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Abstract. The paper deals with two-dimensional stationary energy models for semicon-

ductor devices, which contain incompletely ionized impurities. We reduce the problem to a

strongly coupled nonlinear system of four equations, which is elliptic in nondegenerated states.

Heterostructures as well as mixed boundary conditions have to be taken into account. For bound-

ary data which are compatible with thermodynamic equilibrium there exists a thermodynamic

equilibrium. Using regularity results for systems of strongly coupled linear elliptic differential

equations with mixed boundary conditions and nonsmooth data and applying the Implicit Func-

tion Theorem we prove that in a suitable neighbourhood of such a thermodynamic equilibrium

there exists a unique stationary solution, too.

1. Model equations.

The charge transport in semiconductor devices is described by the van Roosbroeck

equations (see [17] and e.g. [4, 11, 14]). They consist of two continuity equations for the

densities n and p of electrons e and holes h, respectively, and a Poisson equation for the

electrostatic potential ϕ. Physical parameters occurring in these equations depend on

the device temperature T . Therefore, under nonisothermal conditions a balance equation

for the density of total energy must be added, and a so called energy model arises (see

[2, 18]) . Finally, if incompletely ionized impurities (for example radiation induced traps

or other deep recombination centers) are taken into account, we have to consider further

continuity equations for the densities of (in general immobile) species Xj , j = 1, . . . , k.

These species exist in different charge states which are transformed into each other by

ionization reactions. For the sake of simplicity we assume that each reaction is a binary

one. Let Xj be an acceptor-like impurity which can accept an electron e or deliver a hole

h and let X−
j be its ion. Then we have to consider the reactions

(1) e− + Xj 
 X−
j , h+ + X−

j 
 Xj .

If Xj is a donor-like impurity which can deliver an electron e or accept a hole h and X+
j

denotes its ion, then the reactions are

(2) e− + X+
j 
 Xj , h+ + Xj 
 X+

j .

If Xj is a donor (an acceptor) we denote by u2j−1 the density of Xj (of X−
j ) and by u2j

the density of X+
j (of Xj). Furthermore, we define charge numbers as follows:

q2j−1 :=

{
0 if Xj is a donor

−1 if Xj is an acceptor
, q2j := 1 + q2j−1, j = 1, . . . , k.

Then the continuity equations have the form

(3)
∂n

∂t
+ ∇ · jn = R0 +

k∑

j=1

Rj1,
∂p

∂t
+ ∇ · jp = R0 +

k∑

j=1

Rj2,

(4)
∂u2j−1

∂t
= −Rj1 + Rj2,

∂u2j

∂t
= Rj1 −Rj2, j = 1, . . . , k,
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while the Poisson equation reads as

(5) −∇ · (ε∇ϕ) = f0 − n+ p+
2k∑

i=1

qiui.

Here jn, jp denote the particle flux densities of electrons and holes, Rj1, Rj2 denote the

reaction rates of the first and second reaction in (1) or in (2), respectively, while R0 is

the reaction rate of a (direct) electron-hole generation-recombination

e− + h+

 0.

Finally, ε is the dielectric permittivity and f0 is a given charge density arising from other

completely ionized impurities. Adding both equations in (4) we find

∂(u2j−1 + u2j)

∂t
= 0,

in other words u2j−1(t, x) + u2j(t, x) = fj(x) for all t ≥ 0 such that fj is a prescribed

(local) invariant of the instationary reaction system (4) . This invariant must be taken

into account in the stationary case, too. Therefore, in this case the equations in (4) have

to be replaced by the equations

Rj1 − Rj2 = 0, u2j−1 + u2j = fj , j = 1, . . . , k.

Special isothermal models of the form (3) – (5) are presented in [15]. There also results

of simulations with WIAS-TeSCA [5] are compared with experimental results.

In this paper we consider the stationary, but nonisothermal situation. Let Ω0 be the

domain which is occupied by the semiconductor device. We assume that each impurity

Xj and its corresponding ion live only on some subset Ωj ⊂ Ω0. In order to simplify the

notation we formally set u2j−1 = u2j = 0 and Rj1 = Rj2 = 0 on Ω0 \ Ωj , j = 1, . . . , k.

The basic equations are

(6) −∇·(ε∇ϕ) = f0−n+p+
2k∑

i=1

qiui, ∇·je = 0, ∇·jn = R1, ∇·jp = R2 on Ω0,

(7) Rj1 −Rj2 = 0, u2j−1 + u2j = fj on Ωj , j = 1, . . . , k.

Here je denotes the flux density of the total energy, and R1, R2 are given by

(8) Rl = R0 +
k∑

j=1

Rjl, l = 1, 2.

In (6) – (8) we have to specify the underlying kinetic relations. For these purposes we

introduce the electrochemical potentials ζn of electrons, ζp of holes, as well as ζ2j−1 and

ζ2j of the j-th impurity and its ion, respectively. These quantities are implicitly defined

by state equations which we suppose to have the form

(9) n = Fn

(
x, T,

ζn + ϕ

T

)
, p = Fp

(
x, T,

ζp − ϕ

T

)
on Ω0,

(10) u2j+l = F2j+l

(
x, T,

ζ2j+l − q2j+lϕ

T

)
on Ωj , l = −1, 0, j = 1, . . . , k.
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For the flux densities je, jn, and jp we make the ansatz (see [2, 18])

je = −κ∇T +
∑

i=n,p

(ζi + PiT )ji,

jn = −(σn + σnp)(∇ζn + Pn∇T ) − σnp(∇ζp + Pp∇T ),

jp = −σnp(∇ζn + Pn∇T ) − (σp + σnp)(∇ζp + Pp∇T )

(11)

with conductivities κ > 0, σn, σp > 0, σnp ≥ 0, and transported entropies Pn, Pp.

All kinetic coefficients κ, σn, σp, σnp, Pn, Pp depend on x, T, n and p. Let us note,

that the strong inequalities κ > 0, σn, σp > 0 are valid only for nondegenerated states

0 < T, n, p < +∞. Finally, according to the mass action law the reaction rates R0 and

Rj1, Rj2 are given by

R0 = r0 (x,ϕ, T, n, p)
(
1 − e(ζn+ζp)/T

)
on Ω0,

Rj1 = rj1(x,ϕ, T, n, p)
(
eζ2j−1/T − e(ζ2j+ζn)/T

)
,

Rj2 = rj2(x,ϕ, T, n, p)
(
eζ2j/T − e(ζ2j−1+ζp)/T

)
on Ωj , j = 1, . . . , k,

(12)

where the kinetic coefficients r0, rj1, and rj2 are positive for nondegenerated states.

We supplement the differential equations (6) by mixed boundary conditions. Let Γ be

the boundary of Ω0, and let ΓD and ΓN denote disjoint, relatively open parts of Γ with

mes(Γ \ (ΓD ∪ ΓN )) = 0. We suppose boundary conditions of the form

(13)
ϕ = ϕD, T = TD, ζn = ζnD, ζp = ζpD on ΓD,

ν · (ε∇ϕ) = g1, −ν · je = g2, −ν · jn = g3, −ν · jp = g4 on ΓN .

In summary, the stationary energy model which we are interested in consists of the

equations (6) – (12) and of boundary conditions as in (13).

2. Basic assumptions.

Definition 1. Let V ⊂ R
m be an open set. Let Ω ⊂ R

2 be a measurable set and

Σ ⊂ R
2 be a set of measure zero. We say that a function b : Ω × V → R is of the class

D(Ω,Σ,V) iff it fulfills the following properties:

x 7→ b(x, z) is measurable for all z ∈ V ,

z 7→ b(x, z) is continuously differentiable for all x ∈ Ω \ Σ.

For every compact subset K ⊂ V there exists an M > 0 such that

|b(x, z)| ≤M and ‖∂zb(x, z)‖ ≤M for x ∈ Ω \ Σ and z ∈ K.

For every compact subset K ⊂ V and τ > 0 there exists a δ > 0 such that

|b(x, z) − b(x, z)| < τ and |∂zb(x, z) − ∂zb(x, z)| < τ

for x ∈ Ω \ Σ and z, z ∈ K with |z − z| < δ.

In the paper we make use of the following special open sets V :

V∗ = R × (0,∞)3, Ṽ∗ = R × (0,∞) × R
2,

V0 = Ṽ∗ × R, Vj = Ṽ∗ × (0,∞), j = 1, . . . , k.
(14)
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Concerning the problem (6) – (13) we suppose:

(A1) Ω0 is a bounded Lipschitzian domain in R
2, Γ = ∂Ω0,

ΓD, ΓN are disjoint open subsets of Γ, Γ = ΓD ∪ ΓN ∪ (ΓD ∩ ΓN ),

mesΓD > 0, ΓD ∩ ΓN consists of finitely many points,

Ωj ⊂ Ω0 are measurable subsets, j = 1, . . . , k, Σ ⊂ Ω0 with mesΣ = 0.

(A2) σn, σp, σnp, κ, Pn, Pp : Ω0 × V → R are of the class D(Ω0,Σ,V)

with V = (0,∞)3.

For all K > 1 there exists a cK > 1 such that

σn(x, T, n, p), σp(x, T, n, p), κ(x, T, n, p) ∈ [1/cK , cK ]

for x ∈ Ω0 \ Σ, (T, n, p) ∈ [1/K,K]3;

σnp(x, T, n, p) ≥ 0 for x ∈ Ω0 \ Σ, (T, n, p) ∈ (0,∞)3.

(A3) ε ∈ L∞(Ω0), 0 < ε0 ≤ ε(x) ≤ ε0 <∞ in Ω0 \ Σ.

(A4) Fi : Ω0 × V → R+ are of the class D(Ω0,Σ,V) with V = (0,∞) × R.

For all K > 1 there exist ĉK > 0, cK > 1 such that ∂Fi

∂y (x, T, y) ≥ ĉK ,

Fi(x, T, y) ∈ [1/cK , cK ] for x ∈ Ωj \ Σ, (T, y) ∈ [1/K,K] × [−K,K],

Fi(x, T, y) ≤ cK e cK |y| for x ∈ Ω0 \ Σ, (T, y) ∈ [1/K,K] × R.

limy→−∞ Fi(x, T, y) = 0, limy→+∞ Fi(x, T, y) = +∞

for x ∈ Ωj \ Σ, T ∈ (0,∞), i = n, p.

F2j+l : Ωj × V → R+ are of the class D(Ωj,Σ,V) with V = (0,∞) × R.

For all K > 1 there exists ĉK > 0, cK > 1 such that

F2j+l(x, T, y) ∈ [1/cK , cK ],
∂F2j+l

∂y
(x, T, y) ≥ ĉK

for x ∈ Ωj \ Σ, T ∈ [1/K,K], y ∈ [−K,K].

limy→−∞ F2j+l(x, T, y) = 0, limy→+∞ F2j+l(x, T, y) = +∞

for x ∈ Ωj \ Σ, T ∈ (0,∞), j = 1, . . . , k, l = −1, 0.

(A5) r0 : Ω0 × V∗ → R+ is of the class D(Ω0,Σ,V∗) (see (14)).

rji : Ωj × V∗ → R+ are of the class D(Ωj,Σ,V∗) (see (14)).

For all K > 1 there exists a cK > 1 such that

rji(x,ϕ, T, n, p) ∈ [1/cK , cK ] for x ∈ Ωj \ Σ,

(ϕ, T, n, p) ∈ [−K,K] × [1/K,K]3, j = 1, . . . , k, i = 1, 2.

We use the notation ζimp = (ζ1, . . . , ζ2k), v = (ϕ, T, ζn, ζp), vD = (ϕD, TD , ζnD, ζpD),

g = (g1, . . . , g4) and f = (f0, f1, . . . , fk). With respect to the data we assume that

(D) vD ∈ W 1−1/p,p(ΓD)4 for some p ∈ (2, p0], where p0 is specified in Lemma 5,

g ∈ L∞(ΓN)4, f ∈ L∞(Ω0) ×
∏k

j=1

{
h ∈ L∞(Ωj) : ess infx∈Ωj

h > 0
}

.

We look for v in the form

v = V + vD, vD
i = LvDi, i = 1, . . . , 4,

where L denotes the solution operator for the Laplace equation (36) with homogeneous

Neumann boundary conditions on ΓN and inhomogeneous Dirichlet boundary conditions

on ΓD. Shortly we will write LvD for the vector (LvD1, . . . , LvD4).
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3. Weak formulation (P̃).

Using the state equations (9) for n and p we can write the kinetic coefficients r0, rji

as functions r̃0, r̃ji of the variables x and v = (ϕ, T, ζn, ζp),

r0(x,ϕ, T, n, p) = r0(x,ϕ, T, Fn(x, T, ζn+ϕ
T ), Fp(x, T,

ζp−ϕ
T )) = r̃0(x, v),

rji(x,ϕ, T, n, p) = rji(x,ϕ, T, Fn(x, T, ζn+ϕ
T

), Fp(x, T,
ζp−ϕ

T
)) = r̃ji(x, v),

i = 1, 2, j = 1, . . . , k.

Remark 1. Assumption (A5) and properties of Fn, Fp in (A4) ensure that the

function r̃0 : Ω0 × Ṽ∗ → R+ is of the class D(Ω0,Σ, Ṽ∗), and that the functions r̃ji : Ωj ×

Ṽ∗ → R+ are of the class D(Ωj,Σ, Ṽ∗). For all K > 1 there exists a cK > 1 such that

r̃ji(x, v) ∈ [1/cK , cK ] for x ∈ Ωj \ Σ, v ∈ [−K,K] × [1/K,K] × [−K,K]2, i = 1, 2, j =

1, . . . , k.

Moreover, we write

σi(x, T, n, p) = σi(x, T, Fn(x, T,
ζn + ϕ

T
), Fp(x, T,

ζp − ϕ

T
)) = σ̃i(x, v), i = n, p,

and analogously σnp(x, T, n, p) = σ̃np(x,v), κ(x, T, n, p) = κ̃(x,v), Pi(x, T, n, p) = P̃i(x,v),

i = n, p. Next, we define the matrix function (see (11))

(15) b(·, v) =




ε 0 0 0

0 κ+ ω̂0 ω1 ω2

0 ω̂1 σ̃n + σ̃np σ̃np

0 ω̂2 σ̃np σ̃p + σ̃np


 ,

where

ω̂0 = (v3 + P̃nv2) ω̂1 + (v4 + P̃pv2) ω̂2,

(
ω̂1

ω̂2

)
=

(
σ̃n + σ̃np σ̃np

σ̃np σ̃p + σ̃np

)(
P̃n

P̃p

)
,

(
ω1

ω2

)
=

(
σ̃n + σ̃np σ̃np

σ̃np σ̃p + σ̃np

)(
v3 + P̃nv2
v4 + P̃pv2

)
.

Remark 2. Due to (A2), the functions bij , i, j = 1, . . . , 4, are of the classD(Ω0,Σ, Ṽ∗).

In nondegenerated states the matrix bij(·, v) is regular, but not symmetric. Note that

there is a change of the generalized forces (∇T,∇ζn,∇ζp) to the new generalized forces

(∇(− 1
T ),∇ ζn

T ,∇
ζp

T ) leading to a matrix, which is symmetric and positive definite for non-

degenerated states. Thus the Onsager relations are fulfilled for the fluxes (je, jn, jp) and

the new generalized forces. But in this paper we will not make use of this transformation.

In our analytical investigations we use the following function spaces and subsets

Xs = (W 1,s
0 (Ω0 ∪ ΓN ))4, Ys = (W 1,s(Ω0))

4, Hs = (W 1−1/s,s(ΓD))4, s ∈ (1,∞),

H∗ = L∞(ΓN )4 × L∞(Ω0), H = H∗ ×
k∏

j=1

{
h ∈ L∞(Ωj) : ess infx∈Ωj

h > 0
}
.



6 A. GLITZKY AND R. HÜNLICH

H is open in L∞(ΓN )4 ×L∞(Ω0)×
∏k

j=1 L
∞(Ωj). Moreover, for q ∈ (2, p] and τ > 1, we

introduce the sets

Nq,τ =
{
v ∈ Yq : |vi| < τ, i = 1, 3, 4,

1

τ
< v2+ < τ on Ω0

}
,

Mq,τ =
{

(V, vD) ∈ Xq ×Hp : V + LvD ∈ Nq,τ

}
.

Because of the continuous embeddings W 1,q
0 (Ω0) ↪→ W 1,q(Ω0) ↪→ C(Ω0) the set Nq,τ is

open in Yq, and the set Mq,τ is open in Xq ×Hp. Clearly, if q2 > q1 then Nq2,τ ⊂ Nq1,τ ,

Mq2,τ ⊂ Mq1,τ , and we have Nq,τ1
⊂ Nq,τ2

, Mq,τ1
⊂ Mq,τ2

for τ1 < τ2. We define the

operator Ψq,τ :
∏k

j=1 L
∞(Ωj)

2 ×Nq,τ ×H∗ → X∗
q′ ,

〈Ψq,τ (ζimp, v, g, f0), V̄ 〉Xq′

=

∫

Ω0

{ 4∑

i,j=1

bij(·, v)∇vj · ∇V̄i + r̃0(·, v)(e
v3+v4

v2 − 1)(V̄3 + V̄4)
}

dx

−
k∑

j=1

∫

Ωj

{
r̃j1(·, v)(e

ζ2j−1
v2 − e

ζ2j+v3
v2 )V̄3 + r̃j2(·, v)(e

ζ2j
v2 − e

ζ2j−1+v4
v2 )V̄4

}
dx

−

∫

Ω0

(
f0 − Fn

(
x, v2,

v3 + v1
v2

)
+ Fp

(
x, v2,

v4 − v1
v2

))
V̄1 dx

−
k∑

j=1

∫

Ωj

0∑

l=−1

q2j+l F2j+l(·, v2,
ζ2j+l − q2j+lv1

v2
) V̄1 dx

−

∫

ΓN

4∑

i=1

giV̄i dΓ, V̄ ∈ Xq′ .

(16)

Here q′ = q/(q − 1) denotes the dual exponent of q. Now we introduce the operator

F̃q,τ :
∏k

j=1 L
∞(Ωj)

2 ×Mq,τ ×H∗ → X∗
q′ ,

F̃q,τ (ζimp, V, vD , g, f0) = Ψq,τ (ζimp, V + LvD, g, f0).

Finally, let Rj , Ij : L∞(Ωj)
2 ×Mq,τ → L∞(Ω) be the operators (see (7))

Rj(ζ2j−1, ζ2j , V, vD) =
(
r̃j1(·, V + LvD) + r̃j2(·, V + LvD) e v4/v2

)
e ζ2j−1/v2

−
(
r̃j1(·, V + LvD) e v3/v2 + r̃j2(·, V + LvD)

)
e ζ2j/v2 ,

Ij(ζ2j−1, ζ2j , V, vD) =
∑

l=−1,0

F2j+l(·, v2,
ζ2j+l−q2j+lv1

v2
), j = 1, . . . , k.

Let us remember that ϕ = v1 = V1 + LvD1, T = v2 = V2 + LvD2, ζn = v3 = V3 + LvD3

and ζp = v4 = V4 + LvD4.

A weak formulation of the system (6) – (13) is

Problem (P̃):

Find (q, τ, ζimp, V, vD , g, f) such that q ∈ (2, p], τ > 1, ζimp ∈
∏k

j=1 L
∞(Ωj)

2,

(V, vD) ∈Mq,τ , (g, f) ∈ H, F̃q,τ (ζimp, V, vD , g, f0) = 0,

Rj(ζ2j−1, ζ2j , V, vD) = 0, Ij(ζ2j−1, ζ2j , V, vD) = fj , j = 1, . . . , k.
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We call a solution (q, τ, ζimp, V, vD , g, f) of (P̃) a thermodynamic equilibrium, if

vi = Vi + LvDi = const, i = 2, 3, 4, v3 + v4 = 0,

ζ2j−1 = ζ2j + v3, ζ2j = ζ2j−1 + v4, j = 1, . . . , k.

Especially, in thermodynamic equilibrium all reactions are in simultaneous equilibrium.

Note, that the last condition, ζ2j = ζ2j−1+v4, is a direct consequence of the two relations

v3 + v4 = 0, ζ2j−1 = ζ2j + v3. Moreover, let us remark, that the equilibrium values of

ζimp needn’t be constant and can be functions of the space variable.

Let us give a short outlook on the methods used in the paper. In a first step (see

Section 4) we globally eliminate the quantities ζimp by evaluating the constraints

Rj(ζ2j−1, ζ2j , V, vD) = 0, Ij(ζ2j−1, ζ2j , V, vD) = fj , j = 1, . . . , k.

Thus we deduce from Problem (P̃) a reduced Problem (P) which is equivalent to (P̃).

In the second step (see Section 5) we establish a local existence and uniqueness result

for (P) near a thermodynamic equilibrium. For this purpose first we will ensure that for

boundary data vDi, gi, i = 1, . . . , 4, which are compatible with thermodynamic equilib-

rium, and for given densities f0, . . . , fk there exists a thermodynamic equilibrium. Then

we will use the Implicit Function Theorem to prove the existence of a unique stationary

solution to (P) in a neighbourhood of this thermodynamic equilibrium.

We apply a weak formulation in W 1,p-function spaces such that the requirements of

the Implicit Function Theorem can be validated. To obtain the necessary differentiability

properties we use properties of Nemyzki operators established in [12]. Additionally, we

take advantage of regularity results for strongly coupled linear elliptic systems with mixed

boundary conditions in [10]. Let us mention, that the methods used here can be applied

only for two-dimensional domains Ω0.

4. Elimination of the constraints. Weak formulation (P).

The first step consists in a discussion of the constraints (7) for fixed j ∈ {1, . . . , k},

Rj1 −Rj2 = 0, u2j−1 + u2j = fj on Ωj .

We use the state equations (10), the rate formulas (12) and obtain on Ωj two equations

for the quantities ζ2j−1, ζ2j ,
(
r̃j1 + r̃j2 ev4/v2

)
eζ2j−1/v2 −

(
r̃j1 ev3/v2 + r̃j2

)
eζ2j/v2 = 0,

F2j−1(·, v2,
ζ2j−1 − q2j−1v1

v2
) + F2j(·, v2,

ζ2j − q2jv1
v2

) = fj .
(17)

The first equation in (17) yields

(18) ζ2j−1 = ζ2j + v2 ln
r̃j1(·, v) ev3/v2 + r̃j2(·, v)

r̃j1(·, v) + r̃j2(·, v) ev4/v2
= ζ2j +Qj(·, v),

where the function Qj : Ωj × Ṽ∗ → R is of the class D(Ωj,Σ, Ṽ∗). For arguments v with

v3 = −v4 we find that

(19)
∂Qj

∂v1
(x, v1, v2, v3,−v3) = 0 ∀(x, v1, v2, v3) ∈ (Ωj \ Σ) × R × (0,∞) × R.
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Inserting relation (18) into the second equation of (17) leads to

F2j−1(·, v2,
ζ2j +Qj(·, v) − q2j−1v1

v2
) + F2j(·, v2,

ζ2j − q2jv1
v2

) = Pj(·, ζ2j , v) = fj ,

where the function Pj : Ωj × R × Ṽ∗ → R+ is of the class D(Ωj,Σ,R × Ṽ∗).

Lemma 1. There exists a unique function Sj = Sj(x, v, fj) such that

(20) Pj(·, ζ2j , v) = fj

if and only if ζ2j = Sj(·, v, fj). The function Sj : Ωj ×Vj → R is of the class D(Ωj,Σ,Vj).

Proof. 1. The assumptions on F2j−1, F2j formulated in (A4) ensure that for all K > 1

there is a cK > 0 such that

(21)
∂Pj

∂ζ2j
(x, ζ2j , v) ≥ cK ∀(x, ζ2j , v) ∈ (Ωj \ Σ) × [−K,K]2 × [ 1

K ,K] × [−K,K]2,

lim
ζ2j→−∞

Pj(x, ζ2j , v) = 0, lim
ζ2j→∞

Pj(x, ζ2j , v) = ∞ ∀(x, v) ∈ (Ωj \ Σ) × Ṽ∗.

2. First, let x ∈ Ωj \ Σ be fixed. By the intermediate value theorem we obtain for

arbitrarily given v ∈ Ṽ∗ a unique solution ζ2j = Sj(x, v, fj) of (20). Moreover, if v ∈

[−K,K] × [1/K,K] × [−K,K]2 then |Sj(x, v, fj)| ≤ cK . Multiplying the relation

Pj(x, Sj(x, v, fj), v) − Pj(x, Sj(x, v̄, f̄j), v̄) = fj − f̄j

by Sj(x, v, fj) − Sj(x, v̄, f̄j), using the locally strong monotonicity property induced by

(21) and dividing by |Sj(x, v, fj) − Sj(x, v̄, f̄j)| we find

cK̃ |Sj(x, v, fj) − Sj(x, v̄, f̄j)| ≤ |fj − f̄j | + |Pj(x, Sj(x, v̄, f̄j), v) − Pj(x, Sj(x, v̄, f̄j), v̄)|.

Using the continuity properties of Pj we thus obtain the continuity property of Sj for

fixed x ∈ Ωj \ Σ as required for functions of the class D(Ωj,Σ,Vj). Differentiating the

relation Pj(x, Sj(x, v, fj), v) = fj by v and fj , respectively we obtain

∂Sj

∂v
(x, v, fj) = −

( ∂Pj

∂ζ2j
(x, Sj(x, v, fj), v)

)−1 ∂Pj

∂v
(x, Sj(x, v, fj), v),

∂Sj

∂fj
(x, v, fj) =

( ∂Pj

∂ζ2j
(x, Sj(x, v, fj), v)

)−1

.

Having in mind that Pj is of the classD(Ωj,Σ,R×Ṽ∗) and the property (21) we can derive

the local boundedness and continuity properties of the derivatives of Sj with respect to

z and fj on Ωj \ Σ which are required for a function in the class D(Ωj,Σ,Vj).

3. For x ∈ Σ we set Sj(x, v, fj) = 0.

4. It remains to show the measurability properties of the function Sj postulated for

functions of the class D(Ωj ,Σ,Vj). Since the function Pj is in Car(Ωj \ Σ,R × Ṽ∗),

Theorem 3 guarantees that for all ε > 0 there exists a closed set Aε ⊂ (Ωj \ Σ) such

that mes((Ωj \ Σ) \ Aε) < ε and Pj |Aε×R×Ṽ∗

is continuous. For arbitrarily fixed ε > 0,

let x, x̄ ∈ Aε. Let (v, fj), (v̄, f̄j) ∈ Vj such that (v, fj), (v̄, f̄j) ∈ [−K,K] × [1/K,K] ×

[−K,K]2 × [1/K,K] and |Sj(x, v, fj)|, |Sj(x̄, v̄, f̄j)| ≤ K for suitable K > 1. Multiplying

the relation

Pj(x, Sj(x, v, fj), v) − Pj(x̄, Sj(x̄, v̄, f̄j), v̄) = fj − f̄j
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by Sj(x, v, fj) − Sj(x̄, v̄, f̄j), using the locally strong monotonicity property induced by

(21) and dividing by |Sj(x, v, fj) − Sj(x̄, v̄, f̄j)| we find

cK |Sj(x, v, fj)− Sj(x̄, v̄, f̄j)| ≤ |fj − f̄j |+ |Pj(x, Sj(x̄, v̄, f̄j), v)− Pj(x̄, Sj(x̄, v̄, f̄j), v̄, f̄)|.

Since Pj |Aε×R×Ṽ∗

is continuous this estimate ensures, that Sj |Aε×Vj
is continuous, too.

Therefore, again by Theorem 3, Sj : (Ωj \ Σ) × Vj → R as well as Sj : Ωj × Vj → R are

Caratheodory functions.

Using the relation ζ2j = Sj(·, v, fj) and (18) we rewrite the reaction rates of the

ionization reactions of acceptors and donors in (1), (2) in the form

rj1

(
e

ζ2j−1
v2 − e

ζ2j+v3
v2

)
= rj2

(
e

ζ2j
v2 − e

ζ2j−1+v4
v2

)
=
r̃j1r̃j2 eSj(·,v,fj)/v2

r̃j1 + r̃j2 ev4/v2

(
1− e

v3+v4
v2

)
on Ωj .

In other words these reaction rates take the form of a Shockley Read Hall generation-

recombination term with a kinetic coefficient depending on v and fj . To obtain a uniform

notation we define for (v, fj) ∈ Vj the functions

r̂0(·, v, f0) = r̃0(·, v) on Ω0,

r̂j(·, v, fj) =
r̃j1r̃j2 eSj(·,v,fj)/v2

r̃j1 + r̃j2 ev4/v2
on Ωj , j = 1, . . . , k.

(22)

Remark 3. Remark 1 and Lemma 1 guarantee that r̂j : Ωj × Vj → R+ are of the

class D(Ωj,Σ,Vj), j = 0, . . . , k.

We introduce for (v, fj) ∈ Vj the functions

H0(·, v, f0) = f0 − Fn(·, v2,
v3 + v1
v2

) + Fp(·, v2,
v4 − v1
v2

) on Ω0,

Hj(·, v, fj) = q2j−1F2j−1(·, v2,
Sj(·, v, fj) +Qj(·, v) − q2j−1v1

v2
)

+ q2jF2j(·, v2,
Sj(·, v, fj) − q2jv1

v2
) on Ωj , j = 1, . . . , k,

(23)

where Qj is given in (18).

Remark 4. Due to (A4) H0 : Ω0 × V0 → R is of the class D(Ω0,Σ,V0). The

function −H0(x, ·, v2, v3, v4, f0) : R → R is monotonic increasing for (x, v2, v3, v4, f0) ∈

(Ω0 \ Σ) × (0,∞) × R
3. For all (v2, v3, v4, f0) ∈ (0,∞) × R

3 there exists a constant

c = c(v2, v3, v4, f0) > 1 such that |H0(x, v, f0)| ≤ c(1 + e c|v1|) for x ∈ Ω0 \ Σ, v1 ∈ R.

Lemma 2. The functions Hj : Ωj × Vj → R are of the class D(Ωj,Σ,Vj). For all

(v, fj) ∈ Vj there exists a constant c = c(fj) > 1 such that Hj(x, v, fj) ≤ c for all

x ∈ Ωj \ Σ. The function −Hj(x, ·, v2, v3,−v3, fj) : R → R is monotonic increasing for

all (x, v2, v3, fj) ∈ (Ωj \ Σ) × (0,∞) × R × (0,∞), j = 1, . . . , k.

Proof. According to (A4) and the properties of the functions Sj and Qj we obtain that

the functions Hj : Ωj ×Vj → R are of the class D(Ωj ,Σ,Vj). Due to the definition of Hj

and equation (20) we find Hj(x, v, fj) ≤ (|q2j−1|+ |q2j |) fj for all (x, v, fj) ∈ (Ωj \Σ)×Vj .

For the proof of the last assertion we differentiate (20) with respect to v1,

∂F2j−1

∂y

{∂Sj

∂v1
+
∂Qj

∂v1
− q2j−1

} 1

v2
+
∂F2j

∂y

{∂Sj

∂v1
− q2j

} 1

v2
= 0.
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According to (19) we have
∂Qj

∂v1
= 0 in arguments (x, v1, v2, v3,−v3). Therefore the last

equation leads to

(24)
∂Sj

∂v1
=
(
q2j−1

∂F2j−1

∂y
+ q2j

∂F2j

∂y

)(∂F2j−1

∂y
+
∂F2j

∂y

)−1

.

Next, we differentiate Hj with respect to v1 and obtain

∂Hj

∂v1
= q2j−1

∂F2j−1

∂y

{∂Sj

∂v1
+
∂Qj

∂v1
− q2j−1

} 1

v2
+ q2j

∂F2j

∂y

{∂Sj

∂v1
− q2j

} 1

v2
.

Using that
∂Qj

∂v1
= 0 in arguments (x, v1, v2, v3,−v3) and inserting (24) we find

∂Hj

∂v1
= −

1

v2

∂F2j−1

∂y

∂F2j

∂y

(∂F2j−1

∂y
+
∂F2j

∂y

)−1

for arguments (x, v1, v2, v3,−v3, fj). (A4) guarantees that
∂F2j+l

∂y
is nonnegative, l =

−1, 0. Since
∂Hj

∂v1
(x, v1, v2, v3,−v3, fj) is nonpositive for (x, v1, v2, v3, fj) ∈ (Ωj \Σ)×R×

(0,∞) × R × (0,∞), and v2 is positive, we obtain the desired result.

Now, for q ∈ (2, p], τ > 1, we introduce the operator

Gq,τ : Nq,τ × L∞(Ω0) ×
k∏

j=1

{fj ∈ L∞(Ωj) : ess inf fj > 0} →
k∏

j=1

L∞(Ωj)
2,

Gq,τ (v, f) =
(
G1

q,τ (v, f1), . . . , G
2k
q,τ (v, fk)

)
,

G2j−1
q,τ , G2j

q,τ : Nq,τ × {fj ∈ L∞(Ωj) : ess inf fj > 0} → L∞(Ωj),

which are defined pointwise a.e. on Ωj by

G2j−1
q,τ (v, fj)(x) = Sj(x, v(x), fj(x)) +Qj(x, v(x)), G2j

q,τ (v, fj)(x) = Sj(x, v(x), fj(x)),

j = 1, . . . , k, (see (18) and Lemma 1). Next, we use the notation

w = (vD, g, f), v = V + LvD

and define the operator Fq,τ : Mq,τ ×H → X∗
q′ by

(25) Fq,τ (V,w) = Ψq,τ (Gq,τ (V + LvD, f), V + LvD, g, f0).

In other words (see (16), (22) and (23)) we have

〈Fq,τ (V,w), ψ〉Xq′
=

∫

Ω0

4∑

i,j=1

bij(·, v)∇vj · ∇ψi dx−

∫

ΓN

4∑

i=1

giψi dΓ

+
k∑

j=0

∫

Ωj

{
r̂j(·, v, fj)(e

(v3+v4)/v2 − 1)(ψ3 + ψ4) −Hj(·, v, fj)ψ1

}
dx,

ψ ∈ Xq′ . In this notation another weak formulation of the system (6) – (13) is

Problem (P):

Find (q, τ, V,w) such that q ∈ (2, p], τ > 1, (V,w) ∈ Xq ×Hp ×H,

(V, vD) ∈Mq,τ , Fq,τ (V,w) = 0.
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If (q, τ, V,w) is a solution to (P) then (q̃, τ̃ , V, w) with q̃ ∈ (2, q] and τ̃ ≥ τ is a solution

to (P), too.

We call a solution (q, τ, V,w) of (P) a thermodynamic equilibrium, if

vi = Vi + LvDi = const, i = 2, 3, 4, v3 + v4 = 0.

Remark 5 (Relation between the Problems (P) and (P̃)). There exists the fol-

lowing relation between the Problems (P) and (P̃): (q, τ, ζimp, V, vD , g, f) is a solution

to Problem (P̃) if and only if (q, τ, V, vD , g, f) is a solution to Problem (P) and ζimp =

Gq,τ (V + LvD, f). Especially, (q, τ, ζimp, V, vD , g, f) is a thermodynamic equilibrium of

Problem (P̃) if and only if (q, τ, V, vD , g, f) is a thermodynamic equilibrium of (P) and

ζimp = Gq,τ (V +LvD, f). Therefore we can consider both problems to be equivalent and

to represent weak formulations of the system (6) – (13). In particular, our main results

(formulated for Problem (P) in Theorem 1, Theorem 2 and Corollary 1) carry over to

the Problem (P̃).

5. Results for (P).

Lemma 3 (Differentiability). We assume (A1) – (A5). The operator Fq,τ : Mq,τ×H →

X∗
q′ is continuously differentiable for all exponents q ∈ (2, p] and all τ > 1.

Proof. Let q ∈ (2, p] and τ > 1 be arbitrarily fixed. We write v = V + vD, where

vD = LvD ∈ Yp. Remember that L : Hp → Yp is a continuous linear operator. Moreover,

for (V, vD) ∈Mq,τ the pair (V, vD) belongs to

M̂q,τ =
{

(V, vD) ∈ Xq × Yp : V + vD ∈ Nq,τ

}
.

We prove that the operator F̂q,τ : M̂q,τ ×H → X∗
q′ ,

F̂q,τ (V, vD, g, f) = Ψq,τ (Gq,τ (V + vD, f), V + vD, g, f0)

is continuously differentiable. Then the desired result follows by the chain rule. We

split up the operator F̂q,τ = A0 + A1 − B, where A0 : M̂q,τ × L∞(Ω0) ×
∏k

j=1

{
y ∈

L∞(Ωj) : ess inf y > 0
}
→ X∗

q′ ,A1 : M̂q,τ → X∗
q′ , B : L∞(ΓN )4 → X∗

q′ ,

〈A0(V, vD, f), ψ〉Xq′
=

∫

Ω0

4∑

i,j=1

bij(·, v)∇Vj · ∇ψi dx

+
k∑

j=0

∫

Ωj

{
r̂j(·, v, fj)(e

(v3+v4)/v2 − 1)(ψ3 + ψ4) −Hj(·, v, fj)ψ1

}
dx

〈A1(V, vD), ψ〉Xq′
=

∫

Ω0

4∑

i,j=1

bij(·, v)∇v
D
j · ∇ψi dx,

〈Bg,ψ〉Xq′
=

∫

ΓN

4∑

i=1

giψi dΓ, v = V + vD, ∀ψ ∈ Xq′ .

For the proof for A0 : M̂q,τ ×L
∞(Ω0)×

∏k
j=1

{
y ∈ L∞(Ωj) : ess inf y > 0

}
→ X∗

q′ we refer

to [12, p. 1465, Lemma 2.2]. Again using [12, Lemma 2.2] we find that A1 : M̂q,τ → X∗
p′
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is continuously differentiable, and the continuous embedding W 1,p ↪→W 1,q then ensures

also the differentiability of A1 : M̂q,τ → X∗
q′ . Note that our assumptions guarantee the

validity of (H2.1), (H2.2), (H2.3) in [12]. Assertions concerning the operator B are trivial.

Especially, for the linearization of Fq,τ with respect to V we have

〈∂V Fq,τ (V,w)V ,ψ〉Xq′
=

∫

Ω0

4∑

i,j=1

(
bij(·, v)∇V j + ∂vbij(·, v) · V ∇vj

)
· ∇ψi dx

−
k∑

j=0

∫

Ωj

∂vHj(·, v, fj) · V ψ1 dx

+
k∑

j=0

∫

Ωj

∂v

[
r̂j(·, v, fj)(e

(v3+v4)/v2 − 1)
]
· V (ψ3 + ψ4) dx

(26)

for all V ∈ Xq and ψ ∈ Xq′ .

Next, we describe necessary conditions for the data such that a thermodynamic equi-

librium can exist. Let

Λ =
{
w = (vD, g, f) ∈ Hp×H : vDi = const, gi = 0, i = 2, 3, 4, vD2 > 0, vD3+vD4 = 0

}
.

Theorem 1 (Thermodynamic equilibrium). We assume (A1) – (A5). Let w∗ =

(v∗D, g
∗, f∗) ∈ Λ be given.

i) Then there exist an exponent q0 ∈ (2, p], a constant τ > 1, and a function V ∗
1 ∈

W 1,q0

0 (Ω0∪ΓN ) such that the pair (V ∗, v∗D) = ((V ∗
1 , 0, 0, 0), v∗D) ∈Mq0,τ and the equation

Fq0,τ (V ∗, w∗) = 0 holds. In other words, (q0, τ, V
∗, w∗) is a solution to (P).

ii) (q0, τ, V
∗, w∗) is a thermodynamic equilibrium of (P).

Proof. 1. For the given w∗ = (v∗D, g
∗, f∗) we define the functions hj : Ωj × R → R by

hj(x, φ) = −Hj(x, (φ, 0, 0, 0) + Lv∗D, f
∗
j )

and consider the operator E : H1
0 (Ω0 ∪ ΓN ) → H−1(Ω0 ∪ ΓN ),

〈E(φ), φ〉H1
0 (Ω0∪ΓN)

=

∫

Ω0

ε∇(φ+ Lv∗D1) · ∇φ dx−

∫

ΓN

g∗1φdΓ

+
k∑

j=0

∫

Ωj

hj(·, φ)φ dx, φ ∈ H1
0 (Ω ∪ ΓN ).

(27)

The properties of ΓD, ε and Hj stated in (A1), (A3) and Remark 4, Lemma 2 supply the

strong monotonicity of the operator E . Next we prove the hemicontinuity of E . We show

that the mapping t 7→ 〈E(φ+tφ̂), φ〉H1
0 (Ω0∪ΓN ) for arbitrarily given φ, φ̂, φ ∈ H1

0 (Ω0∪ΓN)

is continuous on [0, 1]. Let t0 ∈ [0, 1], tn → t0, tn ∈ [0, 1]. Then

〈E(φ+ tnφ̂) − E(φ+ t0φ̂), φ〉H1
0 (Ω0∪ΓN )

≤ c|tn − t0|‖φ̂‖H1‖φ‖H1 +
k∑

j=0

∣∣∣
∫

Ωj

[
hj(·, φ+ tnφ̂) − hj(·, φ+ t0φ̂)

]
φ dx

∣∣∣.
(28)
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According to Remark 4, Lemma 2 we have hj(x, φ+ tnφ̂) → hj(x, φ+ t0φ̂) and

|hj(x, φ+ tnφ̂)| ≤ c̃(1 + ec̃ (|φ|+|φ̂|)) f.a.a. x ∈ Ωj , j = 0, . . . , k.

Now we use the embedding result of Trudinger [16] for two-dimensional Lipschitzian

domains which tells us that ‖e|v|‖L2 ≤ d(‖v‖H1) for all v ∈ H1(Ω0), where d : R+ → R+

is a continuous, monotonic increasing function with limy→∞ d(y) = ∞. Since φ ∈ L2(Ω0)

we get a integrable upper bound for the integrands in the last term in (28) and Lebesgue’s

Dominated Convergence Theorem leads to the hemicontinuity of E . Since E is strongly

monotone and hemicontinuous there exists a unique solution φ ∈ H1
0 (Ω0∪ΓN ) of E(φ) = 0.

Especially we have ‖φ‖H1 ≤ ĉ, where ĉ depends only on the data w∗.

2. Now we prove that this solution possesses more regularity. We define

〈G, φ〉H1
0 (Ω0∪ΓN ) =

∫

Ω0

{
− ε∇vD∗

1 · ∇φ+ φφ
}

dx+

∫

ΓN

g∗1 φ dΓ

−
k∑

j=0

∫

Ωj

hj(·, φ)φ dx,

〈E0(φ), φ〉H1
0 (Ω0∪ΓN ) =

∫

Ω0

{
ε∇φ · ∇φ+ φφ

}
dx, φ ∈ H1

0 (Ω0 ∪ ΓN ).

Since vD∗
1 = Lv∗D1 ∈W 1,p(Ω0) is a fixed element there is a c > 0 such that |vD∗

1 | ≤ c. From

the properties of Hj in Remark 4, Lemma 2 we find |hj(x, φ)| ≤ c(vD∗) (1 + ec|vD∗

1 +φ|) ≤

c̃(vD∗)(1 + e c c|φ|) f.a.a. x ∈ Ωj , j = 0, . . . , k. And therefore the embedding result of

Trudinger mentioned in the first step of this proof yields

‖hj(·, φ)‖L2(Ωj) ≤ c̃(zD∗) (1 + d(‖φ‖H1)) ≤ ĉ, j = 0, . . . , k.

Furthermore, using that w∗ ∈ Λ is fixed it results that G ∈ W−1,p(Ω0 ∪ ΓN ). Thus

taking benefit from Grögers regularity result for elliptic equations with mixed boundary

conditions [10] applied to the equation E0(φ) = G we obtain a q0 ∈ (2, p] such that φ ∈

W 1,q0(Ω0∪ΓN ) and ‖φ‖W 1,q0 ≤ cq0
‖G‖W−1,p(Ω0∪ΓN ). (According to (A1) it is guaranteed

that Ω0 ∪ ΓN is regular in the sense of Gröger.)

3. The continuous embeddingW 1,q0(Ω0) ↪→ C(Ω̄0) and the properties of L ensure that

‖φ+ vD∗
1 ‖C(Ω̄0) ≤ c(q0, w

∗). We set V ∗
1 = φ, V ∗

i = 0, i = 2, 3, 4, and use that w∗ ∈ Λ.

Thus we find a constant τ > 1 such that (V ∗, v∗D) = ((V ∗
1 , 0, 0, 0), v∗D) ∈ Mq0,τ and

Fq0,τ (V ∗, w∗) = 0 which means (q0, τ, V
∗, w∗) is a solution to Problem (P). Moreover,

(q0, τ, V
∗, w∗) is a thermodynamic equilibrium of (P).

We denote by LIS(X,Y ) the set of linear isomorphisms between two Banach spaces

X and Y .

Lemma 4 (Isomorphism property of the linearization). We assume (A1) – (A5).

Let w∗ = (v∗D, g
∗, f∗) ∈ Λ be given. Let (q0, τ, V

∗, w∗) be the equilibrium solution from

Theorem 1. Then there exists some q1 ∈ (2, q0] such that the operator ∂V Fq1,τ (V ∗, w∗)

belongs to LIS(Xq1
,X∗

q′

1
).

Proof. 1. Let q ∈ (2, q0] and V ∈ Xq. The linearization is given in (26) and must

be calculated in the point (V ∗, w∗). Let v∗ = V ∗ + Lv∗D. Since ∇v∗i = 0, i = 2, 3, 4,
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v∗3 + v∗4 = 0 and

∂v

[
r̂j(·, v

∗, f∗
j )
(
e (v∗

3+v∗

4 )/v∗

2 − 1
)]

· V = ∂v r̂j(·, v
∗, f∗

j ) · V
(
e (v∗

3+v∗

4 )/v∗

2 − 1
)

+r̂j(·, v
∗, f∗

j ) e (v∗

3+v∗

4 )/v∗

2

( 1

v∗2
(V 3 + V 4) −

v∗3 + v∗4
v∗22

V 2

)
,

we obtain according to (26) that

〈∂V Fq,τ (V ∗, w∗)V ,ψ〉Xq′
=

∫

Ω0

4∑

i,j=1

bij(·, v
∗)∇V j · ∇ψi dx

−
k∑

j=0

∫

Ωj

∂vHj(·, v
∗, f∗

j ) · V ψ1 dx

+
k∑

j=0

∫

Ωj

r̂j(·, v
∗, f∗

j )
V 3 + V 4

v∗2
(ψ3 + ψ4) dx.

(29)

2. For v∗ we introduce the linear mapping D(v∗) : Xq → Xq, which is pointwise defined

by

V (x) = D(v∗)Z(x), D(v∗) =




1 0 0 0

0 v∗22 0 0

0 v∗2v
∗
3 v∗2 0

0 v∗2v
∗
4 0 v∗2


 =




1 0 0 0

0 T ∗2 0 0

0 T ∗ζ∗n T ∗ 0

0 T ∗ζ∗p 0 T ∗


 .

Obviously D(v∗) belongs to the set LIS(Xq,Xq). Next we define the operator Aq =

∂V Fq,τ (V ∗, w∗) ◦D(v∗) ∈ L(Xq,X
∗
q′). Our aim is to prove that there exists a q1 ∈ (2, q0]

such that Aq1
∈ LIS(Xq1

,X∗
q′

1
). Using (29) and the relation v∗3 + v∗4 = 0 we obtain

〈AqZ,ψ〉Xq′
=

∫

Ω0

4∑

i,j=1

aij∇Zj · ∇ψi dx

−
k∑

j=0

∫

Ωj

∂vHj(·, v
∗, f∗

j ) ·D(v∗)Z ψ1 dx

+
k∑

j=0

∫

Ωj

r̂j(·, v
∗, f∗

j ) (Z3 + Z4) (ψ3 + ψ4) dx,

(30)

where the matrix a with aij =
∑4

k=1 bik(·, v∗)D(v∗)kj , i, j = 1, . . . , 4, has the form (see

also (15))

a =




ε 0 0 0

0 v∗22 κ̃+ v∗2ω0 v∗2ω1 v∗2ω2

0 v∗2ω1 v∗2(σ̃n + σ̃np) v∗2 σ̃np

0 v∗2ω2 v∗2 σ̃np v∗2(σ̃p + σ̃np)


 ,

ω0 = ω1(v
∗
3 + P̃nv

∗
2) + ω2(v

∗
4 + P̃pv

∗
2),

where κ̃, σ̃n, σ̃p, σ̃np, P̃n and P̃p are taken in the argument (x, v∗). Since the matrix (aik)

is symmetric and positive definite (see also Remark 2), there exists a constant a∗ > 0



ENERGY MODELS WITH INCOMPLETELY IONIZED IMPURITIES 15

such that

(31)
4∑

i,j=1

aij(x)yjyi ≥ a∗||y||2
R4 ∀y ∈ R

4, ∀x ∈ Ω0 \ Σ.

3. Now we follow ideas in the proof of [12, Theorem 4.1]. We write the operator Aq

in form of a sum Aq = Eq +Kq with operators Eq, Kq : Xq → X∗
q′ , where

〈Eq Z,ψ〉Xq′
=

∫

Ω0

{ 4∑

i,j=1

aij∇Zj · ∇ψi +
4∑

i=1

Zi ψi

}
dx,

〈Kq Z,ψ〉Xq′
= −

4∑

i=1

∫

Ω0

Zi ψi dx−
k∑

j=0

∫

Ωj

∂vHj(·, v
∗, f∗

j ) ·D(v∗)Z ψ1 dx

+
k∑

j=0

∫

Ωj

r̂j(·, v
∗, f∗

j ) (Z3 + Z4)(ψ3 + ψ4) dx.

Thanks to the compact embedding of W 1,q(Ω0) into L∞(Ω0) the operatorKq is compact.

The operator Eq is injective. The regularity result of Gröger [10, Theorem 1, Remark 14]

guarantees that there exists a q1 ∈ (2, q0] such that Eq1
is surjective. Then by Banach’s

Open Mapping Theorem and Nikolsky’s criterion for Fredholm operators the operator

Aq1
turns out to be a Fredholm operator of index zero.

4. Next, we prove that Aq1
is injective. Aq1

has the form (30). Let Aq1
Z̄ = 0, Z̄ ∈ Xq1

.

Using the test function ψ = (0, Z2, Z3, Z4) and exploiting the strong ellipticity condition

for (aij) from (31), the fact that ΓD 6= ∅ and the property that r̂j(·, v
∗, f∗) ≥ 0, j =

0, . . . , k, we get that Zi = 0, i = 2, 3, 4. Now we use the test function ψ = (Z1, 0, 0, 0) for

the equation Aq1
Z̄ = 0 and arrive at

∫

Ω0

ε|∇Z1|
2 dx−

k∑

j=0

∫

Ωj

∂

∂v1
Hj(·, v

∗, f∗
j )Z

2

1 dx = 0.

Since the functions Hj are continuously differentiable and −Hj(x, ·, v2, v3,−v3, fj) is

monotonic increasing (see Remark 4, Lemma 2) we have − ∂
∂v1

Hj(x, v
∗, f∗

j ) ≥ 0 on Ωj \Σ,

j = 0, . . . , k, which together with (A3) and (A1) leads to Z1 = 0. Thus the injectivity of

Aq1
: Xq1

→ X∗
q1

′ follows. Consequentely, Aq1
∈ L(Xq1

,X∗
q′

1
) is bijective, and by Banach’s

theorem we have Aq1
∈ LIS(Xq1

,X∗
q′

1
).

5. In summary, since D(v∗) ∈ LIS(Xq1
,Xq1

) we obtain the desired result that

∂V Fq1,τ (V ∗, w∗) ∈ LIS(Xq1
,X∗

q′

1
).

Now we are able to formulate the main result for Problem (P).

Theorem 2 (Local existence and uniqueness of steady states). We assume (A1) –

(A5). Let w∗ = (v∗D, g
∗, f∗) ∈ Λ be given, and let (q0, τ, V

∗, w∗) be the equilibrium solution

to Problem (P), v∗ = V ∗ + Lv∗D (see Theorem 1 ).

Then there exist a q1 ∈ (2, q0] such that the following assertion holds: There exist

neighbourhoods U ⊂ Xq1
of V ∗ and W ⊂ Hp × H of w∗ = (v∗D, g

∗, f∗) and a C1-map

Φ: W → U such that V = Φ(w) iff

Fq1,τ (V,w) = 0, (V, vD) ∈Mq1,τ , V ∈ U, w = (vD, g, f) ∈W.
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Proof. According to Lemma 4 there is an exponent q1 > 2 such that ∂V Fq1,τ (V ∗, w∗) ∈

LIS(Xq1
,X∗

q′

1
). Therefore the assertion of the theorem is a direct consequence of the

Implicit Function Theorem.

Finally, let us discuss some special choice of the Dirichlet boundary data. We assume

that ΓD consists of m ≥ 2 relatively open connected components Γl
D with mesΓl

D > 0,

l = 1, . . . ,m, the closures of which are pairwise disjoint. We prescribe the boundary data

vD = (ϕD, TD, ζnD, ζpD) as follows:

ϕD = ψl(T l) + U l, TD = T l = const > 0, ζnD = −U l,

ζpD = U l = const on Γl
D, l = 1, . . . ,m.

(32)

The functions ψl : (0,+∞) → R are related to the built-in potentials on the Ohmic

contacts Γl
D (see [14]). We assume that these functions are locally Lipschitz continuous

and, for the sake of simplicity, that they do not depend explicitly on x. Such boundary

data fulfil the first assumption in (D) (see Section 2).

Next we define the set

Λ1 =
{
w = (vD, g, f) ∈ Hp ×H : vD fulfils (32), gi = 0, i = 2, 3, 4

}
.

Corollary 1. We assume (A1) – (A5). Let w = (vD, f, g) ∈ Λ1 be given. Then

there are constants q ∈ (2, p], τ > 1, ε > 0 such that the following assertions hold true: If

(33) |T l − T 1| + |U l − U1| < ε, l = 2, . . . ,m,

then there exists a V ∈ Xq such that (q, τ, V,w) is a solution to Problem (P). This solution

lies in a neighbourhood of an equilibrium solution (q, τ, V ∗, w∗), and in this neighbourhood

there are no solutions (q, τ, Ṽ , w) to (P) with Ṽ 6= V .

Proof. Let w = (vD, f, g) ∈ Λ1 be given. We define v∗D = (ϕ∗
D, T

∗
D, ζ

∗
nD, ζ

∗
pD) as

ϕ∗
D = ψl(T 1) + U1, T ∗

D = T 1, ζ∗nD = −U1, ζ∗pD = U1 on Γl
D, l = 1, . . . ,m,

and we get that w∗ = (v∗D, f, g) ∈ Λ. Let (q0, τ, V
∗, w∗) be the equilibrium solution to

Problem (P). Note that 1/τ < T 1 < τ . According to Theorem 2 there exists constants

q ∈ (2, q0], ε
′ > 0 such that the equation Fq,τ (V,w) = 0 has a locally unique solution

V ∈ Xq if

(34) ‖w − w∗‖Hp×H = ‖vD − v∗D‖Hp
< ε′.

Using (35) and the local Lipschitz continuity of the functions ψl we find a constant

c(p, τ) > 0 such that

‖vD − v∗D‖Hp
≤ c(p, τ)

m∑

l=2

(
|T l − T 1| + |U l − U1|

)

if 1/τ < T l < τ , l = 2, . . . ,m. Choosing ε in (33) sufficiently small the inequality (34)

can be fulfilled.
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6. Remarks.

Remark 6. There are various papers using the Implicit Function Theorem to study

stationary problems from semiconductor modelling (see e.g. [1, 6, 7]).

Alabau [1] considered a symmetric one-dimensional diode without generation-recom-

bination of electrons and holes. There the Implicit Function Theorem was used to show

that the solutions of the stationary isothermal problem are locally unique for arbitrary

reversed bias voltage.

In [6] we studied a multi species version of a stationary energy model with n differ-

ent species. There we assumed that all species are mobile in contrast to the impurities

contained in the model equations of the present paper and that more general reaction as

considered here are involved. We used the scale of W 1,p-spaces and obtained results as

in Theorem 1 and Theorem 2 of the present paper.

We investigated here the stationary energy model only for two-dimensional domains,

but we allowed that the submatrix bij , i, j = 2, 3, 4, in (15) is dense. Griepentrog [7] con-

sidered a stationary energy model (without additional impurities) under the assumption

that σnp = Pn = Pp = 0 in (15). Then the matrix b becomes triangular. But he replaced

the conservation law for the total energy in (6) by the heat flow equation

−∇ · (κ∇T ) = σn|∇ζn|
2 + σp|∇ζp|

2 − R0(ζn + ζp).

Using the Implicit Function Theorem in the scale of Sobolev-Campanato spaces he ob-

tained a local existence and uniqueness result for three-dimensional domains, too.

Remark 7. Gröger studied in [9] an isothermal instationary problem of the kind

(3) – (5). He obtained results concerning existence, uniqueness as well as the asymptotic

behaviour of solutions.

7. Appendix.

We assumed that the boundary values on ΓD belong to the space W 1−1/p,p(ΓD) for

some p > 2. Let this space be equipped with the norm (see [8])

(35) ‖h‖p

W 1−1/p,p(ΓD)
=

∫

ΓD

|h|p dΓ +

∫

ΓD

∫

ΓD

|h(x) − h(y)|p

|x− y|p
dΓ(x) dΓ(y),

h ∈ W 1−1/p,p(ΓD). We define a continuation operator L : W 1−1/p,p(ΓD) → W 1,p(Ω0) as

follows.

Lemma 5. There exists a p0 > 2 such that for all p ∈ [2, p0] the following assertions

hold. For all vD ∈ W 1−1/p,p(ΓD) there exists a unique solution vD ∈ W 1,p(Ω0) of the

Laplace equation

(36) ∆vD = 0 in Ω0, vD = vD on ΓD,
∂vD

∂ν
= 0 on ΓN .

This solution is given by vD = LvD where L belongs to L(W 1−1/p,p(ΓD),W 1,p(Ω0)).

Proof. We give only the main ideas of the proof (for some of the details see [8, 10]).

Since Ω0 ∪ ΓN is regular in the sense of Gröger, there exists a p0 > 2 such that for any
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p ∈ [2, p0] the mapping Ip : W 1,p
0 (Ω0 ∪ ΓN ) →W−1,p(Ω0 ∪ ΓN ),

〈Ipv,w〉W 1,p′

0 (Ω0∪ΓN )
=

∫

Ω0

∇v · ∇w dx, v ∈W 1,p
0 (Ω0 ∪ ΓN ), w ∈W 1,p′

0 (Ω0 ∪ ΓN )

is an isomorphism (see [10]). Let p ∈ [2, p0] be fixed and let vD ∈W 1−1/p,p(ΓD). We apply

to vD the linear, continuous continuation operator Cp : W 1−1/p,p(ΓD) →W 1−1/p,p(Γ),

ṽD = Cp(vD), ‖ṽD‖W 1−1/p,p(Γ) ≤ c ‖vD‖W 1−1/p,p(ΓD).

Now we use the right inverse of the trace operator γ−1
p : W 1−1/p,p(Γ) →W 1,p(Ω0), which

is linear and continuous, and obtain

ṽD = γ−1
p (ṽD), ‖ṽD‖W 1,p(Ω0) ≤ c ‖ṽD‖W 1−1/p,p(Γ).

We write vD in the form vD = ṽD +h. Then, according to (36), h has to fulfil the equation

−∆h = ∆ṽD in Ω0, h = 0 on ΓD,
∂h

∂ν
= −

∂ṽD

∂ν
on ΓN ,

or

Iph = r, 〈r,w〉
W 1,p′

0 (Ω0∪ΓN )
= −

∫

Ω0

∇ṽD · ∇w dx, w ∈W 1,p′

0 (Ω0 ∪ ΓN ).

The right hand side r belongs to W−1,p(Ω0∪ΓN ) and ‖r‖W−1,p(Ω0∪ΓN ) ≤ c ‖ṽD‖W 1,p(Ω0).

Since the operator Ip is an isomorphism we find that h = I−1
p r and ‖h‖W 1,p

0 (Ω0∪ΓN ) ≤

c ‖r‖W−1,p(Ω0∪ΓN ). Using that vD = ṽD + h and the previous estimates we end up with

‖vD‖W 1,p(Ω0∪ΓN ) ≤ c ‖vD‖W 1−1/p,p(ΓD).

Note that for Dirichlet boundary data vD ≥ K > 0 a.e. on ΓD the test of the Laplace

equation (36) with −(vD −K)− supplies that vD ≥ K a.e. in Ω0, too.

Finally, we need the Theorem of Scorza-Dragoni (see [13]) in a form which can easily

be derived from a version of this theorem given in [3, Chap. VIII].

Theorem 3. Let M ⊂ R
n be a bounded measurable set, B ⊂ R

l a Borel set. A

function h : M × B → R belongs to Car(M,B) if and only if for all ε > 0 there exists a

closed subset Aε ⊂M such that mes(M \Aε) ≤ ε and h|Aε×B is continuous.
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