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K.FLE:ISCHMANN AND I.KAJ 

1. INTRODUCTION 

1.1 Motivation 

Since the pioneering paper of Liemant (1969), much has been done in the 

field of spatially distributed branching models of infinite populations: 

equilibrium theory, convergence theorems, scaling properties, hydrodynamics, 

sample path properties, random media effects to mention only some main 

topics. However, to our knowledge there are only a few papers dealing with 

large deviation aspects. (Generally speaking, large deviation probabilities 

are of particular interest in statistical physics, in models in random media, 

and in other respect; the relatively simple branching models may serve as a 

certain test case only. ) 

Cox and Griffeath (1985) considered the critical binary branching Brown-

ian motion starting with a homogeneous Poisson particle system of density one 

and studied in dimensions d~J the asymptotics of the (logarithmic) large de-

viation probabilities 

log Pri,(C1 J~ ds N5 (B) > (l+c)f(B)) 

as t-'>oo where N (B) counts the number of particles at time s in the bounded 
s 

Borel set Bc:IRd of volume l(B), and c>O has to be sufficiently small. This 

last condition has its origin in the method they use based on cumulants: it 

guarantees the convergence of some power series expansions. Also, in recent 

manuscripts of Lee (1992) and Iscoe and Lee (1992) similar restrictions enter 

into some large deviation probabilities for closely related occupation time 

processes; the only exception is a dimension d=3 result, where a steepness 

argument could be used. 

To remove such "disturbing" conditions was our primary motivation to 

look for large deviation properties in infinite branching models. A striking 

technical fact that makes the subject interesting is that in such branching 

models exponential moments are infinite as a rule. 

In the present note we are concerned with large deviation probabilities 

K K log J>11,(X (t)eA) as K ... oo, where X refers to a branching process appropriately 
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scaled in time, space and mass, t is a fixed macroscopic time point and A is 

any open or closed set in the state space of the scaled processes. We rest-

rict our main attention to supercritical dimensions d, i.e. to those dimen-

sions where the unscaled process has steady states, and under a critical re-

scaling we prove a full large deviation result. 

From the variety of possible choices we decided to work with a measure-

valued branching model (Dawson-Watanabe process, superprocess), which reduces 

the number of relevant approximations forced by the scaling and which simpli-

fies the use of some analytical tools. 

In the remainder of this Introduction we will briefly describe the mo-

del, formulate the main result and provide some heuristic background leading 

to a dimensionally independent reformulation of the problem. 

1.2. Model 

Let X = [X,ff:>K,p;sEIR ,µE.M ] denote the critical superstable motion on !Rd 
s,µ + · a 

with motion index ae(0,2], "diffusion" constant K~O, and constant branching 

rate p~O, related via its Laplace transition functionals 

(1.2.1) 

to the 

(1.2.2) 

[K,p exp(X(t),rp) = exp(µ,u (t-s)), 
s~ <p 

O~s~t, µEJ!t , <pE/P 
a 

solutions u=u of the non-linear differential equation 
<p 

a z d atu(t,y) = KlJ.au(t,y) + pu (t,y), t>O, yelR , 

U (O+, • ) = <p E /P _. 

Here .M is a Polish space of locally finite (non-negative) measures defined 
a 

on !Rd with at most potential growth at infinity, determined by some constant 

a. Moreover, /P is a related Banach space of continuous test functions on !Rd, 

and /P the subset of its non-positive members. Integrals Jm(dx) f(x) are 

a/2 written as (m,f), and JJ. := -(-JJ.) denotes the fractional Laplacian. (For 
Q'. 

more technical details, see Sections 2 and 3 below.) 

In other words, the states of the time-homogeneous Markov process X are 

a-tempered measures, and given the state X(s)=µ at an initial time s, the 

Laplace functional of the random measure X(t), t>s, is described with the 

help of the solutions u of the non-linear equation (1.2.2). 
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Roughly speaking, the stochastic evolution of populations X(s) is deter-

mined by two components: the population mass is smeared out by the stable 

flow with generator K.!1 (the heat flow in the case cx=2), and all "differen-cx 

tially small" portions of mass X(s,dy) independently (concerning the space 

points y) fluctuate in time according to the stochastic equation 

(l.2.3) d( = ../2p<': ' dW , 
t t t 

t~s. 

(starting in ( =X(s,dy) for y "fixed" and with W a standard Wiener process in 
s 

IR) describing the simplest critical continuous state Galton-Watson process 

(Lamperti process) with "branching rate" p. 

We mention that such superprocesses serve as diffusion approximation for 

high density branching particle models, where the particles have small mass, 

move independently according to symmetric ex-stable motions and split criti-

cally with a large rate and finite variance. (For a recent survey on super-

processes we refer to Dawson (1991).) 

For constants a>O and K>O we define the scaled processes XK: 

(1.2.4) K a K (X (t),<p) := (X(K t),<p ), t~o. 
K -d 

<p .- K <p( •IK), <pE!fJ 

i.e. we speed up the time by a factor K0 , contract the space and rescale the 

-d mass both by the factor K . 

1.3. Basic Scaling Properties 

Before we will formulate our main result, we review the "basic ergodic 

theory" on the scaled proce~ses XK as· K 'oo. To this end we have to distinguish 

between several parameter constellations. 

First consider the situation of a critical scaling with which we mean 

that a = CX!\d holds: 

(*) In the case of a subcritical dimension, i.e. if d<cx, or more explicit-

K ly, 0=d=l<cx, the scaled processes X converge in distribution to X but the 

latter defined with diffusion constant K.=0 (i.e. the motion component disap-

pears), provided that the initial measur"es XK(O) converge in law to some 

X(O). If p>O, this means, that the scaling will catch clumps, which in the 
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limit are located in Poissonian points and the . sizes of the clumps are inde-

pendent, fluctuate according to (1.2.3), and for a fixed macroscopic time 

point t, are exponentially distributed. In other words, this limit can be 

viewed as a collection of independent copies of processes fluctuating accor-

ding to the stochastic equation (1.2.3), with initial states ( 0 according to 

the limiting initial measure X(O,dy). For details concerning this time-space-

mass scaling limit theorem we refer to Dawson and Fleischmann (1988). 

(**) In the situation of a critical dimension, i.e. if d=a, or more expli-

citly, if a=d=a=l or 2, the superprocess is self-similar, i.e. that XK coin-

cides in distribution with X, provided that the initial states XK(O) and X(O) 

coincide in law (for instance, if X(O) = t, the Lebesgue measure; see the 

Lemma 4.7.1 below). 

(***) For supercritical dimensions d > a (= 0 ) a law of large numbers (LLN) 

is true: For fixed t~o. 

if XK(O) ~ K ->co µ, µe.# ' a 

where 'JK.µ is the measure which results if the a-stable flow witfi "diffusion" 
t 

constant K.~0 acts on µ over a time period of length t; see the Lemma 4. 5. 2 

below. In this case (if p>O) also the Gaussian fluctuations around the a-

K. stable flow 'J µ can be computed, leading to Ornstein-Uhlenbeck processes; see 

e.g. Dawson, Fleischmann, and Gorostiza (1989) (specialized to a constant me-

dium and to branching with finite variance). 

So far we discussed the situation under the critical scaling a = a/\d. In 

the case of a subcritical scaling a < a/\d (i.e. if the microscopic time grows 

only "moderately"), always a law of large numbers holds; see Remark 4.7.5 be-

low. On the other hand, for a supercritical scaling a > a/\d, under reasonable 

initial conditions one expects a local extinction XK(t) ~ 0, t>O, provided 
K-> co 

that d:sa, whereas in supercritical dimensions d>a again a law of large num-

bers should hold. 
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1.4. Main Result 

In this note we fix our attention to large deviations related to the law 

of large numbers (***) above, Le. with the most interesting LLN since in 

this case the scaling is critical. 

For convenience, K similarly to (l.2.4), we introduce a notation µ for a 

scaling of measures µ by 

(1.4.l) K K (µ ,<p) .- (µ,<p ), µe.M , K>O, <pE'P 
a 

(with <pK defined in (1.2.4)). 

Theorem 1.4 .. 2 Oar~e deviation principle). Assume that d>a=0 . Fix K,p<?:.0, a 

measure µe.M , µ::t:O, and a (macroscopic) time point t>O. For K>O, let µ denote 
a K 

the measure in M which satisfies (µ )K = µ (for instance µ=£=µ ). Then the 
a K K 

following large deviation principle holds: There is a lower semi-continuous 

convex functional S : M H [O,+oo] with S ('J'Kµ) = 0 such that, µ,t a µ,t t 

(i) 

(ii) 

for each open subset 

lim inf K-<ct-a> 
K -700 

G of M , 
a 

log IPK,p (xK(t) 
o,µK 

for each closed subset F of .M a 
limsup K-<ct-a> log IPK,p (xK(t) 

K -?oo . o,µK 

<?:. - inf S (v), 
VEG µ,t 

eF)~-infS (v). 
veF µ,t 

(iii) S is a good rate functional: all sets {veM ; S (v)~N}, N>O, µ,t a µ,t ~ 

are compact. 

That is, roughly speaking, 

K d-a '.Pri(X (t) = dv) ~ exp(-K S (v)], as K-?oo, µ,t 

in the sense of logarithmic equivalence. 

The point is that for (i) we do not need any smallness condition, i.e. a 

restriction to small (open) neighborhoods G of 'J'Kµ. 
t 

Of course, it is desirable to learn more on the rate functional S . In µ,t 

particular, one would like to know the relation to log-Laplace functionals 

(exponential moments). In fact, if we set 

(1.4.3) Aµ,t(<p} := log IE~:~ exp(X(t),<p) E (-oo,+oo], <pE/P, 
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then under the assumptions in the theorem, 

K-(d-al log [K,p exp{Kd-aXK(t),rp) =: A (rp). 
o,µ µ,t 

K 

(1.4.4) 

Thinking in terms of other large deviation results this immediately raises 

the question whether 

(1.4.5) S (v) = sup ,.... {(v,rp) - A (rp)} =: A* (v), 
µ,t </)E'l! µ,t µ,t VEM. 

a 

This would be advantageous since, under a boundedness condition, A (rp) can 
µ,t 

be described by means of the eq_uation (1.2.2); see Proposition 3.3.1 and Co-

rollary 3.3.4 below. 

From the general theory follows that S ~A* (see, for instance, [9], µ,t µ,t 

Exercise 2.2.23 (ii)). Regarding the converse inequality, we are able to show 

the relation 

(1.4.6) A (rp) = sup u {(v,rp) - S (v)}, µ, t VE/fl µ, t rpE!J? ' µ,t 
a 

where II? denotes the largest open set off all those functions rpEIJ? such that µ,t 

A (rp) < +oo (see Subsection 4.6 below). This leaves open whether the rela-µ,t 

tion (1.4.5) holds in full generality. 

Of course, one could· derive (i) with S replaced by A* for open sets µ,t µ,t 

G contained in some neighborhood (') of 'JKµ in analogy with the finite-
t 

dimensional case (see, for instance, Ellis (1984)), 

smooth on II? • Then (1.4.5) would hold at least for veO. µ,t 

using that A (rp) 
µ,t is 

In the special case of a vanishing "diffusion" constant K=O (i.e. if 

there is no motion in the model) one has a complete description of A , and µ,t 

the Legendre transform A* can be computed explicitly (see the Appendix). An µ,t 

interesting fact is that as a rule this A* is not strongly convex, hence 
µ,t 

A is not "steep". This is in contrast with the fact that steepness is of -µ,t 

ten used as a starting point to get the lower bound estimate ( i) in terms of A* . µ,t 

1.5. To the Method of Proof: A Heuristic Argument and Reformulation 

By scaling properties of the stable semi-group and of the critical con-

tinuous-state Galton-Watson process, and by our assumed parameter relations, 

the time-space-mass scaling of X as K-"oo can be reformulated as a limit in law 
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of X under p->O (see Lemma 4.7.1 below). 

For the sake of a heuristic argument, let us restrict our attention for 

the moment to the case of a "discrete" branching rate p=l/N, N->oo. Then, again 

by scaling arguments, X(t) with respect to !PK, l/N has the same distribution o,µ 

as N-1 'i:1 =1 Xi(t), where the Xi(t) are independent and have the law !PK, 1 . Now o,µ 

apply an infinite dimensional version of Cramer's Theorem. Here, of course, 

i one has to be careful since the exponential moments of the (X (t),cp ), cpecl1 +' 

are infinite as a rule. But they are finite for all cp in some neighborhood 

(depending on t) of the origin in the Banach space cl1, and by some additional 

efforts one can really show that such a version of Cramer holds in the pre-

sent case. 

To be more precise, our approach is to investigate the large deviation 

probabilities 
R-1 log IPK,p (R-1X(t) E ·) as R->oo, 

O,Rµ 

which exist without any dimension restrictions and may be expressed by means 

of some rate functional S (see Theorem 4.1.1 below). Then we show as a µ,t 

consequence that Theorem 1. 4. 2 above holds with the same rate functional S . µ,t 

Concerning technical details, a necessary step in the development is to 

deal with equation (1.2.2) for initial functions cp which admit also positive 

values. Here one has to take into account that, for given cp and a fixed time 

interval, solutions u may not exist (think of the explosive behavior of the 

d 2 ordinary equation dtu(t) = pu (t), for p>O and positive initial values). Per-

haps we should add at this place, that (1.2.2) will be handled by transfer-

ring it to the corresponding integral equation (mild solutions of ( 1. 2. 2)). A 

rather detailed picture is given in the Theorem 2.4.3 below, which in parti-

cular covers known results due to Fujita (1966) or Nagasawa and Sirao (1969). 

We mention that the methods in this note are useful also for dealing 

with functional deviations in time (and not only in space), for large devia-

tions related to other variants of the law of large numbers (subcritical 

scaling), and also for large deviations in the case of the occupation time · 

process related to X (as in the model mentioned in the beginning). 
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1.6. Outline 

The relevant tools concerning equation ( 1. 2. 2) for rp with possibly 

changing sign are compiled in Section 2 in a more general set-up than is nee-

ded for Theorem 1.4.2 (for the sake of later reference). In Section 3, by 

analytic continuation methods, th~ connection to the log-Laplace functionals 

(exponential moments) is given. The large deviation estimates follow in the 

final section, where we adopt some methods found in Deuschel and Stroock 

(1989). An Appendix is devoted to the special case K=O. 

2. ON THE CUMULANT EQUATION 

2.1. Preliminaries 

I In this subsection we will introduce the function space <P in which so-

lutions of the equation ( 1. 2. 2) will "live". 

Fix a dimension d?:.1, a motion index o::e(0,2], a constant a satisfying 

d<a:::=d+o::, and introduce the reference function rp (y) := (1+ I y I 2fa12, ye!Rd. 
a 

Let <P denote the linear space of all real-valued continuous functions rp defi-

ned on !Rd with the property that the ratio rp(y)/rp (y) converges to a finite 
a 

limit as I y I -+oo. In <P we introduce the norm 

llrpll :=sup IR\rp(y)/rp (y)\, rpe<P. ye a 

Then <P is a separable Banach space. Note that b'comp c <P c b' where b'comp and 
0 

b' =b' [!Rd] are the spaces of all continuous functions with compact support or 
0 0 

vanishing at infinity, respectively, both. equipped with the supremum norm 

II• 11 00 of uniform convergence. Moreover, the embedding of <P into b'0 is conti-

nuous, since llrpll :::=llrpll, rpe<P. 
00 

Fix a finite closed time interval I:=[L,T], L:::=T. Let <P1 denote the linear 

space of all continuous curves u defined on I and with values in <P. Equip <PI 

with the supremum norm, denoted by 

llull := sup{llu(t)ll;teJ}, 
I 

I ue<P . 

d By setting u(t,y) := u(t)(y), tel, yelR , we also regard u as a function on 

Jx!Rd, and we get a continuous embedding. <PI c b' [Jx!Rd] since Hull :::= llull , 
O oo I 
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I ue<f> . Moreover, we immediately obtain: 

Lemma 2.1.1. The spaces <I> and <I>1 are Banach algebras with respect to the 

pointwise product of functions. 

2.2. On the Stable Flow 

Recall that K?:.0 is a fixed ("diffusion") constant. If K>O, then the 

stable semigroup K -K(-b.{J..12 continuous {:'l ;t<::.O} with generator Kb. = possesses 
t a 

transition density functions K K 
p (s,t,x,y)=p (t-s,y-x), 

racteristic functions 

(2.2.l) J K i8•z a dz p (r,z) e = exp[-Krlel ], 

(Note again that with a=2 the heat flow is included.) 

s<t, 
d x,ye!R , 

d 
r>O, ee!R . 

with cha-

For rpe<f> we set :r0 ' 1rp := rp and for K>O define :TK,Irp : = {:TK rp;seJ} where 
T-s 

by definition :'l~rp(x) = Jdy pK(t,y-x) rp(y), t>O, xe!Rd. The following lemma can 

be found, for instance, in Dawson and Fleischmann (1988), Lemma 4.1. (Note 

that 'J~ = :J~t . ) 

Lemma 2.2.2. [K,<p] H :TK,I<p is a continuous mapping of !R x<f> into <I>1. 
+ 

As a simple consequence we get (see also Dawson and Fleischmann (1992), 

formula line (3.4)): 

Lemma 2.2.3. The Linear operators :JK acting in <I> are uniformly bounded for 
t 

bounded t and K. 

Proof. In fact, for 0 s t,K s c, 

ll:T~rpll s llrpll ll:T~trpJ s llrpll ll:T1'Jrpalls = const llrpll, 

where for the moment we set J:=[O,c2 ], and canst will always denote a finite 

constant. o 

2.3. Another Convolution Map 

For ue<I>1 we introduce WK' 1u by setting 

K,I JT K (W u)(s) = s dr 'J r-su(r), seI=[L,T]. 

Lemma 2.3.1. [K,u] H WK' 1u is a continuous mapping of !R+x<I>1 into <I>1. 

Proof. According to Lemma 2.2.2, :TK u(r) belongs to <I>, for each pair r,s sa-
r-s 
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tisfying r?:.s. In view of Lemma 2.2.3, 

K 
:::: const II <p-t/J II + const 11 :J I s-r I t/J - t/J II • s,r,K?:.0, <p,t/JEIP. 

Assume K 4 K and u 4 u as n4oo. For s eI, by the previous estimates, n n n 

jjwKn,Iun(sn) - WK,Iu(sn)ll :::: fr dr 11'.Y~ lr-s lun(r) - '.Y~lr-s lu(r)ll 
n n n 

:::: fr dr (canst llun(r) - u(rlll + const ii:rf K -Kl lr-s 1u(r) - u(r)ll)· 
n n 

In virtue of Lemma 2. 2. 2, the latter norm expression converges to O as n4oo, 

for each r. Moreover, by Lemma 2.2~3, it is bounded above by canst llu(r)ll :::: 

canst 11u11 I = canst. Hence, by dominated convergence, the integral over the 

second norm expression converges to 0 as n4oo. But for the first term we get :::: 

const llu -ull which converges to 0, too. Summarizing, 
n I 

llw Kn,Iun - WK,IullI = supsEI !lwKn,Iun(s) - WK,Iu(s)JJ, -----7 0 as n4co, 

and we are done. o 

2.4. Solution via the Implicit Function Theorem 

Recall that I=[L,T]. Now we have together all ingredients to introduce 

the functional 

(2.4.1) F( ) arK,I .. .JC,l K,I( 2) K,p,<p,t/J,u := u - J <p - w t/J - pW u 

(2.4.2) F(K,p,<p,t/J,u) = 0 

which covers (1.2.2). In fact, in more details it can be written as 

(2.4.2') K JT K JT K 2 u(s) = '.J 1 _5 <p + 5 dr '.J r-st/J(r) + p 5 dr '.J r-s(u (r)), sEI, 

and a formal differentiation to the time variable s yields 

(2.4.2") a z 
- -U = Kb. U + t/J + pu , as <X. 

(To rebuild (l.2.2), set L=O, t/J=O, and reverse the time: sHT-t; later the 

backward formulation is needed to express some functionals of the occupation 

time process related to X.) Our purpose will be to solve (2.4.2) with the 

help of the implicit function theorem, for adequate [K,p,~,t/JJ. 

Theorem 2.4.3 (cumulant equation). RecaLL that J::sd<a::sd+a., O<a.::::2, and I=[L,T] 

are fixed. 
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(i) 2 I (uniqueness). To each [K,p,<p,t/J]EIR + x<I>x<I> there exists at most one ele-

ment ue<I>1 which solves F(K,p,<p,t/J,u)=O. 

(ii) (existence). There is a maximal open convex subset 'U of IR 2 x<I>x<t>1, such 
+ 

that for each [K,p,<p,t/J]e'U there exists a solution u =: u[ •'•] E 4'1 for K,p,<p,"f' 
I 2 I which F(K,p,<p,t/J,u)=O. This 'U includes IR x{O}x<I>x<I> and IR x<I> x<I> , in particu-+ + -

lar, u[ 1=o . 
• , • ,0,0 

(iii) (continuity, convexity, and analyticity). The mapping [K,p,<p,t/J] H 

I u[ ,,,1e<I> defined on 'U is continuous, and for fixed [K,p], the map K,p,<p,"f' 

[<p,t/J] HU[ ,,,1 is convex and analytic (with [K,p,<p,t/J] ranging in 'U). K,p,<p,"f' 

(iv) (blow-up). If L<T then 'U is different from IR 2 x<I>x<t>1, and 
+ 

sup{u[ ·"](s,y ); [s,y ]eixlRd} --7 +oo as [K,p,<p,t/J] --7 [K,p,~,ifj]ea'U, 
K,p,<p,"f' 

the boundary of 'U. 

(v) (maximum principle). u[ ,,.1-:so (?::.0) provided that <p,t/J-:sO (?::.0, respec-
K,p,<p,"f' 

tively ). 

(vi) (global solutions). Fix [K,p]elR 2 • If [<p,t/J]-:sO, then even a global solu-
+ 

tion exists, that is the solution can be extended from I=[L,T] to all of 

(-oo, T]. On the other hand, if d>cx. (supercritical dimension) and [<p +'t/J) is 

sufficiently small in norm, then again a global solution exists. 

(Of course, in our real Banach space setting, analyticity at a point means 

that the power series expansion converges absolutely in a neighborhood of 

that point; see e.g. Zeidler (1986), Section 8.2.) 

To prepare for the proof of the theorem, first note that F maps 

IR 2 x<I>x<I> 1x<I>1 continuously into <I> 1, see the Lemmas 2.2.2, 2.3.1, and 2.1.1. Fur-+ 

thermore, at each point [K,p,<p,t/J,u] E IR 2 x<I>x<I>1x<I>1, we get the following first 
+ 

partial (Frechet) derivative of F with respect to u: 

(2.4.4) D 1F(K,p,<p,t/J,u)v = v - 2pWK'1(uv), u 
I 

VE<f>. 

Consequently, this partial derivative is linear in u and continuous in 

[K,p,<p,t/J,u] (again by the Lemmas 2.3.1 and 2.1.1). 
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2 I I Lemma 2.4.5. For each [K,p,<p,ljJ,u] E IR x<Px<P x<P, the (bounded Linear) operator + 

Proof. Suppose L<T (otherwise WK' 1=0 and D 1F(K,p,rp,ljJ,u) is the identity). Fix u 
[K,p,rp,ljJ,u] and let v belong to <P1 with l D F(K,p,<p,ljJ,u)v=O. By (2.4.4) and u 
b d d f th t WK,! d" L 2 3 oun e ness o e opera or accor mg to emma . .1, 

llv(s)ll ~ const llull JT dr llv(r)ll, seI. 
I s 

Then Gronwall's Lemma (pass to llv(T-s)ll) implies that llv(s)ll=O, i.e. v=O. 

Consequently, the first partial derivative under consideration is a one-to-

one operator. 

Let we<P1. We want to show that there is a ve<P1 with v-2pWK'1(uv)=w, i.e. 

that v solves the linear equation 

(2.4.6) v(s) = 2p J: dr 'J:_s u(r)v(r) + w(s), SEI. 

To this purpose we will decompose the interval I into sufficiently small pie-

ces in order to replace the integral operator in (2.4.6) by an operator with 

norm strictly smaller than 1, which then will allow us to apply the so-called 

main theorem for Linear operator equations in Banach spaces. 

Fix we<P\ let N>l be a natural number (to be specified later), set T 

(T-L)IN, and introduce the intervals I(i) := [T-(i+l)-r,T-i-r], J(i) .- [T,T-i-r], 

O~i<N. Fix i. For seI(i), instead of (2.4.6) we get 

(2.4.7) v(s) = 2p (WK,ICil(uv))(s) + 'JK (WK,JOl(uv))(T-i't) + w(s), 
( T-iT)-s 

Now 
ll WK,Hil(uv)jj ~ C llull llvll T, 

l(i) I l(il 
I ue<P , 

where the constant C can be chosen independently of i and T. Fix N so large 

that 2pCllull T < 1, in order to ensure that the bounded linear operator 
I 

WK,ICil(~·) acting in <P1Cil has a norm smaller than 1. 

First assume that i=O. Then the middle expression at the r.h.s. of equa-

tion (2.4.7) disappears, and (2.4.7) has a (unique) solution v on I(O); see, 

for instance, Zeidler (1986), Theorem 1.B. 

For a proof by induction on i suppose that v is already constructed on 

J(i) for some i, O~i<N-1. Then apply the same theorem to extend v continuous-
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ly to I(i) v J(i). Summarizing, the operator under consideration maps onto 

<P 1, and the proof is finished. • 
Now we are ready to complete the Proof of Theorem 2.4.3. 

1° (uniqueness). Take [K,p,rp,l/J]elR2 x<Px<P1 and assume that F(K,p,<p,l/J,u) = 0 == + 
I F(K,p,<p,l/J,v) for some u,ve<P. From (2.4.1), 

llu(s) - v(s)ll !:: p llWK,Iu2(s) - WK,Iv2(s>JI, seI. 

Using the Lemmas 2.1.1 and 2.2.3, we can continue with 

!:: const llu+vll Ji dr llu(r) - v(r)ll, 
I s 

and again Gronwall's Lemma yields llu(s) - v(s)ll = 0. 

2° (local existence). Fix a point and assume 

that F(K ,p ,<p ,l/J ,u )=0 (as is the case for <p =l/J =u =O). Based on (2.4.4), 
00000 000 

Lemma 2.4.S, and 1°, from the implicit function theorem we conclude the exis-

tence of an (open) neighborhood 'U of [K ,p ,<p ,l/J ] in IR 2x<Px<P1x<P1 such that 
0 0 0 0 0 + 

there is a unique map [K,p,<p,l/J] u 
[K,p,<p,l/J J defined on 'U 

0 
with 

F(K,p,<p,l/J,u[ ,,,1)=0; see for instance, Zeidler (1986), Theorem 4.B. (Here 
K,p,<p,'I' 

we have to mention that in applying the implicit function theorem we could 

2 2 replace IR by IR where the neighborhoods of points at the half axis K=O or 
+ 

p=O are defined in a one-sided way.) 

3° (maximal existence). Introduce the system 6 of all neighborhoods V with 

the properties as 'U above. If V and V belong to 6 then also V nV does, 
0 1 2 . 1 2 

and the corresponding maps [K,p,<p,l/J] ~u[ •"] coincide on V nV . Set 'U := K,p,<p,'I' 1 2 

UVeEi V. We want to show that 'Ue6. Consider a point [K,p,rp,l/J]e'U. Then it be-

longs to some V eEi, and from the corresponding map we take the solution 

u[ 1. This definition of a map [K,p,rp,l/J] ~ u[ •"] on 'U makes K,p,<p,t/J K,p,<f>,'I' 
sense 

because 6 is closed with respect to the operation of intersection. Thus, 'U is 

the maximal open set of existence, and we will show below in part 7° of the 

proof that this 'U is convex. 

4° (continuity and analyticity). The continuous dependence of u on [K,p,<p,t/J) 

[K,p,rp,t/J] directly follows by the implicit function theorem from the conti-
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nuity of D 1F(K,p,rp,t/J,u) in [K,p,rp,t/J). For fixed K,p?::.0, the first partial de-u 

rivative of F with respect to [rp,t/J) is given by 

(2.4.8) 

hence is independent of [rp,t/JJ. Combining this with (2.4.4), we obtain that 

the first partial derivative 1 
D[ ,1, )F(K,p,rp,t/J,u) rp,'P,u 

exists and is even conti-

nuous in [rp,t/J,ul. Next, 
2 KI I D F(K,p,rp,t/J,u)vw = - 2pW ' (vw), v,we<I> , u 

2 i.e. D F(K,p,rp,t/J,u) is independent of [rp,t/J,ul. Consequently, all higher par-u 

tial derivatives of F with respect to [rp,t/J,u) will disappear (in other words, 

F is a polynomial in [rp,t/J,u)). Therefore F(K,p,rp,t/J,u) is analytic in [rp,t/J,ul. 

for each fixed [K,p]. Then the analyticity property in the statement (iii) 

follows; see Zeidler (1986), Corollary 4.23. 

5° (blow-up). Assume that [K ,p ,rp ,t/J ) ---1 [K,p,~,ifj]ea'U and that the corres-n n n n 

ponding solutions u ·= u satisfy llu II :S C, n?::.1, for some fini-n · [K ,p ,rp ,t/J ) n oo 
n n n n 

te constant C. From (2.4.1) and (2.4.2), for seI, 

ll u (s) - u (s>ll :S ll'Y Kn+mrp - 'YKn 'P II n+m n T-s n+m T-s n 

+ llwKn+m'It/Jn+m(s) - WKn,Il/Jn(s)ll + llpn+mWKn+m'Iu~+m(s) - pnWKn,Iu~(s)ll. 
From the Lemmas 2.2.2 and 2.3.1, the first two terms on the r.h.s. are of the 

order o(l) as n,m4oo, uniformly in s. Since the sequence p n is bounded, the 

remaining term can be estimated from above by 

(the o(l) is again uniform in s). Using the boundedness of the sequence llu II 
n I 

and Gronwall's inequality we get II u -u II = o(l) as n,m4oo. Hence the u n+m n I n 

form a Cauchy sequence in the Banach space <I> 1. Let ii dertote its limit. From 

the Lemmas 2.1.1, 2.2.2, and 2.3.1 we conclude that F(K,p,~,ifj,u)=O. However, 

this contradicts the statement in 2° since by assumption [K,p,~,ifj) does not 

belong to the maximal open set 'U of existence. Therefore II u II is unbounded. n oo 

From (2.4.2') as well as the Lemmas 2.2.2 and 2.3.1, 
K ,I K I 
. n n arK,I;;, + WK,I,"j, E ,..I u ?::. ':J' 'P + w t/J ---7 J 'f' 'I' '¥ n n n n4oo 

which yields the claimed blow-up property. 



16 K.FLEISCHMANN AND I.KAJ 

6° (points of non-existence). Take [1C,p,rp,l/J)e!R!x<I>x<I>1 with p>O, [<p,l/J]::::O, and 

rp=tO. Let e>O. From 2° we know that [1C,p,erp,01/J) belongs to 'U for e sufficient-

ly small. Assume that it belongs to 'U for all e>O. Applying the operator 'JIC s-L 

on the solution u0 := u[ e e•"] at time seI=[L,T], we get IC,p, <p, 'P 

IC IC IT K IT IC 2 'Js-Lu0(s) = e'JT-L<p + e s dr 'Jr-Ll/J(r) + s dr 'Jr-L(ue(r)). 
IC 

'J u0(s)(y) =: J 0 (s), seI, for a fixed yelR, from Jensen's inequality s-L Setting 

we obtain 
f 0 (s) :::: f 8 (Tl + I: dr f~(r), seI. 

Therefore f e dominates the solution of the equation 

IT 2 g(s) = f 0 (T) + s ctr g (r), seI, 

for all e>O. But the latter equation is solvable only for (T-L)f 0(T) < 1 and 

its solution g(s) = f 8 (TJ/(1 - (T-s)f 8 (TJ), seI, explodes as (T-L)f 0 (T) i 1. 

On the other hand, L<T by assumption, and f 0(T) = e'JIC rp(y) ranges conti-T-L 

nuously from 0+ to +oo on {e>O} for an appropriate y by our assumption on <p. 

This is certainly a contradiction. Consequently, [1C,p,erp,81/J] does not belong 

to 'U for e sufficiently large. 

7° (convexity). At this stage we use the standard iteration scheme, which we 

recall here without going into any details. (For this technique, see for in-

stance Dawson and Fleischmann (1988), Proposition 4.6, or also Dawson and 

Fleischmann (1992).) Fix IC,p:::O. Let [1C,p,rp,l/J] belong to 'U. Set 

(2.4.9) n:::O. 

We may assume that I is sufficiently small (otherwise decompose I as in the 

proof of Lemma 2.4.5). Then we get u ~ u[ 1=:u in <I>1. Take additio-
n n-+oo IC,p,<p,l/J 

nally [K,p,<p' ,l/J' Je'U and consider the corresponding approximating functions u' 
n 

of the solution u[ , '] = :u'. For a constant 0<{3<1, we want to show 
IC,p,<p ,t/J 

that u /3 -. u/3 exists, where [rp/3,/] := {3[rp,l/J) + (1-{3)[rp',l/J'], and that 
[IC,p,<p ,/] 

(2.4.10) u/3 :S {3u + (1-{3)u'. 

To this end, by using (2.4. 9), show by induction that 

(2.4.11) uf3 :S {3u + (1-(3)u' 
n n n 
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holds. On the other hand, 

const IT dr II u13 (r) - u13 (r) II· 
s n+m-1 n-1 

because from (2.4.9) and (2.4.11), 

llu~llr ~ (llunllI + llu~llI) V c11~K,I'Pllr + llWK,Il/JllI) ~ const. 

Consequently, u 13 converges in <1>1 to the desired solution uf3 as n~oo, and the 
n 

inequality (2.4.10) is obvious. Summarizing, 'U and u have the desired conve-

xity properties. 

8° (special cases). If p=O then u = ~K,I'P + WK'1. If [cp,l/J]~O. then obviously 

u[ 1 ~o. (if they exist). On the other hand, if [cp,l/J]~O then non-K,p,cp,l/J 

positive solutions u[ o1.] can again be constructed by the iteration sche-K,p,cp,"' 
me. Since I is arbitrary, we can easily extend the solutions to all of IR . + 

Such global solutions exist also if, for [K,p]elR2 fixed, 
+ 

ciently small in norm, provided that we are in supercritical dimensions d>o:; 

we refer to Fujita (1966) or Nagasawa and Sirao (1969). This finishes the 

proof of Theorem 2. 4. 3. o 

3. LOG-LAPLACE FUNCTIONALS 

3.1. Preliminaries: The a-Vague Topology 

Recall that O<o:.~2 and d<a~d+a. To <ii we introduce the "dual" set M of 
a 

all (locally finite non~negative) measures µ defined on !Rd such that (µ,cp ) < 
a 

+oo, or equivalently, (µ,cp) < +oo for all cpe<P . For instance, all finite measu-
+ 

res and the Lebesgue measure t belong to this set of a-tempered measures. We 

endow M with the a-vague topology. By definition, this is the coarsest topo-
a 

logy such that all real functions µH(µ,cp), cp E rgcompv{<p }, are continuous. . + a 

Hence all the mappings µ H(µ,cp ), cpe<P, are continuous. 

Let [<P*,ll•Ulf] denote the dual Banach space to [<P,11•11]. Then Ma can be 

considered as a dosed topological subspace of <ii* equipped with the weak* to-

pology (i.e. the a-vague topology in M is nothing else than the topology in-
a 

duced in M by the weak* topology in <ii*). Note that 
a 

(3.1.1) I (µ,cp) I ~ 11cp11 (µ,cp ), cpe<P, µeM , 
a a 
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from which in particular follows that the "duality" relation ( •, •) between At 

and .P is continuous in both "components", and that 

(3.1.2) 11µ11* = (µ,q> ), 
a 

µEAf . 
a 

There exists a sequence {f ;n2:=l} of functions in ~comp such that 
n + 

pa(µ,v) := ~:o 2-n-l (1 - exp[-j(µ,fn)-(v,fn)j/jjfniiJ), µ,v E Af , 
a 

a 

where f := q> , is a complete translation-invariant metric on At which gene-o a a 

rates the a-vague topology; cf. Kallenberg (1983), Appendix A.7. Hence, At is 
a 

a Polish space. 

Lemma 3.1.3. Each open ball B(v,r) := {µEAf ; p (µ,v)<r}, vEAf , r>O, is a con-a a a 

vex subset of M . 
a 

Proof. This can be concluded from the inequality 

(3.1.4) p (eµ +(1-0)µ ,v) :S p (µ ,v) v p (µ ,v), 0:S0:Sl, µ ,µ ,v E At , a 1 2 al a2 12 a 

which follows from the corresponding property of the Euclidean metric enter-

ing into the exponents in the definition of p combined with the fact that 
a 

-r the function 1-e , r2:=0, is monotonously increasing. o 

. 
Lemma 3.1.5. A subset A of At is relatively compact if and only if there is a 

a 

natural number k such that A s;; {µe.M ;11µ11 :Sk} holds. 
a * 

Proof. If for a sequence {µ ;n2::1} s;; A we have IIµ II* = (µ ,q> ) ~ oo, then n n n a n-+oo 

this sequence cannot have a subsequence which a-vaguely converges in M , thus a 

A is not a relatively compact subset of At . On the other hand, 
a 

{µEM ;llµll*:Sk} = M ('\ {rp*eq>*; l(q>*,rp)l:Sk, \:/<pe.P with llq>ll:Sl}, k2:=1, 
a a 

and the Banach-Alaoglu theorem implies the (weak*) relative compactness of 

all these sets; see, for instance, Rudin (1973), Theorem 3.15. o 

Finally, from the definition of p we conclude that 
a 

(3.1.6) µ,v E M . 
a 

3.2. Superstable Motion in !Rd 

Recall that O<a:S2, d<a:Sd+a, and K,p ;::; 0. A critical superstable motion X 

in !Rd with motion index a, "diffusion" constant K.2::0, and (constant) branching 
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rate p"ii:::.O can be defined as a time-homogeneous Markov process 

[X,IPK'p;selR,µe.M ] with continuous trajectories in .M and with Laplace transi-
s,µ a a 

tion functionals 

(3.2.1) !EK,p exp(X(t),<p) 
s,µ = exp (µ,u[ 1(-(t-s))), K,p,<p,O 

s"!$t, µe.M , rpeiP 
a 

where u[ 1=u solves K.,p,<p,O 

(3.2.2) K SO IC 2 u(s) = ':I _5 <p + p s dr ':I r-s(u (r)), 

or as a short-hand, a 2 
- -U = Kf1 U + pu , as a ul = <p; s=O-

that is, u[ ]' rpeiP _, is the unique extension from JclR to IR of the so-K,p,<p,o 

lution according to Theorem 2.4.3. (For the construction of the process, cf. 

for instance Dawson (1991), in particular Proposition 5.6.4.) 

Note that by the continuity properties of solutions and by (3.1.1) the 

Laplace functional expression (3.2.1) is continuous in all its variables 

s,t,µ,<p as described. Note also that if p=O then X reduces to the stable flow 

{':JKµ;t"i?:.0} in .M defined by (rµ,<p) := (µ,':JK<p), <pEiP . 
t a t t + 

3.3. Exponential Moments 

The (weighted) occupation time process Y related to X is defined by Y(t) .- s~ ds X(s), t>O. Now we want to describe the exponential moments of 

[X(t),Y(t)], t"ii:::.0, with the help of solutions to the equation (2.4.2'). 

Proposition 3.3.1 (log-Laplace functional). Fix I=[L,T], L<T, K.,p"ii:::.O, and let 

I !B := nlK,p] denote the set of all those [<p,tjJ]eiPxiP such that V[<p,t/J] := v de-

fined by 

(3.3.2) v(s,y) := log IE::~ exp [(X(T),<p) + J: dr (X(r),t/J(r))], 
y 

d [s,y ]eixlR , 

satisfies sup{v[ ,,,1(s,y); [s,y]eixlRd} < +oo. Then !B is an open convex set 
K,p,<p,'f' 

which covers q>_xiP~, and [<p,t/J]e23[K,p] if and only if [K,p,<p,t/J]e'U with 'U defi-

ned in Theorem 2.4.3 (ii). In this case V[<p,t/J] = u[ •'•]' the (unique) so-K,p,<p,'f' 

lution to (2.4.2'). 

Note that this proposition provides a probabilistic re presentation of 

the solutions to (2.4.2'-). 
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Proof of Proposition. 3.3.1. 1°. Fix (K,p,<p,l/J]EIR!x<Px<P\ and assume for the 

moment that <p,l/J are non-negative. Then, for all e:SO, the functions V(eqi,eljJ] 

defined in (3.3.2) belong to <P1 and solve (2.4.2'}, hence coincide with ue := 

I u E <P In fact, if l/J=O, then this is a version of the Laplace (K,p,e<p,eljJ] . 

functional (3.2.1), and the formula can be extended to (3.3.2) by approxima-

ting l/J by appropriate step functions and using that X is a Markov process; 

see Iscoe ( 1986}. 

0 2 . Now drop the additional assumption <p,l/J~O. Let <p=<p -<p , l/J=l/J -1/J denote the + - + -
~ 

minimal decomposition with <p ,l/J ~a. <p ,l/J >0. Then from 1° we know that ve := 
+ + - -

I V[e <p +e <p ,e l/J +e l/J ] belongs to <P and satisfies (2.4.2'} with (e<p,eljJ] rep-1 + 2-3+ 4-

laced by A(S) := [e <p +e <p ,e l/J +e l/J ], for all e := [e , ... ,e ] :S 0, that 1+ 2- 3+ 4- 1 4 
~ 

is, Ve = U(K e +e e ,1, +e ,1, ) =: U~ for non-positive S. 
,p, l<p+ 2<p_, 3'1'+ 4't'- <7 

3°. Keeping the notations from the previous step of proof, set 

(3.3.3) 
~ ~ 4 ~ 

8 := {eelR ; A(e}e~}. 
~ 4 e := {eelR ; [K,p,e <p +e <p ,e l/J +e l/J ]e'U} 1+ 2-3+ 4-

with 'U defined in Theorem 2.4.3 (ii). Note that IR~ s; 8118. By Holder's and the 

~ 4 
triangular inequality, 8 is a convex subset of IR . On the other hand, the 

4 properties of 'U yield that 8 is an open convex subset of IR . Fix for the mo-

d ment (s,y]eixlR . Well-known properties of bilateral Laplace functions imply 

that S 1-W e (s ,y} is an "an.al ytic function on the interior S 0 of 8. On the other 

hand, S Hu9(s,y) is an analytic function on 8. But by 2° both coincide on 

e 
{e;e:SO}, and by uniqueness of analytic continuation we conclude that v (s,y) 

~o e 
= u9(s,y} on 8 118, and that both v (s,y) and u9(s,y) are branches of a unique 

analytic function defined 
~o 

on 8 v8. Since [s,y] is arbitrary, the 

valued mappings ve and u9 coincide on 8° 118. 
~ 

4°. By definition, ve has an infinite supremum outside of 8. Therefore 8s.;8. 

On the other hand, the supremum of u9 blows up if e approaches the boundary 
e ~ ~ 

88 of 8. Moreover, again by Holder's inequality, v is convex in ee8. Hence, 
~ ~o ~ 

8 cannot be strictly included in 8, that is v=u on 8=8 =8. Passing to e =e =0 
1 3 

and 0 =0 =-0, we get that [0<p,01/J]e~ if and only if [K,p,e<p,01/J]e'U, and in this 
2 4 
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case V[ecp,01/J] = u[ 0 0 ,,,1. Specialize to 8=1 to finish the proof. K,p, <p, 'f' 0 

From a-initial measures we may pass to any initial measure: 

Corollary 3.3.4 (exponential moments). Fix I=[L,T], L<T, and µEM . Then 
a 

[~'µp exp[{X(T),cp) + JT dr (X(r),t/J(r))] = exp(µ,u[ ,,,1(L)) 
, L K,p,'f>,'I' 

if [K,p,rp,t/J]E1l, where u[ ,,,1 solves the equation (2.4.2') according to 
K,p,<p,'f' 

Theorem 2.4.3. 

Proof. This follows from Proposition 3.3.1 if we approximate µ by discrete 

measures with a finite set of atoms and use the branching property and ob-

vious continuities. o 

Once a solution passes the blow-up boundary, it should stay at infinity 

(compare for Baras and Cohen (1987)): 

Conjecture 3.3.5 (complete blow-up). Fix I=[L,T], L<T. If K>O and [K,p,rp,t/J] ~ 

1lv81l then 
[K,p exp [cx(T),<p) + JT dr (X(r),l/J(r))] = +oo, 

L,µ L µEM. 
a 

4. LARGE DEVIATION ESTIMATES 

4.1. Reformulation of' the Large Deviation Principle Theorem 1.4.2 

As announced in Subsection 1.5, we will derive the following general re-

sult. Note that here only our basic parameter assumptions 1:=d<a:=d+a, O<a.:=2, 

K,p~O are enforced. 

Theorem 4.1.1. (version of the large deviation principle). Fix t>O and µEM , 
a 

µ:F:O. There exists a lower semi-continuous convex good rate functional S : µ,t 

M 1--7 [O,+oo] with S (~Kµ) = 0 such that, 
a µ,t t , 

(i) 

(ii) 

for each open 

liminf 
R -?oo 

subset G of M , 
a 

R-1 lo IPK,p (R-1X(t) g o,Rµ 

for each closed subset F of M , 
a 

- inf S (v), 
VEG µ,t 

limsl}p R-1 log IP~'~ (R-1X(t) E F) ::: -
R -700 ' µ · 

inf S (v). 
veF µ,t 

The proof, to which we devote the next four subsections, is based on a 
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general methodology for large deviation probabilities as presented in Chap-

ters II and III of Deuschel and Stroock (1989), in conjunction with the re-

sults on superprocess log-Laplace functionals developed in Sections 2 and 3. 

4.2. Supermultiplicativity 

As an immediate preparation for the proof of the previous theorem, we 

formulate the following simple lemma. 

Lemma 4.2.1. Fix t>O, µe.M and a convex Borel subset A of .M . Then the func-
a a 

tion 

(4.2.2) f(R) := [p~:~µ(R-1X(t)eA), R>O, 

is supermultiplicative: f(R+S) ~ f(R) f(S), R,S>O. 

Proof. Fix R,S > 0. Let [X' ,X"] be distributed according to the product mea-

sure fPK,p x [pK,p Then 
o,Rµ o,Sµ 

f(R)f(S) ~ [pK,p xfPK,p (R-1X'(t)eA, S-1X"(t)eA). 
o,Rµ o,Sµ 

However, if both R-1X'(t) and S-1X"(t) belong to A then also its convex com-

bination (R+sr1(X'(t)+X"(t)) is in A. But by the branching property, which 

follows directly from the form of the Laplace functional (3.2.1), X'(t)+X"(t) 

has the law 

= f(R+S). 0 

Lemma 4.2.3. In addition to the assumptions on A and f in the previous lemma, 

suppose that A~.M is open. If now f(R)>O for some R>O then f is bounded away 
a 

from 0 on some non-empty open interval. 

Proof. Assume that f(R)>O for a fixed R>O. Since M is Polish, by the regula-
a 

rity of finite measures we find a compact set CcA such that even f(R) ~ 

IP~'.~µ ( R-1X(t)eC) > O; see e.g. Bauer (1981), Satz 41.3. The convex hull C~A 
of the totally bounded subset C of the locally convex space <Ii* (concerning 

the weak* topology) is totally bounded; see, for instance Rudin (1973), Theo-

rem 3.24. Moreover, it is a closed subset of M . (In fact, if v eC converges 
a n 

(a-vaguely) to veM as n->oo, then by compactness take such a subsequence that 
a 

all terms in the representations v = 0 a + (l-0 )(3 , a~e ~1. a ,(3 eC, con-
n nn n n n n n 
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verge, which implies that lim v belongs to C.) Consequently, C is an 
n-+oo n 

(a'-vaguely) compact subset of A, and by the relative compactness criterion 

Lemma 3.1.5 we get 

(4.2.4) sup{llvll*;vEC} =: K < oo. 

So far we mainly proved that there exists a compact convex set CcA such 

that ~(R) :?:: g(R) := IP~:~µ(R-1X(t)ec) > o. We may choose a o such that o < 2o 

< p (C,M '\A), and a natural number s > Kio. Recall (3.1.6). Write G .-
a a O 

{veM ; llv-Cll*<o} c A. For O:::=r<R and a natural number s, let [X',X"l be dist-a 

ributed according to IPK,pR x IPK,p . Then by the branching property, . o,s µ o,rµ 

f(S) ;::-; IPK,p xlPK,p (s-1(X'(t)+X"(t))eA) with S=sR+r. O,sRµ O,r-µ 

But a sum belongs to A certainly if the first summand belongs to G and the 

second summand has a 11 • ll*-norm smaller than o: 

(4.2.5l t<s> ;::-; IPK,pR (s-1X'(tJec) IPK,p (11s-1X"(tlJl*<o) .. O,s µ O,r-µ 

The first factor on the right hand side can be estimated further in the same 

way: (sR+rf1X'(t)eG is certainly fulfilled if (sRf1X'(t)EC and if the II• II*-

norm of the difference of both "vectors" is smaller than o. But this is ac-

-1 tually true under (sR) X'(t) E C and s2:':s : 
0 

jj(sR+rf1X'(t) - (sRf1X'(tlJj* = llr(sR+rf1(sRf1X'(tli!* s s-1K < o. 

Thus, the first factor at the r.h.s. of the inequality (4.2.5) can be estima-

ted from below by 

(4.2.6) ;::-; IPK,pR (cs Rf 1x·ctJec) O,s µ = g(sR) ;::-; (g(R))8 > 0, S2:':S, 
0 

where we applied Lemma 4.2.1 to the (compact) convex set C. Concerning the 

second factor at the r.h.s. of (4.2.5), pass to the complement and proceed 

for 8>0 as follows: 

!P~:~µ(11S- 1X"(t)ll*;::-;o) = IP~:~µ(<x"(t),8<p)~So0) s e-508 IE~:~µ exp(X"(t),8rpa). 

By Corollary 3.3..4 with I=[-t,O] and using time-homogeneity, we may continue 

with 
s e-sRo9 exp[(rµ,u[ 0 1(-t))] 

K,p,o<p ,O 
a 

which is finite for a 8>0 sufficiently small. But the second exponential ex-

pression is bounded in r:::=R, whereas the first one converges to 0 as s->oo. Con-
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sequently, the second factor on the r.h.s. of (4.2.5) is bounded away from 

zero for all sufficiently large S=sR+r. Combined with (4.2.6) we conclude 

that f(S) is bounded away from zero on some non-empty open interval. This fi-

nishes the proof. o 

4.3. Weak Large Deviation Principle 

Let S denote the system of all those subsets of M which are non-empty, 
a 

open, and convex. Fix µe.M , t>O, and, for the moment, AeS. In Lemma 4.2.1 go 
a 

over to - logf to conclude that the function 

cr(R) := -loglPK,p (R-1X(t) E A) E [O,+oo], R>O, 
o,Rµ 

is subadditive, i.e. cr(R+S) !: cr(R)cr(S), R,S>O. Moreover, Lemma 4.2.3 yields 

that er is either bounded on some non-empty open interval, or identically +oo. 

Hence, the subadditivity of er implies that all the limits 

(4.3.1) -1 K p ( -1 ) S (A) := - lim R log IP 'R R X(t) E A µ,t R'oo O, µ 
E [O,+oo], AES, 

exist; see, for instance Lemma 4.2.5 in [9]. Recall that by Lemma 3.1.3 all 

open balls B(v,r ), r>O, veM , belong to S. By monotonicity, set 
a 

(4.3.2) S (v) := lim ,,i, S (B(v,r )) = sup{S (A); veAeS}, µ,t r 0 µ,t µ,t VEM. 
a 

Obviously, S :M H[O,+oo] is a lower semi-continuous functional. For conve-µ,t a 

xity, it is enough to show that 

(4.3.3) S ((v +v )/2) !: (S (v ) +· S (v ))/2, µ,t 1 2 µ,t 1 µ,t 2 
v ,v EM. 

1 2 a 

and A 2 (A +A )/2. Then, by ( 4. 3.1) and the branching property, 
1 2 

S (A) = - lim (2Rf1 log IPK,p2 ((2Rf1X(t) E A) µ,t R'oo 0, Rµ 

!: (Sµ}A1) + Sµ}A2 ))/2 !: (Sµ,t(v1) + Sµ,t(v))/2, 

and (4.3.2) implies (4.3.3). 

It is easy to see that from (4.3.1) and (4.3.2) we get 

(4.3.4) liminf R-1log1PK,p (R-1X(t)eG) ~ - inf G S (v), R'OO O,Rµ VE µ,t open G ~ M . 
a 

On the other hand, if C is a compact subset of M and i a . inf VEC Sµ,t(v) is 

Positive, then for O<c<i we find finitely. many open balls B , ... ,B which co-
1 M 

ver C and satisfy S (B ) ~ i-c, l!:m!:M. Then again with (4.3.1) and (4.3.2), µ,t m 
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we finally obtain 

(4.3.5) limsup R->oo R-1log!PK,p (R-1X(t)ec) 
O,Rµ ::S - inf S (v) 

VEG µ,t • compact C s;; At . 
a 

Summarizing, with (4.3.4) and (4.3.5) we proved that the family 

·), R>O, satisfies a weak large deviation principle 

with the convex rate functional S :At 1-7[0,+oo]. µ,t a 

4.4. Full Large Deviation Principle 

For convenience, we formulate the following lemma. Recall the set 4> µ,t 

introduced after ( 1. 4. 6). 

Lemma 4.4.1. Fix µeAt and t>O. For aLL <pE4> , 

lim lim a R-1loglEK,p {exp(X(t),:~t; (R-1X(t),<p) ~ N} = N->oo R->oo O,Rµ -oo. 

Proof. Fix µ,t,<p as in the lemma and set I=[-t,O]. Since 4> is open by de-µ,t 

finition, we find a e>O such that also (1+8 )<p belongs to 4> • As in the µ,t 

proof of Lemma 4.2.3, we can use an exponential moment inequality to get 

(4.4.2) R-1loglEK,p {exp(X(t),rp); (R-1X(t),rp) > N} ::S -SN.+ R-1AR ((1+8)r.p), 
0,Rµ µ,t 

R,N>O. But the exponential moments A (r.p) introduced in (1.4.3) satisfy µ,t 

(4.4.3) AR (<p) = JRµ(dy) log IEK,~ exp(X(t),<p) = RA (r.p), R>O. µ,t 0, µ,t 
y 

Hence, the r.h.s. in (4.4.2) is finite, and letting first R->oo and then N->oo, 

the claim follows. o 

By Lemma 4. 4.1 with r.p=S<p and e>O sufficiently small, 
a 

lim lim R-1log!PK,p (cR-1X(t),er.p) ~ N) = -oo. N->oo R->oo O,Rµ 

From the compactness Lemma 3.1.5 and (3.1.2) we learn that to each M>O we 

find a compact set C s;;At such that 
M a 

limsup R loglP ' R X(t) -1 K p ( -1 
R->oo O,Rµ 

In other words, we have exponential tightness. Together with the results of 

the previous subsection we get a full large deviation principle with the con-

vex good rate functional S ; see, [9], Lemma 2.1.5. µ,t 

4.5. Law of Large Numbers 

We start with a simple but important scaling property of the superpro-

cess: 
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Lemma 4.5.1. Fix µe.M and a constant c?::.0. If X is distributed according to 
a 

[pi<,;p then ex has the law fPK.,cp • 
o,µ o,cµ 

Proof. By the Markov property, this directly follows from the identity 

u = cu <pE~ _, via (3.2.1) and (3.2.2). a [K,p,c<p,o] [K,cp,<p,o} ' 

As a complement to Theorem 4.1.1 we add here the following 

Lemma 4.5.2 Claw of large numbers). Fix t>O, µe.M . For all neighborhoods 
a 

Proof. By Lemma 4.5. l, 

[K.,p exp(R-1X(t),<p) = [K,p/Rexp(X(t),<p) = exp(µ,u[ 1(-t)), <pE~ _. 
O,Rµ o,µ K.,p/R,<p,O 

The claim then follows from continuity properties, since 

(µ,u[ 1Ct)) = (µ,,-K<p) = (,-Kµ,<p). a 
K,O,<p,O t t 

K By the LLN Lemma 4.5.2, Lemma 3.1.3, and (4.3.1) we have S (B(,- µ,r)) µ,t t 

= 0 for all r>O, and (4.3.2) implies that S (,-Kµ) = 0. This completes the µ,t t 

proof of Theorem 4.1.1. 

4.6. On the Relation between the Rate Functional and Exponential Moments 

Fix again t>O and µe.M . By (4.4.3), 
a 

R-1log ["·P exp(X(t),<p) = A (<p), <pE~. 
0,Rµ µ,t 

and by Lemma 4.4.1 and Varadhan's Theorem (see [9], Theorem 2.1.10) we obtain 

that (1. 4. 6) holds for all <pE4> . Note that µ,t 

A (rp) = (µ,u[ ](-t)), µ,t K.,p,<p,O q>E~ s;;~ ' 
0 µ,t 

by Corollary 3. 3. 4, where ~ is the set of all those q>E4> such that 
0 

sup{A5' (rp); Os.sst, yelRd} < +oo, 
u ,s 

y 

4.7. Proof of Theorem 1.4.2 

Here we come back to our scaled processes XK defined in (1.2.4). The 

large deviation principle of Theorem 1. 4. 2 is in fact a consequence of Theo-

rem 4.1.l combined with some scaling properties. First of all, XK coincides 

in law with the original process X but with other parameters K,p. Recall the 

notation (1.4.1). 
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Lemma 4. 7.1 (space-time-mass scaling). For K?:l, let µ belong to M , and set 
K a 

a-ex a-ct 
K := KK as weU as p := pK . Then 

K K 

IPK,p (xK(t)E(. )) = IPKK,pK (x(t)E(. )) ' 
o,µK o,(µ )K 

K 

K?:l, t>O. 

Proof. Fix K?:l. By the self-similarity of the stable transition density func-
K .- p (t, • ), t>O, introduced in Subsection 2.2, we have 

(4.7.2) pK(Ka t) = (p KK(t)) K' t>O, 

(which directly follows from (2.2.1)). This implies 

(4.7.3) ~:at(r/) = (~:Krp)K. t?:O, rpEQ?_. 

and the uniqueness of solutions u=u to [K,p,<p,O] 

equation (3.2.2) yields 

u (-Kat) 
K 

[K,p,<p ,o] 
t?:O, <pEQ? . 

Then from (3.2.1) for t?:O, rpeQ?_, 

IEK,p exp(XK(t),rp) = IEK,p exp(X(Ka t),rpK) = exp(µ ,u (-Kat)). 
oµ oµ K K ' K ' K (K,p,rp ,O] 

By the previous identity and again by (3.2.1) we can continue with 
KK,pK 

IE exp(X(t),rp). 
K o, (µK) 

This coincidence of Laplace functionals implies the claim. D 

The Lemmas 4.7.1 and 4.5.1 are now the essential steps in order to see 

that Theorem 1.4.2 follows from Theorem 4.1.1. In fact, for 0=cx, 

(4.7.4l IPK,p (xK(t)e(·l) = IPK,pK(x(t)e(·l) = IPK,p (K-cct-cx>x(t)e(·l). K?:l, 
o,µ o,µ ct-ex 

K O,K µ 
and we have only to set Kd-cx=:R and take into account that d>cx, by assumption. 

Remark 4.7.5. Under subcriticaL scaling, that is 0 < cxAd, the law of large 

numbers 
K 'Pri x (t) ~ µ if K 'Pri X (O) ~ µ, 

mentioned in the end of Subsection 1.2 above, follows similarly as in the 

0 proof of Lemma 4.5.2, since here K ->O in view of Lemma 4.7.1 and ~ equals 
K t 

the identity operator. • 

APPENDIX: ON THE MODEL WITHOUT SPATIAL MOTION 

The purpose of this Appendix is to compute the Legendre transform of the 
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log-Laplace functional /\. of X(t) in the case K=O, as announced in Subsec-µ,t 

tion 1.4. 

Fix p>O and rpecfl. Then our equation (2.4.2') (with r/J=O) degenerates to 

the ordinary equation 

(A.l) u(s,y) = <p(y) + p f~ dr u2 (r,y), 

which has the (pointwise) solution 

s<O, 

{ 
rp(y)/(l+psrp(y)) 

u(s,y) = 
if psrp(y) > -1 

d s<O, yEIR . (A.2) 
+oo otherwise. 

By analytic continuation as in the proof of Proposition 3.3.1 we conclude that 

log [0'~ exp(X(t),<p) = u(-t,y) E (-oo,+oo], t>O. 
O,u 

y 
In addition, fix t>O and µEM . Then 

a 

/\. (<p) = log [K,p exp(X(t),<p) = fµ(dy) u(-t,y) E (-oo,+oo]. µ,t o,µ 

with u given in (A.2). 

Next we introduce some notation. Each vEM may be uniquely decomposed in 
a 

M into v = vac + va + v . Here v (dy) =: g (y)µ(dy) is absolutely conti-
a oo ac ac 

nuous with respect to µ whereas v a and v 00 are singular with respect to µ. By 

definition, v a is concentrated on the (uniquely determined) closed support Y' 

of µ and v (Y') = 0. Recall that cp* is the dual space to the Banach space cp 
00 

but equipped with the weak* topology. 

Proposition A.3. The Legendre transform 

(A.4) /\.* (rp*) := sup {(rp* <p) - /\. (rp)}, µ,t <pEtP ' µ,t rp*ecfl*' 

has the fallowing farm: For vE.M., 
a 

(A.5) /\.* (v) = (ptf1 fµ(dy) (../g (y)'-1)2 + va(IRd)/pt + v (fRd)•(+oo), µ,t ac . oo 

whereas /\.* (<p*)=+oo for the remaining rp*ecfl* (we use the convention O• ( +oo)=O). µ,t 

Note that /\. * is positively homogeneous along va, hence it is not µ,t 

strongly convex at v=v a-:1:-0. Roughly speaking, strong convexity is violated by 

some measures v which spatially "deviate" inside the closed support of the 

starting measure µ. Note also that /\. * is not continuous in the vague topo-µ,t 

logy. In fact, let d=l, pt=l, let µ be the uniform distribution on the inter-

val (-1,1), and v be the mean zero Gaussian distribution with variance e>O, 
£ 
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but restricted to (-1,1). Then v =(v ) converges vaguely to o =(o )8 as £40 
£ £ ac 0 0 

but S (v ) ---7 2 whereas S (o ) = 1. On the other hand, mention that µ,t £ £40 µ,t 0 

A is steep if µ is concentrated on a finite set of atoms. µ,t 

Proof of Proposition A.3. 1°. Without loss of generality we may assume that 

p=l (otherwise make a time change). Also, by the special form of A , in the 
µ,t 

definition of A* the supremum can be restricted to those rpe~ such that µ,t 

trp(y) < 1 µ-a.e. (since (<p*,<p) is always finite). 

0 
2 . To prove that A* = +co outside M , we fix <p*e~* and assume that µ,t a 

sup{(<p*,<p) - A (<p)} < +co where <p runs through the set just described. Then µ,t 

we have to show that <p* can be generated by a measure in M . To this purpose 
a 

we want to apply the Daniell-Stone Theorem; see, for instance, Bauer (1974), 

Satz 39.4. Indeed, ~ is a Stone Vektorverband, and we will show that <p* is 

non-negative and that (rp*,rp ) ~ 0 as <p pointwise monotonously decreases to 
n n 

0 (as n 4 co). Assume that there exists a non-negative <pE~ such that (rp*,rp) < 0. 

Then 8<p :$ 0 for 8<0, and the supremum in the definition of the Legendre 

transform can be estimated below by taking into account only 8<p: 

since -A (8<p) :::: 0. µ,t 

Letting 8 ~ -co we get a contradiction to the assumed finiteness. Hence, <p* is 

non-negative. Suppose that in ~ there exists a sequence <p J, 0 pointwise as 
n 

n4co and such that (<p*,<p ) :::: £, n:?:l, for some e>O. All <p are continuous and 
n n 

will vanish as I y l-700. Hence, ll<p U ~ 0 as n-?oo. Thus, for each 9>0, 0 ::S Sep ::S 
n co n 

118rp II < lit for all sufficiently large n. Therefore, 
n co 

A* (<p*) :::: 8(<p*,<p ) - A (8<p ) :::: 8£ - fdµ 8<p /(1-t8<p ) µ,t n µ,t n n n 

for sufficiently large n. But even 

as n4co. Hence, 

1 - t8<p (y) :::: - t811rp 11 :::: 112 
n n co 

A* (rp*) :::: 8£ - 2 Jµ(dy) 8rpn(y). µ,t 

However, the latter integral is finite and tends to 0 by monotone convergence 

as n~. Thus /\* (m*) :::: 8£ for all e>O. Letting 84co we arrive at the desired µ,t "f' , 

contradiction. Summarizing, rp* is an abstract integral and can then be repre-
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sented by some measure v. Here v is defined on the smallest 1J-field making 

all rpe<I> measurable, which is nothing else than the usual Borel 1J-field on !Rd. 

Of course, v has the needed finiteness property, i.e. it belongs to .M . It 
a 

remains to calculate A* on M . µ,t a 

3°. By calculus methods one can easily handle the "zero-dimensional" case: 

For a'i:::O, 
( -1 _,...._. 2 sup9 (a9 - 9/ 1-t9)) = t (va - 1) 

<l/t 

where the supremum is uniquely "realized" at 9=(1 - l/va)/t (read 9=-oo when 

a=O). 

4°. Next we will deal with the case v ':1:0. Here we have to show that A* (v) = 
00 ~ 

+oo. d Now there is a bounded Borel set B s;; IR \.!/' with v (B) > 0. By regularity, 
00 

there is even a compact set C s;; B with v (C) > 0. Since the closed sets C and 
00 

!f' are apart by a positive (Euclidean) distance, for all sufficiently small 

e>O the open £-neighborhood '11 (C) =: '11 of C is also disjoint to !f'. For such £ 
£ 

-1 -1 
we may choose some t/J £ e<I> with the property that £ le ~ t/J £ ~ £ 1'11. Then 

A (t/J ) = 0, and µ,t £ 

A* (v) '2:: (v,l/J ) '2:: £-l v (C) -7 +oo µ,t £ 00 
as 

5°. For the remaining proof we can assume that v =0. Then 
00 

(A.6) A* (v) = sup{(va+v ,rp) - A (rp)} µ,t ac µ,t 

where the supremum is taken over those rpe<I> such that trp(y) < 1 µ-a.e. We can 

estimate from above as follows (recall that g =:g is the density of v with 
ac 

respect to µ): 

A* (v) ~ va(IRct)/t + fµ(dy) sup9 [g(y)e - e/(1-te)] µ,t . <l/t 

i.e. we pass to pointwise supremes, using for the first term that rp ~ 1/t on 

!f' by the continuity of rp. Together with 3° we get the desired expression as 

an upper estimate for A* (v). It remains to deal with estimations from be-
µ,t 

low. Here the key idea of proof consists in choosing a t/Je<P such that approxi-

mately t/J(y) ~ l/t for those y where v a has its mass, whereas t/J(y) ~ (1 -

1/v'g(y)')/t on the "support" of v . Here of course some technical work has to 
ac 

be done. 
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6°. We start with the case µ( {g < 1-o}) = +ro for some o>O. Then also 

µ( {(yg-1) 2 > o2}) 2:: µ( {yg < 1-o}) = +ro for some (in the following fixed) o>O, 

and we have to show that A* (v) 2:: +oo. Let As;;J> be a supporting Borel set of µ µ,t -

with the property that v 8(A) = 0. By our assumption, to each K>O there is a 

compact set C := C s;; {yg < 1-o} f"'I A with µ(C) > K. By regularity, we find a 
K 

bounded open neighborhood 'U(CK) =: 'U such that (v+µ)('U'\C) < 1. Choose l/JE~ with 

(A.7) - t-100-0f11'U :S 1fJ :S - t-1oU-of11c. 

Now 
A* (v) 2:: (v8+v ,I/I) - A (l/J), µ,t ac µ,t -

and using both estimates of (A.7) and since v 8 (C) = 0 and r H r/(1-r) is mo-

notone, we can continue with 

2:: - (v a+v ac)('U'\C) t-1o0-of1 - I c µ(dy) [g(y) t-1o(l-of1 - t-1o] 

2:: - t-10(1-0f1 + µ(Cl t-\;2 2:: - t-1oU-of1 + K t-102 

which tends to +ro as K -+ro. 

7°. By the previous step of proof, from now on we can assume that µ( {g<l-o}) 

< +ro for all o>O. Let E denote the halfopen unit cube [O,l)d in IRd, and let 

z .• i=l,2, ... , run through all points of the lattice Zld. Each Borel set Bs;;IRd 
I 

can be decomposed into disjoint bounded sets by setting B. := B f"'I (E+z ), 
I i 

i2::1. We will apply this construction (and reserve the index i for it) to the 

sets J>'\A and A f"'I {g 2:: 1-o}, o>O, which have possibly infinite mass with re-

spect to v a and µ. (Although we could also deal separately with the cases 

v8(Y'\A) = +ro and µ( {g2::1+o}) = +ro similarly as in 6°, since then A* (v) = +ro.) µ,t 

8°. For the next steps of proof we fix a number o := 2-m, m>l, and set e := 

e = o,n 
(A.8) 

For 1 

~ 
-Vo2 ·-, n2::1. For i2::1 choose compact sets C s;; e,i (J>'\A) i such that 

2 -1 v 8((J>'\Al. '\ C .) < e 2 . 
l e,1 

2 :S j s (1-o)/e we introduce the Borel sets 

B . := {(j-1)e2 :S g < je2 } f"'I A. 
€,J 

Select compact sets K s;; B . satisfying µ(B .'\K J e,j e,J e,J e,J 
4 < e . For i2::l take 

compact subsets L of ( {1-o :S g < 1} f"'I A). with the property that 
8,i l 

µ (c {1-o:Sg<I}f"'IA}. ' L -) < e22-i. 
I £,1 
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Finally, for i'ii!::.l and 0 :::: k < (1-c2)/E: 4 set 

B 
£,i,k 

2 2 . - ( {l+kc :::: g < l+(k+ l)c }nA). 
l 

and take compact sets C !; B such that 
£,i,k £,i,k 

(A. 9) 6 -i 
(v +µ)(B \. C ) < c 2 . 

ac C,i,k £,i,k 

Note that all these compact sets CC' _, KC' _, LC' " and C (where i,j,k 
c. ,1 c. ,J c. ,1 c ,i,k 

are running as above) have pairwise a positive distance. Now choose I/Jee~ with 

the property that 

I (1-c)/t 

(1 - 11& )/t 
= 

l 
0 

(1 - 1;./i+(k-l)cz')/t 

on 

on 

on 

on 

c 
C,i 

K 
C,j 

L 
C,i 

c 
C,i,k 

where i'ii!::.1, 1 :::: j :::: (1-o)/c2 , and 0 :::: k < (1-c 2 )/c 4 . Moreover, we impose 

(A.10) -1/ct :::: !/J (y) :::: (1-c)/t 
E 

for the remaining y. This choice of !/J is actually possible since 1/1 has the-e c 
se bounds also on all the compact sets above (for the fixed c). 

9°. Now we are ready to provide the estimates frorn below. In fact, A* (v) 'ii!: 
µ,t 

(v8 ,l/J ) + I + I + I where the last three terms refer to the integral 
E 1 2 3 

fdµ (gl/J - t/J /(1-tl/J )) restricted to {g<l-o}, to {1-o::sg<l}, and to {g'ii!::.1}, re-c £ £ 

spectively. First of all, 

'ii!: v8 (U.c .) (1-c)/t - v8((Jl'\A) \. U.c .)/ct 
t E ,1 l £ ,1 

where the first term converges to the desired expression v 8(1Rct)/t as £'0, 

whereas, using (A.8), the second term can be estimated further from below by 

'ii!: - c/t, converging to zero as £'0. 

10°. Turning to I we proceed as follows. On each set K for the integrand 
1 £ ,j 

we have 

g"' - "' /(1-t"' ) 'ii!: c&-1)2/t £ £ £ 

since g < jc2 and noting that l/J is non-positive because of jc2<1. Further, 
£ 

on B \.K use O::sg::sl and (A.10) to get gl/J - t/J /(1-tl/J ) 'ii!: - 2/tc. Decompo-c,j £,J £ c . c 

sing {g < 1-o} = U (K v (B \.K )) we obtain 
j £,j £,j £,j 

I 'ii!: L. [µ(K ) (&-1)2/t - µ(B _\.K .) 2/tc]. 
1 J £,J £,J £,J 
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Since µ(B _'\K .) < £ 4 and taking into account that there are at most 1/£2 
£,J £,J 

intlices j, further 

Il 2:: L µ(KC' ) (;;;;z ~ 1)2 /t - 2£/t. 
J c..,J 

Now set f (y) := L:. j£2 18 (y) to get 
£ J 

£,j 

I1 2:: t-1 J µ(dy) 1tJ K (y) (v0> - 1) 2 ..,. 2£/t. 
J £,j 

Recall that £ 2 = o2-n, and let n->oo. Then on {g < 1-o} r\ A we have f -7 g and 
£ 

IK 
£,j 

-7 1 pointwise. But f is bounded by 1 and µ({g < 1-o}} < +oo, thus by 
£ 

bounded convergence we get I 2:: t-1 J{ } dµ (vg-1)2 where the latter ex-
1 g<l-0 

pression finally converges to C1 J{g<l} dµ (vg-1)2 as o->O. 

11°. Since l/J£(y) = 0 in the main term of I , its estimation results into the 
2 

error term 

I 2:: L. µ (< {1-o~g<l}r\A). '\. L .) 2£/t 2:: - 2£/t ---7 · 0. 
2 1 1 £,1 . £->Q 

12°. Finally, l/J is non-negative on each UC . Hence, on these sets g 2:: 1 
£ i £,i,k 

2 
+ k£ -. l}k, and then 

I 2:: )'[µ(U.c . ) (11 . (1-1/,fi/)/t - (,/1/-l)lt) 
3 ~ l £,1,k k k k 

- v (U B '\ u c ) I £t - µ(U B '\ u c . ) Id] . 
ac i £,i,k i C,i,k i C,i,k i C,i,k 

By (A. 9) we can continue with 

2:: l'[µ(U.c ) (v'il"' - 1)2/t - 2£5/t]. 
~ t C,i,k k 

Using the notation h (y) := l' 1J L, (y) and taking into account that c ~ k -UB 
i C,i,k 

we have at most lie 4 indices k, the latter expressions can be written as and 

estimated from below by 

t-1 Jctµ 1u C (~-1)2 - 2clt. 
i,k C,i,k 

Here we can additionally assume that in 8° the construction of the sets 

C had been done in such a way that the union U C monotonously 
C,i,k i,k C,i,k 

increases to {g2:1} as n->ro (via c = /o? ). But h converges monotonously to c 

gl{g2:1} and then by monotone convergence as n->oo we arrive at the estimate I 3 

2:: t-lJ{g:?:l}dµ (./g-1)2. 

13°. Combining the estimates in 9° -12°, we get the desired lower bound, and 

the proof of Proposition A.3 is complete. a 
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