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ABSTRACT: This work is devoted to the numerical analysis of surface waves in two-component saturate
poroelastic media. We use the "simple mixture model” which is a simplification of the classical Biot's model
for poroelastic media.

For the interface porous medium/vacuum there exist two surface waves in the whole range of freuencies -
leaky Rayleigh wave and a true Stoneley wave. For the interface porous medium/fluid one more surface wa
appears — a leaky Stoneley wave. For this boundary velocities and attenuations of the waves are showr
dependence on the surface permeability. The true Stoneley wave exists only in a limited range of this parame

1 INTRODUCTION quantitativecorrections without changing thguali-
The theoretical investigation of surface waves intativebehavior of the system, at least in the range of a
porous materials is motivated by the possible confelatively high stiffness of the skeleton in comparison
struction of a method of nondestructive testing of ma-With the fluid. This has been analyzed for bulk waves
terials. Different operational areas require very dif-in (Albers and Wilmanski 2003b).
ferent regions of frequencies of the waves: e.g. for Bearing these remarks in mind it seems to be appro-
field measurements in soil mechanics the range of agPriate to rely on the simplified model ("simple mix-
plicable frequencies lies between 1 Hz and 100 HAuUre model” in whichQ = 0, pi» = 0). It has the ad-
while testing of nanomaterials requires frquencies of/antage to reduce essentially technical difficulties.
approx. 100 MHz. Therefore we investigate the dis- \We present here the linear form of the "simple mix-
persion relation in the whole range of frequencies. ture” model for a two-component poroelastic satu-
Apart from the frequency range, the acoustic pafated medium (for details see: (Wilmanski 1999)).
rameters are also investigated in dependence on two In the simple mixture model a process is described
other parameters. One of them is the bulk permeabilby the macroscopidfields o™ (), the partial mass
ity of the porous materialy. Furthermore the prop- density of the fluidy” (x,t), v (x,t) , the velocities of
erties of the boundary are described by the surfacthe fluid and of the skeleton, respectivesy(x,t), the
permeability,a. It controls the intensity of the in- and Symmetric tensor of small deformations of the skele-
outflow of the fluid from the porous medium. ton andn, the porosity. The following set of linear
equations is satisfied by those fields
2 SIMPLE MIXTURE MODEL P

In our analysis we rely on a simpler model than this aL + pEdivvt =0,
of Biot. We neglect two effects: ot

e the added mass effect reflected in Biot's model

pF=pk
o

< 1,

by off-diagonal contributions to the matrix of gﬁ + rgradp” + BgradA +p = 0, (1)
partial mass densities (the parametgy, ot
¢ the static coupling effect between partial stresses S
(the parametet). o pg O — div (AS(tref) 1+ 208 + AL) -
The first one is neglected because it yields a non- ot
objectivity of Biot’s equations (Wilmanski 2004). —p=0,

The second contribution, the coupling of partial
stressed), is neglected because it yields at most p:=m (vF—vS), A:=n-—ng,
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In these relationgy , pg,no are the constant refer- o of 2 (ug _ u?) _ (3)cont
ence values of partial mass densities, and porosity, ot 0
respectively. There appear constant material parame-
ters k,\%, 1%, 3,7, 7,,0,®. In particular, s denotes e 0 g ;
the macroscopic compressibility of the fluid compo- =py " e (u3 t— u3> ,
nent,\* and;® are macroscopic elastic constants of z=0
the skeleton is the coupling constant between the 5
componentsy denotes the bulk permeability coeffi- FrY (F_ s F_ o Ft _
cient,,, describes the relaxation time of porosity and * Py (u3 u3) ta (p ftop ) 0 0

9, ® are material parameters related to equilibrium

and nonequilibrium changes of porosity, respectivelyHere 5 v are z-, and z-components of the dis-
As already done in the works (Albers 2005) and (Al- placementu’, respectively, andi?’, «£'+ denote z-
bers and Wilmanski 2003a) for the analysis of SUr-components "of the displa’cemer?ﬁg 3and U+ re-

face waves the coupling parameteis assumed to be ¢ ; ; 2 ._ (\S S\ /S
; . pectively. Simultaneously;s, := (A° + 2u°)/pg,
zero. Then the problem of evolution of porosity Can 2 ._ ;S /pS 2, =g andc? .= x* are squares of the

be solved separately from the rest of the problem. ot velocities of bulk waves in the porous material:
The additional equations for the fluid in the exterior pg (fast wave),S (shear wave)P2 (slow wave, also
of the porous material read called Biot's wave), and of th&-wave in the fluid, re-
spectively. In the case of Biot's model there would be
an additive contribution of the coupling parametgr
in the numerator ofp; which is of the order of a few
(2)  percent of\® (see: (Albers and Wilmanski 2003b) for
a detailed analysis).
Two of the boundary conditions, (3)and (3},
- - e of th g g describe the continuity of the full tractiort, :=
e quantities outside of the porous medium are defts |, TF _ T e
noted by a "+ sign. Thus'* denotes the partial (T +T)n,n=(0,0.1) , on the boundary; (3)
mass density of the fluid in the +-region apf" is its
constant reference valug! describes the true com-
pressibility of the fluid.

opt'™ :

g—terg*dlvvF*:O,
ovi

pOFJ“W + xtgradp®™ = 0.

reflects the continuity of the fluid mass flux, and con-
dition (3), specifies the mass transport through the
surface. The difference of the pore pressures on both
sides of the boundary determines the in- and outflow
through the boundary: denotes a surface permeabil-
3 BOUNDARY CQNDI-HONS _ ity coefficient, which corresponds tp in the works
For the determination of surface waves in saturate¢Feng and Johnson 1983), (Gubaidullin et al. 2004),
poroelastic media conditions far = 0 are needed. andp”+ is the external pressure. Condition{8lies
Boundary conditions for the interface between a satpn the assumption that the pore pressiaad the par-
urated porous material and an ideal fluid were for+jg| pressure’ satisfy the relatiop” ~ ngp at least
mulated by Deresiewicz & Skalak (DereSieWiCZ andin a small Vicinity of the surface.

Skalak 1963) In aS“ghtly Changed notation they have For the boundary porous medium/vacuunis- 0

the following form and also the quantities outside of the porous medium
are equal to zero. Then the third and the fourth condi-

— tions are identical.
z=0

ou?  oud
= (5 + %)

* (T13 - ng’)) iz:O =Ty

4 SOLUTION OF THE PROBLEM

=0, (3)  We consider monochromatic waves with a giveal
2=0 frequencyw. The construction of the solution for
some problems was shown already in earlier works
= (see e.g. (Wilmanski and Albers 2003), (Albers and

o (Tu-TH)| _ =@+ ")

z=

2=0



Wilmanski 2003a) or (Albers 2005)) therefore we doand assume
not show it here but give an impression how it was

F
done. F+ _ Po LT
: . =— =—if 0. 9
We have introduced displacement vectors for the Po ng’ =T 7 ©)

three components using potentials. In the two-

dimensional case for those potentials monochromatid he first condition means that the initial external pres-
wave solutions in the-direction (exponential ansatz) sSure is equal to the initial pore pressure. After inser-
have been assumed. The solutions have been sufion into the boundary conditions we obtain the fol-
stituted in the field equations of the simple mixturelowing eigenvalue problem

model. This has led to seven compatibility conditions

containing some unknown coefficients. A dimension- AX =0, (10)
less notation has been introduced. This has the advan-

tage to connect characteristica of the surface waves txghere

those of the better known bulk waves (e.g. with the ve- (9)* 41 Coim
locity of the P1-wavecp;). The dimensionless quan- . .
tities are defined as e ()" —142e2+
2ics 7 2
Coi= S o=, of = ’“ #reh ()" -]
k' = kepir, W i=wr =% A=
| . “L () ~Fw (1) 2 [ ()]
o ==acpy, 1= ’;—OS, rt = ppo—s,
Cp1T x

rwHLT

Here 7 is an arbitrary reference time. We further

use the dimensionless quantities omitting the prime. (11)
Substitution of these quantities into the compat-
ibility conditions yields for the boundary porous —2i32 6 0
medium/fluid four equations, for the boundary porous [(72) e 2] 5ot
medium/vacuum three equations still containing un- k 205 ’ —rtet [(wk*)Ql]
known coefficients. However, in contrast to heteroge- +reg [(lﬁ) - 1]
neous media, they are for homogeneous materials in- N L :
dependent of. This leads to a differential eigenvalue 2 1+ (5 -1)] _rtat
problem which can be easily solved. We seek solu- s
tions in exponential form. In these relations the expo- EE (lw_ Sl —act? {(3)2 _ 1}
nentsy;,v2, ¢ must possess negative real parts and +ac2 [(7) *1} Tk
must possess a positive real part to describe a surface T
wave. We obtain relations for the exponents: X := ( B, A, A}, Af ) , (12)
Ge
@ follow from and auxiliary quantities
2 . 2
(B =1-2(+om)B) ® 1 e
’ Op = — w k
71,2,3,4 i i f 2 ’
2>+ result as solutions of the relation TC?“ [('Ll) ) (%) 1 %%
2 2 2 1) ir] (w)? 13
Sl 1 ez () @ -
_ w k2
s 2 2 . o
. 2 2 72 — w W=
s+ (25 (6 1] () =0 () -1+ (2) + 2
vy ) This homogeneous set yields thispersion relation:
and = as solutions of det A = 0 determining the relation betweenandk.
2 2
GY =6
k T2\ % 5 PARAMETERS, NUMERICAL PROCEDURE

f
However, the unknown constants have still to be defor both boundaries the probledat A =0 has been

termined by the boundary conditions. We use the consolved for the complex wave numbér, using the
stitutive relations two computing paCkageS MAPLE and MATLAB. Itis

R R possible to use the existing equation solvers although
p" =pf +r(p" = of), i i i
0 0 (8) they need for calculations with complex variables a
prt =plt + Kt (pF+ — pé“’) , very extensive main memory.



The calculations have been performed for the fol- o4
lowing data which correspond to water saturatec
sandstones:

!

-
1
T
1]
03p Stoneley
2 1]
Table 1. Parameters for water saturated sandstones. S oz
>
= K
For both boundaries: & o2f
8=0, cp1 = 25007, cp2 :F1000%, E oss|y — ﬁiﬁ
S _ kg F_ kg _ Py _ H EC T
Py = 25003, Py = 2503, r= % =0.1, i =10
cy =2 =04, T=1,=10"0s
£L 005
1 1 1 J
For the boundary porous medium/vacuum: : e 8 & =
requency in MHz
cs = 15002, ¢, = £ =0.6, ) _ ,
Bl Figure 2:Boundary porous medium/vacuum. Normalized ve-

locity of the true Stoneley wave in dependence on the frequency

For the boundary porous medium/fluid:
4 y porou 1 and the surface permeability.

cs =12507,  co= L5 =04,  pit =100019
F

cp1 m3?
¢+ =1500%, ¢ =52 =06, rt= ”;;—: =04. One should point out that — differently than often

- stated — the Stoneley velocity behaves regularly in the
6 RESULTS whole range of frequ_e_ncies ar_1d it ceases to exist only

. for w = 0. In the vicinity of this point the Stoneley

6.1 Boundary porous medium/vacuum velocity possesses a similar feature to the P2-wave: it
In the whole range of frequencies there exist two SUrgecays to zero ag/w. Imaginary parts of the wave
face waves corresponding to the classical Rayleighumperk determine the damping of waves. It is nor-
and Stoneley waves. The results for the phase velocinglized by the product with th&1-velocity and the
ties and attenuations are shown for different values ofe|axation time. Figure 3 shows the attenuation of the
the bulk permeability coefficienty. This parameter Rayleigh wave. It is obvious that this wave is strongly
describes the resistance of the porous medium againgftenuated. The attenuation linearly increases to infin-
the flow of the fluid. Figures 1 and 2 show the phasety a5, — o, i.e. the Rayleigh wave is leaky. Similar
velocities of the Rayleigh and Stoneley waves in deq the attenuation oP1-waves these curves intersect

pendence on the frequency. They are normalized by gifferent values ofr. The attenuation for all values
the P1-velocity. We see a range of frequencies fromgf - starts from zero.

zero to the very large value of 100 MHz. Certainly, all
values lie below the normalized velocity of the shear

= &5 _— . .
wavec, = 7 = 0.6. Figure 4 shows that also the normalized attenua-

P1 . .
The Stoneley velocity increases from the zero valugjoy of the Stoneley wave starts from the zero value
for w = 0. The growth is faster than the growth of the o, ., — (. But in contrast to the Rayleigh wave atten-

Rayleigh velocity but the maximum value is smaller. ati0n for small frequencies it increases much faster
It lies al"_"af; below the normalized velocity of the gnq then approaches a horizontal asymptotic value for
fluid c¢; = 2 = 0.4. The maximum value of the |5ger values of the frequency. This means the limit

Pl . . .
Stoneley velocity appearing for — oo is approxi- , — oo is finite and dependent on the permeability
mately 0.15% smaller than the velocity of the fluid. coefficientr.
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Figure 1:Boundary porous medium/vacuum. Normalized ve- Figure 3:Boundary porous medium/vacuum. Normalized at-
locity of the leaky Rayleigh wave in dependence on the fre-tenuation of the leaky Rayleigh wave in dependence on the fre-
guency and the surface permeability. quency and the surface permeability.
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Figure 4:Boundary porous medium/vacuum. Normalized at- frequency o in MHz &1
tenuation of the Stoneley wave in dependence on the frequenc
and the surface permeability.

surface permeability o

Figure 6:Boundary porous medium/fluid. Normalized velocity
of the leaky Stoneley wave in dependence on the frequency and
6.2 Boundary porous medium/fluid the surface permeability.

Figures 5 to 10 show the phase velocities and the afznge This may be an indication of the change of the
tenuations of all three surface waves appearing at th

. - iemann surface which is, however, much better pro-
interface between a porous halfspace and a fluid half55,nced in the attenuations.

. Also h how the wid ff - .
Space. FISO hare We STow 1he WICE range of requen The velocity of the leaky Stoneley wave behaves

cies between 1 Hz and 100 MHz. The curves depend

on the frequency and on the surface permeability paSimilar to the Rayleigh wave. Also this wave pos-

rameter. o — 0 means that the surface is completely S€SS€S high an low frequency limits unequal to zero

impermeable whiley — o corresponds to an open and the steep increase inbetween appears in the

pore situation. Both the frequency and the attenuaS@Me frequency region. However, in contrast to the

tions are shown in logarithmic scale while the veloc-RaYI€igh wave for this wave the high frequency limit

ity is presented in normal scale. Again, the velocity'S larger for bigger values af than for smaller ones.

of the Rayleigh wave lies under the velocity of the N€ frequency behavior of this wave is — at least for
bulk shear wave;s, whose normalized value is now smalla —not monotonous. A maximum value appears

¢, = £5 = 0.5. While for small frequencies the veloc- " the region of order 100 kH.Z'

ity is independently ofy, the high frequency limitde- ~ The true Stoneley wave exists only for small values
creases with increasing For the open pore situation Of «, and, therefore, we show its behavior only for
the difference between high and low frequency limitstwo values ofa. For those the velocities do not differ
is approximately one half of the difference for a closesubstantially. They start form zero at= 0 and in-
boundary. For frequencies around 100 kHz there is &ease until around 100 kHz where they nearly reach
steep increase of the Rayleigh velocity. For small val-2 high frequency limit which is a little bit smaller than

ues ofa there appears a small plateau in the frequenc$he velocity of theP2 wave,c; = 22 = 0.4.

cp1

+ a=10"
¢ a=102
* a=100
" a=10"1
" o=0

o o
2 e 2 N
&~ 0 A& W
@ m © om

normalized velocity
normalized velocity

0.475 i

047 fi- A

frequency @ in MHz surface permeability o frequency o in MHz = surface permeability o

Figure 5:Boundary porous medium/fluid. Normalized velocity Figure 7:Boundary porous medium/fluid. Normalized velocity
of the leaky Rayleigh wave in dependence on the frequency andf the true Stoneley wave in dependence on the frequency and
the surface permeability. the surface permeability.
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Figure 8:Boundary porous medium/fluid. Normalized attenu- Figure 10:Boundary porous medium/fluid. Normalized atten-
ation of the leaky Rayleigh wave in dependence on the frequencyation of the true Stoneley wave in dependence on the frequency
and the surface permeability. and the surface permeability.

The attenuation of the true Stoneley wave has theurves show a leaky character.

same appearance as this obtained for the boundar

porous medium/vacuum. We show a log-log-plot of REFERENCES

this attenuation. It starts from zero@as- 0 and nearly Albers, B. (2003). Relaxation ar!allysis and |ineﬁlr SLability vs.

reaches a horizontal asymptote at around 100 kHz. In gsrforl‘?,:'l‘;”;g_%%roglzomﬁﬁfggﬁe”g;?ﬁt'K'lfcﬁlT 2656”20'

contrast to the true surface wave the remaining leaky Albers B (20,05) Mo.delling of surface Wave.s in p,oroela.stic
. uum. In C. Lal an . Wilimanski S.purrace vwaves

be related with characteristic frequenc'g% andQ’% in Geomechanics: Direct and Inverse Modelling for Soils

which have already appeared in the st(iability §naly- and RocksCISM Cqurses a.nd Lectures.Wlen:Spr|ng§r.
sis of adsorption processes (Albers 2003). However, Albesrj’rfa%é "’\‘,’nge*;' SAn"'Tﬁgiﬁ%éigf’a&uwﬁgﬁggr?ﬁfo-
there exists an influence of the parameteresponsi- component poroelastic media. Preprint 862, WIAS. to
ble for dissipation, and, consequently, the location of appear in: Contin. Mech. Thermodyn.

the singularities changes with the variation of this co-  Alpers, B. and K. Wilmanski (2003b). On modeling acoustic
efficient. Hence, as indicated also in some papers on waves in saturated poroelastic media. Preprint 874,
Biot's model, the diffusion-driven resonances appear WIAS. to appear in: J. Engn. Mech.

also in the surface waves. Little is known about their Deresiewicz, H. and R. Skalak (1963). On uniqueness in dy-
mathematical origin. However, the numerical analy- namic poroelasticityBull. Seismol. Soc. Am. 5383~
sis indicates that they appear due to the change of the '

: P : Feng, S. and D. L. Johnson (1983). High-frequency acoustic
Riemann surface. In any case, it is obvious that the properties of a fluid/porous solid interface. I. New sur-

face modeJ. Acoust. Soc. Am. {3), 906-914.
Gubaidullin, A. A., O. Y. Kuchugurina, D. M. J. Smeulders,

. Ehjm:; and C. J. Wisse (2004). Frequency-dependent acoustic
. 212 properties of a fluid/porous solid interfacé&. Acoust.

2 e e Soc. Am. 11@), 1474-1480.

" o=0

Wilmanski, K. (1999). Waves in porous and granular mate-
rials. In K. Hutter and K. Wilmanski (Eds.Kinetic and
continuum theories of granular and porous medim-
ber 400 in CISM Courses and Lectures, pp. 131-186.
Wien New York: Springer.

Wilmanski, K. (2004). Tortuosity and objective relative ac-
celeration in the theory of porous materials. Preprint 922,
WIAS. to appear in: Proc. Royal Soc. (London), Ser. A.

Wilmanski, K. and B. Albers (2003). Acoustic waves in
N porous solid-fluid mixtures. In K. Hutter and N. Kirchner
frequency o in MHz L surface permeability o (Eds.), Dynamic response of granular and porous ma-

normalized attenuation

. terials under large and catastrophic deformatioil-
Figure 9:Boundary porous medium/fluid. Normalized attenu- ume 11 ofLecture Notes in Applied and Computational
ation of the leaky Stoneley wave in dependence on the frequency Mechanicspp. 285-314. Berlin: Springer.

and the surface permeability.



