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Abstract—A perturbation theory for determining the stability characteristics of spatial optical solitons with a
2D transverse profile in a transparent medium with a weak saturation of nonlinear refractive index is developed.
For Kerr nonlinearity, a new solution of linearized equations for weak soliton perturbations is found. Using this
solution, an expression for the stability characteristic is deduced, which, in the case of unstable solitons, deter-
mines their decay length and, in the case of stable solitons, shows the presence of perturbations with anoma-
lously weak damping (internal modes) and determines their oscillation period. © 2000 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Spatial, time, and spatial-time solitons, for which
diffraction and/or dispersion spread is counterbalanced
by nonlinear focusing, are of considerable interest. In
particular, they offer promise for information transfer
and processing. Of critical importance is the question
of soliton stability. In the case of paraxial solitons in a
transparent medium with a saturable nonlinearity of
refraction index, stability can be determined by the
Vakhitov–Kolokolov criterion [1] (see also [2–4]).
However, a complete answer to the question of stability
should be quantitative rather than qualitative. For
instance, even unstable structures that possess metasta-
bility are almost indistinguishable from stable struc-
tures, provided that their decay length is sufficiently
large. On the other hand, if the perturbations of a soli-
ton, which may even be stable, decay only on very large
lengths, this soliton cannot be realized in practice. The
presence of long-lived perturbations (internal modes)
of stable optical solitons of different types was noted in
[5–11].

The aim of this paper is to find a qualitative stability
characteristic of spatial (two-dimensional) conserva-
tive optical solitons that determines not only their sta-
bility or instability, but also the decay length for unsta-
ble structures and the presence of oscillations of the
internal modes of stable solitons and their period. To
demonstrate the approach, we study a medium with
weak saturation.

In Section 2, we present general expressions for
solitons in a medium with a nonlinear refractive index
and then introduce a perturbation theory for determin-
ing stationary solitons themselves. The zero approxi-
mation of this theory describes the degenerate self-
channeling mode in a Kerr medium, which is described
by the nonlinear Schrödinger equation (NSE) [12]. In
0030-400X/00/8905- $20.00 © 0731
Section 3, we analyze linearized equations for small
deviations from a stationary soliton. We use there a new
solution of the linearized equations for perturbations of
a degenerate soliton of the NSE. This solution corre-
sponds to the fourfold degeneracy of their zero eigen-
value. In Section 4, we build on the basis of this solu-
tion a perturbation theory for the stability characteristic
of a perturbed soliton. The main results are discussed in
the conclusion (Section 5).

2. INITIAL RELATIONS

We start with the standard paraxial equation for the
envelope of the electric field E of a sufficiently wide (in
comparison with the light wavelength) beam of coher-
ent polarized radiation traveling predominantly along
the z-axis (we use dimensionless variables)

(2.1)

where ∆⊥  =  +  is the transverse Hamiltonian

describing diffraction, and x and y are transverse coor-
dinates. The last term on the left-hand side of (2.1)
takes into account a small deviation of nonlinearity
from Kerr nonlinearity; for δD = 0, (2.1) changes to the
NSE. In what follows, we study a saturable nonlinearity
with characteristic saturation intensity Is. In this case,
we have for the intensities I = |E |2 ! |Is |

(2.2)

This dependence is typical of many nonlinear optical
media and, generally speaking, the parameter Is may be
negative. Kerr nonlinearity corresponds to the limit

i
∂E
∂z
------ ∆⊥ E E 2E δD+ + + 0,=
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Is  ∞. In the general case, and specifically in a case
in which one takes into account spatial dispersion, the
correction term may have a nonlocal dependence on the
electric field [13].

A stationary soliton is characterized by an
unchanged transverse field profile

(2.3)

where Γ > 0 is the propagation constant, and the soliton
spectrum over Γ is continuous. Expression (2.3) corre-
sponds to the fundamental soliton with the axially sym-

metric field distribution (ρ = ). As(ρ) is a real
and positive function. For a fixed Γ, the transverse field
profile is determined as the solution of the equation

(2.4)

that is finite on the interval 0 < ρ < ∞. Because of axial
soliton symmetry, Eq. (2.4) takes the form

(2.5)

Note that even solitary solutions of the NSE [Eq. (2.5)
for Is = ∞]

(2.6)

or

(2.7)

cannot be expressed in terms of elementary functions
and are determined only numerically. One can easily
see from (2.7) that the profiles of the family of solitons
of the NSE with parameter Γ are expressed in the form

(2.8)

E x y z, ,( ) As ρ( ) iΓz( ),exp=

x2 y2+

LAs 0, L ∆⊥= Γ– As
2 1

Is

----As
4–+=

d2

dρ2
--------

1
ρ
--- d

dρ
------ Γ– As

2 1
Is

----As
4–+ + As 0.=

L0As0 0, L0 ∆⊥ Γ– As0
2+= =

d2

dρ2
--------

1
ρ
--- d

dρ
------ Γ– As0

2+ + As0 0=

As0 Γ F0 Γρ( )=

F2

F0
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2.0

1.5

1.0

0.5

1 2 3 4 r5

Profiles of universal functions F0(r) and F2(r).
in terms of the universal (and finite for 0 < r < ∞) func-

tion F0(r), r = ρ , which, in turn, satisfies the equa-
tion

(2.9)

Because the function F0 (see figure) is well known,
solitons of perturbed Eq. (2.5) in the limit of high satu-
ration intensity considered here should be sought for
by the perturbation theory method. For this purpose,
we set

(2.10)

where we introduced a small parameter µ2 = 1/ |Is |, so
that 1/Is = sµ2 and s = sgnIs = ±1. The correction of the
nearest approximation to soliton form As2 is determined
by Eq. (2.4) [or (2.5)], which is linearized with respect
to this correction:

(2.11)

(2.12)

The homogeneous equation corresponding to (2.11),
i.e.,

, (2.13)

has among its localized solutions only solutions corre-
sponding to a small soliton shift along the x- and y-axes
[1]:

(2.14)

Let us introduce the scalar product of functions of
transverse coordinates

(2.15)

One can easily see that the radiation power for solitons
of the NSE

(2.16)

is independent of the spectral parameter Γ, i.e.,
dP0/dΓ = 0. Moreover, because of the angular depen-
dence, both functions (2.14) are orthogonal to the right-
hand side of Eq. (2.11), from which follows the solv-
ability of this equation. Thus, the axially symmetric
version of linear Eq. (2.11)

, (2.17)

which is of interest for us, has a unique solution. As in
the case of an unperturbed soliton of the NSE, a change

Γ

d2

dr2
-------

1
r
--- d

dr
----- 1– F0

2+ + F0 0.=

As ρ( ) As0 ρ( ) µ2As2 ρ( ) …,+ +=

N0As2 sAs0
5 ,=

N0 L0 2As0
2 .+=

N0A 0=

As

∂As0

∂x
-----------

dAs0

dρ
----------- ϕ ,cos= =

Ay

∂As0

∂y
-----------

dAs0

dρ
----------- ϕ .sin= =

u v,〈 〉 1
2π
------ dρρ dϕuv .

0

2π

∫
0

∞

∫=

P P0 As0 As0,〈 〉 11.701/2π 1.862= = = =

d2

dρ2
--------

1
ρ
--- d

dρ
------ Γ– 3As0

2+ + As2 sAs0
5=
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to the universal function F2 enables one to write out, in
the explicit form, the dependence on the parameter Γ:

(2.18)

where the function F2(r) is a finite solution of the inho-
mogeneous linear ordinary differential equation

(2.19)

The plot obtained for the function F2(r) by the numeri-
cal solution of (2.19) is presented in the figure.

3. LINEARIZED EQUATIONS

Consider the development of small field deviations
from the stationary soliton determined by Eq. (2.4) [or
(2.5)]. For this purpose, we set

(3.1)

The correction δE, depending on transverse and radial
coordinates, is assumed to be small. The linearization
of (2.1) in δE gives the master equation

(3.2)

For real and imaginary parts of a perturbation (δE =
δEr + iδEi), Eq. (3.2) is written in the form

(3.3)

The last equation contains the operator

(3.4)

One can see from the comparison with (2.12) that
N  N0 when µ  0. Equation (3.3) can be written
in the matrix form

(3.5)

where we introduced the real two-dimensional vector
and the real (operator) 2 × 2 matrix

(3.6)

We shall also need the following well-known solu-
tions of Eqs. (3.3) or (3.5). First, from the symmetry of
the initial Eq. (2.1), with respect to the soliton phase
shift, follows the presence of the solution

(3.7)

The corresponding vector

(3.8)

is an eigenvector of matrix M with a zero eigenvalue

(3.9)

As2 sΓ3/2F2 Γρ( ),=

d2

dr2
-------

1
r
--- d

dr
----- 1– 3F0

2+ + F2 F0
5.=

E As δE+[ ] iΓz( ).exp=

i
∂δE
∂z

---------- LδE As
2 2sµ2As

4–( ) δE δE*+( )+ + 0.=

∂δEr

∂z
------------ LδEi+ 0,

∂δEi

∂z
----------- NδEr– 0.= =

N L 2As
2 4sµ2As

4.–+=

∂
∂z
-----δE MδE,=

δE
δEr

δEi 
  , M 0 L–

N 0 
 
 

.= =

δEr 0, δEi As.= =

δEϕ
0
As 

 =

MδEϕ 0.=
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The second solution of the linearized equations corre-
sponds to the shift of the spectral parameter Γ. We have
for it

(3.10)

The vector

(3.11)

is a root vector rather than an eigenvector:

(3.12)

Now we set

(3.13)

where

(3.14)

In a similar way, one can represent eigenvectors and
root vectors of perturbations:

. (3.15)

We shall also need the relations

(3.16)

In the zero approximation to which the Kerr nonlin-
earity corresponds (µ = 0, NSE), linearized Eq. (3.3) is
replaced with

(3.17)

This case is characterized by the maximum degeneracy
of the spectrum and has the following two solutions of
the linearized equations. From the invariance of quasi-
optic Eq. (2.1) under the focusing transformation,
which has been found by Talanov [14], follows the
solution [15]

(3.18)

δEr

∂As

∂Γ
--------, δEi Asz.= =

δEΓ

∂As

∂Γ
--------

0 
 
 
 

=

MδEΓ δEϕ , M2δEΓ 0.= =

M M0 µ2M2 µ4M4 …,+ + +=

M0
0 L0–

N0 0 
 
 

, M2
0 L2–

N2 0 
 
 

,= =

L2 2As0As2 sAs0
4 , N2– 6As0As2 5sAs0

4 .–= =

δEΓ δEΓ 0 µ2δEΓ 2 µ4δEΓ 4 …+ + +=

M0δEΓ 0 δEϕ0, δEΓ 2

∂As2

∂Γ
-----------

0 
 
 
 

,= =

δEϕ0
0

As0 
  .=

∂δEr

∂z
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∂δEi

∂z
----------- N0δEr– 0.= =

δEr

∂As

∂Γ
--------z, δEi

1
2Γ
------- ρ2

4
-----– Γz2+ 

  As.= =
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The corresponding vector

(3.19)

is of the root kind as well:

(3.20)

The solution of linearized solutions (3.17) of the
form [16]

(3.21)

is likely to be of the greatest interest for further analy-
sis.

Substitution of (3.21) in (3.17) gives

(3.22)

The function a(ρ) is determined by the equation

(3.23)

In view of the fact that solutions of the homogeneous
equation N0a = 0 [see (2.14)] are orthogonal to the
right-hand side of (3.23) because of angular depen-
dence, this equation can be solved. Thus, the function
a(ρ) is found as a uniquely bounded axially symmetric
solution of the nonhomogeneous linear ordinary differ-
ential equation

(3.24)

We shall not need the concrete form of this function,
and a detailed discussion of the sense of additional
symmetry requires a separate analysis. The perturba-
tion vector found above and corresponding to addi-
tional symmetry is of the root kind as well:

(3.25)

Our results suggest that the zero approximation of the
axially symmetric linearized equation for Schrödinger
solitons has a fourfold multiplicity (the fact that the
multiplicity is not greater follows from the comparison
of the results presented below with the results of Vakhi-
tov and Kolokolov [1]; see also [16]).

4. STABILITY AND OSCILLATIONS 
OF PERTURBED SOLITONS

Following [17], we can now find the eigenvalue of
the operator matrix M that changes to the zero value

δE f

0

1
8Γ
-------As0ρ

2– 
 
 
 

=

M0δE f δEΓ 0, M0
3δE f 0.= =

δEr a ρ( ) b ρ( )z2, δEi+ c ρ( )z d ρ( )z3+= =

d As0, c
3

4Γ
-------As0ρ

2, b– 3
∂As0

∂Γ
-----------.= = =

N0a
3

4Γ
-------As0ρ

2.–=

d2a

dρ2
--------

1
ρ
---da

dρ
------ Γa– 3As0

2 a+ +
3

4Γ
-------As0ρ

2.–=

M0δEa δE f , M0
4δEa 0,= =

δEa

1
6
---a ρ( )

0 
 
 
 

.=
when µ  0 (the saturation intensity Is  ∞). To be
specific, we shall see that the removal of symmetry cor-
responding to root vectors (3.19) and (3.25) (due to the
inclusion of a weak nonlinearity saturation in the anal-
ysis) causes a split of the fourfold zero eigenvalue into
the twofold zero value and two nonzero eigenvalues
(with different signs).

The characteristic solution of linear Eq. (3.5) will be
sought in the form

(4.1)

Here, we introduced the desired eigenvalue

(4.2)

and the eigenvector Y satisfying the equation

(4.3)

which follows from (3.5). The expansion of the eigen-
vector Y will be represented in the form

(4.4)

which changes to the eigenvector δEϕ0 (3.16) when
µ  0. Substituting expansions of the corresponding
quantities in powers of the small parameter µ into the
right- and left-hand sides and equating terms with the
same powers of this parameter, we find in the second
order in µ [for the choice made in (4.4), equations of
lower orders are satisfied automatically]

(4.5)

Because of (3.20), this relation gives

(4.6)

In the third order, we have

(4.7)

so that

(4.8)

Finally, we obtain in the fourth order

(4.9)

which, because of (4.6) and (4.8), takes the form

(4.10)

Let us introduce the conjugate operator matrix 

(the transposed matrix) and the vectors  and 

δE Y ρ( ) µγz( ).exp=

µγ µγ1 µ2γ2 µ3γ3 …+ + +=

MY µγY,=

Y δEϕ µγδEΓ µ2Y2+ +=

+ µ3Y3 µ4Y4 …  ,+ +

M0Y2 γ1
2δEΓ 0.=

Y2 γ1
2δE f .=

M0Y3 2γ1γ2δEΓ 0 γ1Y2+=

=  2γ1γ2δEΓ 0 γ1
3δE f ,+

Y3 2γ1γ2δE f γ1
3Ya.+=

M0Y4 M2Y2+ γ1
2δEΓ 2=

+ γ2
2 2γ1γ3+( )δEΓ 0 γ1Y3 γ2Y2+ +

M0Y4 γ1
2M2δE f+ γ1

2δEΓ 2=

+ γ2
2 2γ1γ3+( )δEΓ 0 3γ1

2γ2δE f γ1
4Ya.+ +

M0
†

Yϕ0
† YΓ 0

†
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according to the relations

(4.11)

In the explicit form, we have

(4.12)

One can easily verify that the properties of conjugate
operators provide the fulfillment of the identity

(4.13)

for arbitrary vectors U and V. Because of this, the
matrix elements satisfy the relations

(4.14)

(4.15)

(4.16)

(4.17)

We now equate the scalar products of the vector
δ  on the left- and right-hand sides of Eq. (4.10).
Taking into account the above relations, we obtain an
equation for determining the eigenvalue in the lowest
approximation

(4.18)

where

(4.19)

5. NORMALIZED FUNCTIONS 
AND DISCUSSION OF RESULTS

First of all, we note that the radiation power for the
stationary soliton is given by the expression

M0
† 0 N0

L0– 0 
 
 

, M0
†δEϕ0

† 0,= =

M0
†δEΓ 0

† δEϕ0
† .=

δEϕ0
† As0

0 
  , δEΓ 0

†
0

∂As0

∂Γ
----------- 

 
 
 

.= =

U M0 V, ,〈 〉 M0
†U V,〈 〉=

δEϕ0
† M0Y4,〈 〉 M0

†δEϕ0
† Y4,〈 〉 0,= =

m0 a, δEϕ0
† Ya,〈 〉 M0

†δEΓ 0
† Ya,〈 〉= =

=  δEΓ 0
† M0Ya,〈 〉 δEΓ 0

† δE f,〈 〉=

=  
0

∂As0

∂Γ
----------- 

 
 
  0

1
8Γ
-------As0ρ

2– 
 
 
 

,

=  
1

8Γ
------- As0

∂As0

∂Γ
-----------ρ3 ρ,d

0

∞

∫–

m0 Γ, δEϕ0
† δEΓ 2,〈 〉 As0

0

∞

∫
∂As2

∂Γ
-----------ρdρ,= =

δEϕ0
† δE f,〈 〉 As0

0 
 

0

1
8Γ
-------As0ρ

2– 
 
 
 

, 0.= =

Eϕ0
†

γ1
2 m0 f, m0 Γ,–( ) m0 a, γ1

2–[ ] 0,=

m0 f, δEϕ0
† M2δE f,〈 〉 .=
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(5.1)

where the critical power for self-focusing (in a Kerr
medium) P0 is introduced by relation (2.16), and

(5.2)

It is substantial that the sgn of the quantity dP/dΓ =
2sµ2p1, which enters into the Vakhitov–Kolokolov cri-
terion [1], is determined by the sign of s (stability is
observed for s > 0).1

Now we turn to the quantitative analysis of soliton
stability. As follows from (4.18), in the case where one
takes into account the nonlinearity saturation, the
eigenvalue γ1 retains a twofold zero value (symmetry
with respect to the phase shift and the propagation con-
stant), and a nonzero value (two roots with opposite
signs) splits off from it. Let us transform the matrix ele-
ments determining the last value by separating out the
dependence on the propagation constant Γ, which is
due to the change in universal functions F0 and F2.

(5.3)

where

(5.4)

Thus, we finally obtain, for the nonzero root of equa-
tion (4.18),

(5.5)

or

(5.6)

According to the Vakhitov–Kolokolov criterion,
(5.5) and (5.6) show that a stationary soliton is stable
for s < 0 (Is < 0) and unstable for s > 0 (Is > 0). In the

1 Note that one can also express in terms of this derivative the

quantity entering in (4.18): m0, f – m0, Γ = . Using this

result, one can support the qualitative priority of the Vakhitov–
Kolokolov criterion of soliton stability.

P As0 µ2As2 …+ +( )2ρ ρd

0

∞

∫=

=  P0 2sµ2Γ p1 …,+ +

p1 F0 r( )F2 r( )r rd

0

∞

∫ 3.771.= =

–
1
2
---dρ

dΓ
-------

m0 Γ,
s
2
--- 3 p1 p4+( ), m0 f,

1
8
---s p2,= =

m0 a,
1

16Γ 3
------------ p3,=

p2 2F0
3 r( )F2 r( ) F0

6 r( )–[ ]r3 rd

0

∞

∫ 3.668,= =

p3 F0
2 r( )r3 rd

0

∞

∫ 2.211,= =

p4 F0 r( )
dF2 r( )

dr
----------------r2 rd

0

∞

∫ 2.854.–= =

γ1
2 2sΓ34 3 p1 p4+( ) p2–

p3
----------------------------------------– 27.28sΓ3–= =

µγ1( )2 27.28–
1
Is

----Γ3.=
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latter case, from (5.5) and (5.6), there follows the pres-
ence of undamped oscillations of weak perturbations
(internal modes) with the characteristic longitudinal
frequency µ|γ1| ~ Γ3/2. In actual conditions, stationary
solitons are formed (this is accompanied by oscilla-
tions) because these oscillations damp due to the pres-
ence of terms that are nonlinear in amplitude [10, 11].
But the oscillation damping is nonexponential and
rather weak, especially for solitons with small shifts in
their propagation constant (the limit corresponds to
Γ  0).

In summary, we developed in this paper a version of
the consistent perturbation theory for determining the
stability and internal modes of the solitons described by
the perturbed nonlinear Schrödinger equation.
Although we analyzed an example of soliton perturba-
tion caused by nonlinearity saturation, the method here
proposed can be extended to other cases, and in partic-
ular, to the case in which nonparaxial soliton character-
istics are taken into account [18–24].
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