O
(∣∣∣eS

∣∣∣2) .

As before the index0 denotes evaluation of the quan-
tity in the initial stateε = 0, eS = 0, vS = 0, vF = 0,
n = n0.

Substitution of these relations in the governing set
of equations yields the following set of equations in
the second order approximation

∂uA

∂t
+ AAB

∂uB

∂x
= BA, A,B = 1, ...,4, (29)

where

[uA]T =
[

ε vF vS eS
]T

, (30)

and

[AAB] =


vF ε− 1

−c2
P2 (1 + ε)−LF eS vF

0 0
0 0

0 0
0 −LF ε
vS −c2

P1 −LSeS

−
(
1− 2eS

)
vS

 , (31)

with

c2
P1 ≡ λS

0 + 2µS
0

ρS
0

, c2
P2 ≡ κ0,

c2
S ≡ µS

0

ρS
0

, LF ≡ δ
∂κ

∂n

∣∣∣∣∣
0

n0, (32)

LS ≡ 2δn0

ρS
0

∂ (λ + 2µ)

∂n

∣∣∣∣∣
0

−

−
(
2c2

P1 − 3c2
S

)
.

The vector on the right hand side of relation (29) is
given by

[BA]T =
[

0 − π
ρF
0

(1 + ε)
(
vF − vS

)
π
ρS
0

(
1 + eS

)(
vF − vS

)
0
]T

. (33)

We write the above set in the dimensionless form. For
the normalization we choose the speed of the P1-wave
cP1 and the unit of time related to a characteristic fre-
quency of the model, i.e.2ρS

0 /π. Then the dimension-
less quantities are as follows

x′ =
xπ

2ρS
0 cP1

, t′ =
tπ

2ρS
0

,

ε′ = ε, eS′ = eS,

vF ′ =
vF

cP1

, vS′ =
vS

cP1

,

cf =
cP2

cP1

, cs =
cS

cP1

, (34)

LF ′ =
lF

c2
P1

= δn0
∂

∂n

ρS
0 κ

λS
0 + 2µS

0

∣∣∣∣∣
0

,

LS′ =
lS

c2
P1

= 2δn0
∂

∂n

λS + 2µS

λS
0 + 2µS

0

∣∣∣∣∣
0

−

−
(
2− 3c2

s

)
.

The matrices transform as follows

[A′
AB] =


vF ′ ε− 1

−c2
f (1 + ε)−LF ′eS vF ′

0 0
0 0

0 0
0 −LF ′ε

vS′ −1−LS′eS

− (1− 2es) vS′

 , (35)

[B′
A]

T
=
[

0 −2 (1 + ε)
(
vF ′ − vS′

)
2
(
1 + eS

)(
vF ′ − vS′

)
0
]T

. (36)
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We investigate the propagation of a wave in the
medium whose undisturbed state is natural, i.e. in
front of the wave the region is undisturbed

ε+ = 0, vS+ = 0, vF+ = 0, eS+ = 0. (37)

As the fields are continuous across the surfaceS the
matrix A′

AB must be also continuous. Consequently,
it is sufficient to evaluate its properties on the positive
side of the surface. We denote this matrix byA′+

AB.
The solution of the eigenvalue problem for this ma-

trix yields the existence of P1-waves which propa-
gate in both directions of thex-axis as well as slow
P2-waves following the P1-waves. The latter enter
the regions disturbed already by P1-waves. Conse-
quently, we cannot use the relations presented above
in the case of slow waves. However, the analysis of
these waves yields the conclusion that they are very
strongly attenuated. Consequently, they do not yield
a creation of strong discontinuities. For this reason
we limit the attention to P1-waves. The correspond-
ing eigenvalue and eigenvectors are as follows

λ′ = 1, r′A =
[

0 0 − 1√
2

1√
2

]T
,

l′A =
[

0 0 − 1√
2

1√
2

]T
. (38)

Now we can easily find the coefficients of the
Bernoulli equation for the amplitudeA. We have

α′1 = −l′A
∂B′

A

∂u′C
r′C

1

r′Dl′D

∣∣∣∣∣ = 1,

α′2 = −l′A
∂A′

AB

∂u′C
r′Br′C

1

r′Dl′D

∣∣∣∣∣ = (39)

= − 1√
2

(
2− 1

2
LS′

)
.

Consequently, we obtain the following solution for
the evolution of the amplitude of discontinuityA
along the characteristic of the P1-wave

A = e−t′
[

1

A0

− 1√
2

(
2− 1

2
LS′

)(
1− e−t′

)]−1

.

(40)

It is essential to observe thatLS′ is negative. Namely,
it can be written in the form

LS′ = 2δn0
1

λS
0 + 2µS

0

∂
(
λS + 2µS

)
∂n

−

− 1 + 2ν

2 (1− ν)
, (41)

where ν denotes Poisson’s number. As argued in
(Wilmanski 2004), the first contribution is negative
and, hence, the whole expression is negative as well.

Consequently, a positive initial amplitude of dis-
continuityA0 may yield a singularity of the above so-
lution which appears in the critical timet′c given by
the relation

t′c = − ln

1− √
2

A0

(
2− 1

2
LS′

)
 . (42)

Obviously this yields the condition on the minimum
value of the amplitude for which the singularity must
appear, namely

A0 >

√
2(

2− 1
2
LS′

) . (43)

Let us check the physical consequences described by
the amplitudeA. According to relations (5) and (34)
we have[[

∂eS

∂x′

]]
= − ∂eS

∂x′

∣∣∣∣∣
−

= Ar4 =
1√
2
A

⇒ ∂eS

∂x

∣∣∣∣∣
−

= − π

2
√

2ρS
0 cP1

A,

(44)[[
∂v′S

∂x′

]]
= − ∂v′S

∂x′

∣∣∣∣∣
−

= Ar3 = − 1√
2
A

⇒ ∂eS

∂t

∣∣∣∣∣
−

=
π

2
√

2ρS
0

A.

Hence, for the existence of the critical time, it is nec-
essary that initially the gradient of deformation should
be negative. As the deformation ahead of the wave is
zeroeS+ = 0, this means that the infinite growth of
the amplitude can appear only intensioneS ≥ 0 be-
hind the wave front. Simultaneously, the deformation
grows in time. This means, of course, that the poros-
ity grows as well and, after reaching the critical time,
the system ceases to exist as the poroelastic material.
It reaches the state ofliquefaction. We return to this
phenomenon further in this work.

4 A NUMERICAL EXAMPLE
We illustrate the above considerations by a numerical
example. We chooseKs = 48 × 109 Pa, and Kf =
2.25× 109 Pa for the true compressibility coefficients
of the grains and the fluid, respectively.

Now, the material parametersλS, µS, κ, δ are cal-
culated by means of Gassmann relations (Wilmanski
2004). Simultaneously, we choose constant Poisson’s
ratio asν = 0.25 which seems to be a reasonable ap-
proximation for many soils.

We proceed to illustrate the behavior of the critical
time t′c given by (42). Obviously, it depends on two
variables – porosityn and initial amplitudeA0. In Fig.
1, we show the dependence onn for a chosen initial
amplitudeA0 =

√
2/
(
2− 1

2
LS′ (n = 0.55)

)
. As

∣∣∣LS′
∣∣∣
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Figure 1:Critical timet′c (dimensionless) for the initial ampli-
tudeA0 =

√
2/
(
2− 1

2LS′ (n = 0.55)
)

as a function of porosity.

decays with growingn this choice satisfies condition
(43). It is seen that the critical timet′c becomes longer
for larger porosities.

In Fig. 2, we illustrate the behavior of the critical
time as a function of the initial amplitude for a chosen
value of porosity. In the example, we choosen = 0.25.
As already indicated the critical time does not exist if
the amplitude is too small. In our example the thresh-
old value of the amplitude is0.3133. For higher values
of the amplitude, the critical time decays very rapidly.

It is easy to check that the above numerical re-
sults correspond quantitatively very well with results
obtained by Osinov (Osinov 1998). Bearing relation
(34)2 in mind, we find approximately

xc ≈
2ρS

0 cP1

π
t′c, (45)

wherexc is the critical distance of Osinov. For the
typical data (e.g. (Wilmanski and Albers 2003))ρS

0 =
2500 kg/m3, cP1 = 2500 m/s, π = 106 kg/m3/s, we
havexc ≈ 12.5t′c m. This agrees with both theoreti-
cal and experimental data for Karlsruhe sand reported
in Fig. 7 of the work (Osinov 1998).

Figure 2:Critical timet′c (dimensionless) for the porosityn =
0.25 as a function of the initial amplitudeA0.

5 CONCLUDING REMARKS
The above qualitative analysis demonstrates a poten-
tial of the description of threshold to liquefaction in
granular materials by means of the analysis of the
growth of strong discontinuities in acoustic waves.
This method seems to be natural as the most com-
mon liquefaction process in nature is accompanying
the propagation of acoustic waves created by earth-
quakes.

We have shown that liquefaction can appear if the
wave yields the extension of the skeleton on the front
of the wave. The creation of the strong discontinuity is
related to changes of porosity rather than to an incre-
ment of pore pressure. However, it is obvious that by
means of micro-macro relations, changes of porosity
can be uniquely related to changes of pore pressure.
In this way, we can transform the present results to
the classical arguments explaining liquefaction in sat-
urated granular materials.

Results of this work show that the threshold of liq-
uefaction can be theoretically explained by models
accounting for large changes of porosity yielding non-
linearity of field equations in either the above pre-
sented form or in the form of a gradient contribution
to the momentum source, (Wilhelm and Wilmanski
2002), as well as by a model whose stress-strain rela-
tion is described by a hypoplastic law, (Osinov 1998).
Most likely in reality all these mechanisms play a role
and it requires experiments to select ranges of domi-
nation of one of them.
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