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Abstra
tThe paper presents a new method of spatially adaptive lo
al likelihoodestimation for a broad 
lass of nonparametri
 models, in
luding e.g. theregression, Poisson and binary response model. Given a sequen
e of lo
allikelihood estimates whi
h we 
all "weak" estimates, the proposed methodyields a new aggregated estimate whose pointwise risk does not ex
eed thesmallest risk among all \weak" estimates up to some logarithmi
 multiplier.We establish a number of important theoreti
al results 
on
erning optimalityof the aggregated estimate and show a good performan
e of the pro
edure insimulated and real life examples.1 Introdu
tionThis paper o�ers a new method of spatially adaptive nonparametri
 estimationbased on aggregating a family of lo
al likelihood estimates. Lo
al likelihood ap-proa
h was intensively dis
ussed last years, see e.g. Tibshirani and Hastie (1987),Staniswalis (1989), Loader (1996). We refer to Fan, Farmen and Gijbels (1998) fora ni
e and detailed overview of lo
al maximum likelihood approa
h and related lit-erature. In parti
ular, the suggested method is very general and applies to manystatisti
al models in a uni�ed way. Similarly to usual nonparametri
 smoothing inregression or density framework, an important issues for lo
al likelihood modeling isthe 
hoi
e of lo
alization (smoothing) parameters. Di�erent types of model sele
tionte
hniques based on the asymptoti
 expansion of the lo
al likelihood are mentionedin Fan, Farmen and Gijbels (1998) whi
h in
ludes global and variable bandwidthsele
tion. However, the performan
e of estimators based on bandwidth sele
tion isoften rather unstable, see e.g. Breiman (1996). This suggests that in some 
ases,the attempt to identify the true lo
al model is not ne
essarily the right thing todo. One approa
h to redu
e variability in adaptive estimation is model mixing oraggregation. Yang (2004), Catoni (2001) among other suggested global aggregatedpro
edures that a
hieves the best estimation risks over the family of given \weak"1



estimates. Nemirovski (2000), Juditsky and Nemirovski (2000) developed for theregression set-up the aggregation pro
edures that a
hieves a risk within a multipleof log(n)=n of the smallest risk in the 
lass of all 
onvex 
ombinations of \weak"estimates. Tsybakov (2003) dis
ussed the asymptoti
 minimax rate for aggregation.Aggregation for density estimation has been investigated by Li and Barron (1999),Tsybakov (2005). A pointwise aggregation has not been yet 
onsidered to the bestof our knowledge.We propose a new approa
h towards lo
al likelihood modelling whi
h is based on theidea of the spatial (pointwise) aggregation of a family of lo
al likelihood estimates(\weak" estimates) e�(k) . The main idea is, given the sequen
e fe�(k)g to 
onstru
t ina data driven way the \optimal" aggregated estimate b�(x) separately at ea
h pointx . \Optimality" means that this estimate satis�es some kind of ora
le inequality,that is, its pointwise risk does not ex
eed the smallest pointwise risk among all\weak" estimates up to a logarithmi
 multiple.Our algorithm 
an be roughly des
ribed as follows. Let fe�(k)(x)g , k = 1; : : : ;K ,be a \nested" sequen
e of weak lo
al likelihood estimates at a point x ordereddue to de
reasing variability. A new aggregated estimate of �(x) is 
onstru
tedsequentially by mixing previously 
onstru
ted aggregated estimate b�(k�1) with the
urrent \weak" estimate e�(k) :b�(k) = 
ke�(k) + (1 � 
k)b�(k�1);where the mixing parameter 
k (whi
h may depend on the point x ) is de�ned us-ing a measure of statisti
al di�eren
e between b�(k�1) and e�(k) . In parti
ular, 
kis equal to zero if b�(k�1) lies outside the 
on�den
e interval around e�(k) . In viewof the sequential and poinwise nature of the algorithm, the suggested pro
edure is
alled Spatial Stagewise Aggregation (SSA). An important feature of the pro
edureproposed is that it is very simple and transparent and applies in a uni�ed mannerfor a big family of di�erent models like Gaussian, binary, Poisson regression, den-sity estimation, 
lassi�
ation et
. The pro
edure does not require any splitting ofthe sample as many other aggregation pro
edures do, 
f. Yang (2004). The SSApro
edure 
an be easily studied theoreti
ally. We establish pre
ise nonasymptoti
\ora
le" results whi
h apply under very mild 
onditions in a rather general set-up.We also show that the ora
le property automati
ally implies spatial adaptivity ofthe proposed estimate.The paper is organized as follows. Se
tion 2 des
ribes the 
onsidered model and2



our setup: varying 
oeÆ
ient exponential family. Se
tion 2.3 presents some usefulexponential inequalities for the la
k of �t statisti
 in 
ontext of lo
al likelihoodestimation. A detailed des
ription of the proposed method is given in Se
tion 3.Appli
ations to regression, density estimation and 
lassi�
ation are dis
ussed inSe
tions 4, 5, 6 respe
tively. Theoreti
al properties of the aggregation pro
edureare presented in Se
tion 7. Finally, some te
hni
al assertions and proofs about thevarying 
oeÆ
ient exponential family are 
olle
ted in Se
tion 8.2 Lo
al likelihood modelingThis se
tion des
ribes the 
onsidered model and states the problem. Suppose weare given independent random data Z1; : : : ; Zn of the form Zi = (Xi; Yi) . Hereevery Xi means a ve
tor of \features" or explanatory variables whi
h determinesthe distribution of the \observation" Yi . For simpli
ity we suppose that the Xi 'sare valued in the �nite dimensional Eu
lidean spa
e X = IRd and the Yi 's belongto Y � IR . An extension to the 
ase when both the Xi 's and Yi 's are valued insome metri
 spa
es is straightforward. The ve
tor Xi 
an be viewed as a lo
ationand Yi as the \observation at Xi ". Our model assumes that the distribution ofea
h Yi is determined by a �nite dimensional parameter � whi
h may depend onthe lo
ation Xi , � = �(Xi) . We illustrate this set-up by means of the few examples.Example 1. (Gaussian regression) Let Zi = (Xi; Yi) with Xi 2 IRd and Yi 2 IRfollowing the regression equation Yi = �(Xi) + "i with a regression fun
tion � andi.i.d. Gaussian errors "i � N (0; �2) .Example 2. (Inhomogeneous Bernoulli (Binary Response) model) Let againZi = (Xi; Yi) with Xi 2 IRd and Yi a Bernoulli r.v. with parameter �(Xi) , that is,P (Yi = 1 j Xi = x) = �(x) and P (Yi = 0 j Xi = x) = 1� �(x) . Su
h models arisein many e
onometri
 appli
ations, they are widely used in 
lassi�
ation and digitalimaging.Example 3. (Inhomogeneous Poisson model) Suppose that every Yi is val-ued in the set N of nonnegative integer numbers and P (Yi = k j Xi = x) =�k(x)e��(Xi)=k! , that is, Yi follows a Poisson distribution with parameter � = �(x) .This model is 
ommonly used in the queueing theory, it o

urs in positron emissiontomography, it also serves as an approximation of the density model, obtained by abinning pro
edure. 3



All the given examples are parti
ular 
ases of the varying 
oeÆ
ient exponentialfamily model, see Se
tion 2.2 for more details. Some further examples 
an be foundin Fan, Farmer and Gijbels (1998).Now we present a formal de�nition for our model. Let P = (P�; � 2 �) be a familyof probability measures on Y where � is a subset of the real line IR1 . We assumethat this family is dominated by a measure P and denote p(y; �) = dP�=dP (y) .We suppose that ea
h Yi is, 
onditionally on Xi = x , distributed with the densityp(�; �(x)) for some unknown fun
tion �(x) on X . The aim of the data-analysis isto infer on this fun
tion �(x) .In the parametri
 setup, when the parameter � does not depend on the lo
ation, thatis, the distribution of every \observation" Yi 
oin
ides with P� for some � 2 � theparameter � 
an be well estimated by the parametri
 maximum likelihood method:e� = argsup�2� nXi=1 log p(Yi; �):In the nonparametri
 varying 
oeÆ
ient framework, one usually applies the lo
allikelihood approa
h whi
h is based on the assumption that the parameter � is
onstant only within some neighborhood of every point x in the \feature" spa
eX . This leads to 
onsidering a lo
al model 
on
entrated in some neighborhood ofthe point x .2.1 Lo
alizationWe use lo
alization by weights as a general method to des
ribe a lo
al model. Let,for a �xed x , a nonnegative weight wi = wi(x) � 1 be assigned to the observationsYi at Xi , i = 1; : : : ; n . The weights wi(x) determine a lo
al model 
orrespondingto the point x in the sense that, when estimating the lo
al parameter �(x) , everyobservation Yi is used with the weight wi(x) . This leads to the lo
al (weighted)maximum likelihood estimatee�(x) = arginf�2� nXi=1 wi(x) log p(Yi; �): (2.1)We mention two possible ways of 
hoosing the weights wi(x) . Lo
alization by abandwidth is de�ned by weights of the form wi(x) = Klo
(li) with li = �(x;Xi)=hwhere h is a bandwidth, �(x;Xi) is the Eu
lidean distan
e between x and thedesign point Xi and Klo
 is a lo
ation kernel.4



Lo
alization by a window simply restri
ts the model to a subset (window) U =U(x) of the design spa
e whi
h depends on x , that is, wi(x) = 1(Xi 2 U(x)) .Observations Yi with Xi outside the region U(x) are not used when estimatingthe value �(x) . This kind of lo
alization arises e.g. in 
lassi�
ation by k -nearestneighbor method or in the regression tree approa
h.We do not assume any spe
ial stru
ture for the weights wi(x) , that is, any 
on�gu-ration of weights is allowed. In what follows we will identify a lo
al model in x bythe set W (x) = fw1(x); : : : ; wn(x)g and denoteL(W (x); �) = nXi=1 wi(x) log p(Yi; �):2.2 Lo
al likelihood estimation for an exponential familymodelThe examples given above 
an be 
onsidered as parti
ular 
ases of lo
al exponentialfamily distributions. This means that all measures P� from this family are domi-nated by a � -�nite measure P on Y and density fun
tions p(y; �) = dP�=dP (y) areof the form p(y; �) = p(y)eyC(�)�B(�) . Here C(�) and B(�) are some given nonde-
reasing fun
tions on � and p(y) is some nonnegative fun
tion on Y . The parame-ter � is de�ned by the equations R p(y; �)P (dy) = 1 and E�Y = R yp(y; �)P (dy) =� whi
h implies the relation B0(�) = �C 0(�) .The Kullba
k-Leibler divergen
e K(�; �0) = E� log�p(Y; �)=p(Y; �0)� for �; �0 2 �and the Fisher information I(�) := E�jp0�(Y; �)=p(Y; �)j2 satisfyK(�; �0) = ��C(�)� C(�0)�� �B(�)�B(�0)�; I(�) = C 0(�):Table 1 provides the Kullba
k-Leibler distan
e K(�; �0) for the examples from Se
-tion 2.Next, for a given set of weights W = fw1; : : : ; wng with wi 2 [0; 1℄ , it holdsL(W; �) = nXi=1 wi log p(Yi; �) = SC(�)�NB(�) +Npwhere N = Pni=1wi , S = Pni=1 wiYi and p = N�1Pni=1wip(Yi) . Maximizationof this expression w.r.t. � leads to the estimating equation NB0(�)� SC 0(�) = 0 .This and the identity B0(�) = �C 0(�) yield the lo
al MLEe� = S=N = nXi=1 wiYi� nXi=1 wi :5



Table 1: K(�; �0) and I(�) for the examples from Se
tion 2.Model K(�; �0) I(�)Gaussian regression (� � �0)2=(2�2) ��2Bernoulli model � log(�=�0) + (1� �) logf(1� �)=(1� �0)g ��1(1� �)�1Poisson model � log(�=�0)� (� � �0) 1=�This also implies L(W; e�) = N�e�C(e�)�B(e�) +Np	 and, for any � 2 �L(W; e�; �) := L(W; e�)� L(W; �) = NK(e�; �):2.3 Exponential Inequalities for the La
k of Fit Statisti
Here we present some exponential inequalities for the \la
k of �t statisti
" L(W; e�; �)whi
h apply for arbitrary weights and arbitrary sample size.We assume some regularity of the 
onsidered parametri
 family P .(A1) P = (P�; � 2 � � IR) is an exponential family with a one-dimensionalparameter.(A2) � is 
ompa
t and the Fisher information I(�) ful�llsjI(�0)=I(�00)j1=2 � {; �0; �00 2 �:Our �rst result 
an be regarded as a nonasymptoti
 lo
al version of the Wilks the-orem.Theorem 2.1. Let W = fwig be a lo
al model su
h that maxiwi � 1 . If �(�) � �then for any z > 0P (L(W; e�; �) > z) = P �NK(e�; �) > z� � 2e�z :Remark 1. The lo
al likelihood estimate e� does not 
hange if all the weights wiare multiplied by the same 
onstant 
 , see (2.1). However, the la
k of �t statisti
L(W; e�; �) will be multiplied by this 
onstant. The result of Theorem 2.1 
ontinuesto apply after this multipli
ation provided that the 
ondition maxiwi � 1 stillholds. The strongest result 
orresponds to the 
ase with maxi wi = 1 .6



Remark 2. Condition A2 ensures that the Kullba
k-Leibler divergen
e K ful�llsK(�0; �) � Ij�0 � �j2 for any point �0 in a neighborhood of � , where I is themaximum of the Fisher information over this neighborhood. Therefore, the resultof Theorem 2.1 guarantees with a high probability that je� � �j � CN�1=2 . Inother words, the value N�1 
an be used to measure variability of the estimate e� .Theorem 2.1 
an be used for 
onstru
ting the 
on�den
e interval of the parameter � .Indeed, under homogeneity, the true parameter value � lies with a high probabilityin the region f�0 : NK�e�; �0� � zg for a suÆ
iently large z .Theorem 2.1 
an be extended to the 
ase when �i � � for all Xi with positiveweights wj . In this 
ase the \la
k of �t statisti
" between the lo
al likelihoodestimate e� and the 
orresponding mean value � := Ee� = N�1Pni=1 wi�i with�i = �(Xi) 
an also be bounded with high probability.Theorem 2.2. Let W = fwig be a lo
al model su
h that maxiwi � 1 . If thefamily P satis�es A1 and A2, then there is � � 0 depending on { only su
h thatfor every z > 0P �L(W; e�; �) > z� = P �NK(e�; �) > z� � 2e�z=(1+�):More details and proofs 
an be found in Se
tion 9.3 Des
ription of the methodLet a point x 2 X be �xed and let fe�(k)(x); k = 1; :::;Kg be a sequen
e of lo
allikelihood estimates of � = �(x) of the typee�(k)(x) = nXi=1 w(k)i Yi� nXj=1 w(k)j ; w(k)i = w(k)i (x) 2 [0; 1℄:We say that the sequen
e fe�(k)g is stri
tly nested, if(A3) for some 
onstants ��; �� with 0 < �� � �� < 1 , the values Nk =Pnj=1w(k)jsatisfy for every 2 � k � K�� � Nk�1=Nk � ��:Some typi
al examples of stri
tly nested sets of estimates are given below in Se
-tion 3.1. 7



Remark 1. Due to Theorems 2.1 and 2.2 the value 1=Nk measures the variability ofthe estimate e�(k) in the homogeneous or nearly homogeneous 
ases. The 
onditionA3 means that variability of the estimates e�(k) de
reases with k .Given the set of stri
tly nested \weak" estimates e�(k) = e�(k)(x) , we 
onsider a larger
lass of their 
onvex 
ombinations b� :b� = KXk=1 �ke�(k); �1 + ::::+ �K = 1; �k � 0;where the mixing 
oeÆ
ients �k whi
h may depend on the point x . We aim at
onstru
ting a new estimate b� in this 
lass whi
h performs as good as the best onein the original family fe�(k)(x)g . This estimate is 
omputed sequentially via thefollowing algorithm.1. Initialization: b�(1) = e�(1):2. Stagewise aggregation: For k = 2; :::;Kb�(k) := 
ke�(k) + (1� 
k)b�(k�1);with the mixing parameter 
k de�ned for some � > 0 and a kernel Kag(�) as
k = Kag�m(k)=��; m(k) := NkK(e�(k); b�(k�1))3. Final Estimate: b� = b�(K) .The idea behind the pro
edure is quite simple. We start with the \weakest" estimatee�(1) having the smallest degree of lo
ality but the largest variability of order 1=N1 .Next we 
onsider estimates with larger values Nk . Every next estimate e�(k) is
ompared with the previously 
onstru
ted estimate b�(k�1) . If the di�eren
e is notsigni�
ant then the new estimate b�(k) basi
ally 
oin
ides with e�(k) . Otherwise thepro
edure essentially keeps the previous value b�(k�1) . For measuring the di�eren
ebetween estimates, we apply the penalty m(k) := NkK(e�(k); b�(k�1)) as explained inRemark 2.Remark 2. If Kag(�) is the uniform kernel on [0; 1℄ then 
k is either zero or onedepending on the value m(k) . This easily yields by indu
tion arguments that the�nal estimate 
oin
ides with one of the \weak" estimates e�(k) . In this 
ase ourmethod 
an be 
onsidered as a pointwise model sele
tion method.8



3.1 Examples of sequen
es of lo
al likelihood estimatesA sequen
e of \weak" lo
al likelihood estimates at point x is uniquely de�ned by theweights w(k)i (x) , k = 1; :::;K . We use mainly two weighting s
hemes, 
orrespondingto two possible lo
alization methods: lo
alization by a kernel and lo
alization by ak -nearest neighbor window.In the 
ase of kernel weights we employ Epane
hnikov kernel Klo
(x) = (1 � x2)+and de�ne weights at point x asw(k)i (x) := Klo
(�(x;Xi)=hk); k = 1; :::;K;where hk is an exponentially in
reasing sequen
e of bandwidths with hk=hk�1 = a .Here h1 and a 
an be treated as parameters of the pro
edure. It easy to see thatthe above 
hoi
e of hk delivers an exponentially in
reasing sequen
e of Nk underusual 
ondition on the design X1; : : : ;Xn . Su
h kind of lo
al likelihood sequen
esis eÆ
ient only in the 
ase of a low dimensional design spa
e X .For a given k , a k -NN window U(x) is taken to 
ontain k nearest neighbors ofthe point x . In this 
ase w(k)i (x) := 1��(x;Xi) � �(k)�where �(1) � �(2) � : : : � �(n) is the ordered sequen
e of the distan
es �i :=�(x;Xi) . A sequen
e of integer numbers kj = [aj�1k1℄; j = 1; :::;K with some�xed initial number k1 uniquely determines an exponentially in
reasing sequen
efNjg . Lo
al likelihood estimates with the k -NN lo
alization s
heme are parti
ularyinteresting for the 
lassi�
ation problem in high dimensions.Sometimes a hybrid s
heme with w(k)i (x) = Klo
(�i=�(k)) 
an be useful.3.2 Choi
e of parametersKernel Kag : The kernel Kag should satisfy 0 � Kag � 1 and should be supportedon [0; 1℄ . Our default 
hoi
e is the triangle kernel Kag(u) = (1� u)+ .Parameters de�ning the weighting s
heme: The initial bandwidth and initialnumber of nearest neighbors should be reasonable small. In most examples we �xsmall natural k1 and sele
t h1 = 
=n with some 
 ensuring that every ball with
enter Xi and radius h1 
ontain at least k1 points. The parameter a 
ontrols the9



growth rate of the lo
al neighborhoods. It should be sele
ted to provide that themean number of points inside a ball Bhk(x) with radius hk grows exponentiallywith k for some fa
tor agrow > 1 . If Xi are from IRd , then in the 
ase of kernelweights the parameter a 
an be taken as a = a1=dgrow . For the k -NN weights wejust take a = agrow . Our default 
hoi
e is agrow = 1:25 . Any value in the range[1:1; 1:3℄ 
an be taken as well. The maximal bandwidth hK 
an be taken large sothat every ball BhK (x) 
ontains the whole sample for the last iteration K . Thegeometri
 grow of the parameter h or of the number of nearest neighbors ensuresthat the total number of iterations is typi
ally bounded by C log(n) for some �xed
onstant C .Parameter � : The most important parameter of the pro
edure is � whi
h s
alesthe statisti
al penalty m(k) . Small values of � lead to overpenalization and ahigh variability of the resulting estimate. Large values of � may result in loss ofadaptivity of the method and oversmoothing. In some sense this parameter is similarto the wavelet threshold applied in a nonlinear wavelet transform.A reasonable way to de�ne the parameter � for spe
i�
 appli
ations is based on the\monotoni
ity 
ondition". This 
ondition means that in a homogeneous situation�(Xi) � � , the mixing parameter 
k is 
lose to one for ea
h 1 � k � K . This wouldlead to an aggregated estimate b� whi
h essentially 
oin
ides with e�(K) . Therefore,one 
an adjust the parameter � simply sele
ting by Monte-Carlo simulations theminimal value of � providing a pres
ribed probability of getting 
K � 1 for para-metri
 model �(x) � � . A theoreti
al justi�
ation is given by Proposition 7.1,that 
laims that the 
hoi
e � = C� log n with a suÆ
iently large C� yields the\monotoni
ity" 
ondition whatever the parameter � or the sample size n is.Note that at the end of the iteration pro
ess the strong overlapping of the modelsW (k) and W (k�1) 
auses a high 
orrelation between the estimates e�(k) and b�(k�1) .This suggests to take a relatively large value of � in the beginning and de
rease itwith iterations until a lower bound, say �0 is rea
hed. This leads to the followingproposal: �k = maxf�1 � �2 log h(k); �0g for some �0; �1 and �2 . Our default
hoi
e whi
h is used in all examples below is �1 = 3 and �0 = 0:05�1 .10
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Figure 1: Simulated data sets together with SSA estimates (top row) and Box-Plotsof MAE for SSA and penalized 
ubi
 smoothing splines (bottom row) for Example1.4 Appli
ation to regressionThis se
tion illustrates how the SSA pro
edure 
an be used in the univariate regres-sion set-up by means of two simulated examples. The data are generated as (Xi; Yi)with Yi = f(Xi) + �"i for i = 1; : : : ; n . The sample size is n = 500 . The pointsXi are equidistant on (0; 1) . Errors "i are i.i.d. standard Gaussian. The errorvarian
e �2 is unknown and estimated from the data.For 
omparison we use a penalized 
ubi
 smoothing spline, with smoothing param-eter determined by generalized 
ross validation. See He
kman and Ramsey (2000)for details. 11



Example 1. Our �rst example uses the pie
ewise smooth fun
tionf1(x) = 8>>>>>><>>>>>>:8x x < 0:125;2 � 8x 0:125 � x < 0:25;44(x � 0:4)2 0:25 � x < 0:55;0:5 
os(6�(x� 0:775) + 0:5 0:55 � x:The upper row of Figure 1 shows plots of the �rst data set for � = 0:1 and 0:2 ,respe
tively, together with the estimate obtained by SSA with default parametersand hK = 1 . The bottom row reports the results in form of box-plots of MeanAbsolute Error (MAE) obtained for the two pro
edures in 500 simulation runs.Example 2. In a se
ond example we 
onsider the following smooth fun
tionf2(x) = sin� 2:4�x+ 0:2� ; x 2 [0; 1℄:Figure 2 shows the results for the fun
tion f2 .In both examples SSA 
learly outperforms penalized smoothing splines in terms ofglobal mean averaged risk.5 Appli
ation to nonparametri
 density estima-tionSuppose that observations Z1; : : : ; ZL are sampled independently from some un-known distribution P on IRd with density f(x) . The problem of adaptive estima-tion of f 
an be su

essfully atta
ked by the SSA method. Here we 
onsider the
ase of small or moderate d , e.g. d � 3 .Without loss of generality we suppose that the observations are lo
ated in the 
ube[0; 1℄d . We do not assume that f is 
ompa
tly supported or that f is boundedaway from zero on [0; 1℄d . As a �rst step we apply a binning pro
edure, see e.g. Fanand Marron (1994). Let the interval [0; 1℄ be split into M equal disjoint intervals oflength Æ = 1=M . Then the 
ube [0; 1℄d 
an be split into n = Md nonoverlappingsmall 
ubes with the side length Æ , whi
h we denote by J1; : : : ; Jn . Let Xi be the
enter point of the 
ube Ji and let Yi be the number of observations lying in thei th 
ube Ji . The pairs (Xi; Yi) for i = 1; : : : ; n 
an be viewed as new observations.12
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Figure 2: One sample and the SSA estimate (top), Box-Plots of MAE for SSA andpenalized 
ubi
 smoothing splines (bottom) for Example 2.The joint distribution of Y1; : : : ; Yn is des
ribed by the multinomial law. This model
an be very well approximated by the Poisson model with independent observationsYi having Poisson distribution with intensity parameter �i = Lpi = LP (Ji) .If the value �i has been estimated by e�i then the target density f is estimated atXi as ef (Xi) = ne�iÆPnj=1 e�j .For estimating the values �i from the \observations" (Xi; Yi) we apply the SSApro
edure with the lo
al Poisson family from Example 3. In addition to the standardparameter set, we need to spe
ify the bin length Æ . A reasonable 
hoi
e is Æ = 
=Kwhere K is the smallest integer satisfying Kd � L and 
 � 1 . The pro
edureapplies even if 
 is small and many bin 
ounts Yi are zero. For 
omparison we also
omputed the kernel density estimates (KDE) with Epane
hnikov kernel and thebandwidth minimizing the estimated Mean Absolute Error (MAE).Example 1. We test our pro
edure for two univariate normal mixture densities13



taken from the set of 15 densities provided by Marron and Wang (1992). Wegenerate in ea
h 
ase n = 500 observations. In the upper row of Figure 3 we show
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KDEFigure 3: Top: SSA estimates from 500 observations (dashed line) and true density
urves (solid line). Bottom: pointwise MAE for SSA and the kernel density estimatesbased on 500 simulations.typi
al realizations of the densities estimates by SSA (dashed line) obtained from500 observations using a regular grid with interval-length Æ = 0:001 and range(�4:1; 4:1) . The true densities (solid line) are given for 
omparison. The maximalbandwidth was 
hosen hK = 3 . The plots in the bottom row show the pointwisemean average error (MAE) for SSA and kernel density estimates.Example 2. In this example we 
onsider Old Faithful Geyser data (Azzalini andBowman, 1990), (xt; yt) , where xt measures the waiting time between su

essiveeruptions of the geyser, and yt measures the duration of the subsequent eruption.Figures 4(left) and 4(
enter) displays histograms of these two variables. It is worthnoting that the both are 
ertainly non-normal. The 
ommon feature of interest is14



the presen
e of two modes. One group of eruptions is only 2 minutes in duration,while the other averages over 4 minutes in duration. Likewise, the waiting timebetween eruptions 
lusters into two groups, one less than an hour and the othergreater than one hour. The distribution of eruption durations appears to be amixture of two normal densities, but the distribution of the waiting times appearsmore 
ompli
ated.
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Figure 4: Marginal histograms (left and 
enter) and the s
atter plot (right) for theOld Faithful Geyser data set.Figure 4(right) presents the s
atter diagrams of (xt; yt) . The important featureof the underlying distribution is the presen
e of three modes. One 
an also easilyre
ognize two well-separated 
lusters on Figure 4(right), short waiting periods areasso
iated with long eruption durations. It is therefore desirable that the estimate ofthe density preserves the above features. Upper panel of Figure 5 shows respe
tively
ontour and perspe
tive plots of the density estimate obtained by SSA pro
edure.The bottom row shows the same graphs for the estimate obtained by 2D BinnedKernel Density Estimation pro
edure (KernSmooth pa
kage in R) with suggestedbandwidths. We see that the SSA density estimate underpin very well the threemode stru
ture of the underlying data and separates two 
lusters, while the KDElooses the 
luster stru
ture. 15
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Figure 5: Contour and perspe
tive plots of density estimates obtained by SSA pro-
edure (top) and Bivariate Kernel Smoothing (bottom).6 Appli
ation to 
lassi�
ationOne observes a training sample (Xi; Yi) , i = 1; : : : ; n , with Xi valued in a Eu-
lidean spa
e x = IRd with known 
lass assignment Yi 2 f0; 1g . Our obje
tiveis to 
onstru
t a dis
rimination rule assigning every point x 2 x to one of thetwo 
lasses. The 
lassi�
ation problem 
an be naturally treated in the 
ontext of abinary response model. It is assumed that ea
h observation Yi at Xi is a Bernoullir.v. with parameter �i = �(Xi) , that is, P (Yi = 0jXi) = 1 � �(Xi) and P (Yi =1jXi) = �(Xi) . The \ideal" Bayes dis
rimination rule is �(x) = 1 (�(x) � 1=2) .Sin
e the fun
tion �(x) is usually unknown it is repla
ed by its estimate b� . If thedistribution of Xi within the 
lass k has density fk then�i = �1f1(Xi)=(�0f0(Xi) + �1f1(Xi)):16



where �k the prior probability of k th population k = 0; 1 .Nonparametri
 methods of estimating the fun
tion � are typi
ally based on lo
alaveraging. Two typi
al examples are given by the k -nearest neighbor ( k -NN)estimate and the kernel estimate. For a given k , de�ne for every point x in x thesubset Dk(x) of the design X1; : : : ;Xn 
ontaining the k nearest neighbors of x .Then the k -NN estimate of �(x) is de�ned by averaging the observations Yi overDk(x) : e�(k)(x) = k�1 XXi2Dk(x)Yi :The de�nition of the kernel estimate of �(x) involves a univariate kernel fun
tionK(�) and the bandwidth h :e�(h)(x) = nXi=1 K ��(x;Xi)h �Yi. nXi=1 K ��(x;Xi)h � :Both methods require the 
hoi
e of a smoothing parameter.The SSA method 
anbe viewed as an extension of both methods using the aggregation idea. Namely, forestimating the fun
tion � at the points X1; : : : ;Xn we 
an dire
tly apply the SSApro
edure to the sequen
e of k -NN (resp. kernel) estimates with an exponentiallyin
reasing number of nearest neighbors (resp. bandwidth).Example 1. In this example we 
onsider the 
lassi�
ation problem for two 
lasswith densities f0(x) and f1(x) given by two 
omponent normal mixtures:f0(x) = 0:2�(x; (�1; 0); 0:5I2) + 0:8�(x; (1; 0); 0:5I2)f1(x) = 0:5�(x; (0; 1); 0:5I2) + 0:5�(x; (0;�1); 0:5I2)where �(�;�;�) is the density of multivariate normal distribution with mean ve
-tor � and 
ovarian
e matrix � , I2 means the 2 � 2 unit matrix. We run 10simulations with 100 observations for ea
h 
lass in the training set and another100 in the testing set. SSA pro
edure was implemented with kernel weights andparameters h0 = 0:1 , hK = 3 . Two other 
lassi�
ation methods, k -NN and kernel
lassi�ers, are applied to the same data set. Figure 6 shows the dependen
e of themis
lassi�
ation error for these 
lassi�ers on the 
orresponding smoothing parame-ters. The mis
lassi�
ation errors for SSA and for the Bayes 
lassi�ers are given for
omparison. 17
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Figure 6: Mis
lassi�
ation errors as a fun
tions of the main smoothing parametersfor k -NN (right) and kernel (left) 
lassi�ers. SSA and Bayes mis
lassi�
ation errorsare given as a referen
e lines. Top: Example 1 (dimension 2). Bottom: Example 2(dimension 10).Example 2. We now 
onsider the same example but with added 8 independentN (0; 1) distributed nuisan
e 
omponents, so that now Xi = (X1i ; ::;X10i ) with(X1i ;X2i ) � f
lass(i); (X3i ; ::;X10i ) � N ((0; :::; 0| {z }8 ); I8):The SSA pro
edure is applied using k -NN weights with the number of nearestneighbors exponentially in
reasing from 5 to 50 . The results are given in thebottom row of Figure 6. We observe that although the quality of the SSA 
lassi�erhas substantially de
reased 
ompared to the dimension independent Bayes errorrate, it performs as good as the best k -NN or kernel 
lassi�er.Example 3. [BUPA liver disorders℄ We 
onsider the dataset sampled by BUPAMedi
al Resear
h Ltd. It 
onsists of 7 variables and 345 observed ve
tors. Thesubje
ts are single male individuals. The �rst 5 variables are measurements taken18
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Figure 7: One-leave-out 
ross-validation errors as a fun
tions of the main smoothingparameters for k -NN (right) and kernel (left) 
lassi�ers. The dotted line des
ribesthe error of SSA 
lassi�er.by blood tests that are thought to be sensitive to liver disorders and might arise fromex
essive al
ohol 
onsumption. The sixth variable is a sort of sele
tor variable. Theseventh variable is the label indi
ating the 
lass identity. Among all the observations,there are 145 people belonging to the liver-disorder group (
orresponding to sele
tornumber 2 ) and 200 people belonging to the liver-normal group. The BUPA liverdisorder data set is notoriously diÆ
ult for 
lassifying with the usual error ratesabout 30% . We apply SSA, k -NN and kernel 
lassi�ers to ta
kle this problem.In SSA pro
edure the hybrid weighting s
heme (see se
tion 4.1) was employed withnumber of k -NN ranging from 2 to 30 . Figure 7 shows the 
orresponding one-leave-out 
ross-validation errors for above methods. One 
an see that the SSA method isuniformly better than kernel or k -NN 
lassi�ers.7 Some theoreti
al properties of SSAThis se
tion dis
usses some important theoreti
al properties of the proposed aggre-gating pro
edure. In parti
ular we establish the \ora
le" result whi
h 
laims thatthe aggregated estimates is up to a log-fa
tor as good as the best estimate among the
onsidered family fe�(k)g of weak estimates. As a 
orollary we show rate optimalityof the pro
edure on the smoothness fun
tion 
lasses.The \ora
le" result is in its turn a 
onsequen
e of two important properties of the19



aggregated estimate b� : \monotoni
ity" and \stability". \Monotoni
ity" 
an beviewed as the ora
le result in the homogeneous situation. In this 
ase the ora
le
hoi
e would be the estimate with the largest value Nk , that is, the last estimatee�(K) in the family fe�(k)g . The \monotoni
ity" property means that at every step ofthe pro
edure the new estimate e�(k) will be taken with the weight 
k 
lose to one,and hen
e, the aggregated estimate b�(k) is 
lose to the lo
al likelihood estimate e�(k) .The \monotoni
ity" property 
an be naturally extended to a nearly homogeneous
ase, for all steps k for whi
h the mean value �(k) = Piw(k)i �i=Piw(k)i is still
lose to the true value � = �(x) . The \monotoni
ity" ensures that the quality ofestimation improves and 
on�den
e bounds for b�(k) be
ome tighter as the numberof iterations in
reases provided that the near homogeneity is not violated. Finally,the \stability" property ensures that the quality gained under lo
al homogeneitydue to \monotoni
ity" will be kept for the �nal estimate.Throughout this 
hapter � stands for the root of equationKag(�) = (1� ��)=(1 � ��=2); (7.1)where �� 
omes from A3.7.1 Behavior under homogeneityFirst we 
onsider the homogeneous situation with the 
onstant parameter value�(x) = � and present some suÆ
ient 
ondition for the \monotoni
ity" result.Proposition 7.1. Assume A1 through A3 and let �(�) � � . Let the parameter �of the pro
edure ful�ll � = C� log(n) with a 
onstant C� su
h that with � = 2C� � ��1{2�p�=�� + 1�2: (7.2)Then the last step estimate b� = b�(K) ful�llsP �K(b�; �) > � log(n)=NK� � 2K=n: (7.3)Proof. De�ne A(k) = fNk K(e�(k); �) � log(n)g:Theorem 2.1 applied with z = log(n) yields in the homogeneous situationP �NkK(e�(k); �) > log(n)� � 2e� log(n):20



Therefore P (A(k)) � 1 � 2=n . This obviously implies that P �A� � 1 � 2K=nwhere A is the interse
tion of the sets A(k) : A = Tk�K A(k) . We now show thatK(b�(k); �) � � log(n)=Nk on A for all k � K whi
h implies the assertion. Theproof utilizes the following simple \metri
 like" property of K1=2(�; �) .Lemma 7.2. Under 
ondition A2 it holds for every pair �0; �00K1=2(�0; �00) � {K1=2(�0; �) + {K1=2(�00; �):Also, for any sequen
e �0; �1; : : : ; �m ,K1=2(�0; �m) � { mXl=1 K1=2(�l�1; �l):Proof. Introdu
e the new parameter � = C(�) and de�ne D(�) = B(�) = B(C�1(�)) .For any �1 � �2 it holdsK(�1; �2) = D(�2)�D(�1)� (�2 � �1)D0(�1) = 0:5j�2 � �1j2D00(e�)where e� 2 [�1; �2℄ and D00(�) = 1=I(�) and the results easily follow from A2.We prove the statement by indu
tion in k . By de�nition, it holds on A for b�(1) =e�(1) that K(b�(1); �) � � log(n)=N1 . Now suppose that K(b�(k�1); �) � � log(n)=Nk�1 .We show that this and the 
ondition K�e�(k); �� � log(n)=Nk imply K(b�(k); �) �� log(n)=Nk . The mixing penalty m(k) = NkK(e�(k); b�(k�1)) ful�lls on A due toLemma 7.2, Assumption A3 and (7.1)m(k) � Nk{2�K1=2�b�(k�1); ��+K1=2�e�(k); ���2� Nk{2�p� log(n)=Nk�1 +plog(n)=Nk�2� {2�p�=�� + 1�2 log(n) � ��:This yields 
k = Kag(m(k)=�) � K(�) � (1 � ��)=(1 � ��=2) . Convexity of theKullba
k-Leibler divergen
e K(u; v) w.r.t. the �rst argument implies on AK(b�(k); �) = K(
ke�(k) + (1� 
k)b�(k�1); �)� 
kK(e�(k); �) + (1� 
k)K(b�(k�1); �)� 
k log(n)=Nk + �(1� 
k) log(n)=Nk�1� � log(n)�
k=2 + (1 � 
k)=���ÆNk� � log(n)=Nkas required. 21



Remark 1. The aggregated estimate b�(k) is a 
onvex 
ombination of the �rst k\weak" estimates and 
an be represented in the formb�(k) = kXl=1 �(k)l e�(l); �(k)1 + :::+ �(k)k = 1;where �(k)l = 
lQkj=l+1(1 � 
j) . Under homogeneity every 
oeÆ
ient 
l ex
eedswith a high probability the value (1 � ��)=(1 � ��=2) . Therefore, for any �xed l ,the mixing 
oeÆ
ient �(k)l exponentially de
reases as k in
reases and the estimateb�(k) behaves as an exponential smoothing of e�l for l � k .7.2 Behavior under lo
al homogeneityIn the 
ase of lo
al homogeneity we also have "monotoni
ity" as long as the \bias"measured by K1=2(�(k); �) with �(k) := N�1k Pni=1w(k)i �i remains suÆ
iently small.Proposition 7.3. Assume A1 through A3. Let k� � K be su
h thatmax1�k�k�K1=2(�(k); �) � Æplog(n)=Nk� (7.4)for some Æ > 0 . Let, a 
onstant � ful�llp�=2 � {p1 + �+ {Æ (7.5)where � is de�ned in Theorem 2.2. Let the parameter � of the pro
edure ful�ll� = C� log(n) with some 
onstant C� su
h thatC� � ��1{2�p1 + �+p�=�� + Æ�2 : (7.6)Then it holds P �K(b�(k�); �) > � log(n)=Nk�� � 2k�=n: (7.7)Proof. De�ne for k � k�A(k) = fNkK(e�(k); �(k)) � (1 + �) log(n)gwhere � is a 
onstant from Theorem 2.2 and depending on { from Assumption A2only. Let also A = Tk�k� A(k) . Theorem 2.2 yieldsP �NkK(e�(k); �(k)) > (1 + �) log(n)� � 2e�(1+�) log(n)=(1+�) = 2=n:22



Therefore P (A) � 1 � 2k�=n . Now we 
he
k by indu
tion that K(b�(k�); �) �� log(n)=Nk on A for all k � k� .Theorem 2.2 implies (7.7) for the initial weak estimate e�(1) . Suppose for somek � k� that K(b�(k�1); �) � � log(n)=Nk�1 . It holds on the set A(k) by Lemma 7.2and (7.5)NkK�e�(k); �� � Nk {2 �K1=2�e�(k); �(k)�+K1=2��(k); ���2� Nk {2 �p(1 + �) log(n)=Nk + Æplog(n)=Nk�2� 0:5� log(n):The use of (7.6) yields in the similar waym(k) � Nk {2 �K1=2�e�(k); �(k)�+K1=2�b�(k�1); ��+K1=2��(k); ���2� Nk {2 log(n)�q(1 + �)ÆNk +q�ÆNk�1 + Æq1ÆNk�2 � ��:This in turn yields 
k = Kst(m(k)=�) � (1� ��)=(1� ��=2) and (7.7) follows in thesame line as (7.3) in the proof of Proposition 7.1.7.3 StabilityUnder the lo
al homogeneity it holds with high probability K(b�(k); �) � � log(n)=Nkas far as the estimation bias K1=2(�(k); �) remains small. If the bias starts to in
reaseafter �rst k iterations, then the important stability property of the pro
edure is thatthe quality of estimation of order (log(n)=Nk)1=2 gained by the estimate b�(k) willnot be lost at further iterations.Proposition 7.4. Under A1 and A2, it holds for every k � KK�b�(k); b�(k�1)� � �ÆNk: (7.8)Moreover, under A1 through A3, it holds for every k0 with k < k0 � KK�b�(k0); b�(k)� � 
�ÆNk (7.9)with 
 = {2(1=p�� � 1)�2 .Remark 2. An interesting feature of this result is that it is ful�lled with probabilityone, that is, the 
ontrol of stability \works" not only with a high probability, italways applies. This property follows just from the 
onstru
tion of the pro
edure.23



Proof. By 
onvexity of the Kullba
k-Leibler divergen
e K(u; v) w.r.t. the �rst ar-gument K�b�(k); b�(k�1)� � 
kK�e�(k); b�(k�1)�:If K�e�(k); b�(k�1)� � �=Nk , then 
k = 0 and (7.8) follows. Now, Assumption A2,Lemma 7.2 and Proposition 7.4 yieldK1=2�b�(k0); b�(k)� � { k0Xl=k+1K1=2�b�(l); b�(l�1)� � { k0Xl=k+1��=Nl�1=2:The use of Assumption A3 leads to the boundK1=2�b�(k0); b�(k)� � {��=Nk�1=2 k0Xl=k+1(��)(l�k)=2 � {p��(1�p��)�1��=Nk�1=2whi
h proves (7.9).Theorem 7.5. Let, for some k � K , the estimate b�(k) ful�llK�b�(k); �� � � log(n)=Nkwith some 
onstant � . Then it holds for the �nal estimate b� = b�(K)K�b�; �� � 
0 log(n)=Nk;where 
0 = {2 �p
C� +p��2 with 
 = {2(1=�� � 1)�2 and C� = �= log(n) .Proof. Proposition 7.4 and Lemma 7.2 implyK�b�; �� � {2 �K1=2�b�(k); ��+K1=2�b�; b�(k)��2 � {2 �p
C� +p��2 log(n)ÆNkand the assertion follows.Combining Theorem 7.5 and Proposition 2.2 yields the so 
alled "ora
le" inequalityCorollary 7.6. The following inequality holds for some 
onstant C � C({; ��; ��) :P �K1=2(b�; �) > Cminl �maxk�l K1=2(�(k); �) +plog(n)=Nl�� � 2K=n:Remark 3. The �rst term maxk�lK1=2(�(k); �) in the \ora
le" bound 
an be viewedas the upper bound for the bias of the estimate e�(k) while the se
ond term plog(n)=Nlbounds the sto
hasti
 
omponent of e�(k) , so that the sum bounds the risk of theestimate e�(k) , 
f. Theorem 2.2. Therefore, the risk of the aggregated estimate 
orre-sponds to the minimal possible risk among the family fe�(k)g . Lepski, Mammen andSpokoiny (1997) established a similar result in the regression setup for the pointwiseadaptive Lepski pro
edure. 24



7.4 Rate of estimation under smoothness 
onditions on �(�) .Spatial adaptivityHere we 
onsider the 
ase when �(�) satis�es some smoothness 
onditions in a neigh-borhood of a �xed point x 2 X � IRd . More pre
isely, we assume that the error ofthe lo
al 
onstant approximation of �(�) by �(x) within this neighborhood is suf-�
iently small. In addition we impose some mild regularity 
ondition on the designX1; : : : ;Xn . We show that under these assumptions the results of Proposition 7.3and Theorem 7.5 lead to the rate of estimation (log(n)=n)1=(2+d) whi
h 
oin
idesup to a log-fa
tor with the 
lassi
al nonparametri
 rate of estimation 
orrespondingto the smoothness degree one.Let x be �xed and � = �(x) , �i = �(Xi) for all i . Assume the following 
ondition(A4) For some � > 0 , the fun
tion �(�) ful�llsK1=2(�i; �) � L� 8Xi 2 B�(x):Here Bh(x) means the ball of radius h 
entered at x . In addition, we assumethat for every k the weights w(k)i = w(k)i (x) de�ning the estimate e�(k)(x) aresupported on Bhk(x) where the sequen
e of bandwidths hk grows exponentiallyand the number Nk of design points in Bhk(x) is nearly proportional to its volume.(A5) There exists a sequen
e fhkg with hk = ahk�1 for some a > 1 su
h that theweights fw(k)i (x)g satisfyw(k)i (x) = 0 if Xi 62 Bhk(x):(A6) For some positive 
onstants {1 � {2 and any k � K it holds{1 � Nk=(nhdk) � {2:Theorem 7.7. Let h = �L2n= log(n)��1=(2+d) . Let Assumptions A1, A2, A4, A5and A6 be ful�lled with � = 
h with some 0 < 
 � 1 and h1 � � � hK . If theparameter � ful�lls � � C� log n , with C� = C�({; ��) , thenP�K1=2�b�; �� > C1Ld=(2+d)(log(n)=n)1=(2+d)� � 2K=n (7.10)where C1 means a �xed 
onstant depending on { , �� , �� , {1 , {2 , � and a only.25



Remark 4. The rate of estimation given in Theorem 7.7 
oin
ides with the optimalrate of estimation for the fun
tion smoothness 
lass of degree one up to a log-fa
tor.Moreover, the rate is optimal for the problem of adaptive estimation at a point, 
f.Lepski, Mammen and Spokoiny (1997). It was also shown in that paper that thisproperty automati
ally leads to rate optimality in the Sobolev and Besov fun
tion
lasses B1p;q .Remark 5. If the weights w(k)i satisfy Pi(Xi � x)wi(x) � 0 then the rate result
an be extended to Besov fun
tion 
lasses Bsp;q with s 2 [1; 2℄ . The latter 
onditionon the weights is easy to 
he
k for the 
ase of kernel weights for a regular designand a symmetri
 
ontinuous kernel.Proof. Let h1 ful�ll h1 � 
h with some 
onstant 
 � 1 whi
h we spe
ify below.If k is a maximal index su
h that hk � 
h then A4 implies for every Xi 2 Bhk (x)that K1=2��i; �� � L
h . The use of A6 yieldsNkK��i; �� � L2{2
2+dnh2+d = {2
2+d log(n):Convexity of K(�; �) implies (7.4) for Æ = ({2
2+d)1=2 and all k� � k . If 
 issuÆ
iently small then Theorem 7.3 applies yielding with a high probability thefollowing a

ura
y of estimating � by b�(k) :K�b�(k); �� � � log(n)ÆNk � � log(n){1nhdk :Sin
e hk � 
h=a , it holds with some �xed 
onstant C2 thatK1=2�b�(k); �� � C2L2d=(2+d)�log(n)=n�2=(2+d):By Theorem 7.5, the same rate of estimation holds for the �nal estimate b� .8 Some exponential bounds for exponential fam-iliesThis se
tion presents some general results for the lo
al exponential family model.The 
onsidered exponential family P = (P� ; � 2 � � IR) is des
ribed by thefun
tions C(�) and B(�) , with p(y; �) = dP�=dP (y) = p(y) exp (C(�)y �B(�))and E�Y = R yp(y; �)dP (y) = � for all � 2 � , see Se
tion 2.3.26



We assume the observation Yi to be P�i -distributed with �i depending on lo
a-tion Xi . Let also a lo
al model W be des
ribed by the weights wi 2 [0; 1℄ for i =1; : : : ; n . The 
orresponding log-likelihood is de�ned by L(W; �) =Pi log p(Yi; �)wi .We also denote L(W; �; �0) = L(W; �)�L(W; �0) for every pair �; �0 . The lo
al MLEb� is given as b� = Pni=1 wiYiÆPni=1wi . We use the representation b� = S=N withS =Pni=1wiYi , N =Pni=1wi and denote � = N�1Pni=1wi�i .The result given below bounds in probability the expression L(W; b�; �) . It is 
on-venient to introdu
e the parameter � = C(�) and de�ne � = C(�) and D(�) =B(�) = B(C�1(�)) . Sin
e C 0(�) > 0 , the new parameter � is uniquely de�ned.By simple analysis D0(�) = � = C�1(�) and D00(�) = 1=C 0(�) = 1=I(�) =1=I(C�1(�)) . Moreover, K(�1; �2) = D(�2) � D(�1) � (�2 � �1)D0(�1) is theKullba
k-Leibler distan
e between two parametri
 distributions 
orresponding to theparameters �1 and �2 . In what follows we use the notation q(uj�) = K(�; �+u) =D(� + u)�D(�) � uD0(�) .Theorem 8.1. Let the Fisher information I(�) = C 0(�) be positive on � . For agiven z � 0 , let U(W; z) be the set of solutions u of equation q(uj�) = R u0 xD00(�+x)dx = z=N . If there is some � > 0 su
h that for all � 2 (0; 1℄ and all u 2 U(W; z)q(�w`�uj�`) � (1 + �)w`�2q(uj�); ` = 1; : : : ; n; (8.1)then P �L(W; b�; �) > z� = P �NK(b�; �) > z� � 2e�z=(1+�):Remark 1. The 
ondition (8.1) 
an be easily 
he
ked in many parti
ular situations.We give two typi
al examples. The �rst one 
orresponds to the homogeneous 
asewhen all �i 
oin
ide with their mean � . Then (8.1) is ful�lled automati
ally with� = 0 . Indeed the fun
tion q(�j�) satis�es q0(uj�) = D0(� + u) � D0(�) andq00(uj�) = D00(� + u) = 1=I(C�1(� + u)) > 0 and thus, it is 
onvex. Sin
e alsoq(0j�) = 0 , it holds q(waj�) � wq(aj�) for every w 2 [0; 1℄ and every a implying(8.1) with � = 0 and arbitrary u . This spe
ial 
ase was already stated as a separateresult in Theorem 2.1.The se
ond spe
ial 
ase was mentioned in Theorem 2.2. Assume A1 and A2.The Taylor expansion yields that q(wuj�) = D(� + wu) � D(�) � wuD0(�) =1=2w2u2D00(�+�wu) for some � 2 [0; 1℄ . Under 
ondition A1 {�2 � D00(�)=D00(�) �{2 for all � and one easily gets for every u 2 U(W; z) that u2 � 2zI�=N . There-fore, the 
ondition (8.1) is easy to 
he
k for 1 + � = {2 whi
h yields Theorem 2.227



as 
orollary of Theorem 8.1. Moreover, only the lo
al variability of the Fisher infor-mation I(�) on the support of the lo
al model W is important so the value � istypi
ally 
lose to zero.Proof of Theorem 8.1 The log-likelihood ratio 
an be rewritten for the newparameter � asL(W; �; �) = L(W;�; �) = (� � �)S �N�D(�) �D(�)�:The MLE b� of the parameter � is de�ned by maximizing L(W;�; �) , that is,b� = argsup� L(W;�; �) .Lemma 8.2. For given z , there exist two values �� > � and �� < � su
h thatfL(W; b�; �) > zg � fL(W;��; �) > zg [ fL(W;��; �) > zg:Proof. It holdsfL(W; b�; �) > zg = �sup� hS(� � �)�N�D(�) �D(�)�i > z�� �S > inf�>� z +N�D(�) �D(�)�� � � � [��S > inf�<� z +N�D(�) �D(�)�� � � �:The fun
tion f(u) = �z +N�D(� + u)�D(�)�� =u attains its minimum at somepoint u satisfying the equationz +N�D(� + u)�D(�)��NuD0(� + u) = 0or, equivalently, Z u0 xD00(� + x)dx = z=N:Therefore�S > inf�>� z +N�D(�) �D(�)�� � � � = �S > z +N�D(��)�D(�)�� � � � � fL(W;��; �) > zgwith �� = � + u . Similarly��S > inf�<� z +N�D(�) �D(�)�� � � � � fL(W;��; �) > zgfor some �� < � . 28



Now we bound the probability P (L(W;�; �) > z) for every � . Note that theequality � = D0(�) implies for u = � � �L(W;�; �) = u(S �N�)�N [D(� + u)�D(�) � uD0(�)℄ = u(S �N�)�Nq(uj�):Now the result of the theorem is a dire
t 
orollary of the following general assertion.Lemma 8.3. For every u and every zr(u; z) := logP (L(W;� + u; �) > z) � ��z � �Nq(uj�) + nX̀=1 q(u�w`j�`);r1(u; z) := logP (L(W;� + u; �) < �z � 2Nq(uj�))� ��z � �Nq(uj�) + nX̀=1 q(�u�w`j�`):Moreover, if u ful�lls (8.1) thenr(u; z) � �z=(1 + �); r1(u; z) � �z=(1 + �):Proof. We apply the T
heby
hev exponential inequality: for every positive �r(u; z) � ��z � �Nq(uj�) + logE exp �u�(S �N�)� :The independen
e of the Y` 's implieslogE exp �u�(S �N�)� = logE exp nX̀=1 u�w`(Y` � �`)! = nX̀=1 logEeu�w`(Y`��`) :The equalities log R e�`y�D(�`)P (dy) = 0 and �` = D0(�`) yieldlogEea(Y`��`) = �a�` + log Z e(a+�`)y�D(�`)P (dy)= �aD0(�`) +D(�` + a)�D(�`) = q(aj�`):for every a � 0 and every ` � n . Thereforer(u; z) � ��z � �Nq(uj�) + nX̀=1 q(u�w`j�`):This inequality applied with � = (1 + �)�1 and (8.1) implyr(u; z) � ��z � �Nq(uj�) + (1 + �)�2 nX̀=1 w`q(uj�) � �z=(1 + �):Similarly r1(u; z) = P ��u(S �N�) +Nq(uj�) > z + 2Nq(uj�)�� ��z � �Nq(uj�) + nX̀=1 q(�u�w`j�`):and the lemma follows. 29



Con
luding remarksThe paper o�ers a new approa
h to aggregating a set of \weak" estimates in a point-wise sequential manner. The proposed pro
edure is very natural and appealing andit applies in a uni�ed way to many di�erent statisti
al models and problems. Weestablished a number of remarkable theoreti
al properties of this pro
edure in
lud-ing the ora
le result and spatial adaptivity. The results are stated under very mild
onditions on the models and apply in a nonasymptoti
 way. The pro
edure alsodemonstrates a very reasonable numeri
al performan
e in all the simulated exam-ples we 
onsidered. In parti
ular, it outperforms the other smoothing methods wetried. Its pra
ti
al implementation and appli
ation to many pra
ti
al problems isstraightforward and does not require a �ne tuning of the parameters. The pro
edureapplies in a multidimensional 
ase for an arbitrary design.A small limitation of the proposed pro
edure is the simplest method of lo
al likeli-hood estimation based on the lo
al 
onstant approximation. A more sophisti
atedlo
al polynomial approximation 
an deliver better results in the 
ase of estimatinga smooth fun
tion. An extension of the method to the lo
al polynomial regressionis straightforward. However, the general lo
al likelihood approa
h is more diÆ
ultto study be
ause the 
losed form solution of the lo
al likelihood problem is notavailable. This extension is to be 
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