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1. INTRODUCTION
1.1 Motivation

Since the pioneering paper of Liemant (1969}, much has been done in the
field of spatially distributed branching models of infinite populations:
equilibrium theory, convergence theorems, scaling properties, hydrodynamics,
sample path properties, random media effects - to mention only some main
topics. However, to our knowledge there are only a few papers dealing with
large deviation aspects. (Generally speaking, large deviation probabilities
are of particular interest in statistical physics, in models in random media,
and in other respect; the relatively simple branching models may serve as a
certain test case only.)

“Cox and Griffeath (1985) considered the critical binary branching Brown-
ian motion starting with a homogeneous Poisson particle system of density one
and studied in dimensions dz=3 the asymptotics of the (logarithmic) large de-

viation probabilities

log ?I‘L[t_l j; ds NS(B) > (1+€)3(B)]

as t»w where NS(B) counts the number of particles at time s in the bounded
Borel set BcR® of volume B), and €>0 has to be sufficiently small. This
last condition has its origin in the method they use based on cumulants: it
guarantees the convergence of some power series expansions. Also, in recent
manuscripts of Lee (1992) and Iscoe and Lee (1992) similar restrictions enter
into some large deviation probabilities for closely related occupation time
processes; the only exception is a dimension d=3 result, where a steepness
argument could be used.

To remove such "disturbing" conditions was our primary motivation to
loock for large deviation properties in infinite branching models. A striking
technical fact that makes the subject interesting is that in such branching
modéls exponential moments are infinite as a rule.

In the present note we are concerned with large deviation probabilities

log ?n(XK(t)eA) as K-»w, where XX refers to a branching process appropriately
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scaled in time, space and mass, t is a fixed macroscopic time point and 4 is
any open or closed set in the state space of the scaled processes. We rest-
rict our main attention to supercritical dimensions d, i.e. to those dimen-
sions where the unscaled process has steady states, and under a critical re-
scaling we prove a full large deviation result.

From the variety of possible choices we decided to work with a measure-
valued branching model (Dawson-Watanabe process, superprocess), which reduces
the number of relevant ‘approxirnations forced by the scaling and which simpli-
fies the use of some analytical tools.

In the remainder of this Introduction we will briefly describe the mo-

del, formulate the main result and provide some heuristic background leading

to a dimensionally independent reformulation of the problem.

1.2. Model

Let X = [X,IP'::ﬁ ;se!R+,u§Ma] denote the critical superstable motion on R
with motion index océ(O,Z], "dif fusion” constant k=0, and constant branching
rate p=0, related via its Laplace transition functionals
(1.2.1) E:,i exp(X(t),p) = exp(p.,uq)(t—s)), O=s=<t, ueMa, ped
to the solutions u=u(p of the non-linear differential equation |
(1.2.2) %u(t,y) = :cAau(t,y) * pu’(t,y), >0, yeR®,

u(0+,+) = g € & .. A

Here Ma is a Polish space of locally finite (non—negatiVe) measures defined
on R® with at most potential growth at infinity, determined by some constant
a. Moreover, ® is a related Banach space of continuous test functions on [Rd,
and & .the subset of its non-positive members. Integrals [m(dx) f(x) are

/2 denotes the fractional Laplacian. (For

written as (m,f), and Aoc = —(-A)
more technical details, see Sections 2 and 3 below.)

In other words, the states of the time-homogeneous Markov process X are
a-tempered measures, and given the state X(s)=pu at an initial time s, the

Laplace functional of the random measure X(t), t>s, is described with the

help of the solutions u of the non-linear equation (1.2.2).
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Roughly speaking, the stochastic evolution of populations X(s) is deter-
mined by two components: the population mass is smeared out by the stable
flow with generator KAOL (the heat flow in the case «=2), and all "differen-
tially small" portions of mass X(s,dy) independently (concerning the space
points y) fluctuate in time according to the stochastic équation
(1.2.3) g, = JzT;t aw,,  t=s,

(starting in C:X(s,dy) for y "fixed" and with W a standard Wiener procesé in
R) describing the simplest critical continuous state Galton-Watson process
(Lamperti process) with "branching rate" p.

We mention that such superprocesses serve as diffusion apﬁroximation for
high density branching particle models, where the particles have small mass,
move independently according to symmetric o-stable motions and split criti-
cally with a large rate and finite variance. (For a recent survey on super-
processes we refer to Dawson (1991).)

For constants y>0 and K>0 we define the scaled processes XK:

(1.2.4) (x5(6),0) = (X(K?8),¢5), 20, % := K%(+/K), oed ;
i.e. we speed up the time by a factor K’, contract the space and rescale the

mass both by the factor K °.

1.3. Basic Scaling Properties

Before we will formulate our main result, we review the "basic ergodic
theory” on the scaled proceéses XK as K-»w. To ti]is end we have to distinguish
between several parameter constellations.

First consider the situation of a critical scaling with which we mean

that ¥ = aAd holds:

(%) In the case of a subcritical dimension, i.e. if d<a, or more explicit-
ly, ¥=d=I<ea, the scaled processes XK converge in distribution to X but the
latter defined with diffusion constant k=0 (i.e. the motion component disap-
pears), provided that the initial measures XK(O) converge in law to some

X(0). If p>0, this means, that the scaling will catch clumps, which in the
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limit are located in Poissonian points and the sizes of the clumps are inde-
pendent, fluctuate according to (1.2.3), and for a fixed macroscopic time
point t, are exponentially distributed. In other words, this limit can be
viewed as a collection of independent copies of processes fluctuating accor-
ding to the stochastic equation (1.2.3), with initial states Co according to
the limiting initial measure X(0,dy). For details concerning this time-space-

mass scaling limit theorem we refer to Dawson and Fleischmann (1988).

(*%) In the situation of a critical dimension, i.e. if d=a, or more expli-
citly, if y=d=a=1 or 2, the superprocess is self;similar, i.e. that XK coin-
cides in distribution with X, provided that the initial states XK(O) and X(0)
coincide in law (for instance, if X(0) = £, the Lebesgue measure; see the

Lemma 4.7.1 below).

(%%*) For supercritical dimensions d > o (= y) a law of large numbers (LLN)
is true: For fixed t=0,

xX(t) K—f%e 7% it X0 —f—:‘g TR
where ﬂ":p is the measure which results if the a-stable flow with "diffusion"”
-constant k=0 acts on pn over a time period of length’t; see the Lemrﬁa 4.5.2
below. In this case (if p>0) also the Gaussian fluctuations around the -
stable f 10W'f‘7Ku can be computed, leading to Ornstein-Uhlenbeck processes; see

e.g. Dawson, Fleischmann, and Gorostiza (1989) (specialized to a constant me-

dium and to branching with finite variance).

So far we discussed the situation under the critical scaling ¥ = aad. In
the case of a subcritical scaling y < aand (i.e. if the microscopic time grows
only -"rnoderately"), always a law of large numbers holds; see Remark 4.7.5 be-
low. On the other hand, for a supercritical scaling ¥ > aAd, under reasonable
initial conditions one expects a local extinction XK(‘t) K—fg—a 0, t>0, provided

that d=a, whereas in supercritical dimensions d>a again a law of large num-

bers should hold.
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1.4. Main Result
r In this note we fix our attention to large deviations related to the law
of large numbers (%%%) above, i.e. with the most interesting LLN sinbe in
this case the scaling is critical.
For convenience, similarly to (1.2.4), we introduce a notation pK for a
scaling of measures pu by

(1.4.1) (pK,w) = (u,q)K), peM , K>0, ¢ped
a -

(with ¢ defined in (1.2.4)).

Theorem 1.4.2 (large deviation principle). Assume that d>a=y. Fix k,p=0, a
measure ueMa, u#0, and a (macroscopic) time point t>0. For K>0, let My denote
the measure in Ma which satisfies (pK)K = p (for instance u=EEuK). Then the
following large deviation principle holds: There is a lower semi-continuous

. , K o
convex functional Su ¢ Mal—) [0,+w] with Sp,t(gt“) = 0 such that,

3

(i) for each open subset G of M ,
- a

[\

- inf S (v),

liminf K™% log PP [XK(t) e G]
H veG ’

K 2 Tk
(ii)  for each closed subset F of Ma ,

. -(d-) K,p
1
imsup K log [F’0 "

K 200 ’

[XK(t) € F] <-inf S ).

K veF ’

(iii) S“t is a good rate functional: all sets {ve/na; S“ t(12)§N), N>0,

are compact.

That is, roughly speaking,
K d-0
Pr(X"(t) = dv) = exp[-K S“ t(V)]’ as K-,

in the sense of logarithmic equivalence.

The point is that for (i) we do not need any smallness condition, i.e. a
restriction to small (open) neighborhoods G of ST':u.

Of course, it is desirable to learn more on the rate functional SU- g In
particular, one would like to know the relation to log-Laplace functionals

(exponential moments). In fact, if we set

(1.4.3) A, (o) = log [E‘:’ﬁ exp(X(1),p) € (-m,+w], €D,
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then under the assumptions in the theorem,
_(d_ ) N -
(1.4.4) K log EP exp(k*xX(t),0) = A (o).
o,uK (TR

Thinking in terms of other large deviation results this immediately raises

the question whether
(1.4.5) S = - =: A* .
”’t(v) SUP ‘{(V,(p) Au,t(@)} : Au,t(V)’ veMa.

This would be advantageous since, under a boundedness condition, Au t(cp) can

»

be described by means of the equation (1.2.2); see Proposition 3.3.1 and Co-

rollary 3.3.4 below.

From the general theory follows that S =A* (see, for instance, [9],

i ]

Exercise 2.2.23 (ii)). Regarding the converse inequality, we are able to show

the relation

(1.4.6) Au,t(q)) = SuDveMa{(V’(p) - Su,t(V)}’ <pe®u,t,

where @ denotes the largest open set off all those functions ¢€® such that

)

Au t(<p) < +o (see Subsection 4.6 below). This leaves open whether the rela-

)

tion (1.4.5) holds in full generality.

Of course, one could derive (i) with Sut replaced by A:;t for open sets

) >

G contained in some neighborhood O of ﬂfu in analogy with the finite-

dimensional case (see, for instance, Ellis (1984)), using that All t(q>) is

3

smooth on & g Then (1.4.5) would hold at least for ve0.

$

In the special case of a vanishing "diffusion" constant k=0 (i.e. if

there is no motion in the model) one has a complete description of Au o and

the Legendre transform A;t can be computed explicitly (see the Appendix). An

s

interesting fact is that as a rule this I\"‘,c is not strongly convex, hence

A is not "steep". This is in contrast with the fact that steepness is of-

)

*

ten used as a starting point to get the lower bound estimate (i) in terms of AM .
1.5. To the Method of Proof: A Heuristic Argument and Reformulation
By scaling properties of the stable semi-group and of the critical con-

tinuous-state Galton-Watson process, and by our assumed parameter relations,

the time-space-mass scaling of X as K- can be reformulated as a limit in law
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of X under p-~0 (see Lemma 4.7.1 below).
For the sake of a heuristic argument, let us restrict our attention for

the moment to the case of a "discrete" branching rate p=1/N, N-w. Then, again

by scaling arguments, X(t) with respect to [P';’;/N has the same distribution
as N Z:l=1 X'(t), where the X\(t) are independent and have the law [P';’I:. Now

apply an infinite dimensional version of Crameér’s Theorem. Here, of course,
one has to be careful since the expoﬁential moments of the (Xi(t),go), ped_,
are infinite as a rule. But they are finite for all ¢ in some neighborhood
(depending on t) of the origin in the Banach space ® and by some additional
efforts one can really show that such a version of Cramér holds in the pre-
sent case.

To be more precise, our approach is to investigate the large deviation

probabilities o K.p o
R log [Po,Ru[R X(t) € -} as R-w,

which exist without any dimension restrictions and may be expressed by means
of some rate functional Su,t (see Theorem 4.1.1 below). Then we show as a
consequence that Theorem 1.4.2 above holds with the same rate functional S ,
Concerning technical details, a necessary step in the developmerit is to
deal with equation (1.2.2) for initial functions ¢ which admit also positive
Values. Here one has to take into account that, for given ¢ and a fixed time
interval, solutions u may not exist (think of the explosive behavior of the
ordinary equation g—tU(t) = puz(t), for p>0 and positive initial values). Per-
haps we should add at this place, that (1.2.2) will be handled by transfer-
ring it to the corresponding integral equation (mild solutions of (1.2.2)). A
rather detailed picture is given in the Theorem 2.4.3 below, which in parti-
cular covers known results due to Fujita (1966) or Nagasawa and Sirao (1969).
We mention that the methods in this note are useful also for dealing
with functional deviations in time (and not only in space), for large devia-
tions related to other variants of the law of large numbers (subcritical

scaling), and also for large deviations in the case of the occupation time -

process related to X (as in the model mentioned in the beginning).
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1.6. Outline

The relevant tools concerning equation (1.2.2) for ¢ with possibly
changing sign are compiled in Section 2 in a more general set-up than is nee-
ded for Theorem 1.4.2 (for the sake of later reference). In Section 3, by
analytic continuation methods, the connection to the log-Laplace functionals
(exponential moments) is given. The large deviation estirﬁates follow in the
final section, where we adopt some methods found in Deuschel and Stroock

(1989). An Appendix is devoted to the special case k=0.

2. ON THE CUMULANT EQUATION
2.1. Preliminaries

In this subsection we will introduce the function space o' in which so-
lutions of the equation (1.2.2) will "live".

Fix a dimension dzl, a motion index «e€(0,2], a constant a satisfying

. . 2.-a/2 d

d<a=d+a, and introduce the reference function <pa(y) = (I+lyl") , YeR.
Let & denote the linear space of all real-valued continuous functions ¢ defi-

ned on R® with the property that the ratio <p(y)/<pa(y) converges to a finite

limit as |y|2w. In & we introduce the norm

ol := SuPye[R | q)(y)/q)a(y) | ,  ped.

comp comp

Then ® is a separable Banach space. Note that € and

cdc @o where ©
€0=€0[[Rd] are the spaces of all continuous functions with compact support or
vanishing at infinity, respectively, both equipped with the supremum norm
Il-llm of uniform convergence. Moreover, the embedding of ¢ into ‘60 is conti-
nuous, sinée Ilwllwsllgoil, ped.

Fix a finite closed time interval I:=[L,T], L=<T. Let <‘;>I denote the linear
space of all continuous curves u defined on I and with values in ®. Equip @I
with the supremum norm, denoted by

IlullI 1= sup{l|u(t)ll;ieI}, ued'. |

By setting ult,y) := u(t)(y), tel, ye[Rd, we also regard u as a function on

d, . :
Ix[Rd, and we get a continuous embedding o' €O[I><iR] since llull = = IIuIII,
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I . . .
ued . Moreover, we immediately obtain:

Lemma 2.1.1. The spaces ® and %' are Banach algebras with respect to the

pointwise product of functions.

2.2. On the Stable Flow

Recall that k20 is a fixed ("diffusion") constant. If >0, then the

. K . a/2 .
stable semigroup (th;tEO} with generator K,Aa = -k(-4) possesses continuous
transition density functions pK(s,t,x,y)=pK(t—s,y-x), s<t, x,yele, with cha-
racteristic functions
2.2.1) sz P(r,z) 0% = exp[-xr10l%], 0, oeR’.
(Note again that with a=2 the heat flow is included.)
0,1 . K,I K

For ¢e® we set 7 7¢ = ¢ and for k>0 define T ¢ := {?TT_sq);seI} where

by definition v?TT(p(x) = Idy pK(t,y-x) oly), t0, xeR’. The following lemma can

be found, for instance, in Dawson and Fleischmann (1988), Lemma 4.1. (Note

1

i )

that 9y = 7
Lemma 2.2.2. [k,p]l & STK’IQD is a continuous mapping of {R+xc1> into @'

As a simple consequence we get (see also Dawson and Fleischmann (1992),

formula line (3.4)):

Lemma 2.2.3. The linear operators ST': acting in ® are uniformly bounded for

bounded t and k.

Proof. In fact, for 0 = t,k = ¢,

1ok
17 el

A

1 1,J _ .
el |7 40 | = ol [T | = const ligl,
where for the moment we set J:=[O,c2], and const will always denote a finite

constant. a

2.3. Another Convolution Map
1 - K,I .
For ue® we introduce W ”'u by setting

(WK’Iu)(s) = JT dr 7° u(r), seI=[L,TI.
s r-s
Lemma 2.3.1. [k,ul VH WK’Iu is a continuous mapping of [R+><<I>I into CI:I.

Proof. According to Lemma 2.2.2, gk u(r) belongs to ®, for each pair r,s sa-
. r-s
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tisfying rzs. In vie-w of Lemma 2.2.3,
K K K K K
(950 - T = |7 -0 + |T v - 7 v
= const lig-yll + const ||?7'|<s_rllll -y,  srkz0, ¢,ped.

Assume K 2K and u > u as nw. For s €I, by the previous estimates,
n

K ,I
w"u(s) - wlus)H| = J dr 91 u(r) - 271 u(r)
n n n I K Ir—s ] n K|r-s |
n n n
< 1
= JI dr [const lu (7 - ulr)] + const ‘I‘TlKn_K‘ lr_Snlu(r) - u(r) ]

In virtue of Lemma 2.2.2, the latter norm expression converges to 0 as n-w,
for each r. Moreover, by Lemma 2.2‘.3,- it is bounded above by const llu(r)il =
corist IlullI = const. Hence, by dominated convergence, the integral over the
second norm expression converges to 0 as n-»w. But for the first .term we get =

~const I|un—ullI which converges to 0, too. Summarizing,

and we are done. o

K ,I ‘ .1
n ’
W u -W"u

n

K ,I

W™ us) - wlhis)| — 0 as n-co,
n

= Su
I psEI

2.4. Solution via the Implicit Function Theorem
Recall that I=[L,T]. Now we have together all ingredients to introduce
the functional
(2.4.1) F(k,p,p,,u) := u - ETK’Iq) - WK’Iw - pWK’I(uZ)
defined for [k,p,p,¥,ul € [R+><(R+><<I>><<I>I><<I>I. We will study the equation
(2.4.2) F(k,p,p,y,u) = 0

which covers (1.2.2). In fact, in more details it can be written as

, oK T K T K 2
(2.4.2%) u(s) = 7T_Sq> + L dr ‘:Tr_sa/;(r) +p L dr ?Tr_s(u (r)), sel,
and a formal differentiation té the time variable s yields
(2.4.2") —6——u—:cAu+:/;+ u® u =
o s~ a pu s=1- ¥

(To rebuild (1.2.2), set L=0, y=0, and reverse the time: sHT-t; later the
backward formulation is needed to express some functionals of the occupation
time process related to X.) Our purpose will be to solve (2.4.2) with the

help of the implicit function theorem, for adequate [k,p,@,¥l.

Theorem 2.4.3 (cumulant equation). Recall that Il=d<as=d+«, O<a=2, and I=[L,T]

are fixed.
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i) (uniqueness). To each [K,p,q),:/;]éﬂ?ix@x@l there exists at most one ele-

ment ue<I>I which solves F(k,p,p,¥,u)=0.

(ii) (existence). There is a maximal open convex subset U of !Rix@x@l, such

that for each I[k,p,p,l€eU there exists a solution u e o for

“l.p.00]
which F(k,p,p,¥,u)=0. This U includes [R+x{0)x<I>x¢>I and [Rix@_xfbi, in particu-

lar, u[ ’0’0]=0.

(iii) (continuity, convexity, and analyticity). The mapping [k,p,p.¥]
U[Kp(pw]EQI defined on U is continuous, and for fixed [k,pl, the map

[, ¥lu is convex and analytic (with [k,p,p,¥] ranging in U).

[k.p.0.0]
(iv) (blow-up). If I<T then U is different from [Rix@x(bl, and

sup{y (5,); [s,y1eIxR%} — +o0 as [k,p.0.0] — [K,p,0,B1€dU,

K00 ]
the boundary of U.

W) (maximum principle). u ]sO (=0) provided that ¢,y<0 (20, respec-—

[k.p.0. 0
tively).

(vi) (global solutions). Fix [K.,p]E(Ri. If lo,yl=0, then even a global solu-
tion exists, that is the solution can be extended frfom I=[L,T] to all of
(-0,T]. On the other hand, if d>a (supercritical dimension) and [(p+,lll+] is

sufficiently small in norm, then again a global solution exists.

(Of course, in our real Banach space setting, analyticity at a point means
that the power series expansion converges absolﬁtely in a neighborhood of
that point; see e.g. Zeidler (1986), Section 8.2.)

To prepare for the proof of the theorem, first note that F maps
[Rix@x@lxél continuously into <I>I, see the Lemmas 2.2.2, 2.3.1, and 2.1.1. Fur-
thermore, at each point [k,p,p,¥,ul € [Rix@x@lx@l, we get the following first
partial (Fréchet) derivative of F With respect to u:

(2.4.4) DiF(K,p,(p,w,u)v =vy - 2pWK’I(uv), »vetDI.

Consequently, this partial derivative is linear in u and continuous in

[k,p,¢,¥,ul (again by the Lemmas 2.3.1 and 2.1.1).
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Lemma 2.4.5. For each [k,p,p,p,ul e [Rix@xcblxél, the (bounded linear) operator

1
D&F(K,p,cp,w,u): o' 0 is bijective.

Proof. Suppose L<T (otherwise W''=0 and D;F(K,p,q),w,u) is the identity). Fix
[k,p,0,,ul and let v belong to 3" with D;F(K,p,go,:/;,u)v=0. By (2.4.4) and
boundedness of the operator w'! according to Lemma 2.3.1,
V() = const flull_ j: dr Iv(ril,  sel.

Then Grénwall’s Lemma (pass to Iv(T-s)ll) implies that Iliv(s)l=0, i.e. v=0.
Consequently, the first partial derivative under consideration is a one-to-
one operator.

Let wed'. We want to show that there is a ved with v—ZpWK’I(uv)=w, i.e.
that v solves the linear equation

(2.4.6) v(s) = 2p f: dr ?7': su(r)v(r) + w(s), sel.

To this purpose we will decompose the interval I into sufficiently small pie-
ces in order to replace the integral operator in (2.4.6) by an operator with
norm strictly smaller than 1, which then will allow us to apply the so-called
main theorem for linear operator equations in Banach spaces.

Fix we@l, let N>1 be a natural number (to be specified later), set T :=
(T-L)/N, and introduce the intervals I(i) := [T-(i+D<,T-itl, J(i) := [T, T-itl,

0O=i<N. Fix i. For sel(i), instead of (2.4.6) we get

K,I(1) K,J(1)

2.7 vs) = 2p WO Pun)s) + 7€ WP wn))T-in) + wis),
(T-iT)-s

Now K,I(1) I
WPy = conun v T, ued,
I(i) I 1(1)

1
where the constant C can be chosen independently of i and 7. Fix N so large
that ZpCIIuIII‘C < 1, in order to ensure that the bounded . linear operator

10,4y acting in """ has a norm smaller than 1.

w

First assume that i=0. Then the middle expression at the r.h.s. of equa-
tion (2.4.7) disappears, and (2.4.7) has a (unique) solution v on I(0); see,
for instance, Zeidler (1986), Theorem 1B

For a proof by induction on i suppose that v is already constructed on

J(i) for some i, 0=i<N-1. Then apply the same theorem to extend v continuous-
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ly to I(i) v J(i). Summarizing, the operator under consideration maps onto

@I, and the proof is finished. ]
Now we are ready to complete thé Proof of Theorem 2.4.3.

1° (uniqueness). Take [K,p,(p,lﬁ]EfRf_X@Xq)I and assume that F(k,p,p,p,u) = 0 =

F(k,p,¢,¥,v) for some u,ve@l. From (2.4.1),

K, 2 K,I 2
1%

lu(s) - v(s)ll = p |Wu(s) - W (s)|, sel

Using the Lemmas 2.1.1 and 2.2.3, we can continue with
=< const llu+vllI JE dr ltu(r) - v(ri,

and again Grénwall’s Lemma yields llu(s) - v(s)lIl = 0.

2° (local existence). Fix a point [« ,p 0

2 I I
oPo o,tpo,uo]etR+x<I>x<I> x®, and assume

that F(Ko,po,q)o,wo,u0)=0 (as is the case for <p0=|,llo=uo=0). Based on (2.4.4),
Lemma 2.4.5, and 1°, from the implicit function theorem we conclude the exis-

tence of an (open) neighborhood ‘Uo of [k ,p,¢ ¥ ] in [Rf_x@x@lx(bl such that

000 00

there is a wunique map I[k,p,p,¥] defined on uo with

u[:c,p,tp,«l/]

F(K,p,(p,l/l,u[ see for instance, Zeidler (1986), Theorem 4.B. (Here

=0:
K,p,w,wl) ’

we have to mention that in applying the implicit function theorem we could
replace R® by [Ri where the neighborhoods of points at the half axis k=0 or

p=0 are defined in a one-sided way.)

3° (maximal existence). Introduce the system © of all neighborhoods ¥V with
the properties as ‘Uo above. If 1/1 and 1/2 belong to © then also Vlnifz does,

and the corresponding maps [;c,p,go,u/;]wu['(pq)w] coincide on ?/anZ. Set U :=

U V. We want to show that Ue6. Consider a point [k,p,p,yleU. Then it be-

Veb

longs to some Ve, and from the corresponding map we take the solution

This definition of a map [k,p,p,¥] > u on U makes sense

“Uic.o.00) [k,p.p 0]

because G is closed with respect to the operation of intersection. Thus, U is
the maximal open set of existence, and we will show below in part 7° of the

proof that this U is convex.

4° (continuity and analyticity). The continuous dependence of u on

[k.p.0:¥]

[k,p,9,¢] directly follows by the implicit function theorem from the conti-
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nuity of D;F(K,p,go,![l,u) in [k,p,p,¥]l. For fixed k,pz0, the first partial de-
rivative of F with respect to [p,y] is given by

(2.4.8) D;% JFEpopwIEL] = - 7% - w'e,  (£,gleaxe’,

hence is independent of [¢,4]. Combining this with (2.4.4), we obtain that
the first partial derivative D1 F(k,p,p,¥,u) exists and is even conti-

lp.y,ul

nuous in [@,p,u]l. Next,

DZF(K,p,(p,l,[l,u)VW = - ZpWK’I(vw), v,wed’,
i.e. DzF(K,p,(p,l/l,u) is independent of [¢,y,ul. Consequently, all higher par-
tial derivatives of F with respect to [¢,p,u]l will disappear (in other words,
F is a polynomial in [¢,p,ul). Therefore F(k,p,p,¥,u) is analytic in [¢,y,ul,
for each fixed [k,p]l. Then the analyticity property in the statement (iii)

follows; see Zeidler (1986), Corollary 4.23.

5° (blow-up). Assume that [Kn,pn,wn,wn] — [K,p,p.¥]ledU and that the corres-

ponding sF)lutlons u = u[K P oWl satisfy IlunllOo = C, nzl, for some fini-
n n n n
te constant C. From (2.4.1) and (2.4.2), for sel,
Kn+m Kn j
"um-m(s) h un(S)" = fTT—s n+m N fTT—s<pn
A K T kool KoL,
+ |W gy (s)-W Y| +|lp W u’ (s) - pW = ul(s).
n+m n n+m n+m n n

From the Lemmas 2.2.2 and 2.3.1, the first two terms on the r.h.s. are of the
order o(l) as n,m-w, uniformly in s. Since the sequence P is bounded, the
remaining term can be estimated from above by

T
+ [[un“m) L dr ||un+m(r) - un(r)ll

(the o(1) is again uniform in s). Using the boundedness of the sequence IlunllI

= o(1) + const ("un+m"oo

and Grénwall’s inequality we get |u -unHI = o() as n,m>e. Hence the u_

I - . .
form a Cauchy sequence in the Banach space & . Let u derote its limit. From

the Lemmas 2.1.1, 2.2.2, and 2.3.1 we conclude that F(k,p,,¥,u)=0. However,

this contradicts the statement in 2° since by assumption [K,p,go,J:] does not
belong to the maximal open set U of existence. Therefore llunllw is unbounded.

From (2.4.2’) as well as the Lemmas 2.2.2 and 2.3.1,
K ,I K I - -
n’ n K,I- K,I- I
> : ’ ®
un = J (pn + W l/}n n_’_m) T Q + w lll €

which yields the claimed blow-up property.
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6° (points of non-existence). Take [K,p,(p,l[l]é\RiX@X@I with p>0, le,¥]=0, and

3

@#0. Let ©>0. From 2° we know that [k,p,80,0y] belongs to U for 6 sufficient-
ly small. Assume that it belongs to U for all 6>0. Applying the operator ?7:_1_

on the solution u at time seI=[L,T], we get

0 = “Ik,p,00,00]

K oK T K T K 2
?Tsiue(s) = 93T_Lgo + 6 J-s dr i‘Tr_Lw(r) + L dr iTr_L(ue(r)).
Setting fT':_Lue(s)(y) =: fe(s), sel, for a fixed yeR, from Jensen’s inequality

we obtain . 2
fe(s) = fe(T) + L dr fe(r), sel.

Therefore f o dominates the solution of the equation
T 2
gls) = £ (1) + J' ar g, sel,
for all ©>0. But the latter equation is solvable only for (’I'-L)fe(T) < 1 and
its solution g(s) = fe(T)/(l - (T—s)fe(T)), sel, explodes as (T-L)fB(T) T 1
On the other hand, L<T by assumption, and fe(T) = 6?7:_1_«)(}') ranges conti-
nuously from O+ to +w on {6>0} for an appropriate y by our assumption on ¢.
This is certainly a contradiction. Consequently, [k,p,0¢,6¢] does not belong

to U for 6 sufficiently large.

7° (convexity). At this stage we use the standard iteration scheme, which we
recall here without going into any details. (For this technique, see for in-
stance Dawson and Fleischmann (1988), Proposition 4.6, or also Dawson and
Fleischmann (1992).) Fix k,p20. Let [k,p,p,] belong to U. Set

(2.4.9) ui=0, u_ = 7% + WSy + pWK’I(ui), n=0.

n+l

We may assume that I is sufficiently small (otherwise decompose I as in the

proof of Lemma 2.4.5). Then we get u =:u in ®'. Take additio-

n n>o U[K,P,‘P,'/’]

nally [k,p,¢’,¢’leU and consider the corresponding approximating functions ur’1

of the solution u , ., = :u’. For a constant 0<B<Il, we want to show
[K,P,SD "l’ ]
that u = P exists, where [goB,llfB] := Ble,yl + (1-B)l¢’,¥’], and that
k00" W]
(2.4.10) uB = Bu + (I-Blu’.

To this end, by using (2.4.9), show by induction that

(2.4.11) uB = Bu + (I-Blu’
n n

n
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holds. On the other hand,
||uB (s) - uB(s)" = const JT dr ]|uB (r) - uP (],
n+m n s n+m-1 n-1
because from (2.4.9) and (2.4.11),
B s K,I K,I
l[un"I =< (IIunIII + 'l ) v (|7 q)"1~+ |w l/I"I) = const.

B B

Consequently, u_ converges in (I)I to the desired solution u~ as n-w, and the
inequality (2.4.10) is obvious. Summarizing, U and u have the desired conve-

xity properties.

8° (special cases). If p=0 then u = J'p + WL If [p,y]20, then obviously
=0, (if ist). : . i
u[,c,p,(p’,l,] (if they exist). On the other hand, if [¢,y]=0 then non

positive solutions u can again be constructed by the iteration sche-

[k,0.0.0]
me. Since I is arbitrary, we can easily extend the solutions to all of [R+.
Such global solutions exist also if, for [K,p]e[Ri fixed, [<p+,lll+] is suffi-
ciently small in norm, provided that we are in supercritical dimensions d>a;

we refer to Fujita (1966) or Nagasawa and Sirao (1969). This finishes the

proof of Theorem 2.4.3. o

3. LoG-LAPLACE FUNCTIONALS

3.1. Preliminaries: The a-Vague Topology

Recall that O<a=2 and d<a=d+x. To ® we introduce the "dual" set Ma of
all (locally finite non-negative) measures p defined on R? such that (u,qoa) <
+0, or equivalently, (f,9) < +o for all q)e<1>+. For instance, all finite measu-
res and the Lebesgue measure £ belong to this set of a-tempéred measures. We

endow M with the a-vague fopology. By definition, this is the coarsest topo-
a

comp

logy such that all real functions p->(u,@), ¢ € €+

u{<pa}, are continuous.
Hence all the mappings p—>(u,9), ¢, are contihuous.

Let [é*,ll°ll*] denote the dual Banach space to [®,ll+ll]. Then /?la can be
considered as a closed topological subspace of ®* equipped with the weak* to-
pology (i.e. thé a-vague topology in Ma is nothing else than the topology in;

duced in M by the weak* topology in $*). Note that
a .

(3.1.1) | (me)| = lgl (;1,<pa), ped, ue/?ta,
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from which in particular follows that the "duality" relation (+,*) between Ma
and @ is continuous in both "components", and that
(3.1.2) plt, = (u,wa), HeH .
There exists a sequence {fn;nzl} of functions in i?:_omp such that
© -n-1
pa(u,v) 1= ano 2 (1 - exp[—[(u,fn)—(v,fn)l/”fn”]), [TRTANS Ma,
where fo =9, is a complete translation-invariant metric on Ma which gene-

rates the a-vague topology; cf. Kallenberg (1983), Appendix A.7. Hence, Ma is

a Polish space.

Lemma 3.1.3. Each open ball B(v,r) := {ueM ; p (u,v)<r}, veMa, r>0, is a con-
a a

vex subset of M .
a

Proof. This can be concluded from the inequality

(3.1.4) pa(ep1+(1—9)u2,v) = pa(pl,v) v pa(uz,v), 0=0e=1, Mk € Ma,

which follows from the corresponding property of the Euclidean metric enter-
ing into the exponents in the definition of P, » combined with the fact that

. -r . . .
the function 1-e , rz0, is monotonously increasing. a

Lemma 3.1.5. 4 subset A4 of M is relatively compact if and only >if there is a
a .

natural number k such that A € {ueM ;lull =k} holds.
a

Proof. If for a sequence {pn;nzl} < A we have lmnll* = (un,goa) Sa7 @ then
this sequence cannot have a subsequence which a-vaguely converges in Ma, thus
A is not a relatively compact subset of Ma. On the other hand,

{ueM ;lpll =k} = M~ {p*ed*; [(p*,9)| =k, Vped with lipli=1}, k=1,
and the Banach-Alaoglu theorem implies the (weak*) relative compactness of

all these sets; see, for instance, Rudin (1973), Theorem 3.15. o

Finally, from the definition of p we conclude that
a

(3.1.6) p () = lp-vi, wveAM.
a a

3.2. Superstable Motion in [Rd
Recall that O<a=2, d<a=d+a, and k,p = 0. A critical superstable motion X

in R with motion index «, "diffusion" constant k=0, and (constant) branching
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.
rate p=0 can be defined as a time-homogeneous Markov process

[X,[P':’z ;seﬂ?,uema] with continuous trajectories in M and with Laplace transi-
3, a

tion functionals

K,p _ (f_ <
(3.2.1) Es " exp(X(t),9) = exp(p,u[K’p’(p’o]( (t s))], s=t, uema, ped

3

where u =u solves

[k,p.p,0] A
(3.2.2) u(s) =75 ¢ + p J° ar 7° (2,  s=o,
- S r-s

or as a short-hand, P
- =u = KAau + puz, u

s = ¢;

s=0-

that is, u ¢<®_, is the unique extension from IcR_ to R_ of the so-

[k,p,0,0)
lution according to Theorem 2.4.3. (For the construction of the process, cf.
for instance Dawson (1991), in particular Proposition 5.6.4.)

Note that by the continuity properties of solutions and by (3.1.1) the
Laplace functional exéression (3.2.1) is continuous in all its variables

s,t,p,¢ as described. Note also that if p=0 then X reduces to the stable flow

{?T':u;tzO} in Ma defined by (fop,qp) = (p,?T':qo), q>ed>+.

3.3. Exponential Moments
The (weighted) occupation time process Y related to X is defined by Y(t)
1= J ; ds X(s), t>0. Now we want to describe the exponential moments of

[X(2),Y(t)], t=0, with the help of solutions to the equation (2.4.2°).

Proposition 3.3.1 (log-Laplace functional). Fix I=[L,T], I<T, k,p=0, and let
B := Blk,p] denote the set of all those [%lllletbxfbl such that Vip,yl := v de-

fined by

’

(3.3.2) v(s,y) := log (E':’g exp[(X(T),«p) + J: dr (X(r),t/l(r))], [s,yleIde,
y

satisfies sup{v ](s,y); [,S,y]eIxIRd} < +0. Then B is an open convex set

XX
which covers @_x@i, and o, ¥leBlk,pl if and only if [k,p.p.pleU with U defi-

ned in Theorem 2.4.3 (ii). In this case Vipyl = u the (unique) so-

[k,p.0. 01
lution to (2.4.2°).

Note that this proposition provides a probabilistic representation of

the solutions to (2.4.2°).
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Proof of Proposition 3.3.1. 1°. Fix [K,p,q),l[l]E[Rix@X@I, and assume for the
moment that ¢,Y are non-negétive. Then, for all 6=0, the functions V[8¢,0y]

defined in (3.3.2) belong to <I>I and solve (2.4.2°), hence coincide with ug =

I . . . .
u[:c,p,eq),et,ll] € ®. In fact, if yY=0, then this is a version of the Laplace

functional (3.2.1), and the formula can be extended to (3.3.2) by approxima-
ting ¢y by appropriate step functions and using that X is a Markov process;

see Iscoe (1986).

2°. Now drop the additional assumption ¢,§=0. Let U i t/l=l/l+—![l_ denote the
minimal decomposition with go+,w+20, ¢ ., >0. Then from 1° we know that v6 1=
V.[91<p++92¢_,93w++94w_] belongs to o' and satisfies (2.4.2’) with [6p,0y] rep-

lacedN by A(8) := [81<p++92<p_,93¢++94¢_], for all 6 := [91,...,94] =< 0, that

. (¢} ~
is, v. = u =: u~ for non-positive 6.
[k.p.6 ¢ 46,0 6.4 +6 y¥_] 8

3°. Keeping the notations from the previous step of proof, set

(3.3.3) 6 := {8eR"; A(B)eB), @ := {BeR’; [K,p,0,0,+6,9 0., +6, 4 leU}
with U defined in Theor‘em 2.4.3 (ii). Note that {Ri < ®n®. By Holder’s and the
triangular inequality, ® is a convex subset of IR4. On the other hand, the
properties of U yield that ® is an open convex subset of IR4. Fix for the mo-

ment [s,y]EleRd. Well-known properties of bilateral Laplace functions imply

~

that 6r——>ve(s,y) is an énalytic function on the interior ® of ©. On the other

hand, §|—>u5(s,y) is an analytic function on @. But by 2° both coincide on

~

~ ~ ’ e
{6;6=0}, and by uniqueness of analytic continuation we conclude that v (s,y)

~

= ua(s,y) on © n®, and that both ve(s,y) and ua(s,y) are branches of a unique

~o R
analytic function defined on © uU®. Since I[s,y] is arbitrary, the (leRd) -

~

~

valued mappings ve and ug coincide on ®°n@.

~

o

4°. By definition, v6 has an infinite supremum outside of ®. Therefore OC8.

On the other hand, the supremum of ugy blows up if ] approaches the boundary
80 of ©®. Moreover, again by HOolder’s inequality, vG is convex in 0e€®. Hence,

® cannot be strictly included in (:j, that is v=u on @=0 =0. Passing to 91=93=6

and 62=94=—9, we get that [B¢,8yleB if and only if [k,p,0¢,0¢leU, and in this
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case Vi6¢,0y] = u Specialize to 6=1 to finish the proof. n

[k,p,00,8y]

From J-initial measures we may pass to any initial measure:

Corollary 3.3.4 (exponential moments). Fix I=[L,T], L<T, and peﬁta. Then

Et:ﬁ eXp [(X(T),(P) + ,[: dr (X(r),w(r))] = exp(u’u (L))

[k.p.0.91

if [k,p,o¥lel, where u solves the equation (2.4.2') according to

(k.p.0.0]
Theorem 2.4.3.

Proof. This follows from Proposition 3.3.1 if we approximate p by discrete
measures with a finite set of atoms and use the branching property and ob-

vious continuities. o

Once a solution passes the blow-up boundary, it should stay at infinity

(compare for Baras and Cohen (1987)):

Conjecture 3.3.5 (complete blow-up). Fix I=[L,T], L<T. If k>0 and [k,p,p.¥] ¢
A\

ca'z’ﬁ exp[(X(T),q)) + E dr (X(r),tb(r))] = +o, peM .

a

UudU then

4. LARGE DEVIATION ESTIMATES

4.1. Reformulation of the Large Deviation Principle Theorem 1.4.2
As announced in Subsection 1.5, we will derive the following general re-
sult. Note that here only our basic parameter assumptions Isd<a=d+a, O<a=2,

K,pz0 are enforced.

Theorem 4.1.1. (version of the large deviation principle). Fix >0 and uexﬂa,
u#0. There exists a lower semi-continuous convex good rate functional S

13

M - [0,+x] with S (‘:T'Cu) = 0 such that,
a Mt ot \

(i) for each open subset G of .Ma ,

v

- inf S (v),

liminf R log PP {R_IX(t) € G)
TR
veG

R~ o.Ry
(ii) for each closed subset F of Ma ,

. -1 K,p -1 . .
limsup R~ log P [R X(t) € F] = - inf S (v).
R0 0,Ru ‘ veF ot

The proof, to which we devote the next four subsections, is based on a
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general methodology for large deviation probabilities as presented in Chap-
ters II and III of Deuschel and Stroock (1989), in conjunction with the re-

sults on superprocess log-Laplace functionals developed in Sections 2 and 3.

4.2. Supermultiplicativity
As an immediate preparation for the proof of the previous theorem, we

formulate the following simple lemma.

Lemma 4.2.1. Fix t>0, ueMa and a convex Borel subset A of Ma. Then the func-
tion

= ploP
(4.2.2) f(R) : IPo,Rp
is supermultiplicative: f(R+S) = f(R) f(S), R,S>0.

[R"‘X( t)eA] . R0,

Proof. Fix R,S > 0. Let [X’,X"] be distributed according to the product mea-
K,p K,p
sure Po,Rp X [Po,Sp. . Then

K’P K,P -1 1] -1 "
FIRIF(S) = PO,R“XIPO’S“[R X'(t)ed, X (t)eA].
However, if both R'X’(t) and S 'X"(t) belong to A4 then also its convex com-
bination (R+S)—1(X’(t)+X"(t)) is in A. But by the branching property, which
follows directly from the form of the Laplace functional (3.2.1), X’(t)+X"(¢)
has the law PP Summarizin |
0,(R+S)K’ &
< pP - = S).
FRIF(S) = P R+S)u{(R+S) X(t)eA] FRS). @
Lemma 4.2.3. In addition to the assumptions on A and f in the previous lemma,

suppose that ASMa is open. If now f(R)>0 for some R>0 then f is bounded away

from O on some non-empty open interval.

Proof. Assume that f(R)>0 for a fixed R>0. Since Ma is Polish, by the regula-
rity of finite measures we find a compact set CcA such that even f(R) =
!P';:g“(R_IX(t)eC] > 0; see e.g. Bauer (1981), Satz 41.3. The convex hull E'SA
of the totally bounded subset € of the locally convex space &* (concerning
the weak* topology) is totally bounded; see, for instance Rudin (1973), Theo-
rem 3.24. Moreover, it is a closed subset of Ma. (In fact, if vne(} converges

(a-vaguely) to veM as n-w, then by compactness take such a subsequence that
a

all terms in the representations v = 6 a« + (1-6 )8, 0=6 =1, a« ,B8 €C, con-
n nn n n n n n
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A

verge, which implies that limn_)co v belongs to C.) Consequently, C is an
(a=vaguely) compact subset of A4, and by the relative compactness criterion
Lemma 3.1.5 we get
(4.2.4) sup{livil ;veC} =: K < w.

So far we mainly proved that there exists a compact convex set CcA such

that f(R) = g(R) := P';’zu[R—IX(t)eC] > 0. We may choose a 8 such that 0 < 28

< pa(C,Ma\A), and a natural number S, > K/8. Recall (3.1.6). Write G :=
{veMa; ly-Cll <8} < A. For O=r<R and a natural number s, let [X’,X"] be dist-

. . K,p K,p .
ributed accor‘dxgg to [Po,s Ru X IPo,rp. . Then by the branching property,

£(S) = P’;":Ruxﬂ"g’fp[S_I(X’(t)+X"(t))eA] with S=sR+r.

But a sum belongs to A certainly if the first summand belongs to G and the
second summand has a ll+ll -norm smaller than 8:

> pkKsP -1,y K,p 3
(4.2.5) f(s) = [PO’SRM[S X (t)eG] Po,rp(us X (t)||*<5}._

The first factor on the right hand side can be estimated further in the same
way: (sR+r) ' X’(t)eG is certainly fulfilled if (SR)—IX’(t)E& and if the Nl -
norm of the difference of both "vectors" is smaller than 8. But this is ac-
tually true under (sR)"'X’(t) e C and s=s :

|(sReNX(®) - (sRTX @), = [r(sRer) (SRR @), = sTK < 8.
Thus, the first factor at the r.h.s. of the inequality (4.2.5) can be»estima—
ted from below by

(4.2.6) = [P';:‘: Ru[(sR)_1X’(t)eC] = g(sR) = (g(R))® > 0, szs,,

A

where we applied Lemma 4.2.1 to the (compact) convex set C. Concerning the
second factor at the r.h.s. of (4.2.5), pass to the complement and proceed

for >0 as follows:

-S&6 P

orrpt exp(X (t),e<pa).

K,p ) S _ oK.p "
lPo,r“["S X (t)ﬂ*zs] = Po,ru[(x (t),9¢a)zsae] <e

By Corollary 3.3.4 with I=[-1,0] and using time-homogeneity, we may continue

with —SRS6
<e

exp I:(ru,u[K (-t))]

0,89 ,0]
a
which is finite for a ©>0 sufficiently small. But the second exponential ex-

pression is bounded in r=R, whereas the first one converges to 0 as s-»w. Con-
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sequently, the second factor on the r.h.s. of (4.2.5) is bounded away from
zero for all sufficiently large S=sR+r. Combined with (4.2.6) we conclude
that f(S) is bounded away from zero on some non-empty open interval. This fi-

nishes the proof. o

4.3. Weak Large Deviation Principle

Let @ denote the system of all those subsets of /na which are non-empty,
open, and convex. Fix ueM , t>0, and, for the moment, Ae#A. In Lemma 4.2.1 go

a
over to -logf to conclude that the function
o(R) := -logPP {R_IX(t) € A] € [0,+x], R>0,
0,Ru

is subadditive, i.e. o(R+S) = o(R)o(S), R,S>0. Moreover, Lemma 4.2.3 yields
that o is either bounded on some non-empty open interval, or identically +o.

Hence, the subadditivity of o irhplies that all the limits

(4.3.1) S (A :=-lim_ R log PP [R“lxtt) € A] € [0,+w], Aed,
Mt R~ 0,Ru

exist; see, for instance Lemma 4.2.5 in [9]. Recall that by Lemma 3.1.3 all
open balls B(v,r), r>0, veMa, belong to A. By monotonicity, set

(4.3.2) Su ) = lim S“’t(B(V,I‘)) = sup(S“’t(A); veded}, veM .

’ a
Obviously, Su t:MaH[O,ﬂo] is a lower semi-continuous functional. For conve-
xity, it is enough to show that
(4.3.3) S#’t((v1+v2)/2) = (Su,t(v1) +'S“’t(v2))/2, vv, € M.
Set (v1+v2)/2 =: v, take any AeA with ved, and choose Aieﬂ such that w/ieA.l
and 4 2 (A1+A2)/2. Then, by (4.3.1) and the branching property,
5 -1 K,D -1
S“’t(A) = hmR—m (2R) = log Po,ZRp.[(ZR) X(t) € A]

= (S}l,t(Al) + Su’t(Az))/Z = (S“,t(vl) + S#’t(vz))/z,

and (4.3.2) implies (4.3.3).
It is easy to see that from (4.3.1) and (4.3.2) we- get

.. -1 K,p -1 . < M.
(4.3.4) hmmqu)m R log{PO’R“{R X(t)eG] > mfveG S“’t(v), open G .

On the other hand, if C is a compact subset of M and i := inf _-~ S“’t(v) is

positive, then for 0<e<i we find finitely. many open balls Bl,...,BM which co-

ver C and satisfy Sll t(B ) = i-e, I=sm=M. Then again with (4.3.1) and (4.3.2),
, m
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we finally obtain

(4.3.5) limsup_ R_llogﬂ"g’g“ [R_lX(t)eC] < - inf (v), compact C € M .

veC Su,t
Summarizing, with (4.3.4) and (4.3.5) we proved that the family

-1 s - . o

R log!P'; gu{R 1X(t) € -], R>0, satisfies a weak large deviation principle

with the convex rate functional S t:M [0, +w].
a

5

4.4. Full Large Deviation Principle
For convenience, we formulate the following lemma. Recall the set &

>

introduced after (1.4.6).

Lemma 4.4.1. Fix ueMa and t>0. For all <pe<1>“ o

. . -1 K,p P _
lim hmR_m R logEo’Ru{exp(X(t),fp), (R X(t),p) = N} = -o.

N~c0
Proof. Fix m,t,e as in the lemma and set I=[-t,0]. Since @ut is open by de-
finition, we find a ©6>0 such that also (1+8)¢ belongs to @H . As in the
proof of Lemma 4.2.3, we can use an exponential moment inequality to get
(4.4.2)  R'oge™P {exp(X(t),q)); (R'X(),9) > N} < -6N + R'A_  ((1+0)p),
0,RM Rp,t
R,N>0. But the exponential moments A“ t(tp) introduced in (1.4.3) satisfy

>

= K.p = >0.
(4.4.3) ARu,t((p) J.Ru(dy) log Eo’ayexp(X(t),QD) RA“,t((p), R
Hence, the r.h.s. in (4.4.2) is finite, and letting first R»o and then N-w,

the claim follows. u}

By Lemma 4.4.1 with go=6goa and 6>0 sufficiently small,
. . -1 K,p -1 _
lim  _ lim R IOg{Po,Ru[(R X(t),69) = N] = -w.
From the compactness Lemma 3.1.5 and (3.1.2) we learn that to each M>0 we
find a compact set CMSMa such that
. -1 K,p -1 _
hrnsupR_)m R Iog[PO,R“{R X(t) € CM] = -M.
In other words, we have exponential tightness. Together with the results of

the previous subsection we get a full large deviation principle with the con-

vex good rate functional S“ o See [9], Lemma 2.1.5.

4.5. Law of Large Numbers
We start with a simple but important scaling property of the superpro-

cess:
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Lemma 4.5.1. Fix peMa and a constant c¢z0. If X is distributed according to

PP then cX has the law PP .
o)u O,C'J.

Proof. By the Markov property, this directly follows from the identity

u[K’p’cq),o] = cu[K‘cp’(p’O] , p€® , via (3.2.1) and (3.2.2). a]

As a complement to Theorem 4.1.1 we add here the following

Lemma 4.5.2 (law of large numbers). Fix t>0, ueMa. For all neighborhoods
‘u(fT':u) of 5'::1,

K,p [,-1 K

!PO’R”[R X(t) e uwtm] == 1

Proof. By Lemma 4.5.1,

) ped .

K,p —1 - K,pP/R - -
E. R“exp(R X(t),9) u—:wl exp(X(t),p) = exp(M,u[K’p/R’%O]( t)

The claim then follows from continuity properties, since

(Lu (1) = (1I9) = (Tme). o

[x,0,9,0]
By the LLN Lemma 4.5.2, Lemma 3.1.3, and (4.3.1) we have Sp t(B(i’T':p,r))
= 0 for all >0, and (4.3.2) implies that S [Tw) = 0. This completes the

proof of Theorem 4.1.1.

4.6. On the Relation between the Rate Functional and Exponential Moments
Fix again t>0 and ueM . By (4.4.3),
a
-1 P =
R 'log E’;’Ru exp(X(t),p) = Au,t((p)’ ped,
and by Lemma 4.4.1 and Varadhan’s Theorem (see [9], Theorem 2.1.10) we obtain
that (1.4.6) holds for all qpe(b“ R Note that

A (@) = (nu

1wt (-1)), qpe<I>0S<b ,

[k,p.9,0] TR

by Corollary 3.3.4, where Qo is the set of all those ped such that

sup{A8 (¢); Ossst, yele) < +00,
S
y

4.7. Proof of Theorem 1.4.2

Here we come back to our scaled processes X® defined in (1.2.4). The
large deviation principle of Theorem 1.4.2 is in fact a consequence of Theo-
rem 4.1.1 combined with some scaling properties. First of all, X® coincides
in law with the original process X but with other parameters k,p. Recall the

notation (1.4.1).
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Lemma 4.7.1 (space-time-mass. scaling). For K=1, let My belong to Ma , and set

Ky = KKW—OL as well as Py = pKy_d. Then
K_,p
K, K
fPOﬁ (X (t)e(‘)] =p X KK(X(t)e(-)], K=1, t>0.
Tk o,(uK)

Proof. Fix Kzl. By the self-similarity of the stable transition density func-

. K

tions p (t) := pK(t,°), t>0, introduced in Subsection 2.2, we have
K

(4.7.2) pr(KYt) = (p K(1:)]“, £50,

(which directly follows from (2.2.1)). This implies

K
(4.7.3) T (") = [?TtKw]K, t20, ped .
K’a,t

But K—d(lllz)K = W% Ye® , and the uniqueness of solutions u=u to

(k,p,9,0]
equation (3.2.2) yields
u (-K%t) = [
K
[k.p.0 0]
Then from (3.2.1) for t=0, pe? ,

K
u (—t)] , 120, ¢ed .
[KK,pK,go,O]

E-P exp(X(1),0) = E-P exp(X(K71),6%) = exp(u u (—K”f)]-
0,1 , 0,1 K K

K K [k,p.9 0]
By the previous identity and again by (3.2.1) we can continue with

‘ K

P
-t =g © X(1),9).
[k oPs#:0] [k oPs9:0] )] 0. “K)Kexp( 2

This coincidence of Laplace functionals implies the claim. o

3

= exp (uK,(u (—t))K] = exp [(uK)K,u

The Lemmas 4.7.1 and 4.5.1 are now the essential steps in order to.see
that Theorem 1.4.2 follbws from Theorem 4.1.1. In fact, for y=«,

K.p

K,p K gl - K Ol = pfP -(d-) . -7
(4.7.4) PO,HK[X (t)e( )} = IPO’” {X(t)e( )) = ﬂ’o Kd'“u(K X(t)e( )], Kz],

and we have only to set Kd_a=:R and take into account that d>a, by assumption.

Remark 4.7.5. Under subcritical scaling, that is ¥ < aad, the law of large

numbers K Pn . Pn
X(t) —> up if X (0 —>u,
K=o K-

mentioned in the end of Subsection 1.2 above, follows similarly as in the
proof of Lemma 4.5.2, since here KK->0 in view of Lemma 4.7.1 and ?TS equals

the identity operator. m

APPENDIX: ON THE MODEL WITHOUT SPATIAL MOTION

The purpose of this Appendix is to compute the Legendre transform of the
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log-Laplace functional A“t of X(t) in the case k=0, as announced in Subsec-

3

tion 1.4.

Fix p>0 and ¢e®. Then our equation (2.4.2’) (with y=0) degenerates to

the ordinary equation
(A.1) uls,y) = oly) + p J:’ dr uz(r,y), s<0,

which has the (pointwise) solution

e(y)/(I+pse(y)) if psely) > -1 4
(A.2) u(s,y) = , s<0, yeR'.
+00 otherwise.

By analytic continuation as in the proof of Proposition 3.3.1 we conclude that
log [Eg’g exp(X(t),p) = u(-t,y) € (-, +w], 0.
Ty
In addition, fix t>0 and ueMa. Then

- K,p _ _ _
/\u,t(so) = log EO’“ exp(X(t),p) = fu(dy) u(-t,y) € (~w,+ol.

with u given in (A.2).
Next we introduce some notation. Each veMa may be uniquely decomposed in

Ma into v = v + vy + v . Here vac(dy) =: gac(y)u(dy) is absolutely conti-

nuous with respect to p whereas v, and v, are singular with respect to p. By

a

definition, Va is concentrated on the (uniquely determined) closed support ¢

of u and vw(y’) = 0. Recall that ®* is the dual space to the Banach space @

but equipped with the weak* topology.

Proposition A.3. The Legendre transform

* *) . * - *cp*
(A.4) A“’t(go ) : supﬁpecp((q) 9) A“’t(q))), p*ed*,

has the following form: For veMa,
(A.5) A ) = (pt)! ju(dy) (F—gac(y)-z)z + va([Rd)/pt + v_(RY)- (+a),

whereas A,: t(«J"‘)=+oo for the remaining ¢*€®* (we use the convention 0-(+x)=0).

>

Note that A;‘it is positively homogeneous along Vg hence it is not

strongly convex at v=v_ #0. Roughly speaking, strong convexity is violated by

3]

some measures v which spatially "deviate" inside the closed support of the
starting measure u. Note also that A:lt is not continuous in the vague topo-
logy. In fact, let d=1, pt=l, let u be the uniform distribution on the inter-

val (-1,1), and Ve be the mean zero Gaussian distribution with variance €>0,



SUPERPROCESS LARGE DEVIATIONS 29

but i -1,1). = =
ut restricted to (-1,1). Then R (vg)ac converges vaguely to 60 (50)6 as €-0

but S (v ) —— 2 whereas S
t e €

K, 0 M(ao) = 1. On the other hand, mention that

Aut is steep if u is concentrated on a finite set of atoms.

Proof of Proposition A.3. 1°. Without loss of generality we may assume that
p=1 (otherwise make a time change). Also, by the special form of A , in the

’

definition of A;:t the supremum can be restricted to those ¢e® such that

3

to(y) < 1 p-a.e. (since (¢*,9) is always finite).

2°. To prove that A;';’t = + outside Ma, we fix ¢*€®* and assume that
sup{(¢*,9) - A“’t(<p)} < +o where ¢ runs through the set just described. Then
we have to show that ¢* can be generated by a measure in Ma. To this purpose
we want to apply the Daniell-Stone Theorem; see, for instance, Bauer (1974),
Satz 39.4. Indeed, ® is a Stone Vektorverband, and we will show that ¢* is
non-negative and that (cp*,(pn) — 0 as A pointwise monotonously decreases to
0 (as n»w). Assume that there exists a non-negative @e® such that (e*,9) < O.
Then 6¢p = 0 for 6<0, and the supremum in the def initioﬁ of the Legendre
transform can be estimated below by taking into account only 6¢:
| A;:»"(‘p*) = 9(¢p*,9) since —A“’t(efp) = 0.

Letting 8 > - we get a contradiction to the assumed finiteness. Hence, ¢* is
non-negative. Suppose that in & there exists a sequence ? | O pointwise as
n»wo and such that (go*‘,q)n) = g, nzl, for some €>0. All ¢ are continuous and
will vanish as |yl|-»w. Hence, Il(pnll00 —> 0 as n»w. Thus, for each 6>0, 0 = 9<pn =
II()(pr.lIIOo < 1/t for all sufficiently large n. Therefore,

A:,t(q)*) = e(go*,cpn) - Au’t(ewn) = ge - Jdp 9<pn/(1-—t6<pn)
for sufficiently large n. But even

1-top (y) =1-tollg Il =1/2

as n-w. Hence,
A% (@%) = 0c - 2 Ju(dy) 69 ().

However, the latter integral is finite and tends to O by monotone convergence
as n->w. Thus l\;:*l t((p*) = @¢g, for all 6>0. Letting 6-w we arrive at the desired

contradiction. Summarizing, ¢* is an abstract integral and can then be repre-
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sented by some measure v. Here v is defined on the smallest o-field making
all ¢€® measurable, which is 'nothiné else than the usual Borel o-field on RY.
Of course, v has the needed finiteness property, i.e. it belongs to Ma. It

remains to calculate A* . on M.
N a

3°. By calculus methods one can easily handle the “zero-dimensional” case:

For a=0, . )
supy_, (a6 - 0/(1-t0)) =t (Va - 1)

where the supremum is uniquely "realized" at 6=(I1 - 1/Va)/t (read 6=-« when
a=0).

4°. Next we will deal with the case vma&O. Here we have to show that A;’; t(v) =

+o. Now there is a bounded Borel set B < Rd\y with vm(B) > 0. By regularity,
there is even a compact set C € B with vm(C) > 0. Since the closed sets C and
¥ are apart by a positive (Euclidean) distance, for allk sufficiently small
€>0 the open e-neighborhood ‘US(C) =: U of C is also disjoint to ¥. Fox‘~ such €

we may choose some WCE@ with the property that e-llc = we < g 1Lu. Then

Au,tw’e) = 0, and

* -1
Au,t(V) S (v,&,be) E vw(C) —> +0 as €°0.

5°. For the remaining proof we can assume that vm=0. Then
* = -
(A.6) 'A”’t(v) sup{(v5*v__.¢) A“’t(go)}
where the supremum is taken over those ged such that te(y) < 1 p-a.e. We can
estimate from above as follows (recall that g,.=8 is the density of v with

respect to p):
A% @) = v @)/t + Ju(dy) sup, . [2(y)0 - 0/(1-t0)]

i.e. we pass to pointwise supremes, using for the first term that ¢ = 1/t on
¥ by the continuity of . _Together with 3° we get the desired expression as
an upper estimate for A*,t(V)' It remains to deal with estimations from be-
low. Here the kc_ey idea of proof consists in choosing a Ye® such that approxi-
mately Yly) =~ 1/t for those y where va has its mass, whereas Y(y) =~ (I -
1/Vg(y))/t on the "support" of v Here of course some technical work has to

be done.
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o

6. We start with the case u({g < 1-8}) = +w for some &>0. Then also
2 2
m{(Vg-0" > 8%)) = pu({vg < 1-8}) = +o for some (in the following fixed) >0,

and we have to show that A;‘i t(V) = +w. Let ASY be a supporting Borel set of p

with the property that va(A) = 0. By our assumption, to each K>0 there is a
compact set C := C,_ € {Vg < 1-8} n A with u(C) > K. By regularity, we find a
bounded open neighborhood ‘U(CK) =: U such that (v+p)(UN\C) < 1. Choose yed with
(A.7) ' - 7:'15(1~<3)‘11(u sy s -t 80-8)"1,

Now

A;‘;’t(v) = (va+vac,|p) - Ap,t(w’ )

and using both estimates of (A.7) and since va(C) =0 and r +— r/(1-r) is mo-

notone, we can continue with

z - (vgtv_ )(UNC) t'8(1-8)" - J u(dy) [g(y) t8(-8)" - t78]

c
> - t7'8(1-8)" + pe) 8% = - tl8(1-8)" + K t18°

which tends to +w as K-w.

o

7°. By the previous step of proof, from now on we can assume that p({g<1-8})

< + for all 8>0. Let E denote the halfopen unit cube [0,1)d in le, and let

z, i=L12,..., run through all points of the lattice Zd. Each Borel set B<R®

1

can be decomposed into disjoint bounded sets by setting B := B n (E+zi),
1

iz]. We will apply this construction (and reserve the index i for it) to the

sets $\A and A n {g = 1-8)}, 8>0, which have possibly infinite mass with re-

spect to v, and p. (Although we could also deal separately with the cases

3

va(y’\A) = +w and p({g=1+8}) = +w» similarly as in 6°, since then A:; t(V) = +0.)

’

8°. For the next steps of proof we fix a number & := Z-m, m>1, and set £ :=

€5 = V82", nzl. For izl choose compact sets Cei < (\‘/’\A)i such that

2, -1
(A.8) v4((ANA), N\ Ce,i) <eg2.
For 1 = j = (1-6)/5:2 we introduce the Bor‘elv sets

By, = (G-De? = g < jey n A

: 4 .
. . 2
Select compact sets Ke' < st satisfying ”(Be,j\Ke,j) < g . For izl take

sJ 3

compact subsets Lei of ({I-8 = g <1} n A)i with the property that

u[({1—65g<1}nA)i \ Lm] < 27,
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Finally, for iz1 and 0 = k < (1-82)/84 set

2 2 ‘
_—_ ({1+ke” = g < 1+(k+D)e )r\A)i

and take compact sets C_ . £ B . such that
£,i,k £,i,k

6,1
(A.9) (Vac+“)(Be,i,k \ Ce’i’k) <g2.

Note that all these compact sets ¢ , K , L , and C_ _ (where i,j,k
€,i g,j £€,i £,i,k

are running as above) have pairwise a positive distance. Now choose t,bge@ with

the property that

( (1-e)/t on C_.
(1 - 1Vje? Yt on K_.
t/ls(y) = 4 )
0 on L81
| (1 - 1/V1+(k-1)e®)/t on C

£€,i,k

where iz1, 1 = j = (1—6)/82, and 0 = k < (1—82)/84. Moreover, we impose

(A.10) Vet =y (y) = (et

for the remaining y. This choice of I,lle is actually possible since l/l€ has the-
se bounds also on all the compact sets above (for the fixed ).

[o]

9°. Now we are ready to provide the estimates from below. In fact, A;'i t(v) z

(Va,llls) + I1 + I2 + 13 where the last three terms refer to the integral
Jdu (g!.ll8 - t.lle/(l—tt/ls)) restricted to {g<1-8}, to {I1-8=g<I}, and to {g=I}, re-

spectively. First of all,
(vav,) = "a(UiCe,x) (1-€)/t - v, ((N\A) \ Uice’i)/et

. d
where the first term converges to the desired expression va(iR )/t as e-0,
whereas, using (A.8), the second term can be estimated further from below by

= - g/t, converging to zero as £-0.

10°. Turning to 1’1 we proceed as follows. On each set Kej for the integrand

we have

g - v /-ty ) = (Vje* -D*/t
.2
since g < j€2 and noting that we is non-positive because of je <l. Further,
= - - =z - 2/te. D -
on BS,J_\K&j use 0O=g=] and (A.10) to get gy, we/(l tn/ls) €. Decompo

sing {g < 1-8} = UJ. (Ke,j V] (Be,j\Ke,j)) we obtain

> 22 N2
I = Zj [H(Ke’j) (Ve -1)°/t p.(Be’J_\Ke’j) 2/te].
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. 4 . .
Since H(Be j\Ks: J.) < £ and taking into account that there are at most 1/e>
indices j, further

I =% K ) (Vje® -1)%/t - 2est.

Now set f (y) := ¥ jez 1 (y) to get
€ J Bej

- [
I1 > ¢! Ju(dy) IUK (y) [\/fe(y) - 1]2 - 2e/t.

J €

Recall that & = 82", and let n»w. Then on {g < 1-8} n A we have fe — g and

lKgJ — 1 pointwise. But fe is bounded by 1 and u({g < 1-8}) < +w, thus by

bounded convergence we get I1 = ¢! j{gq-a} du (@—1)2 where the latter ex-

pression finally converges to t f{g<1} du (V2-1)% as 8-0.

11°. Since !/‘C(Y) = 0 in the main term of Iz’ its estimation results into the

error term

I, = L u[({1—65g<1}nA)i \ Ls’i] e/t = - 28/t —=> 0.

120. Finally, ws is non-negative on each UiCSH(. Hence, on these sets g = 1

+ ke? = . and then
I3 = 2:I«I}‘L(Uict-:,i,k) [nk (1—1/‘/;'—1:)/ t- (‘/ﬁ;_l)/t}

-v UB_  \Uc
ac- 1 &,i,k

i S,i,k) /et - u(UlBS,i,k N Uice,i,k) /et]'

By (A.9) we can continue with
2 5
z Zk[u(UICS,i’k) (n, - )7/t - 2 /t].

Using the notatio = i int ccount that
ing h ion he(y) Xk n IUiBeik(y) and taking into accou
we have at most I/e' indices k, the latter expressions can be written as and

estimated from below by

' -1 2
t Jdu ,’U c (Vhe—l) - 2e/t.
Lk €1,k o
Here we can additionally assume that in 8  the construction of the sets

Ce_1k had been done in such a way that the union Uik Ceik monotonously
increases to {g=I} as n-»w (via £ = V82 " ). But he converges monotonously to
gl{g>1) and then by monotone convergence as n-»o we arrive at the estimate I3
- J‘ Y

t (gzndu Ve-n°.

13°. Combining the estimates in 9°-12°, we get the desired lower bound, and

the proof of Proposition A.3 is complete. o
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