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ABSTRACT: We consider a one-dimensional problem of propagation of acoustic waves in a nonlinear poroela
tic saurated material. Stress-strain relations in the skeleton are described by Signorini-type constitutitve eqt
tions. Material parameters depend on the current porosity. The governing set of equations describes change
extension of the skeleton, and of the mass density of the fluid, partial velocities of the skeleton and of the flu
and a porosity. We rely on a second order approximation. Relations of the critical time to an initial porosit)
and to an initial amplitude are discussed. The connection to the threshold of liquefaction in granular materie
is indicated.

1 INTRODUCTION, EVOLUTION OF THE AM- cal amplitudes. Let us consider an arbitrary set of the

PLITUDE OF ACOUSTIC WAVES first order hyperbolic partial differential equations
Threshold from the compact granular structure to lig-
uefaction is usually attributed to a critical behavior in Oua n AAB% — By, AB=1,..N, (1)
the strain-stress relations (Wood 1990). Thisis notal- 0t Ox B T

ways the case and the liquefaction may be dynamicg}hare Ang

in nature. The idea of attributing liquefaction of gran- \ha unknown fields of variable, ¢) are defined on

ular materials to the critical growth of the amplitude g . 5 Hyvperbolicity of this svstem means that the
of acoustic waves has been described by Osinov (O%igznv.alu)(/approbltlarlny 'S Sy

inov 1998). He relied in his considerations on the one
component model in which the evolution of stresses is (Aap — Noap)rp =0, (2)
described by the nonlinear law of hypoplasticity. He
has proven the existence of a critical distance of longipossesses solely real eigenvaluesand the right
tudinal waves after which the continuous solutions naeigenvectors z span the space of solutions. Eigenval-
longer exist. This distance depends on the slope andes) describe speeds of propagation in characteristic
curvature of the stress-strain relation in the monotonelirections given in turn by the eigenvectors.
loading. Consequently, Osinov could also incorporate We consider the problem in which the fields are
an influence of the fluid component which changescontinuously differentiable everywhere except of a
effective material parameters of the one-componensingular orientable surfacg on which the fields are
model. continuous and their first derivatives may possess fi-
Similar argument can be made in a two-componenhite discontinuitiesS is called the surface oiveak
model provided it is hyperbolic and nonlinear. In this discontinuity. On such a surface the followingpm-
work we use the standard argument related to the exigatibility conditions hold
tence of a critical time for weak discontinuity waves.
The liquefaction related to rapid changes of poros- lual =0 = Hawﬂ . HMH
ity were also investigated in (Wilhelm and Wilmanski Al = ot || ox ||’
2002) in which, instead of the full nonlinearity, only
the momentum source has been extended on a nonlin- Héﬂu/sﬂ _d Hamﬂ . H32UAH otc

B, are differentiable functions aof , and

ear influence of the gradient of porosity.
For the quasilinear hyperbolic system of equations
the following argument leads to the existence of criti- L.J=0C.0"=(.)", 3)
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wherec is the speed of the surfaée % is the deriv-  whereA, is the initial value of the amplitude of dis-
ative in the direction of propagation (along the char-continuity.
acteristic), and...)",(...)” denote one-sided limits  Itis shown in the theory of hyperbolic systems that

on this surface. solutions possessing weak discontinuities may only
We construct the jumps afi in the set (1). It fol-  exist for a finite time (e.g. (Lax 1964)). At the instant
lows of time, ¢, the so-called critical time, the solution be-
comes singular on the surfaSeand this singularity
_ % % _ is strong, i.e. the amplitude of the weak discontinu-
[ua] =0 = + Aup =0, . P o ; :
ot ox ity A grows to infinity. The critical time can be easily
. ou found by means of relation (8). Namely, this expres-
€. (Aap — cdaB) HE)BH =0. (4)  sion must go to zero &, i.e.
X

1 fe ffnoz ds
o ot [ ase ety —o. ©)
Hence the speeds of propagationSo€oincide with Ao Jo
the eigenvalues of the matrix, s, i.e. they are char- This relation determines.
acteristic, and the jumq%ﬁg—Bﬂ are right eigenvectors  The above presented procedure shall be applied to

T

of this matrix. The surface of weak discontinuities field equations for poroelastic saturated materials. It

propagates in a characteristic direction. The jumps 1S easily seen that a nontrivial solution for the critical
time does not exist for linear systems in which= 0,

Oug i.e. if we expect the creation of strong discontinuities
H&cﬂ =Arp, rara=1, (5)  we have to describe the system by meansmgrlin-
ear set of equations.

are called the amplitudes of discontinuity. It is seen
that theamplitude A determines all discontinuites 2 GOVERNING EQUATIONS
once the eigenvalue problem has been solved. The two-component model of porous saturated mate-

By differentiation of the set (1) with respect to the rial is based on the following choice of fields
variable z, it can be easily shown (e.g. (Wilmanski P 7
1998b)) that the equation for the evolution of the am- {p VARG n} (10)

plitude A can be written in the following form wherep”, o5 are current partial mass densities of the

dA fluid and skeleton, respectively’’, v are the veloc-
— + A+ apA? =0, (6) ities of componentse® is the Almansi-Hamel strain
dt tensor of the skeleton, anddenotes the porosity.
where We assume that material parameters of the model
' OAsp  Oupl|” depend on the current porosity Hence, the model
e duc "C o * must be nonlinear. For the purpose of this work we
limit attention to processes in which solely the defor-
0Aus  Ouc mation of the skeleton is large. We neglect nonlinear-
la ou B or | ities related to the deformation of the fluid component
© (7)  and to the dependence of the permeabilty coefficient
_ZA@TC lAdTA} 1 from porosity. The latter can be easily incorporated,
duc dt | rplp’ it yields a correction in the source term and, simul-
taneously, does not lead to qualitative changes of the
= | 8AAB7, r 1 results. The case of a nonlinear fluid (e.g. gaseous)
2 A B'C ) . . .
Juc rplp in a linear skeleton has been considered elsewhere

(Wilmanski 1998a). Certainly, these assumptions are
denotes the limit on the positive side of the sur-related to the fact that the liquefaction yields primar-
face, and 4, denotes the left eigenvector dfy 5. Cer- ily considerable deformations of the skeleton. There
tainly, both coefficients are functions of the fields.  exists an experimental evidence (e.g. (Wilhelm and
However, due to the continuity af, across the sur- Wilmanski 2002)) that compressibility of the skele-
faceS they can be evaluated on its positive side (aheatbn reduces very considerably near the threshold to
of the wave ifS is the wave front) where their values liquefaction while, of course, compressibility of flu-
are usually known. Consequently, equation (6) is theds like water remains unchanged. Simultaneously, we
Bernoulli equation for the amplitude of discontinuity leave out relaxation processes of porosity. This means

L

with known coefficients. Its integration yields that the porosity reduces to its equilibrium changes
] 1 . (Wilmanski 2004) and it can be written in the form
— nalds tald
A:Mﬁﬁ&ﬁk dnjeht, (@) n=no (1+0dtre’), (11)



where § is the material parameter. The non-whereT® denotes the partial stress tensor in the skele-
equilibrium contribution to porosity following from ton,

the relative motion could contribute but it can be s < . .

shown (Wilmanski 2004) that this contribution is very L”:=gradv”, L" :=gradv’, (18)
small indeed.

We consider the process of transition from the
poroelastic region with compact skeleton to a flu-
idized state as related to a sudden change of porosit%.

For basic geometric quantities we make the follow- q
ing assumptions o6’

1) the deformation of the skeleton, described by the — +v¥.grade’ = % (LS + LST) —

and the partial stress tens®f for the fluid compo-
nent reduces to the pressyfe= — tr T%.

In addition, we have the kinematic compatibility
uation

: \ : ot (19)
Almansi-Hamel deformation tensef is small of the B (LSTeS n egLS> .
second order, i.e.,
N\ We close the system by constitutive relations which
NG NG) . i oo )
maX{zm )fe Ad } <1, (12) are based on the Signorini constitutive relations for
det (es — )\8)1) =0, the second order model (e.g. (Albers and Wilmanski

1999))
2) volume changes of the fluidare small, i.e.

i TS =T5+ (WT+3 (A +p5) I?) 1+
el <1, o=, (13) +2 (5 — (A + ) I) &,

Wp_ere_p_ is the current mass density of the fluid, and pF = pt — pEke, (20)
py Its initial value.
As the mass density of the skeletehmust satisfy

\ where the material parameter$, 1.°, x are functions
the mass balance equation, we have

of the current porosity.. T3, pl” are initial (constant)
1 partial stress in the skeleton and the initial partial
p° = p3 (det BS) >, B 1:=1-2¢° (14) pressure in the fluid, respectively.

Approximations presented above yield the follow-

and the above assumption yields ing constitutive relations (simple mixture model of
the second orde}
S S .
pS =pSy1—2I —4IT, 1:=tre ¢ e s ;
I1:=4 (1 ~tre?). (15 TP=T5 + A1+ 2u5e°+

+ (6 25| nol*+ 5 (A + 1) 1) 1+ (21)
Contributions of the third invariank/I = dete® are oS g g
of the third order in eigenvaluex”). Consequently, +2 (5 W‘onol - ()‘0 +'“0) [> e,
the mass density of the skeleton is not an independent
field. p" = pl — plroe — pl'o =
~ Bearing the above considerations in mind we seek
field equations for the followingelds where the constamtdescribes equilibrium changes of

s p porosity (see: (11)) and the indéxindicates evalua-
{é?,eS,V Vv } (16) tion at the porosity:,. Simultaneously,

Onofg, (22)

Field equations follow from the mass conservationfor % ~ pf (1 —I+i(I*+ 4][)) : (23)

the fluid, partial momentum balance equations for the

skeleton and for the fluid. They can be written in theThis completes the set of relations for the second or-
form der model under considerations.

o div (e — 1)vF =0, (177 3 ONE-DIMENSIONAL MODEL

ot We proceed to consider a one-dimensional problem

ovs with the longitudinal motion in the,-direction. Then
p° ( + L5v5> =divT® + 7 (vF — vs) ,
ot VS =vSe,, vF =oFe,,

24
. ¢ e, e, [of =1, (24)
o <+LFVF> :—gradpF—w(vF—vS),

ot and



s
I=¢S, 11=0, L5=2¢ s,
ox
P o
LY =—e ®e,
ox
Hence
pS:p(*?(l—eS—i-%e”),
pl=pl(1-¢), n:no(l—i—ées).

The patrtial stresses reduce in this case to the follow-

ing nontrivial contributions

0¥ =T% =05 + ()\S—I—Q,us) e’ —
(A +u)es2+0 (‘65’3>

P =~ o

with
N 2% = NS+ 2ub +

Fong - (3 + 20

0

e+ 0 <‘€S‘2> )

Ok
K= Ko+ 0ng —

on

0

As before the index denotes evaluation of the quan-

e*+0 <’€S’2> ,

(25)

(26)

(27)

(28)

tity in the initial states = 0, e® = 0, v° = 0, v¥" = 0,

n =mny.

Substitution of these relations in the governing set . #7 — 1 _
of equations yields the following set of equations in

the second order approximation

(30)

(31)

0 0
%—FAAB%:BAa Aszla"'74’ (29)
where
lual” = [ e vf v €8 }T,
and
ot e—1
chy(14+e)—LFeS of
[Aas] 0 0
0 0
0 0
0 —Lfe
v’ -4, — LSS |-
— (1 — 265> v®

with
NS+ 248
cfpl = 0 —;s ’uo, 02P2 = Ko,
0
S

o _ Mg F_ Ok

C = ——, L = 6 | No, (32)

T onl,

200 O (A + 2p)

LS
05 on

0

— (20%)1 — 36%) .

The vector on the right hand side of relation (29) is
given by

Ba" =[0 — & (1+e) (vF = %)

z (1465) (o =) 0]

We write the above set in the dimensionless form. For
the normalization we choose the speed of the P1-wave
cpp and the unit of time related to a characteristic fre-
quency of the model, i.€p5 /7. Then the dimension-
less quantities are as follows

(33)

, T ,  im
r = 257, t = 2757
Po €pr1 Po
g = ¢ =e
F s
oF = L7 oS — L7
Cp1 Cp1
o = B2 =5 (34)
Cp1 Cp1
_ 1 _sn 9 po K
b Con N5+ 2u8 o
I 9 N +2u°
LS/ = 5 :257107 S_'_ ILLS —
Ch on Ag + 245 |,
—(2-3¢2)
The matrices transform as follows
vt e—1
_02 1+¢ —LFIGS UF/
0 0
0 0
0 —LP¢e
US’ —1— LS/GS ’ (35)
— (1 —2¢%) v’
By =0 —2(1+¢) (v"" =)
T
2(1+¢%) (v = o) 0] (36)



We investigate the propagation of a wave in the Consequently, a positive initial amplitude of dis-
medium whose undisturbed state is natural, i.e. ircontinuity A, may yield a singularity of the above so-
front of the wave the region is undisturbed lution which appears in the critical timg& given by

the relation
et =0, =0, oft=0 €T=0.(37) V2

t.=—1In _—
As the fields are continuous across the surfadke ¢ A (2 — %LS/)
matrix A’, ; must be also continuous. Consequently,
it is sufficient to evaluate its properties on the positiveObviously this yields the condition on the minimum
side of the surface. We denote this matrix Ay. value of the amplitude for which the singularity must

The solution of the eigenvalue problem for this ma-appear, namely

trix yields the existence of P1-waves which propa-
gate in both directions of the-axis as well as slow V2 43
P2-waves following the P1l-waves. The latter enter 0= (2 _ 1Ls/>' (43)
the regions disturbed already by Pl-waves. Conse- 2
quently, we cannot use the relations presented aboveet us check the physical consequences described by
in the case of slow waves. However, the analysis othe amplitudeA. According to relations (5) and (34)
these waves yields the conclusion that they are verywe have
strongly attenuated. Consequently, they do not yield

1- (42)

a creation of strong discontinuities. For this reason Oe® _ 3765 ) — Ay — LA
we limit the attention to P1-waves. The correspond- ox’ ox’ )
ing eigenvalue and eigenvectors are as follows 565 |-
(& ™
T = —| =———A,
)\ = 1, 7“14 = { 0 0 —% % } , Oz 2ﬁngP1 (44)
L=[00 -% &7 (38) o' il NN Ly
° = — = Tao = ——F
ox' oz’ s V2
Now we can easily find the coefficients of the _
Bernoulli equation for the amplitud&. We have de” __ T A
0B, , 1 ol 225
A
ap = =y oul 7”/077”, | L, Hence, for the existence of the critical time, it is nec-
¢ bb essary that initially the gradient of deformation should
) ,0AY s, , 1 be negative. As the deformation ahead of the wave is
ay = —ly u, TBTCT/DZ/D = (39)  zeroeSt = 0, this means that the infinite growth of

the amplitude can appear only t@nsione® > 0 be-
1 1 g hind the wave front. Simultaneously, the deformation
2 (2 N §L ) ' grows in time. This means, of course, that the poros-

_ _ ) ity grows as well and, after reaching the critical time,
Consequently, we obtain the following solution for the system ceases to exist as the poroelastic material.

the evolution of the amplitude of discontinuity |t reaches the state difjuefaction. We return to this
along the characteristic of the P1-wave phenomenon further in this work.

-1
Aot [1 1 (2 _ 1Ls,> (1- e_t,)l 4 ANUMERICAL EXAMPLE
Ao V2 2 We illustrate the above considerations by a numerical
(40) example. We choos&’, = 48 x 10° Pa and K =

) . . . 2.25 x 10° Pa for the true compressibility coefficients
It is essential to observe that’ is negative. Namely, of the grains and the fluid, respectively.

it can be written in the form Now, the material parameters’, .°, »,§ are cal-
1 9 ()\S 4 QMS) culated by means of Gassmann relations (Wilmanski
LY = 26n, _ 2004). Simultaneously, we choose constant Poisson’s
A§ +2u8 on ratio asv = 0.25 which seems to be a reasonable ap-
14920 proximation for many soils.
-, (412) We proceed to illustrate the behavior of the critical
2(1-v) time t/. given by (42). Obviously, it depends on two

where v denotes Poisson’s number. As argued invariables — porosity and initial amplitude?,. In Fig.
(Wilmanski 2004), the first contribution is negative 1, we show the dependence orfor a chosen initial
and, hence, the whole expression is negative as wellamplitudeA, = v/2/ (2 — 3L (n= 0,55))_ As ’LS’
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Figure 1:Critical timet’, (dimensionless) for the initial ampli-
tudeA; = v2/ (2 — L% (n = 0.55)) as a function of porosity.

decays with growing this choice satisfies condition
(43). Itis seen that the critical timté becomes longer
for larger porosities.

In Fig. 2, we illustrate the behavior of the critical

5 CONCLUDING REMARKS

The above qualitative analysis demonstrates a poten-
tial of the description of threshold to liquefaction in
granular materials by means of the analysis of the
growth of strong discontinuities in acoustic waves.
This method seems to be natural as the most com-
mon liquefaction process in nature is accompanying
the propagation of acoustic waves created by earth-
guakes.

We have shown that liquefaction can appear if the
wave yields the extension of the skeleton on the front
of the wave. The creation of the strong discontinuity is
related to changes of porosity rather than to an incre-
ment of pore pressure. However, it is obvious that by
means of micro-macro relations, changes of porosity
can be uniquely related to changes of pore pressure.
In this way, we can transform the present results to
the classical arguments explaining liquefaction in sat-
urated granular materials.

Results of this work show that the threshold of lig-

time as a function of the initial amplitude for a chosenuefaction can be theoretically explained by models
value of porosity. In the example, we choese 0.25.  accounting for large changes of porosity yielding non-
As already indicated the critical time does not exist iflinearity of field equations in either the above pre-
the amplitude is too small. In our example the threshsented form or in the form of a gradient contribution
old value of the amplitude i53133. For higher values to the momentum source, (Wilhelm and Wilmanski
of the amplitude, the critical time decays very rapidly.2002), as well as by a model whose stress-strain rela-

It is easy to check that the above numerical retion is described by a hypoplastic law, (Osinov 1998).
sults correspond quantitatively very well with results Most likely in reality all these mechanisms play a role
obtained by Osinov (Osinov 1998). Bearing relationand it requires experiments to select ranges of domi-
(34), in mind, we find approximately nation of one of them.
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where z,. is the critical distance of Osinov. For the
typical data (e.g. (Wilmanski and Albers 2003%) =
2500 kg/m?, cp; = 2500 m/s, = = 10° kg/m?/s, we
havez. ~ 12.5¢/, m. This agrees with both theoreti-
cal and experimental data for Karlsruhe sand reported
in Fig. 7 of the work (Osinov 1998).
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Figure 2:Critical time¢, (dimensionless) for the porosity=
0.25 as a function of the initial amplitudé,.



