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Abstract

The paper presents a new method of spatially adaptive local likelihood
estimation for a broad class of nonparametric models, including e.g. the
regression, Poisson and binary response model. Given a sequence of local
likelihood estimates which we call ”weak” estimates, the proposed method
yields a new aggregated estimate whose pointwise risk does not exceed the
smallest risk among all “weak” estimates up to some logarithmic multiplier.
We establish a number of important theoretical results concerning optimality
of the aggregated estimate and show a good performance of the procedure in

simulated and real life examples.

1 Introduction

This paper offers a new method of spatially adaptive nonparametric estimation
based on aggregating a family of local likelihood estimates. Local likelihood ap-
proach was intensively discussed last years, see e.g. Tibshirani and Hastie (1987),
Staniswalis (1989), Loader (1996). We refer to Fan, Farmen and Gijbels (1998) for
a nice and detailed overview of local maximum likelihood approach and related lit-
erature. In particular, the suggested method is very general and applies to many
statistical models in a unified way. Similarly to usual nonparametric smoothing in
regression or density framework, an important issues for local likelihood modeling is
the choice of localization (smoothing) parameters. Different types of model selection
techniques based on the asymptotic expansion of the local likelihood are mentioned
in Fan, Farmen and Gijbels (1998) which includes global and variable bandwidth
selection. However, the performance of estimators based on bandwidth selection is
often rather unstable, see e.g. Breiman (1996). This suggests that in some cases,
the attempt to identify the true local model is not necessarily the right thing to
do. One approach to reduce variability in adaptive estimation is model mixing or
aggregation. Yang (2004), Catoni (2001) among other suggested global aggregated

procedures that achieves the best estimation risks over the family of given “weak”
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estimates. Nemirovski (2000), Juditsky and Nemirovski (2000) developed for the
regression set-up the aggregation procedures that achieves a risk within a multiple
of log(n)/n of the smallest risk in the class of all convex combinations of “weak”
estimates. Tsybakov (2003) discussed the asymptotic minimax rate for aggregation.
Aggregation for density estimation has been investigated by Li and Barron (1999),
Tsybakov (2005). A pointwise aggregation has not been yet considered to the best

of our knowledge.

We propose a new approach towards local likelihood modelling which is based on the
idea of the spatial (pointwise) aggregation of a family of local likelihood estimates
(“weak” estimates) () . The main idea is, given the sequence {6(®} to construct in
a data driven way the “optimal” aggregated estimate é\(m) separately at each point
z. “Optimality” means that this estimate satisfies some kind of oracle inequality,
that is, its pointwise risk does not exceed the smallest pointwise risk among all

“weak” estimates up to a logarithmic multiple.

Our algorithm can be roughly described as follows. Let {g(k)(az)}, E=1,...,K,
be a “nested” sequence of weak local likelihood estimates at a point z ordered
due to decreasing variability. A new aggregated estimate of 6(z) is constructed
sequentially by mixing previously constructed aggregated estimate 8-1) with the

current “weak” estimate () :
) = 7 6®) + (1 — 7 )0*Y,

where the mixing parameter 75 (which may depend on the point ) is defined us-
ing a measure of statistical difference between #%*~1) and g(k) . In particular, g
is equal to zero if 8-1) lies outside the confidence interval around 8%). In view
of the sequential and poinwise nature of the algorithm, the suggested procedure is
called Spatial Stagewise Aggregation (SSA). An important feature of the procedure
proposed is that it is very simple and transparent and applies in a unified manner
for a big family of different models like Gaussian, binary, Poisson regression, den-
sity estimation, classification etc. The procedure does not require any splitting of
the sample as many other aggregation procedures do, cf. Yang (2004). The SSA
procedure can be easily studied theoretically. We establish precise nonasymptotic
“oracle” results which apply under very mild conditions in a rather general set-up.
We also show that the oracle property automatically implies spatial adaptivity of

the proposed estimate.

The paper is organized as follows. Section 2 describes the considered model and
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our setup: varying coefficient exponential family. Section 2.3 presents some useful
exponential inequalities for the lack of fit statistic in context of local likelihood
estimation. A detailed description of the proposed method is given in Section 3.
Applications to regression, density estimation and classification are discussed in
Sections 4, b5, 6 respectively. Theoretical properties of the aggregation procedure
are presented in Section 7. Finally, some technical assertions and proofs about the

varying coefficient exponential family are collected in Section 8.

2 Local likelihood modeling

This section describes the considered model and states the problem. Suppose we
are given independent random data Zi,...,Z, of the form Z; = (X,,Y;). Here
every X; means a vector of “features” or explanatory variables which determines
the distribution of the “observation” Y;. For simplicity we suppose that the X;’s
are valued in the finite dimensional Euclidean space X = IR? and the Y;’s belong
to Y C IR. An extension to the case when both the X;’s and Y;’s are valued in
some metric spaces is straightforward. The vector X; can be viewed as a location
and Y; as the “observation at X;”. Our model assumes that the distribution of
each Y; is determined by a finite dimensional parameter 8 which may depend on

the location X;, 8 = 6(X,). We illustrate this set-up by means of the few examples.

Example 1. (Gaussian regression) Let Z; = (X;,Y;) with X; € R? and Y; € IR
following the regression equation Y; = 6(X;) + &; with a regression function 6 and

i.i.d. Gaussian errors ¢; ~ N(0,0?).

Example 2. (Inhomogeneous Bernoulli (Binary Response) model) Let again
Z; = (X;,Y;) with X; € R* and Y; a Bernoulli r.v. with parameter 6(X;), that is,
P(Y,=1|X,=2)=06(z) and P(Y; =0| X, =2z) =1—0(z). Such models arise
in many econometric applications, they are widely used in classification and digital

imaging.

Example 3. (Inhomogeneous Poisson model) Suppose that every Y; is val-
ued in the set N of nonnegative integer numbers and P(Y; = k | X; = z) =
0% (z)e~®(X:) /! that is, Y; follows a Poisson distribution with parameter 6 = 6(z).
This model is commonly used in the queueing theory, it occurs in positron emission
tomography, it also serves as an approximation of the density model, obtained by a

binning procedure.



All the given examples are particular cases of the varying coefficient exponential

family model, see Section 2.2 for more details. Some further examples can be found

in Fan, Farmer and Gijbels (1998).

Now we present a formal definition for our model. Let P = (P, 0 € ©) be a family
of probability measures on ) where © is a subset of the real line IR'. We assume
that this family is dominated by a measure P and denote p(y,8) = dPs/dP(y).
We suppose that each Y; is, conditionally on X; = z, distributed with the density
p(+,0(z)) for some unknown function 6(z) on X . The aim of the data-analysis is

to infer on this function 6(z).

In the parametric setup, when the parameter § does not depend on the location, that
is, the distribution of every “observation” Y; coincides with P, for some 6 € © the

parameter § can be well estimated by the parametric maximum likelihood method:

f = argsup ZIng Y;, 0).

9co

In the nonparametric varying coefficient framework, one usually applies the local
likelihood approach which is based on the assumption that the parameter 8 is
constant only within some neighborhood of every point z in the “feature” space
X . This leads to considering a local model concentrated in some neighborhood of

the point z.

2.1 Localization

We use localization by weights as a general method to describe a local model. Let,
for a fixed z, a nonnegative weight w; = w;(z) < 1 be assigned to the observations
Y; at X;, 1=1,...,n. The weights w;(z) determine a local model corresponding
to the point z in the sense that, when estimating the local parameter 6(z), every
observation Y; is used with the weight w;(z). This leads to the local (weighted)
maximum likelihood estimate

= argmwaz )log p(Y:, 0). (2.1)

e T

We mention two possible ways of choosing the weights w;(z). Localization by a
bandwidth is defined by weights of the form w;(z) = Kioc(l;) with I; = p(z, X;)/h
where h is a bandwidth, p(z,X;) is the Euclidean distance between z and the

design point X; and K. is a location kernel.
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Localization by a window simply restricts the model to a subset (window) U =
U(z) of the design space which depends on z, that is, w;(z) = 1(X; € U(z)).
Observations Y; with X, outside the region U(z) are not used when estimating
the value 6(z). This kind of localization arises e.g. in classification by k-nearest

neighbor method or in the regression tree approach.

We do not assume any special structure for the weights w;(z), that is, any configu-

ration of weights is allowed. In what follows we will identify a local model in z by

the set W(z) = {wi(z),...,wn(z)} and denote

L(W(2),6) = 3 wi(s) log o(¥;, ).

2.2 Local likelihood estimation for an exponential family

model

The examples given above can be considered as particular cases of local exponential
family distributions. This means that all measures Py from this family are domi-
nated by a o -finite measure P on Y and density functions p(y,8) = dPs/dP(y) are
of the form p(y,8) = p(y)e¥®®~B®)  Here C(f) and B(f) are some given nonde-
creasing functions on @ and p(y) is some nonnegative function on ). The parame-
ter 6 is defined by the equations [ p(y,0)P(dy) =1 and EeY = [yp(y,8)P(dy) =
¢ which implies the relation B'(§) = 6C'(9).

The Kullback-Leibler divergence K(6,6') = E, log(p(Y,H)/p(Y, 0')) for 6,0 € ©
and the Fisher information I(8) := E4|py(Y,8)/p(Y,0)|* satisfy
K(6,0") =6(C(8) — C(8") — (B(6) — B(¥)), 1(6) = C'(6).
Table 1 provides the Kullback-Leibler distance K(6,6") for the examples from Sec-
tion 2.
Next, for a given set of weights W = {wy,...,w,} with w; € [0,1], it holds
L(W,8) = wilogp(V;,0) = SC(0) — NB(6) + Np
=1
where N = Y7 w;, S=> 1" wY; and p = N'3 " wp(Y;). Maximization
of this expression w.r.t. 6 leads to the estimating equation NB'(8) — SC'(6) = 0.
This and the identity B'(8) = §C’(0) yield the local MLE

=1 =1
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Table 1: K(6,60") and I(6) for the examples from Section 2.

Model K(6,6) 1(6)
Gaussian regression | (6 — 6')2/(20?) o2
Bernoulli model 6log(6/6") + (1 —0)log{(1 - 6)/(1 -6} | 67 (1—6)!
Poisson model 6log(6/6") — (6 — 6" 1/6

This also implies L(W, 5) = N{gC(g) — B(g) + Np?} and, for any 6 € @

L(W,6,6) := L(W,8) — L(W,8) = NK(8,6).

2.3 Exponential Inequalities for the Lack of Fit Statistic
Here we present some exponential inequalities for the “lack of fit statistic” L(W, 5, 6)
which apply for arbitrary weights and arbitrary sample size.

We assume some regularity of the considered parametric family P .

(A1) P = (Ps,0 € ® C IR) is an exponential family with a one-dimensional

parameter.
(A2) O is compact and the Fisher information 7(68) fulfills

11(0/1(0M))Y2 <3,  0.6"cO.

Our first result can be regarded as a nonasymptotic local version of the Wilks the-

orern.

Theorem 2.1. Let W = {w;} be a local model such that max,w;, < 1. If () =46
then for any z >0

P(L(W,8,8) > 2) = P (N/C(ﬁ,e) > z) < 2.

Remark 1. The local likelihood estimate § does not change if all the weights w;
are multiplied by the same constant ¢, see (2.1). However, the lack of fit statistic
L(W, 5, ) will be multiplied by this constant. The result of Theorem 2.1 continues
to apply after this multiplication provided that the condition max;w; < 1 still

holds. The strongest result corresponds to the case with max; w; = 1.
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Remark 2. Condition A2 ensures that the Kullback-Leibler divergence X fulfills
K(6',6) < I18' — 8| for any point ¢ in a neighborhood of 6, where I is the
maximum of the Fisher information over this neighborhood. Therefore, the result
of Theorem 2.1 guarantees with a high probability that | — 6] < CN-Y/2. In
other words, the value N~! can be used to measure variability of the estimate g.
Theorem 2.1 can be used for constructing the confidence interval of the parameter 6.
Indeed, under homogeneity, the true parameter value 8 lies with a high probability
in the region {#': NK (5, §') < z} for a sufficiently large 2.

Theorem 2.1 can be extended to the case when 6; =~ 6 for all X; with positive
weights w;. In this case the “lack of fit statistic” between the local likelihood
estimate § and the corresponding mean value .= E§f = N 2?21 w;0; with

6; = (X,) can also be bounded with high probability.

Theorem 2.2. Let W = {w;} be a local model such that max;w; < 1. If the
famaly P satisfies A1 and A2, then there 1s a > 0 depending on s only such that
for every z >0

P (L(W, 8,8) > z) .y (N/C(ﬁ, 9) > z) < 9e=#/(1+e)

More details and proofs can be found in Section 9.

3 Description of the method

Let a point z € X be fixed and let {g(k)(a:), k=1,..,K} be a sequence of local
likelihood estimates of § = 6(z) of the type

(@) = 3wy, / S wl, w® = w®(@) € [0,1].
=1 7=1

We say that the sequence {g(k)} is strictly nested, if

(A3) for some constants v,,v* with 0 <, <v* <1, the values N, = } 7, wg-k)
satisfy for every 2 <k < K

Vs < Npy /N <™.

Some typical examples of strictly nested sets of estimates are given below in Sec-

tion 3.1.



Remark 1. Due to Theorems 2.1 and 2.2 the value 1/Nj measures the variability of
the estimate () in the homogeneous or nearly homogeneous cases. The condition

A3 means that variability of the estimates 8(F) decreases with k.

Given the set of strictly nested “weak” estimates glk) = g(k)(a:) , we consider a larger

class of their convex combinations 6:
K —~,
0 = akﬂ(k), a;+....+axg =1, ar >0,
k=1
where the mixing coefficients o which may depend on the point z. We aim at
constructing a new estimate 8 in this class which performs as good as the best one
in the original family {g(k)(az)} This estimate is computed sequentially via the

following algorithm.

1. Initialization:

g = g,

2. Stagewise aggregation: For £k =2,..., K
gik) = ve0®) + (1-— ’Yk)é\(k_l),
with the mixing parameter -y, defined for some A > 0 and a kernel K,.(-) as

Y& — Kag(m(k)/A), m(k) = NkIC(g(k), é\(k_l))

3. Final Estimate: § = §%) |

The idea behind the procedure is quite simple. We start with the “weakest” estimate
o) having the smallest degree of locality but the largest variability of order 1/Nj .
Next we consider estimates with larger values Ni. Every next estimate (k) s
compared with the previously constructed estimate 8=1) _ Tf the difference is not

significant then the new estimate gx) basically coincides with (%) . Otherwise the

9%-1) . For measuring the difference

procedure essentially keeps the previous value 6
between estimates, we apply the penalty m®*) .= NkIC(g(k), @\(k_l)) as explained in

Remark 2.

Remark 2. If K,.(-) is the uniform kernel on [0, 1] then ~; is either zero or one
depending on the value m(*) . This easily yields by induction arguments that the
final estimate coincides with one of the “weak” estimates ). In this case our

method can be considered as a pointwise model selection method.



3.1 Examples of sequences of local likelihood estimates

A sequence of “weak” local likelihood estimates at point z is uniquely defined by the

weights wz(k)(a:) , k=1,..., K. We use mainly two weighting schemes, corresponding
to two possible localization methods: localization by a kernel and localization by a

k-nearest neighbor window.

In the case of kernel weights we employ Epanechnikov kernel K. (z) = (1 —z?),

and define weights at point z as

’w(k)(m) = Kloc(P(m;Xi)/hk), k=1,...,K,

1

where hy is an exponentially increasing sequence of bandwidths with hg/hg_1 = a.
Here h; and a can be treated as parameters of the procedure. It easy to see that
the above choice of hy delivers an exponentially increasing sequence of Nj under
usual condition on the design Xji,..., X, . Such kind of local likelihood sequences

is efficient only in the case of a low dimensional design space X .

For a given k, a k-NN window U(z) is taken to contain k nearest neighbors of

the point x. In this case

wi(z) == 1(p(z, X:) < p)

where p1) < p) < ... < pm) is the ordered sequence of the distances p; :=
p(z,X;). A sequence of integer numbers k; = [a’"'k;], 7 = 1,..., K with some
fixed initial number k; uniquely determines an exponentially increasing sequence
{N;}. Local likelihood estimates with the k£-NN localization scheme are particulary

interesting for the classification problem in high dimensions.

Sometimes a hybrid scheme with wz(k)(a:) = Kioc(pi/p(x)) can be useful.

3.2 Choice of parameters

Kernel K,;: The kernel K,; should satisfy 0 < K,; <1 and should be supported
n [0,1]. Our default choice is the triangle kernel K,g(u) = (1 —u); .

Parameters defining the weighting scheme: The initial bandwidth and initial
number of nearest neighbors should be reasonable small. In most examples we fix
small natural k; and select h; = ¢/n with some ¢ ensuring that every ball with

center X; and radius h; contain at least k; points. The parameter a controls the
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growth rate of the local neighborhoods. It should be selected to provide that the
mean number of points inside a ball Bj, (z) with radius hy grows exponentially
with k for some factor agrow > 1. If X; are from IR? | then in the case of kernel
weights the parameter a can be taken as a = a_},lfw. For the k-NN weights we
just take @ = agron . Our default choice is @40 = 1.25. Any value in the range
[1.1,1.3] can be taken as well. The maximal bandwidth hx can be taken large so
that every ball B, (z) contains the whole sample for the last iteration K. The
geometric grow of the parameter A or of the number of nearest neighbors ensures
that the total number of iterations is typically bounded by Clog(n) for some fixed

constant C'.

Parameter ): The most important parameter of the procedure is A which scales
the statistical penalty m(*) . Small values of A\ lead to overpenalization and a
high variability of the resulting estimate. Large values of A may result in loss of
adaptivity of the method and oversmoothing. In some sense this parameter is similar

to the wavelet threshold applied in a nonlinear wavelet transform.

A reasonable way to define the parameter )\ for specific applications is based on the
“monotonicity condition”. This condition means that in a homogeneous situation
6(X;) = 6, the mixing parameter 7 is close to one for each 1 < k < K . This would
lead to an aggregated estimate 8 which essentially coincides with 9K . Therefore,
one can adjust the parameter A simply selecting by Monte-Carlo simulations the
minimal value of A providing a prescribed probability of getting vx ~ 1 for para-
metric model §(z) = . A theoretical justification is given by Proposition 7.1,
that claims that the choice A = Cylogn with a sufliciently large C) yields the

“monotonicity” condition whatever the parameter 6 or the sample size n is.

Note that at the end of the iteration process the strong overlapping of the models
W®) and W®*1) causes a high correlation between the estimates 9%) and k-1
This suggests to take a relatively large value of A in the beginning and decrease it
with iterations until a lower bound, say Mg is reached. This leads to the following
proposal: Ap = max{\; — Azlog hl¥) X;} for some Xo,A; and X;. Our default

choice which is used in all examples below is A\; =3 and Ao = 0.05); .
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Figure 1: Simulated data sets together with SSA estimates (top row) and Box-Plots
of MAE for SSA and penalized cubic smoothing splines (bottom row) for Example
1.

4 Application to regression

This section illustrates how the SSA procedure can be used in the univariate regres-
sion set-up by means of two simulated examples. The data are generated as (X;, Y;)
with Y; = f(X;) + oe; for : = 1,...,n. The sample size is n = 500. The points
X, are equidistant on (0,1). Errors ¢; are i.i.d. standard Gaussian. The error

variance ¢? is unknown and estimated from the data.

For comparison we use a penalized cubic smoothing spline, with smoothing param-
eter determined by generalized cross validation. See Heckman and Ramsey (2000)

for details.

11



Example 1. Our first example uses the piecewise smooth function

8z z < 0.125,

2 — 8z 0.125 < z < 0.25,
fi(z) =

44(z — 0.4)? 0.25 < z < 0.55,

0.5 cos(67(z — 0.775) + 0.5 0.55 < z.

The upper row of Figure 1 shows plots of the first data set for ¢ = 0.1 and 0.2,
respectively, together with the estimate obtained by SSA with default parameters
and hxg = 1. The bottom row reports the results in form of box-plots of Mean

Absolute Error (MAE) obtained for the two procedures in 500 simulation runs.

Example 2. In a second example we consider the following smooth function

247
z+ 0.2

f2(2) :sin( ) e c0,1]

Figure 2 shows the results for the function f5.

In both examples SSA clearly outperforms penalized smoothing splines in terms of

global mean averaged risk.

5 Application to nonparametric density estima-

tion

Suppose that observations Zi,...,Z; are sampled independently from some un-
known distribution P on IR? with density f(z). The problem of adaptive estima-
tion of f can be successfully attacked by the SSA method. Here we consider the

case of small or moderate d,e.g. d<3.

Without loss of generality we suppose that the observations are located in the cube
[0,1]¢. We do not assume that f is compactly supported or that f is bounded
away from zero on [0,1]¢. As a first step we apply a binning procedure, see e.g. Fan
and Marron (1994). Let the interval [0,1] be split into M equal disjoint intervals of
length § = 1/M . Then the cube [0,1]¢ can be split into n = M?¢ nonoverlapping
small cubes with the side length §, which we denote by Ji,...,J,. Let X; be the
center point of the cube J; and let Y; be the number of observations lying in the

1th cube J;. The pairs (X;,Y;) for e = 1,...,n can be viewed as new observations.
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Figure 2: One sample and the SSA estimate (top), Box-Plots of MAE for SSA and

penalized cubic smoothing splines (bottom) for Example 2.

The joint distribution of Yi,...,Y, is described by the multinomial law. This model
can be very well approximated by the Poisson model with independent observations

Y; having Poisson distribution with intensity parameter 6, = Lp;, = LP(J;).

If the value 6; has been estimated by 8; then the target density f is estimated at
X; as f(Xz) = n@/zyzl gj )

For estimating the values §; from the “observations” (X;,Y;) we apply the SSA
procedure with the local Poisson family from Example 3. In addition to the standard
parameter set, we need to specify the bin length §. A reasonable choiceis § = ¢/K
where K is the smallest integer satisfying K¢ > L and ¢ < 1. The procedure
applies even if ¢ is small and many bin counts Y, are zero. For comparison we also
computed the kernel density estimates (KDE) with Epanechnikov kernel and the
bandwidth minimizing the estimated Mean Absolute Error (MAE).

Example 1. We test our procedure for two univariate normal mixture densities

13



taken from the set of 15 densities provided by Marron and Wang (1992). We

generate in each case n = 500 observations. In the upper row of Figure 3 we show

M&W Normal Mixture 2 M&W Normal Mixture 8
A
o
<
e o |
1) o
@
N
o | o
o
—
g o
o | o _|
© T T T T T T T © T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Pointwise MAE Pointwise MAE
<
Q —
o
[aN]
o
S
o
Q —
o

Figure 3: Top: SSA estimates from 500 observations (dashed line) and true density
curves (solid line). Bottom: pointwise MAE for SSA and the kernel density estimates

based on 500 simulations.

typical realizations of the densities estimates by SSA (dashed line) obtained from
500 observations using a regular grid with interval-length é = 0.001 and range
(—4.1,4.1). The true densities (solid line) are given for comparison. The maximal
bandwidth was chosen hxg = 3. The plots in the bottom row show the pointwise

mean average error (MAE) for SSA and kernel density estimates.

Example 2. In this example we consider Old Faithful Geyser data (Azzalini and
Bowman, 1990), (z:,v:), where z; measures the waiting time between successive
eruptions of the geyser, and y; measures the duration of the subsequent eruption.
Figures 4(left) and 4(center) displays histograms of these two variables. It is worth

noting that the both are certainly non-normal. The common feature of interest is
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the presence of two modes. One group of eruptions is only 2 minutes in duration,
while the other averages over 4 minutes in duration. Likewise, the waiting time
between eruptions clusters into two groups, one less than an hour and the other
greater than one hour. The distribution of eruption durations appears to be a
mixture of two normal densities, but the distribution of the waiting times appears

more complicated.

80
0
|
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|

© 8
— o n -

0 B . 0&0

¢ 1 By QR
o O(%

3 ™ ;, (]

(o]

00

<)
I
N -]
—'_F N |
o Jde= o = = o

40
|
|
time between eruptions

1

| I I . — | N I I B R R T T T T T 1
1 2 3 4 5 40 60 80 100 50 70 90 110
duration of eruptions time between eruptions duration of eruptions

Figure 4: Marginal histograms (left and center) and the scatter plot (right) for the
Old Faithful Geyser data set.

Figure 4(right) presents the scatter diagrams of (zt,y;). The important feature
of the underlying distribution is the presence of three modes. One can also easily
recognize two well-separated clusters on Figure 4(right), short waiting periods are
associated with long eruption durations. It is therefore desirable that the estimate of
the density preserves the above features. Upper panel of Figure 5 shows respectively
contour and perspective plots of the density estimate obtained by SSA procedure.
The bottom row shows the same graphs for the estimate obtained by 2D Binned
Kernel Density Estimation procedure (KernSmooth package in R) with suggested
bandwidths. We see that the SSA density estimate underpin very well the three
mode structure of the underlying data and separates two clusters, while the KDE

looses the cluster structure.
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Figure 5: Contour and perspective plots of density estimates obtained by SSA pro-
cedure (top) and Bivariate Kernel Smoothing (bottom).

6 Application to classification

One observes a training sample (X;,Y;), ¢ = 1,...,n, with X; valued in a Eu-
clidean space & = IR? with known class assignment Y; € {0,1}. Our objective
is to construct a discrimination rule assigning every point z € I to one of the
two classes. The classification problem can be naturally treated in the context of a
binary response model. It is assumed that each observation Y; at X, is a Bernoulli
r.v. with parameter §; = 6(X;), that is, P(Y; = 0|X;) =1 — 6(X;) and P(Y; =
11X;) = 0(X;). The “ideal” Bayes discrimination rule is p(z) = 1(6(z) > 1/2).
Since the function (z) is usually unknown it is replaced by its estimate 8. If the

distribution of X; within the class k& has density f; then
0; = m1f1(X:)/(mofo(Xs) + T f1(X5)).
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where 7, the prior probability of kth population £ =0,1.

Nonparametric methods of estimating the function 6 are typically based on local
averaging. Two typical examples are given by the k-nearest neighbor (k-NN)
estimate and the kernel estimate. For a given k, define for every point z in I the
subset Dg(z) of the design Xi,...,X, containing the k nearest neighbors of .
Then the k-NN estimate of §(z) is defined by averaging the observations Y; over

Dr(z):

gk ( Z Y.

XEDk

The definition of the kernel estimate of §(z) involves a univariate kernel function

K(-) and the bandwidth A:

oS () S o

Both methods require the choice of a smoothing parameter.The SSA method can

be viewed as an extension of both methods using the aggregation idea. Namely, for
estimating the function 6 at the points X;,..., X, we can directly apply the SSA
procedure to the sequence of k-NN (resp. kernel) estimates with an exponentially

increasing number of nearest neighbors (resp. bandwidth).

Example 1. In this example we consider the classification problem for two class

with densities fo(z) and fi(z) given by two component normal mixtures:

folz) = 0.2¢(z;(—1,0),0.5I,) + 0.84(z;(1,0),0.51,)
fi(z) = 0.5¢(z;(0,1),0.5I5) + 0.5¢(z; (0,—1),0.51,)

where ¢(-; u, ) is the density of multivariate normal distribution with mean vec-
tor p and covariance matrix Y, I, means the 2 X 2 unit matrix. We run 10
simulations with 100 observations for each class in the training set and another
100 in the testing set. SSA procedure was implemented with kernel weights and
parameters hg = 0.1, hx = 3. Two other classification methods, £-NN and kernel
classifiers, are applied to the same data set. Figure 6 shows the dependence of the
misclassification error for these classifiers on the corresponding smoothing parame-
ters. The misclassification errors for SSA and for the Bayes classifiers are given for

comparison.
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Figure 6: Misclassification errors as a functions of the main smoothing parameters
for k-NN (right) and kernel (left) classifiers. SSA and Bayes misclassification errors
are given as a reference lines. Top: Example 1 (dimension 2). Bottom: Example 2

(dimension 10).

Example 2. We now consider the same example but with added 8 independent

N(0,1) distributed nuisance components, so that now X, = (X}, .., X!°) with

(Xi17X'i2) ~ fclass(i)) (Xz37 "7X'i10) ~ N((07 st 0)7 Ig)
8
The SSA procedure is applied using k-NN weights with the number of nearest
neighbors exponentially increasing from 5 to 50. The results are given in the
bottom row of Figure 6. We observe that although the quality of the SSA classifier
has substantially decreased compared to the dimension independent Bayes error

rate, it performs as good as the best £-NN or kernel classifier.

Example 3. [BUPA liver disorders] We consider the dataset sampled by BUPA
Medical Research Ltd. It consists of 7 wvariables and 345 observed vectors. The

subjects are single male individuals. The first 5 variables are measurements taken
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Figure 7: One-leave-out cross-validation errors as a functions of the main smoothing
parameters for k-NN (right) and kernel (left) classifiers. The dotted line describes
the error of SSA classifier.

by blood tests that are thought to be sensitive to liver disorders and might arise from
excessive alcohol consumption. The sixth variable is a sort of selector variable. The
seventh variable is the label indicating the class identity. Among all the observations,
there are 145 people belonging to the liver-disorder group (corresponding to selector
number 2) and 200 people belonging to the liver-normal group. The BUPA liver
disorder data set is notoriously difficult for classifying with the usual error rates
about 30%. We apply SSA, k-NN and kernel classifiers to tackle this problem.
In SSA procedure the hybrid weighting scheme (see section 4.1) was employed with
number of k£-NN ranging from 2 to 30. Figure 7 shows the corresponding one-leave-
out cross-validation errors for above methods. One can see that the SSA method is

uniformly better than kernel or k-NN classifiers.

7 Some theoretical properties of SSA

This section discusses some important theoretical properties of the proposed aggre-
gating procedure. In particular we establish the “oracle” result which claims that
the aggregated estimates is up to a log-factor as good as the best estimate among the
considered family {g(k)} of weak estimates. As a corollary we show rate optimality

of the procedure on the smoothness function classes.

The “oracle” result is in its turn a consequence of two important properties of the
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aggregated estimate g “monotonicity” and “stability”. “Monotonicity” can be
viewed as the oracle result in the homogeneous situation. In this case the oracle
choice would be the estimate with the largest value Nj, that is, the last estimate
8(K) in the family {g(k)} . The “monotonicity” property means that at every step of
the procedure the new estimate () will be taken with the weight ~; close to one,
and hence, the aggregated estimate B%) is close to the local likelihood estimate 6% .
The “monotonicity” property can be naturally extended to a nearly homogeneous
case, for all steps k& for which the mean value g* = > wz(k)ﬂi/ Ziwz(k) 1s still
close to the true value 8 = 6(z). The “monotonicity” ensures that the quality of
estimation improves and confidence bounds for 8%) become tighter as the number
of iterations increases provided that the near homogeneity is not violated. Finally,
the “stability” property ensures that the quality gained under local homogeneity

due to “monotonicity” will be kept for the final estimate.

Throughout this chapter p stands for the root of equation

Kag(p) = (1 —v7)/(1 = v7/2), (7.1)

where v* comes from A3.

7.1 Behavior under homogeneity

First we consider the homogeneous situation with the constant parameter value

6(z) = 6 and present some sufficient condition for the “monotonicity” result.

Proposition 7.1. Assume A1 through A8 and let 6(-) = 0. Let the parameter X
of the procedure fulfill A = Cylog(n) with a constant Cy such that with u = 2

Cr > p7'3 (Vufva +1)°. (7.2)
Then the last step estimate 8 = O\K) fulfills
P(K(8,8) > ulog(n)/Nk) < 2K/n. (7.3)
Proof. Define
A®) = {N, K (8", 6) < log(n)}.
Theorem 2.1 applied with z = log(n) yields in the homogeneous situation
P(NK(6%),8) > log(n)) < 2¢ o8,
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Therefore P(A®) > 1 —2/n. This obviously implies that P(A) > 1 — 2K/n
where A is the intersection of the sets A®) : A =, . A%®) . We now show that
K(@\(k),ﬂ) < plog(n)/Ng on A for all kK < K Which_implies the assertion. The
proof utilizes the following simple “metric like” property of K'/2(,-).

Lemma 7.2. Under condition A2 it holds for every pair 8’6"
KCM2(0,8") < K28, 6) + 526", 6).
Also, for any sequence 05,0y, ...,0m,
KY2(6,0,) < xi/cl/z(el_l,el).
=1

Proof. Introduce the new parameter v = C(6) and define D(v) = B(8) = B(C~'(v)).
For any v; < v, it holds

K(v1,v3) = D(v3) — D(v1) — (vg — v1)D'(v1) = 0.5]v; — v1|2D"(T)

where v € [v1,vs] and D"(v) = 1/1(0) and the results easily follow from A2. O

We prove the statement by induction in k. By definition, it holds on 4 for p) =
8() that K(@\(l),ﬂ) < plog(n)/N; . Now suppose that K(@\(k_l),ﬂ) < wlog(n)/Ni_1 .
We show that this and the condition K(g(k),ﬂ) < log(n)/Ny imply K(@\(k),ﬂ) <
plog(n)/Ny . The mixing penalty m®*) = NkIC(g(k),@\(k_l)) fulfills on A due to
Lemma 7.2, Assumption A3 and (7.1)

Nio? (K2 (%), 6) + K2 (39, 6))?
< Nioe® (/pulog(n) [Nicy + /log(n) /Ni)’
< SV plve+ 1)210g(n) < pA.

This yields v = Kag(m(k)/)\) > K(p) > (1 —vi)/(1 — va/2). Convexity of the
Kullback-Leibler divergence K(u,v) w.r.t. the first argument implies on A

m®)

IN

AN

K (6™, 6) K(7:8® + (1 — )%, 6)

WK (O, 6) + (1 = y) (8%, 6)

Ve log(n)/Ni + p(1 — ) log(n)/Ne—1
plog(n)(ve/2 + (1 —)/va) [ Ny

plog(n)/Ni

INININA

IN

as required. O
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Remark 1. The aggregated estimate ) is a convex combination of the first k&

“weak” estimates and can be represented in the form

k
é\(k) = Zal(k)g(l), agk) + ...+ a,(ck) =1,
=1

where al(k) =y H?:H_l(l — ;). Under homogeneity every coefficient ~; exceeds

with a high probability the value (1 — v4)/(1 — v4/2). Therefore, for any fixed [,
(k)

the mixing coeflicient o; ' exponentially decreases as k increases and the estimate

%) behaves as an exponential smoothing of g for [<k.

7.2 Behavior under local homogeneity

In the case of local homogeneity we also have "monotonicity” as long as the “bias”

measured by Kl/z(g(k), g) with g(k) =N wz(k)ﬂi remains sufficiently small.

Proposition 7.3. Assume Al through A8. Let k* < K be such that

max Kl/z(g(k),ﬁ) < d4/log(n)/ N (7.4)

1<k<k*

for some § > 0. Let, a constant p fulfill

V2> /1 + a+ b (7.5)

where a 1s defined in Theorem 2.2. Let the parameter A of the procedure fulfill
A = Chlog(n) with some constant C) such that

Cr> p s (VI+a+ Vv +6)°. (7.6)
Then it holds
P (K(ﬁ(k*),a) > plog(n) /Nk*) < 2k*/n. (7.7)
Proof. Define for k < k*
A® = (N K(6®,8™) < (1 + @) log(n)}

where o is a constant from Theorem 2.2 and depending on 3¢ from Assumption A2

only. Let also A = ;. A® . Theorem 2.2 yields
P (Nk;c(mk),a(’“)) >(1+a) 1og(n)) < 9e~(1Fa)los(m)/(142) — 9/,
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Therefore P(A) > 1 — 2k*/n. Now we check by induction that K(@\(k*),ﬂ) <
plog(n)/Ny on A for all k < k*.

Theorem 2.2 implies (7.7) for the initial weak estimate FION Suppose for some
k < k* that IC(H 1,6) < plog(n)/Ny_1 . It holds on the set A*) by Lemma 7.2
and (7.5)

Nk/C(g(k),H) < N (Kl/z(g(k)7§(k)) i Kl/z(g(k)70))2

Ni 5 (\/(1 + a)log(n)/Ny + 5\/1°g(”)/N’“)2
< 0.5ulog(n).

IN

The use of (7.6) yields in the similar way
m® < NP (K1/2(§ gt ) 4 K1/2(/\(k 1) ) n K1/2(0 k) 0))2

< Ni s log(n (\/1—|—a /Nk—l—\//L/Nk 1‘|‘5U1/Nk) < pA.

This in turn yields v, = Ki(m®) /X)) > (1 —1,)/(1 —v,/2) and (7.7) follows in the
same line as (7.3) in the proof of Proposition 7.1. O

7.3 Stability

Under the local homogeneity it holds with high probability K(@\(k), ) < plog(n)/Ng
as far as the estimation bias Kl/z(g(k), ) remains small. If the bias starts to increase
after first k iterations, then the important stability property of the procedure is that
the quality of estimation of order (log(n)/Ng)'/? gained by the estimate 8k will

not be lost at further iterations.
Proposition 7.4. Under Al and A2, it holds for every k < K
K(6®), 65D < A/ Ng. (7.8)
Moreover, under Al through A8, it holds for every k' with k < k' < K
K(8*),8%) < )/ Ny (7.9)
with ¢ = 32 (1//v* —1)72

Remark 2. An interesting feature of this result is that it is fulfilled with probability
one, that is, the control of stability “works” not only with a high probability, it

always applies. This property follows just from the construction of the procedure.
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Proof. By convexity of the Kullback-Leibler divergence K(u,v) w.r.t. the first ar-
gument

K(@(k))@\(k—l)) <y IC( /\(k 1)

If IC(H 0 (k- 1) > A/N, then ~, = 0 and (7.8) follows. Now, Assumption A2,
Lemma 7.2 and Proposition 7.4 yield

! !

k k
K2 (), 80) < 5e 3 KV2(E0,50-0) <5 3 (AN
I=k+1 I=k+1

The use of Assumption A3 leads to the bound

!

K1/2(é\(k’)7é\(k)) < %(A/Nk)l/z Z (V*)(l—k)/2 < %\/17(1 B \/77)_1(>\/Nk)1/2

I=k+1
which proves (7.9). O

Theorem 7.5. Let, for some k < K, the estimate G ) fulfill
(8™, ) < plog(n)/Ni
with some constant . Then it holds for the final estimate 8 = §(X)
K(8,6) < ' log(n)/Ni,
where ¢ = 3 (\/eOx + /B)" with ¢ = >*(1/v* —1)72 and Cy = )/ log(n).

Proof. Proposition 7.4 and Lemma 7.2 imply

K(8,6) < (K289, 6) + K12 (5, 5(’“))) 5 (Ve Or + \/_) log(n)/ N

and the assertion follows. O

Combining Theorem 7.5 and Proposition 2.2 yields the so called "oracle” inequality

Corollary 7.6. The following inequality holds for some constant C = C(¢,v*,v,) :

(ICl/z(H 6) > C'min (maXICl/z(H ,0) + 1og(n)/zv,)) < 2K/n.

k<l

Remark 3. The first term maxz<; Kl/z(g(k), g) in the “oracle” bound can be viewed
as the upper bound for the bias of the estimate (k) while the second term log(n)/ N,
bounds the stochastic component of g(k), so that the sum bounds the risk of the
estimate (%) , cf. Theorem 2.2. Therefore, the risk of the aggregated estimate corre-
sponds to the minimal possible risk among the family {g(k)} . Lepski, Mammen and
Spokoiny (1997) established a similar result in the regression setup for the pointwise

adaptive Lepski procedure.

24



7.4 Rate of estimation under smoothness conditions on 6(-).

Spatial adaptivity

Here we consider the case when 6(-) satisfies some smoothness conditions in a neigh-
borhood of a fixed point z € X C IR?. More precisely, we assume that the error of
the local constant approximation of () by 6(z) within this neighborhood is suf-
ficiently small. In addition we impose some mild regularity condition on the design
Xi1,...,X,. We show that under these assumptions the results of Proposition 7.3
and Theorem 7.5 lead to the rate of estimation (log(n)/n)*/(+4) which coincides
up to a log-factor with the classical nonparametric rate of estimation corresponding

to the smoothness degree one.

Let z be fixed and § = 0(z), 6, = 6(X;) for all +. Assume the following condition

(A4) For some 7 > 0, the function 6(-) fulfills

KY2(6;,6) < Ln  VX; € By().

Here Bi(z) means the ball of radius h centered at z. In addition, we assume

that for every k the weights w® = wz(k)(a:) defining the estimate g(k)(a:) are

supported on By, (z) where the sequence of bandwidths hy grows exponentially

and the number Nj of design points in B, (z) is nearly proportional to its volume.

(A5) There exists a sequence {hy} with hy = ahg_; for some a > 1 such that the
weights {wfk)(m)} satisfy

w(z)=0 if X, ¢ B ()
(A6) For some positive constants sz, < 3¢, and any k < K it holds
i < Nk/(nhi) < 315,

Theorem 7.7. Let h = (L?n/ log(n))_l/(2+d). Let Assumptions A1, A2, A4, Ab
and A6 be fulfilled uwith n = ch with some 0 < ¢ <1 and h; < n < hg . If the
parameter X fulfills A > Cylogn, with Cy = Ci(5t,v.) , then

P(/cl/z(@ 6) > €, L+ (log(n) /n)1/<2+d>) < 2K/n (7.10)
where C1 means a fized constant depending on >, v,, v*, s, 35, n and a only.
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Remark 4. The rate of estimation given in Theorem 7.7 coincides with the optimal
rate of estimation for the function smoothness class of degree one up to a log-factor.
Moreover, the rate is optimal for the problem of adaptive estimation at a point, cf.
Lepski, Mammen and Spokoiny (1997). It was also shown in that paper that this
property automatically leads to rate optimality in the Sobolev and Besov function

1
classes Bp,q .

Remark 5. If the weights wz(k) satisfy > .(X; — z)w;(z) = 0 then the rate result
can be extended to Besov function classes Bj , with s € [1,2]. The latter condition
on the weights is easy to check for the case of kernel weights for a regular design

and a symmetric continuous kernel.

Proof. Let hy fulfill h; < ch with some constant ¢ < 1 which we specify below.
If k is a maximal index such that hs < ch then A4 implies for every X; € By, (z)
that KC'/2 (01-, 0) < Lch . The use of A6 yields

N (01-, 0) < L2x2c2+dnﬁ2+d = 02t log(n).

Convexity of K(-,8) implies (7.4) for § = (5?72 and all k* < k. If ¢ is
sufficiently small then Theorem 7.3 applies yielding with a high probability the

following accuracy of estimating 6 by ge) .

K(é\(k),ﬂ) < ,ulog(n)/Nk < ,ulog(n)‘

xlnhz

Since hi > cﬁ/a, 1t holds with some fixed constant C; that
K12 (é\(k)7 9) < O, 1,24 (2+d) (log(n)/n) 2/(2+d).

By Theorem 7.5, the same rate of estimation holds for the final estimate g. O

8 Some exponential bounds for exponential fam-
ilies

This section presents some general results for the local exponential family model.

The considered exponential family P = (P, € @ C IR) is described by the

functions C(0) and B(6), with p(y,0) = dPy/dP(y) = p(y)exp (C(8)y — B(6))
and EgY = [yp(y,0)dP(y) =6 for all § € O, see Section 2.3.
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We assume the observation Y; to be Py, -distributed with 6; depending on loca-
tion X;. Let also a local model W be described by the weights w; € [0,1] for ¢ =
1,...,n. The corresponding log-likelihood is defined by L(W,80) = >_.log p(Y;, 0)w; .
We also denote L(W,6,60") = L(W,8)— L(W,8") for every pair 6,6’ . The local MLE
§ is given as 8 = Sor  wYi/ 3" w;. We use the representation g = S/N with
S = 2?21 w;Y;, N = 2?21 w; and denote § = N~! 2?21 w; b, .

The result given below bounds in probability the expression L(W, é\, ). Tt is con-
venient to introduce the parameter v = C(8) and define v = C(6) and D(v) =
B(8) = B(C~*(v)). Since C'(§) > 0, the new parameter v is uniquely defined.
By simple analysis D'(v) = § = C7}(v) and D"(v) = 1/C'(0) = 1/1(8) =
1/I(C~'(v)). Moreover, K(vi,vs) = D(vs) — D(vy) — (vy — v1)D'(v1) is the
Kullback-Leibler distance between two parametric distributions corresponding to the

parameters v; and vy . In what follows we use the notation g(ulv) = K(v,v+u) =

D(v 4+ u) — D(v) — uD'(v).

Theorem 8.1. Let the Fisher information I1(0) = C'(0) be positive on © . For a
given z >0, let U(W, z) be the set of solutions u of equation q(ufv) = [zD"(v+
z)dz = z/N . If there is some o > 0 such that for all p € (0,1] and all uw € U(W, 2)

q(Fwepulvg) < (1 + a)wg,uzq(uh?), L=1,...,n, (8.1)
then
P(L(W,8,8) > z) = P(NK(8,8) > z) < 2¢~*/(%2),

Remark 1. The condition (8.1) can be easily checked in many particular situations.
We give two typical examples. The first one corresponds to the homogeneous case
when all v; coincide with their mean v. Then (8.1) is fulfilled automatically with
a = 0. Indeed the function g¢(-|v) satisfies ¢'(u|v) = D'(v + u) — D'(v) and
q"(ulv) = D"(v+u) = 1/I(C (v +u)) > 0 and thus, it is convex. Since also
g(0|v) = 0, it holds g(walv) < wq(a|v) for every w € [0,1] and every a implying
(8.1) with @ = 0 and arbitrary w. This special case was already stated as a separate

result in Theorem 2.1.

The second special case was mentioned in Theorem 2.2. Assume Al and A2.
The Taylor expansion yields that g¢(wulv) = D(v + wu) — D(v) — wuD'(v) =
1/2w?u? D" (v+71wu) for some 7 € [0,1]. Under condition Al 32 < D"(v)/D"(v) <
»* for all v and one easily gets for every u € U(W, z) that u® < 227*/N . There-
fore, the condition (8.1) is easy to check for 1+ a = »* which yields Theorem 2.2
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as corollary of Theorem 8.1. Moreover, only the local variability of the Fisher infor-
mation /(f) on the support of the local model W is important so the value a is

typically close to zero.

Proof of Theorem 8.1 The log-likelihood ratio can be rewritten for the new

parameter v as
L(W,8,8) = L(W,v,7) = (v —5)S — N(D(v) - D(U)).

The MLE ¥ of the parameter v is defined by maximizing L(W,v,v), that is,
v = argsup, L(W,v,v).

Lemma 8.2. For given z, there exist two values v* >vU and v, < U such that
{L(W,v,v) > z} C{L(W,v*,0) > 2} U {L(W,v.,v) > z}.

Proof. It holds

{L(W,5,7) > 2} = {sup [S(U _5) - N(D(v) - D(U))] > z}

v

-85 > inf

_ _Z+N(D(v)—D(U))}U{ _z—|—N(D(v)—D(U))}‘

v>U v —v v —v

The function f(u) = [z + N(D(U +u) — D(U))] /u attains its minimum at some

point u satisfying the equation
z+ N(D(w+u) — D@)) — NuD'(v+u) =0
or, equivalently,

/ zD"(v + z)dz = z/N.
0

Therefore

with v* =¥ + u. Similarly

{—S> inf Z—I_N(D(U) _D(,U))

v<v v —v

} C {L(W,v,,7) > z}
for some v, < V. O
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Now we bound the probability P (L(W,v,v) > z) for every v. Note that the
equality § = D'(v) implies for u =v — v

L(W,v,v) =u(S — N8) — N [D(v +u) — D(v) —uD'(v)] = u(S — NO) — Ng(u|v).

Now the result of the theorem is a direct corollary of the following general assertion.

Lemma 8.3. For every u and every z

r(w,2) = logP(L(W,5+u,0)> 2) < —piz — pNa(ulo) + 3 alupoelos),
=1
ri(u,2) = log P (L(W,v +u,v) < —z — 2Nq(u|v))

< —pz— pNg(ul®) + Y q(—upwivr).
=1

Moreover, if u fulfills (8.1) then

r(u,z) < —z/(1 + a), ri(u,2) < —z/(1 4 a).

Proof. We apply the Tchebychev exponential inequality: for every positive u
r(u,2) < —pz — puNq(u[v) + log Eexp (up(S — N)).

The independence of the Y;’s implies

log E exp (up(S — N)) = log E exp (Z upwy (Y — 01)) = Z log Eeutwe(Ye=02)

The equalities log [ e’ P ) P(dy) = 0 and 8, = D'(v,) yield
log Eec(Yem0)  — 40, + log / e(“"'”‘)y_D(“‘)P(dy)
= —aD'(vy) + D(vy + a) — D(vy) = q(alvy).

for every a > 0 and every £ < n. Therefore

r(u,2) < —pz — pNq(ulp) + ) qlupwlvy).
=1

This inequality applied with x4 = (1 4+ &)~' and (8.1) imply

r(u,z) < —pz — uNg(ulv) + (1 + a) Zwlq ulp) < —z/(1 + a).

Similarly
ri(u,z) = P (—u(S — NO) + Ng(u|p) > 2z + 2Nq(u|77))
< —pz — pNg(up) + ) g(—upwlvy).
=1
and the lemma follows. l O
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Concluding remarks

The paper offers a new approach to aggregating a set of “weak” estimates in a point-
wise sequential manner. The proposed procedure is very natural and appealing and
it applies in a unified way to many different statistical models and problems. We
established a number of remarkable theoretical properties of this procedure includ-
ing the oracle result and spatial adaptivity. The results are stated under very mild
conditions on the models and apply in a nonasymptotic way. The procedure also
demonstrates a very reasonable numerical performance in all the simulated exam-
ples we considered. In particular, it outperforms the other smoothing methods we
tried. Its practical implementation and application to many practical problems is
straightforward and does not require a fine tuning of the parameters. The procedure

applies in a multidimensional case for an arbitrary design.

A small limitation of the proposed procedure is the simplest method of local likeli-
hood estimation based on the local constant approximation. A more sophisticated
local polynomial approximation can deliver better results in the case of estimating
a smooth function. An extension of the method to the local polynomial regression
is straightforward. However, the general local likelihood approach is more difficult
to study because the closed form solution of the local likelihood problem is not

available. This extension is to be considered elsewhere.
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