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AbstratThe paper presents a new method of spatially adaptive loal likelihoodestimation for a broad lass of nonparametri models, inluding e.g. theregression, Poisson and binary response model. Given a sequene of loallikelihood estimates whih we all "weak" estimates, the proposed methodyields a new aggregated estimate whose pointwise risk does not exeed thesmallest risk among all \weak" estimates up to some logarithmi multiplier.We establish a number of important theoretial results onerning optimalityof the aggregated estimate and show a good performane of the proedure insimulated and real life examples.1 IntrodutionThis paper o�ers a new method of spatially adaptive nonparametri estimationbased on aggregating a family of loal likelihood estimates. Loal likelihood ap-proah was intensively disussed last years, see e.g. Tibshirani and Hastie (1987),Staniswalis (1989), Loader (1996). We refer to Fan, Farmen and Gijbels (1998) fora nie and detailed overview of loal maximum likelihood approah and related lit-erature. In partiular, the suggested method is very general and applies to manystatistial models in a uni�ed way. Similarly to usual nonparametri smoothing inregression or density framework, an important issues for loal likelihood modeling isthe hoie of loalization (smoothing) parameters. Di�erent types of model seletiontehniques based on the asymptoti expansion of the loal likelihood are mentionedin Fan, Farmen and Gijbels (1998) whih inludes global and variable bandwidthseletion. However, the performane of estimators based on bandwidth seletion isoften rather unstable, see e.g. Breiman (1996). This suggests that in some ases,the attempt to identify the true loal model is not neessarily the right thing todo. One approah to redue variability in adaptive estimation is model mixing oraggregation. Yang (2004), Catoni (2001) among other suggested global aggregatedproedures that ahieves the best estimation risks over the family of given \weak"1



estimates. Nemirovski (2000), Juditsky and Nemirovski (2000) developed for theregression set-up the aggregation proedures that ahieves a risk within a multipleof log(n)=n of the smallest risk in the lass of all onvex ombinations of \weak"estimates. Tsybakov (2003) disussed the asymptoti minimax rate for aggregation.Aggregation for density estimation has been investigated by Li and Barron (1999),Tsybakov (2005). A pointwise aggregation has not been yet onsidered to the bestof our knowledge.We propose a new approah towards loal likelihood modelling whih is based on theidea of the spatial (pointwise) aggregation of a family of loal likelihood estimates(\weak" estimates) e�(k) . The main idea is, given the sequene fe�(k)g to onstrut ina data driven way the \optimal" aggregated estimate b�(x) separately at eah pointx . \Optimality" means that this estimate satis�es some kind of orale inequality,that is, its pointwise risk does not exeed the smallest pointwise risk among all\weak" estimates up to a logarithmi multiple.Our algorithm an be roughly desribed as follows. Let fe�(k)(x)g , k = 1; : : : ;K ,be a \nested" sequene of weak loal likelihood estimates at a point x ordereddue to dereasing variability. A new aggregated estimate of �(x) is onstrutedsequentially by mixing previously onstruted aggregated estimate b�(k�1) with theurrent \weak" estimate e�(k) :b�(k) = ke�(k) + (1 � k)b�(k�1);where the mixing parameter k (whih may depend on the point x ) is de�ned us-ing a measure of statistial di�erene between b�(k�1) and e�(k) . In partiular, kis equal to zero if b�(k�1) lies outside the on�dene interval around e�(k) . In viewof the sequential and poinwise nature of the algorithm, the suggested proedure isalled Spatial Stagewise Aggregation (SSA). An important feature of the proedureproposed is that it is very simple and transparent and applies in a uni�ed mannerfor a big family of di�erent models like Gaussian, binary, Poisson regression, den-sity estimation, lassi�ation et. The proedure does not require any splitting ofthe sample as many other aggregation proedures do, f. Yang (2004). The SSAproedure an be easily studied theoretially. We establish preise nonasymptoti\orale" results whih apply under very mild onditions in a rather general set-up.We also show that the orale property automatially implies spatial adaptivity ofthe proposed estimate.The paper is organized as follows. Setion 2 desribes the onsidered model and2



our setup: varying oeÆient exponential family. Setion 2.3 presents some usefulexponential inequalities for the lak of �t statisti in ontext of loal likelihoodestimation. A detailed desription of the proposed method is given in Setion 3.Appliations to regression, density estimation and lassi�ation are disussed inSetions 4, 5, 6 respetively. Theoretial properties of the aggregation proedureare presented in Setion 7. Finally, some tehnial assertions and proofs about thevarying oeÆient exponential family are olleted in Setion 8.2 Loal likelihood modelingThis setion desribes the onsidered model and states the problem. Suppose weare given independent random data Z1; : : : ; Zn of the form Zi = (Xi; Yi) . Hereevery Xi means a vetor of \features" or explanatory variables whih determinesthe distribution of the \observation" Yi . For simpliity we suppose that the Xi 'sare valued in the �nite dimensional Eulidean spae X = IRd and the Yi 's belongto Y � IR . An extension to the ase when both the Xi 's and Yi 's are valued insome metri spaes is straightforward. The vetor Xi an be viewed as a loationand Yi as the \observation at Xi ". Our model assumes that the distribution ofeah Yi is determined by a �nite dimensional parameter � whih may depend onthe loation Xi , � = �(Xi) . We illustrate this set-up by means of the few examples.Example 1. (Gaussian regression) Let Zi = (Xi; Yi) with Xi 2 IRd and Yi 2 IRfollowing the regression equation Yi = �(Xi) + "i with a regression funtion � andi.i.d. Gaussian errors "i � N (0; �2) .Example 2. (Inhomogeneous Bernoulli (Binary Response) model) Let againZi = (Xi; Yi) with Xi 2 IRd and Yi a Bernoulli r.v. with parameter �(Xi) , that is,P (Yi = 1 j Xi = x) = �(x) and P (Yi = 0 j Xi = x) = 1� �(x) . Suh models arisein many eonometri appliations, they are widely used in lassi�ation and digitalimaging.Example 3. (Inhomogeneous Poisson model) Suppose that every Yi is val-ued in the set N of nonnegative integer numbers and P (Yi = k j Xi = x) =�k(x)e��(Xi)=k! , that is, Yi follows a Poisson distribution with parameter � = �(x) .This model is ommonly used in the queueing theory, it ours in positron emissiontomography, it also serves as an approximation of the density model, obtained by abinning proedure. 3



All the given examples are partiular ases of the varying oeÆient exponentialfamily model, see Setion 2.2 for more details. Some further examples an be foundin Fan, Farmer and Gijbels (1998).Now we present a formal de�nition for our model. Let P = (P�; � 2 �) be a familyof probability measures on Y where � is a subset of the real line IR1 . We assumethat this family is dominated by a measure P and denote p(y; �) = dP�=dP (y) .We suppose that eah Yi is, onditionally on Xi = x , distributed with the densityp(�; �(x)) for some unknown funtion �(x) on X . The aim of the data-analysis isto infer on this funtion �(x) .In the parametri setup, when the parameter � does not depend on the loation, thatis, the distribution of every \observation" Yi oinides with P� for some � 2 � theparameter � an be well estimated by the parametri maximum likelihood method:e� = argsup�2� nXi=1 log p(Yi; �):In the nonparametri varying oeÆient framework, one usually applies the loallikelihood approah whih is based on the assumption that the parameter � isonstant only within some neighborhood of every point x in the \feature" spaeX . This leads to onsidering a loal model onentrated in some neighborhood ofthe point x .2.1 LoalizationWe use loalization by weights as a general method to desribe a loal model. Let,for a �xed x , a nonnegative weight wi = wi(x) � 1 be assigned to the observationsYi at Xi , i = 1; : : : ; n . The weights wi(x) determine a loal model orrespondingto the point x in the sense that, when estimating the loal parameter �(x) , everyobservation Yi is used with the weight wi(x) . This leads to the loal (weighted)maximum likelihood estimatee�(x) = arginf�2� nXi=1 wi(x) log p(Yi; �): (2.1)We mention two possible ways of hoosing the weights wi(x) . Loalization by abandwidth is de�ned by weights of the form wi(x) = Klo(li) with li = �(x;Xi)=hwhere h is a bandwidth, �(x;Xi) is the Eulidean distane between x and thedesign point Xi and Klo is a loation kernel.4



Loalization by a window simply restrits the model to a subset (window) U =U(x) of the design spae whih depends on x , that is, wi(x) = 1(Xi 2 U(x)) .Observations Yi with Xi outside the region U(x) are not used when estimatingthe value �(x) . This kind of loalization arises e.g. in lassi�ation by k -nearestneighbor method or in the regression tree approah.We do not assume any speial struture for the weights wi(x) , that is, any on�gu-ration of weights is allowed. In what follows we will identify a loal model in x bythe set W (x) = fw1(x); : : : ; wn(x)g and denoteL(W (x); �) = nXi=1 wi(x) log p(Yi; �):2.2 Loal likelihood estimation for an exponential familymodelThe examples given above an be onsidered as partiular ases of loal exponentialfamily distributions. This means that all measures P� from this family are domi-nated by a � -�nite measure P on Y and density funtions p(y; �) = dP�=dP (y) areof the form p(y; �) = p(y)eyC(�)�B(�) . Here C(�) and B(�) are some given nonde-reasing funtions on � and p(y) is some nonnegative funtion on Y . The parame-ter � is de�ned by the equations R p(y; �)P (dy) = 1 and E�Y = R yp(y; �)P (dy) =� whih implies the relation B0(�) = �C 0(�) .The Kullbak-Leibler divergene K(�; �0) = E� log�p(Y; �)=p(Y; �0)� for �; �0 2 �and the Fisher information I(�) := E�jp0�(Y; �)=p(Y; �)j2 satisfyK(�; �0) = ��C(�)� C(�0)�� �B(�)�B(�0)�; I(�) = C 0(�):Table 1 provides the Kullbak-Leibler distane K(�; �0) for the examples from Se-tion 2.Next, for a given set of weights W = fw1; : : : ; wng with wi 2 [0; 1℄ , it holdsL(W; �) = nXi=1 wi log p(Yi; �) = SC(�)�NB(�) +Npwhere N = Pni=1wi , S = Pni=1 wiYi and p = N�1Pni=1wip(Yi) . Maximizationof this expression w.r.t. � leads to the estimating equation NB0(�)� SC 0(�) = 0 .This and the identity B0(�) = �C 0(�) yield the loal MLEe� = S=N = nXi=1 wiYi� nXi=1 wi :5



Table 1: K(�; �0) and I(�) for the examples from Setion 2.Model K(�; �0) I(�)Gaussian regression (� � �0)2=(2�2) ��2Bernoulli model � log(�=�0) + (1� �) logf(1� �)=(1� �0)g ��1(1� �)�1Poisson model � log(�=�0)� (� � �0) 1=�This also implies L(W; e�) = N�e�C(e�)�B(e�) +Np	 and, for any � 2 �L(W; e�; �) := L(W; e�)� L(W; �) = NK(e�; �):2.3 Exponential Inequalities for the Lak of Fit StatistiHere we present some exponential inequalities for the \lak of �t statisti" L(W; e�; �)whih apply for arbitrary weights and arbitrary sample size.We assume some regularity of the onsidered parametri family P .(A1) P = (P�; � 2 � � IR) is an exponential family with a one-dimensionalparameter.(A2) � is ompat and the Fisher information I(�) ful�llsjI(�0)=I(�00)j1=2 � {; �0; �00 2 �:Our �rst result an be regarded as a nonasymptoti loal version of the Wilks the-orem.Theorem 2.1. Let W = fwig be a loal model suh that maxiwi � 1 . If �(�) � �then for any z > 0P (L(W; e�; �) > z) = P �NK(e�; �) > z� � 2e�z :Remark 1. The loal likelihood estimate e� does not hange if all the weights wiare multiplied by the same onstant  , see (2.1). However, the lak of �t statistiL(W; e�; �) will be multiplied by this onstant. The result of Theorem 2.1 ontinuesto apply after this multipliation provided that the ondition maxiwi � 1 stillholds. The strongest result orresponds to the ase with maxi wi = 1 .6



Remark 2. Condition A2 ensures that the Kullbak-Leibler divergene K ful�llsK(�0; �) � Ij�0 � �j2 for any point �0 in a neighborhood of � , where I is themaximum of the Fisher information over this neighborhood. Therefore, the resultof Theorem 2.1 guarantees with a high probability that je� � �j � CN�1=2 . Inother words, the value N�1 an be used to measure variability of the estimate e� .Theorem 2.1 an be used for onstruting the on�dene interval of the parameter � .Indeed, under homogeneity, the true parameter value � lies with a high probabilityin the region f�0 : NK�e�; �0� � zg for a suÆiently large z .Theorem 2.1 an be extended to the ase when �i � � for all Xi with positiveweights wj . In this ase the \lak of �t statisti" between the loal likelihoodestimate e� and the orresponding mean value � := Ee� = N�1Pni=1 wi�i with�i = �(Xi) an also be bounded with high probability.Theorem 2.2. Let W = fwig be a loal model suh that maxiwi � 1 . If thefamily P satis�es A1 and A2, then there is � � 0 depending on { only suh thatfor every z > 0P �L(W; e�; �) > z� = P �NK(e�; �) > z� � 2e�z=(1+�):More details and proofs an be found in Setion 9.3 Desription of the methodLet a point x 2 X be �xed and let fe�(k)(x); k = 1; :::;Kg be a sequene of loallikelihood estimates of � = �(x) of the typee�(k)(x) = nXi=1 w(k)i Yi� nXj=1 w(k)j ; w(k)i = w(k)i (x) 2 [0; 1℄:We say that the sequene fe�(k)g is stritly nested, if(A3) for some onstants ��; �� with 0 < �� � �� < 1 , the values Nk =Pnj=1w(k)jsatisfy for every 2 � k � K�� � Nk�1=Nk � ��:Some typial examples of stritly nested sets of estimates are given below in Se-tion 3.1. 7



Remark 1. Due to Theorems 2.1 and 2.2 the value 1=Nk measures the variability ofthe estimate e�(k) in the homogeneous or nearly homogeneous ases. The onditionA3 means that variability of the estimates e�(k) dereases with k .Given the set of stritly nested \weak" estimates e�(k) = e�(k)(x) , we onsider a largerlass of their onvex ombinations b� :b� = KXk=1 �ke�(k); �1 + ::::+ �K = 1; �k � 0;where the mixing oeÆients �k whih may depend on the point x . We aim atonstruting a new estimate b� in this lass whih performs as good as the best onein the original family fe�(k)(x)g . This estimate is omputed sequentially via thefollowing algorithm.1. Initialization: b�(1) = e�(1):2. Stagewise aggregation: For k = 2; :::;Kb�(k) := ke�(k) + (1� k)b�(k�1);with the mixing parameter k de�ned for some � > 0 and a kernel Kag(�) ask = Kag�m(k)=��; m(k) := NkK(e�(k); b�(k�1))3. Final Estimate: b� = b�(K) .The idea behind the proedure is quite simple. We start with the \weakest" estimatee�(1) having the smallest degree of loality but the largest variability of order 1=N1 .Next we onsider estimates with larger values Nk . Every next estimate e�(k) isompared with the previously onstruted estimate b�(k�1) . If the di�erene is notsigni�ant then the new estimate b�(k) basially oinides with e�(k) . Otherwise theproedure essentially keeps the previous value b�(k�1) . For measuring the di�erenebetween estimates, we apply the penalty m(k) := NkK(e�(k); b�(k�1)) as explained inRemark 2.Remark 2. If Kag(�) is the uniform kernel on [0; 1℄ then k is either zero or onedepending on the value m(k) . This easily yields by indution arguments that the�nal estimate oinides with one of the \weak" estimates e�(k) . In this ase ourmethod an be onsidered as a pointwise model seletion method.8



3.1 Examples of sequenes of loal likelihood estimatesA sequene of \weak" loal likelihood estimates at point x is uniquely de�ned by theweights w(k)i (x) , k = 1; :::;K . We use mainly two weighting shemes, orrespondingto two possible loalization methods: loalization by a kernel and loalization by ak -nearest neighbor window.In the ase of kernel weights we employ Epanehnikov kernel Klo(x) = (1 � x2)+and de�ne weights at point x asw(k)i (x) := Klo(�(x;Xi)=hk); k = 1; :::;K;where hk is an exponentially inreasing sequene of bandwidths with hk=hk�1 = a .Here h1 and a an be treated as parameters of the proedure. It easy to see thatthe above hoie of hk delivers an exponentially inreasing sequene of Nk underusual ondition on the design X1; : : : ;Xn . Suh kind of loal likelihood sequenesis eÆient only in the ase of a low dimensional design spae X .For a given k , a k -NN window U(x) is taken to ontain k nearest neighbors ofthe point x . In this ase w(k)i (x) := 1��(x;Xi) � �(k)�where �(1) � �(2) � : : : � �(n) is the ordered sequene of the distanes �i :=�(x;Xi) . A sequene of integer numbers kj = [aj�1k1℄; j = 1; :::;K with some�xed initial number k1 uniquely determines an exponentially inreasing sequenefNjg . Loal likelihood estimates with the k -NN loalization sheme are partiularyinteresting for the lassi�ation problem in high dimensions.Sometimes a hybrid sheme with w(k)i (x) = Klo(�i=�(k)) an be useful.3.2 Choie of parametersKernel Kag : The kernel Kag should satisfy 0 � Kag � 1 and should be supportedon [0; 1℄ . Our default hoie is the triangle kernel Kag(u) = (1� u)+ .Parameters de�ning the weighting sheme: The initial bandwidth and initialnumber of nearest neighbors should be reasonable small. In most examples we �xsmall natural k1 and selet h1 = =n with some  ensuring that every ball withenter Xi and radius h1 ontain at least k1 points. The parameter a ontrols the9



growth rate of the loal neighborhoods. It should be seleted to provide that themean number of points inside a ball Bhk(x) with radius hk grows exponentiallywith k for some fator agrow > 1 . If Xi are from IRd , then in the ase of kernelweights the parameter a an be taken as a = a1=dgrow . For the k -NN weights wejust take a = agrow . Our default hoie is agrow = 1:25 . Any value in the range[1:1; 1:3℄ an be taken as well. The maximal bandwidth hK an be taken large sothat every ball BhK (x) ontains the whole sample for the last iteration K . Thegeometri grow of the parameter h or of the number of nearest neighbors ensuresthat the total number of iterations is typially bounded by C log(n) for some �xedonstant C .Parameter � : The most important parameter of the proedure is � whih salesthe statistial penalty m(k) . Small values of � lead to overpenalization and ahigh variability of the resulting estimate. Large values of � may result in loss ofadaptivity of the method and oversmoothing. In some sense this parameter is similarto the wavelet threshold applied in a nonlinear wavelet transform.A reasonable way to de�ne the parameter � for spei� appliations is based on the\monotoniity ondition". This ondition means that in a homogeneous situation�(Xi) � � , the mixing parameter k is lose to one for eah 1 � k � K . This wouldlead to an aggregated estimate b� whih essentially oinides with e�(K) . Therefore,one an adjust the parameter � simply seleting by Monte-Carlo simulations theminimal value of � providing a presribed probability of getting K � 1 for para-metri model �(x) � � . A theoretial justi�ation is given by Proposition 7.1,that laims that the hoie � = C� log n with a suÆiently large C� yields the\monotoniity" ondition whatever the parameter � or the sample size n is.Note that at the end of the iteration proess the strong overlapping of the modelsW (k) and W (k�1) auses a high orrelation between the estimates e�(k) and b�(k�1) .This suggests to take a relatively large value of � in the beginning and derease itwith iterations until a lower bound, say �0 is reahed. This leads to the followingproposal: �k = maxf�1 � �2 log h(k); �0g for some �0; �1 and �2 . Our defaulthoie whih is used in all examples below is �1 = 3 and �0 = 0:05�1 .10
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Figure 1: Simulated data sets together with SSA estimates (top row) and Box-Plotsof MAE for SSA and penalized ubi smoothing splines (bottom row) for Example1.4 Appliation to regressionThis setion illustrates how the SSA proedure an be used in the univariate regres-sion set-up by means of two simulated examples. The data are generated as (Xi; Yi)with Yi = f(Xi) + �"i for i = 1; : : : ; n . The sample size is n = 500 . The pointsXi are equidistant on (0; 1) . Errors "i are i.i.d. standard Gaussian. The errorvariane �2 is unknown and estimated from the data.For omparison we use a penalized ubi smoothing spline, with smoothing param-eter determined by generalized ross validation. See Hekman and Ramsey (2000)for details. 11



Example 1. Our �rst example uses the pieewise smooth funtionf1(x) = 8>>>>>><>>>>>>:8x x < 0:125;2 � 8x 0:125 � x < 0:25;44(x � 0:4)2 0:25 � x < 0:55;0:5 os(6�(x� 0:775) + 0:5 0:55 � x:The upper row of Figure 1 shows plots of the �rst data set for � = 0:1 and 0:2 ,respetively, together with the estimate obtained by SSA with default parametersand hK = 1 . The bottom row reports the results in form of box-plots of MeanAbsolute Error (MAE) obtained for the two proedures in 500 simulation runs.Example 2. In a seond example we onsider the following smooth funtionf2(x) = sin� 2:4�x+ 0:2� ; x 2 [0; 1℄:Figure 2 shows the results for the funtion f2 .In both examples SSA learly outperforms penalized smoothing splines in terms ofglobal mean averaged risk.5 Appliation to nonparametri density estima-tionSuppose that observations Z1; : : : ; ZL are sampled independently from some un-known distribution P on IRd with density f(x) . The problem of adaptive estima-tion of f an be suessfully attaked by the SSA method. Here we onsider thease of small or moderate d , e.g. d � 3 .Without loss of generality we suppose that the observations are loated in the ube[0; 1℄d . We do not assume that f is ompatly supported or that f is boundedaway from zero on [0; 1℄d . As a �rst step we apply a binning proedure, see e.g. Fanand Marron (1994). Let the interval [0; 1℄ be split into M equal disjoint intervals oflength Æ = 1=M . Then the ube [0; 1℄d an be split into n = Md nonoverlappingsmall ubes with the side length Æ , whih we denote by J1; : : : ; Jn . Let Xi be theenter point of the ube Ji and let Yi be the number of observations lying in thei th ube Ji . The pairs (Xi; Yi) for i = 1; : : : ; n an be viewed as new observations.12
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Figure 2: One sample and the SSA estimate (top), Box-Plots of MAE for SSA andpenalized ubi smoothing splines (bottom) for Example 2.The joint distribution of Y1; : : : ; Yn is desribed by the multinomial law. This modelan be very well approximated by the Poisson model with independent observationsYi having Poisson distribution with intensity parameter �i = Lpi = LP (Ji) .If the value �i has been estimated by e�i then the target density f is estimated atXi as ef (Xi) = ne�iÆPnj=1 e�j .For estimating the values �i from the \observations" (Xi; Yi) we apply the SSAproedure with the loal Poisson family from Example 3. In addition to the standardparameter set, we need to speify the bin length Æ . A reasonable hoie is Æ = =Kwhere K is the smallest integer satisfying Kd � L and  � 1 . The proedureapplies even if  is small and many bin ounts Yi are zero. For omparison we alsoomputed the kernel density estimates (KDE) with Epanehnikov kernel and thebandwidth minimizing the estimated Mean Absolute Error (MAE).Example 1. We test our proedure for two univariate normal mixture densities13



taken from the set of 15 densities provided by Marron and Wang (1992). Wegenerate in eah ase n = 500 observations. In the upper row of Figure 3 we show
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KDEFigure 3: Top: SSA estimates from 500 observations (dashed line) and true densityurves (solid line). Bottom: pointwise MAE for SSA and the kernel density estimatesbased on 500 simulations.typial realizations of the densities estimates by SSA (dashed line) obtained from500 observations using a regular grid with interval-length Æ = 0:001 and range(�4:1; 4:1) . The true densities (solid line) are given for omparison. The maximalbandwidth was hosen hK = 3 . The plots in the bottom row show the pointwisemean average error (MAE) for SSA and kernel density estimates.Example 2. In this example we onsider Old Faithful Geyser data (Azzalini andBowman, 1990), (xt; yt) , where xt measures the waiting time between suessiveeruptions of the geyser, and yt measures the duration of the subsequent eruption.Figures 4(left) and 4(enter) displays histograms of these two variables. It is worthnoting that the both are ertainly non-normal. The ommon feature of interest is14



the presene of two modes. One group of eruptions is only 2 minutes in duration,while the other averages over 4 minutes in duration. Likewise, the waiting timebetween eruptions lusters into two groups, one less than an hour and the othergreater than one hour. The distribution of eruption durations appears to be amixture of two normal densities, but the distribution of the waiting times appearsmore ompliated.
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Figure 4: Marginal histograms (left and enter) and the satter plot (right) for theOld Faithful Geyser data set.Figure 4(right) presents the satter diagrams of (xt; yt) . The important featureof the underlying distribution is the presene of three modes. One an also easilyreognize two well-separated lusters on Figure 4(right), short waiting periods areassoiated with long eruption durations. It is therefore desirable that the estimate ofthe density preserves the above features. Upper panel of Figure 5 shows respetivelyontour and perspetive plots of the density estimate obtained by SSA proedure.The bottom row shows the same graphs for the estimate obtained by 2D BinnedKernel Density Estimation proedure (KernSmooth pakage in R) with suggestedbandwidths. We see that the SSA density estimate underpin very well the threemode struture of the underlying data and separates two lusters, while the KDElooses the luster struture. 15
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Figure 5: Contour and perspetive plots of density estimates obtained by SSA pro-edure (top) and Bivariate Kernel Smoothing (bottom).6 Appliation to lassi�ationOne observes a training sample (Xi; Yi) , i = 1; : : : ; n , with Xi valued in a Eu-lidean spae x = IRd with known lass assignment Yi 2 f0; 1g . Our objetiveis to onstrut a disrimination rule assigning every point x 2 x to one of thetwo lasses. The lassi�ation problem an be naturally treated in the ontext of abinary response model. It is assumed that eah observation Yi at Xi is a Bernoullir.v. with parameter �i = �(Xi) , that is, P (Yi = 0jXi) = 1 � �(Xi) and P (Yi =1jXi) = �(Xi) . The \ideal" Bayes disrimination rule is �(x) = 1 (�(x) � 1=2) .Sine the funtion �(x) is usually unknown it is replaed by its estimate b� . If thedistribution of Xi within the lass k has density fk then�i = �1f1(Xi)=(�0f0(Xi) + �1f1(Xi)):16



where �k the prior probability of k th population k = 0; 1 .Nonparametri methods of estimating the funtion � are typially based on loalaveraging. Two typial examples are given by the k -nearest neighbor ( k -NN)estimate and the kernel estimate. For a given k , de�ne for every point x in x thesubset Dk(x) of the design X1; : : : ;Xn ontaining the k nearest neighbors of x .Then the k -NN estimate of �(x) is de�ned by averaging the observations Yi overDk(x) : e�(k)(x) = k�1 XXi2Dk(x)Yi :The de�nition of the kernel estimate of �(x) involves a univariate kernel funtionK(�) and the bandwidth h :e�(h)(x) = nXi=1 K ��(x;Xi)h �Yi. nXi=1 K ��(x;Xi)h � :Both methods require the hoie of a smoothing parameter.The SSA method anbe viewed as an extension of both methods using the aggregation idea. Namely, forestimating the funtion � at the points X1; : : : ;Xn we an diretly apply the SSAproedure to the sequene of k -NN (resp. kernel) estimates with an exponentiallyinreasing number of nearest neighbors (resp. bandwidth).Example 1. In this example we onsider the lassi�ation problem for two lasswith densities f0(x) and f1(x) given by two omponent normal mixtures:f0(x) = 0:2�(x; (�1; 0); 0:5I2) + 0:8�(x; (1; 0); 0:5I2)f1(x) = 0:5�(x; (0; 1); 0:5I2) + 0:5�(x; (0;�1); 0:5I2)where �(�;�;�) is the density of multivariate normal distribution with mean ve-tor � and ovariane matrix � , I2 means the 2 � 2 unit matrix. We run 10simulations with 100 observations for eah lass in the training set and another100 in the testing set. SSA proedure was implemented with kernel weights andparameters h0 = 0:1 , hK = 3 . Two other lassi�ation methods, k -NN and kernellassi�ers, are applied to the same data set. Figure 6 shows the dependene of themislassi�ation error for these lassi�ers on the orresponding smoothing parame-ters. The mislassi�ation errors for SSA and for the Bayes lassi�ers are given foromparison. 17
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Figure 6: Mislassi�ation errors as a funtions of the main smoothing parametersfor k -NN (right) and kernel (left) lassi�ers. SSA and Bayes mislassi�ation errorsare given as a referene lines. Top: Example 1 (dimension 2). Bottom: Example 2(dimension 10).Example 2. We now onsider the same example but with added 8 independentN (0; 1) distributed nuisane omponents, so that now Xi = (X1i ; ::;X10i ) with(X1i ;X2i ) � flass(i); (X3i ; ::;X10i ) � N ((0; :::; 0| {z }8 ); I8):The SSA proedure is applied using k -NN weights with the number of nearestneighbors exponentially inreasing from 5 to 50 . The results are given in thebottom row of Figure 6. We observe that although the quality of the SSA lassi�erhas substantially dereased ompared to the dimension independent Bayes errorrate, it performs as good as the best k -NN or kernel lassi�er.Example 3. [BUPA liver disorders℄ We onsider the dataset sampled by BUPAMedial Researh Ltd. It onsists of 7 variables and 345 observed vetors. Thesubjets are single male individuals. The �rst 5 variables are measurements taken18
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aggregated estimate b� : \monotoniity" and \stability". \Monotoniity" an beviewed as the orale result in the homogeneous situation. In this ase the oralehoie would be the estimate with the largest value Nk , that is, the last estimatee�(K) in the family fe�(k)g . The \monotoniity" property means that at every step ofthe proedure the new estimate e�(k) will be taken with the weight k lose to one,and hene, the aggregated estimate b�(k) is lose to the loal likelihood estimate e�(k) .The \monotoniity" property an be naturally extended to a nearly homogeneousase, for all steps k for whih the mean value �(k) = Piw(k)i �i=Piw(k)i is stilllose to the true value � = �(x) . The \monotoniity" ensures that the quality ofestimation improves and on�dene bounds for b�(k) beome tighter as the numberof iterations inreases provided that the near homogeneity is not violated. Finally,the \stability" property ensures that the quality gained under loal homogeneitydue to \monotoniity" will be kept for the �nal estimate.Throughout this hapter � stands for the root of equationKag(�) = (1� ��)=(1 � ��=2); (7.1)where �� omes from A3.7.1 Behavior under homogeneityFirst we onsider the homogeneous situation with the onstant parameter value�(x) = � and present some suÆient ondition for the \monotoniity" result.Proposition 7.1. Assume A1 through A3 and let �(�) � � . Let the parameter �of the proedure ful�ll � = C� log(n) with a onstant C� suh that with � = 2C� � ��1{2�p�=�� + 1�2: (7.2)Then the last step estimate b� = b�(K) ful�llsP �K(b�; �) > � log(n)=NK� � 2K=n: (7.3)Proof. De�ne A(k) = fNk K(e�(k); �) � log(n)g:Theorem 2.1 applied with z = log(n) yields in the homogeneous situationP �NkK(e�(k); �) > log(n)� � 2e� log(n):20



Therefore P (A(k)) � 1 � 2=n . This obviously implies that P �A� � 1 � 2K=nwhere A is the intersetion of the sets A(k) : A = Tk�K A(k) . We now show thatK(b�(k); �) � � log(n)=Nk on A for all k � K whih implies the assertion. Theproof utilizes the following simple \metri like" property of K1=2(�; �) .Lemma 7.2. Under ondition A2 it holds for every pair �0; �00K1=2(�0; �00) � {K1=2(�0; �) + {K1=2(�00; �):Also, for any sequene �0; �1; : : : ; �m ,K1=2(�0; �m) � { mXl=1 K1=2(�l�1; �l):Proof. Introdue the new parameter � = C(�) and de�ne D(�) = B(�) = B(C�1(�)) .For any �1 � �2 it holdsK(�1; �2) = D(�2)�D(�1)� (�2 � �1)D0(�1) = 0:5j�2 � �1j2D00(e�)where e� 2 [�1; �2℄ and D00(�) = 1=I(�) and the results easily follow from A2.We prove the statement by indution in k . By de�nition, it holds on A for b�(1) =e�(1) that K(b�(1); �) � � log(n)=N1 . Now suppose that K(b�(k�1); �) � � log(n)=Nk�1 .We show that this and the ondition K�e�(k); �� � log(n)=Nk imply K(b�(k); �) �� log(n)=Nk . The mixing penalty m(k) = NkK(e�(k); b�(k�1)) ful�lls on A due toLemma 7.2, Assumption A3 and (7.1)m(k) � Nk{2�K1=2�b�(k�1); ��+K1=2�e�(k); ���2� Nk{2�p� log(n)=Nk�1 +plog(n)=Nk�2� {2�p�=�� + 1�2 log(n) � ��:This yields k = Kag(m(k)=�) � K(�) � (1 � ��)=(1 � ��=2) . Convexity of theKullbak-Leibler divergene K(u; v) w.r.t. the �rst argument implies on AK(b�(k); �) = K(ke�(k) + (1� k)b�(k�1); �)� kK(e�(k); �) + (1� k)K(b�(k�1); �)� k log(n)=Nk + �(1� k) log(n)=Nk�1� � log(n)�k=2 + (1 � k)=���ÆNk� � log(n)=Nkas required. 21



Remark 1. The aggregated estimate b�(k) is a onvex ombination of the �rst k\weak" estimates and an be represented in the formb�(k) = kXl=1 �(k)l e�(l); �(k)1 + :::+ �(k)k = 1;where �(k)l = lQkj=l+1(1 � j) . Under homogeneity every oeÆient l exeedswith a high probability the value (1 � ��)=(1 � ��=2) . Therefore, for any �xed l ,the mixing oeÆient �(k)l exponentially dereases as k inreases and the estimateb�(k) behaves as an exponential smoothing of e�l for l � k .7.2 Behavior under loal homogeneityIn the ase of loal homogeneity we also have "monotoniity" as long as the \bias"measured by K1=2(�(k); �) with �(k) := N�1k Pni=1w(k)i �i remains suÆiently small.Proposition 7.3. Assume A1 through A3. Let k� � K be suh thatmax1�k�k�K1=2(�(k); �) � Æplog(n)=Nk� (7.4)for some Æ > 0 . Let, a onstant � ful�llp�=2 � {p1 + �+ {Æ (7.5)where � is de�ned in Theorem 2.2. Let the parameter � of the proedure ful�ll� = C� log(n) with some onstant C� suh thatC� � ��1{2�p1 + �+p�=�� + Æ�2 : (7.6)Then it holds P �K(b�(k�); �) > � log(n)=Nk�� � 2k�=n: (7.7)Proof. De�ne for k � k�A(k) = fNkK(e�(k); �(k)) � (1 + �) log(n)gwhere � is a onstant from Theorem 2.2 and depending on { from Assumption A2only. Let also A = Tk�k� A(k) . Theorem 2.2 yieldsP �NkK(e�(k); �(k)) > (1 + �) log(n)� � 2e�(1+�) log(n)=(1+�) = 2=n:22



Therefore P (A) � 1 � 2k�=n . Now we hek by indution that K(b�(k�); �) �� log(n)=Nk on A for all k � k� .Theorem 2.2 implies (7.7) for the initial weak estimate e�(1) . Suppose for somek � k� that K(b�(k�1); �) � � log(n)=Nk�1 . It holds on the set A(k) by Lemma 7.2and (7.5)NkK�e�(k); �� � Nk {2 �K1=2�e�(k); �(k)�+K1=2��(k); ���2� Nk {2 �p(1 + �) log(n)=Nk + Æplog(n)=Nk�2� 0:5� log(n):The use of (7.6) yields in the similar waym(k) � Nk {2 �K1=2�e�(k); �(k)�+K1=2�b�(k�1); ��+K1=2��(k); ���2� Nk {2 log(n)�q(1 + �)ÆNk +q�ÆNk�1 + Æq1ÆNk�2 � ��:This in turn yields k = Kst(m(k)=�) � (1� ��)=(1� ��=2) and (7.7) follows in thesame line as (7.3) in the proof of Proposition 7.1.7.3 StabilityUnder the loal homogeneity it holds with high probability K(b�(k); �) � � log(n)=Nkas far as the estimation bias K1=2(�(k); �) remains small. If the bias starts to inreaseafter �rst k iterations, then the important stability property of the proedure is thatthe quality of estimation of order (log(n)=Nk)1=2 gained by the estimate b�(k) willnot be lost at further iterations.Proposition 7.4. Under A1 and A2, it holds for every k � KK�b�(k); b�(k�1)� � �ÆNk: (7.8)Moreover, under A1 through A3, it holds for every k0 with k < k0 � KK�b�(k0); b�(k)� � �ÆNk (7.9)with  = {2(1=p�� � 1)�2 .Remark 2. An interesting feature of this result is that it is ful�lled with probabilityone, that is, the ontrol of stability \works" not only with a high probability, italways applies. This property follows just from the onstrution of the proedure.23



Proof. By onvexity of the Kullbak-Leibler divergene K(u; v) w.r.t. the �rst ar-gument K�b�(k); b�(k�1)� � kK�e�(k); b�(k�1)�:If K�e�(k); b�(k�1)� � �=Nk , then k = 0 and (7.8) follows. Now, Assumption A2,Lemma 7.2 and Proposition 7.4 yieldK1=2�b�(k0); b�(k)� � { k0Xl=k+1K1=2�b�(l); b�(l�1)� � { k0Xl=k+1��=Nl�1=2:The use of Assumption A3 leads to the boundK1=2�b�(k0); b�(k)� � {��=Nk�1=2 k0Xl=k+1(��)(l�k)=2 � {p��(1�p��)�1��=Nk�1=2whih proves (7.9).Theorem 7.5. Let, for some k � K , the estimate b�(k) ful�llK�b�(k); �� � � log(n)=Nkwith some onstant � . Then it holds for the �nal estimate b� = b�(K)K�b�; �� � 0 log(n)=Nk;where 0 = {2 �pC� +p��2 with  = {2(1=�� � 1)�2 and C� = �= log(n) .Proof. Proposition 7.4 and Lemma 7.2 implyK�b�; �� � {2 �K1=2�b�(k); ��+K1=2�b�; b�(k)��2 � {2 �pC� +p��2 log(n)ÆNkand the assertion follows.Combining Theorem 7.5 and Proposition 2.2 yields the so alled "orale" inequalityCorollary 7.6. The following inequality holds for some onstant C � C({; ��; ��) :P �K1=2(b�; �) > Cminl �maxk�l K1=2(�(k); �) +plog(n)=Nl�� � 2K=n:Remark 3. The �rst term maxk�lK1=2(�(k); �) in the \orale" bound an be viewedas the upper bound for the bias of the estimate e�(k) while the seond term plog(n)=Nlbounds the stohasti omponent of e�(k) , so that the sum bounds the risk of theestimate e�(k) , f. Theorem 2.2. Therefore, the risk of the aggregated estimate orre-sponds to the minimal possible risk among the family fe�(k)g . Lepski, Mammen andSpokoiny (1997) established a similar result in the regression setup for the pointwiseadaptive Lepski proedure. 24



7.4 Rate of estimation under smoothness onditions on �(�) .Spatial adaptivityHere we onsider the ase when �(�) satis�es some smoothness onditions in a neigh-borhood of a �xed point x 2 X � IRd . More preisely, we assume that the error ofthe loal onstant approximation of �(�) by �(x) within this neighborhood is suf-�iently small. In addition we impose some mild regularity ondition on the designX1; : : : ;Xn . We show that under these assumptions the results of Proposition 7.3and Theorem 7.5 lead to the rate of estimation (log(n)=n)1=(2+d) whih oinidesup to a log-fator with the lassial nonparametri rate of estimation orrespondingto the smoothness degree one.Let x be �xed and � = �(x) , �i = �(Xi) for all i . Assume the following ondition(A4) For some � > 0 , the funtion �(�) ful�llsK1=2(�i; �) � L� 8Xi 2 B�(x):Here Bh(x) means the ball of radius h entered at x . In addition, we assumethat for every k the weights w(k)i = w(k)i (x) de�ning the estimate e�(k)(x) aresupported on Bhk(x) where the sequene of bandwidths hk grows exponentiallyand the number Nk of design points in Bhk(x) is nearly proportional to its volume.(A5) There exists a sequene fhkg with hk = ahk�1 for some a > 1 suh that theweights fw(k)i (x)g satisfyw(k)i (x) = 0 if Xi 62 Bhk(x):(A6) For some positive onstants {1 � {2 and any k � K it holds{1 � Nk=(nhdk) � {2:Theorem 7.7. Let h = �L2n= log(n)��1=(2+d) . Let Assumptions A1, A2, A4, A5and A6 be ful�lled with � = h with some 0 <  � 1 and h1 � � � hK . If theparameter � ful�lls � � C� log n , with C� = C�({; ��) , thenP�K1=2�b�; �� > C1Ld=(2+d)(log(n)=n)1=(2+d)� � 2K=n (7.10)where C1 means a �xed onstant depending on { , �� , �� , {1 , {2 , � and a only.25



Remark 4. The rate of estimation given in Theorem 7.7 oinides with the optimalrate of estimation for the funtion smoothness lass of degree one up to a log-fator.Moreover, the rate is optimal for the problem of adaptive estimation at a point, f.Lepski, Mammen and Spokoiny (1997). It was also shown in that paper that thisproperty automatially leads to rate optimality in the Sobolev and Besov funtionlasses B1p;q .Remark 5. If the weights w(k)i satisfy Pi(Xi � x)wi(x) � 0 then the rate resultan be extended to Besov funtion lasses Bsp;q with s 2 [1; 2℄ . The latter onditionon the weights is easy to hek for the ase of kernel weights for a regular designand a symmetri ontinuous kernel.Proof. Let h1 ful�ll h1 � h with some onstant  � 1 whih we speify below.If k is a maximal index suh that hk � h then A4 implies for every Xi 2 Bhk (x)that K1=2��i; �� � Lh . The use of A6 yieldsNkK��i; �� � L2{22+dnh2+d = {22+d log(n):Convexity of K(�; �) implies (7.4) for Æ = ({22+d)1=2 and all k� � k . If  issuÆiently small then Theorem 7.3 applies yielding with a high probability thefollowing auray of estimating � by b�(k) :K�b�(k); �� � � log(n)ÆNk � � log(n){1nhdk :Sine hk � h=a , it holds with some �xed onstant C2 thatK1=2�b�(k); �� � C2L2d=(2+d)�log(n)=n�2=(2+d):By Theorem 7.5, the same rate of estimation holds for the �nal estimate b� .8 Some exponential bounds for exponential fam-iliesThis setion presents some general results for the loal exponential family model.The onsidered exponential family P = (P� ; � 2 � � IR) is desribed by thefuntions C(�) and B(�) , with p(y; �) = dP�=dP (y) = p(y) exp (C(�)y �B(�))and E�Y = R yp(y; �)dP (y) = � for all � 2 � , see Setion 2.3.26



We assume the observation Yi to be P�i -distributed with �i depending on loa-tion Xi . Let also a loal model W be desribed by the weights wi 2 [0; 1℄ for i =1; : : : ; n . The orresponding log-likelihood is de�ned by L(W; �) =Pi log p(Yi; �)wi .We also denote L(W; �; �0) = L(W; �)�L(W; �0) for every pair �; �0 . The loal MLEb� is given as b� = Pni=1 wiYiÆPni=1wi . We use the representation b� = S=N withS =Pni=1wiYi , N =Pni=1wi and denote � = N�1Pni=1wi�i .The result given below bounds in probability the expression L(W; b�; �) . It is on-venient to introdue the parameter � = C(�) and de�ne � = C(�) and D(�) =B(�) = B(C�1(�)) . Sine C 0(�) > 0 , the new parameter � is uniquely de�ned.By simple analysis D0(�) = � = C�1(�) and D00(�) = 1=C 0(�) = 1=I(�) =1=I(C�1(�)) . Moreover, K(�1; �2) = D(�2) � D(�1) � (�2 � �1)D0(�1) is theKullbak-Leibler distane between two parametri distributions orresponding to theparameters �1 and �2 . In what follows we use the notation q(uj�) = K(�; �+u) =D(� + u)�D(�) � uD0(�) .Theorem 8.1. Let the Fisher information I(�) = C 0(�) be positive on � . For agiven z � 0 , let U(W; z) be the set of solutions u of equation q(uj�) = R u0 xD00(�+x)dx = z=N . If there is some � > 0 suh that for all � 2 (0; 1℄ and all u 2 U(W; z)q(�w`�uj�`) � (1 + �)w`�2q(uj�); ` = 1; : : : ; n; (8.1)then P �L(W; b�; �) > z� = P �NK(b�; �) > z� � 2e�z=(1+�):Remark 1. The ondition (8.1) an be easily heked in many partiular situations.We give two typial examples. The �rst one orresponds to the homogeneous asewhen all �i oinide with their mean � . Then (8.1) is ful�lled automatially with� = 0 . Indeed the funtion q(�j�) satis�es q0(uj�) = D0(� + u) � D0(�) andq00(uj�) = D00(� + u) = 1=I(C�1(� + u)) > 0 and thus, it is onvex. Sine alsoq(0j�) = 0 , it holds q(waj�) � wq(aj�) for every w 2 [0; 1℄ and every a implying(8.1) with � = 0 and arbitrary u . This speial ase was already stated as a separateresult in Theorem 2.1.The seond speial ase was mentioned in Theorem 2.2. Assume A1 and A2.The Taylor expansion yields that q(wuj�) = D(� + wu) � D(�) � wuD0(�) =1=2w2u2D00(�+�wu) for some � 2 [0; 1℄ . Under ondition A1 {�2 � D00(�)=D00(�) �{2 for all � and one easily gets for every u 2 U(W; z) that u2 � 2zI�=N . There-fore, the ondition (8.1) is easy to hek for 1 + � = {2 whih yields Theorem 2.227



as orollary of Theorem 8.1. Moreover, only the loal variability of the Fisher infor-mation I(�) on the support of the loal model W is important so the value � istypially lose to zero.Proof of Theorem 8.1 The log-likelihood ratio an be rewritten for the newparameter � asL(W; �; �) = L(W;�; �) = (� � �)S �N�D(�) �D(�)�:The MLE b� of the parameter � is de�ned by maximizing L(W;�; �) , that is,b� = argsup� L(W;�; �) .Lemma 8.2. For given z , there exist two values �� > � and �� < � suh thatfL(W; b�; �) > zg � fL(W;��; �) > zg [ fL(W;��; �) > zg:Proof. It holdsfL(W; b�; �) > zg = �sup� hS(� � �)�N�D(�) �D(�)�i > z�� �S > inf�>� z +N�D(�) �D(�)�� � � � [��S > inf�<� z +N�D(�) �D(�)�� � � �:The funtion f(u) = �z +N�D(� + u)�D(�)�� =u attains its minimum at somepoint u satisfying the equationz +N�D(� + u)�D(�)��NuD0(� + u) = 0or, equivalently, Z u0 xD00(� + x)dx = z=N:Therefore�S > inf�>� z +N�D(�) �D(�)�� � � � = �S > z +N�D(��)�D(�)�� � � � � fL(W;��; �) > zgwith �� = � + u . Similarly��S > inf�<� z +N�D(�) �D(�)�� � � � � fL(W;��; �) > zgfor some �� < � . 28



Now we bound the probability P (L(W;�; �) > z) for every � . Note that theequality � = D0(�) implies for u = � � �L(W;�; �) = u(S �N�)�N [D(� + u)�D(�) � uD0(�)℄ = u(S �N�)�Nq(uj�):Now the result of the theorem is a diret orollary of the following general assertion.Lemma 8.3. For every u and every zr(u; z) := logP (L(W;� + u; �) > z) � ��z � �Nq(uj�) + nX̀=1 q(u�w`j�`);r1(u; z) := logP (L(W;� + u; �) < �z � 2Nq(uj�))� ��z � �Nq(uj�) + nX̀=1 q(�u�w`j�`):Moreover, if u ful�lls (8.1) thenr(u; z) � �z=(1 + �); r1(u; z) � �z=(1 + �):Proof. We apply the Thebyhev exponential inequality: for every positive �r(u; z) � ��z � �Nq(uj�) + logE exp �u�(S �N�)� :The independene of the Y` 's implieslogE exp �u�(S �N�)� = logE exp nX̀=1 u�w`(Y` � �`)! = nX̀=1 logEeu�w`(Y`��`) :The equalities log R e�`y�D(�`)P (dy) = 0 and �` = D0(�`) yieldlogEea(Y`��`) = �a�` + log Z e(a+�`)y�D(�`)P (dy)= �aD0(�`) +D(�` + a)�D(�`) = q(aj�`):for every a � 0 and every ` � n . Thereforer(u; z) � ��z � �Nq(uj�) + nX̀=1 q(u�w`j�`):This inequality applied with � = (1 + �)�1 and (8.1) implyr(u; z) � ��z � �Nq(uj�) + (1 + �)�2 nX̀=1 w`q(uj�) � �z=(1 + �):Similarly r1(u; z) = P ��u(S �N�) +Nq(uj�) > z + 2Nq(uj�)�� ��z � �Nq(uj�) + nX̀=1 q(�u�w`j�`):and the lemma follows. 29



Conluding remarksThe paper o�ers a new approah to aggregating a set of \weak" estimates in a point-wise sequential manner. The proposed proedure is very natural and appealing andit applies in a uni�ed way to many di�erent statistial models and problems. Weestablished a number of remarkable theoretial properties of this proedure inlud-ing the orale result and spatial adaptivity. The results are stated under very mildonditions on the models and apply in a nonasymptoti way. The proedure alsodemonstrates a very reasonable numerial performane in all the simulated exam-ples we onsidered. In partiular, it outperforms the other smoothing methods wetried. Its pratial implementation and appliation to many pratial problems isstraightforward and does not require a �ne tuning of the parameters. The proedureapplies in a multidimensional ase for an arbitrary design.A small limitation of the proposed proedure is the simplest method of loal likeli-hood estimation based on the loal onstant approximation. A more sophistiatedloal polynomial approximation an deliver better results in the ase of estimatinga smooth funtion. An extension of the method to the loal polynomial regressionis straightforward. However, the general loal likelihood approah is more diÆultto study beause the losed form solution of the loal likelihood problem is notavailable. This extension is to be onsidered elsewhere.Referenes[1℄ Azzalini, A. and Bowman, A.W. (1990). A Look at Some Data on the Old FaithfulGeyser. Applied Statistis, 39 357365.[2℄ Bikel, P.J., C.A.J. Klaassen, Y. Ritov and J.A. Wellner (1998). EÆient and Adap-tive Estimation for Semiparametri Models, 1998, Springer.[3℄ Breiman, L. (1996). Staked regression. Mahine Learning, 24 49{64.[4℄ Cai, Z. Fan,J. and Li, R. (2000). EÆient estimation and inferene for varying oef-�ients models. J. Amer. Statist. Ass., 95 888{902.[5℄ Cai, Z. Fan, J. and Yao, Q. (2000). Funtional-oeÆient regression models for non-linear time series J. Amer. Statist. Ass., 95 941{956.[6℄ Catoni, O. (1999). �Universal�aggregation rules with exat bias bounds. Preprint.30



[7℄ Caroll, R.J., Ruppert, D, and Welsh, A.H. (1998). Nonparametri estimation via loalestimating equation. J. Amer. Statist. Ass., 93 214{227.[8℄ Efron, B., Tibshirani, R. (1996). Using speially designed exponential families fordensity estimation. Ann. Statist., 24, 2431{2461.[9℄ Fan, J., and and Gijbels, I. (1995). Data driven bandwidth seletion in loal polyno-mial �tting: variable bandwidth and spatial adaptation. J. Royal Statist. So. Ser.B, 57, 371{394.[10℄ Fan, J., Farmen, M. and and Gijbels, I. (1998). Loal maximum likelihood estimationand Inferene. J. Royal Statist. So. Ser. B, 60, 591{608.[11℄ Fan, J. and Gijbels, I. (1996). Loal polynomial modelling and its appliations. Chap-man & Hall, London.[12℄ Fan, J., Marron, J.S. (1994). Fast implementations of nonparametri urve estimators.J. Comp. Graph. Statist. 3 35{56.[13℄ Fan, J., Zhang, C. and Zhang, J. (2001). Generalized likelihood ratio statistis andWilks phenomenon. Ann. Statist. 29, 153{193.[14℄ Fan, J., Zhang, W. (1999). Statistial estimation in varying oeÆient models. Ann.Statist. 27 1491{1518.[15℄ Hastie, T.J. and Tibshirani, R.J. (1993). Varying-oeÆient models (with disussion).J. Royal Statist. So. Ser. B, 55 757{796.[16℄ Hastie, T.J., Tibshirani, R.J. and Friedman, J. (2001). The Elements of StatistialLearning. Springer.[17℄ Juditsky, A. and Nemirovski, A. (2000). Funtional aggregation for nonparametriestimation. Ann. Statist., 28 682{712.[18℄ Koo, J.-Y. and Kooperberg, C. (2000). Logspline density estimation for binned data.Statistis & Probability Letters 46, no. 2, 133{147.[19℄ Lepski, O., Mammen, E. and Spokoiny, V. (1997). Ideal spatial adaptation to inhomo-geneous smoothness: an approah based on kernel estimates with variable bandwidthseletion. Annals of Statistis, 25, no. 3, 929{947.[20℄ Li, J. and Barron, A. (1999). Mixture density estimation. In. S.A. Sola, T.K. Leen,and K.R. Mueller, editors, Advanes in Neural Inforamtion proeedings systems 12[21℄ Lindsay, J. (1974a). Comparison of probabbility distributions. J. Royal Statist. So.Ser. B 36, 38{47. 31



[22℄ Lindsay, J. (1974b). Constrution and omparison of statistial models. J. RoyalStatist. So. Ser. B 36, 418{425.[23℄ Loader, C. R. (1996). Loal likelihood density estimation. Aademi Press.[24℄ Marron, J. S., Wand, M. P. (1992). Exat mean integrated squared error.Ann. Statist.20 no. 2, 712{736[25℄ Rigollet, Ph. and Tsybakov, A.(2005) Linear and onvex aggregation of density esti-mators. Manusript.[26℄ Spokoiny, V. (1998). Estimation of a funtion with disontinuities via loal polynomial�t with an adaptive window hoie. Ann. Statist., 26 (1998) no. 4, 1356{1378.[27℄ Staniswalis, J.C. (1989). The kernel estimate of a regression funtion in likelihood-based models. Journal of the Amerian Statistial Assoiation, 84 276{283.[28℄ Tibshirani, J.R., and Hastie, T.J. (1987). Loal likelihood estimation. Journal of theAmerian Statistial Assoiation, 82 559{567.[29℄ Tsybakov, A. (2003) Optimal rates of aggregation. Computational Learning Theoryand Kernel Mahines. B.Sholkopf and M.Warmuth, eds. Leture Notes in Arti�ialIntelligene, 2777 Springer, Heidelberg, 303-313.[30℄ Yang, Y. (2001). Adaptive regression for mixing. Journal of the Amerian StatistialAssoiation, 96 574{588.[31℄ Yang, Y. (2004). Aggregating regression proedures to improve performane.Bernoulli 10 no. 1, 25{47
32


