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Abstract: We study temporal modulational instability of spatial discrete
solitons in waveguide arrays with group velocity dispersion (GVD). For
normal GVD we report existence of the strong ’neck’-type instability spe-
cific for the discrete solitons. For anomalous GVD the instability leads to
formation of the mixed discrete-continuous spatio-temporal quasi-solitons.
Feasibility of experimental observation of these effects in the arrays of
silicon-on-insulator waveguides is discussed.
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1. Introduction

Interplay between nonlinear effects and diffraction control in planar arrays of optical waveg-
uides and in the light induced lattices in photorefractive materials have recently attracted sub-
stantial interest, see, e.g., [1] for a review. Spatiotemporal nonlinear effects relying on group
velocity dispersion and, in particular, the topic of light bullets, is another active research area
[2]. Despite numerous interesting effects, which interplay of controllable diffraction and GVD
can bring into nonlinear optics, the experimental efforts devoted to these problems in recent
years have been limited [3]. This is most likely because limitations imposed by the material
and structure parameters. Photonic crystal fibers could be considered as a notable exception
[4], which allows large degree of the GVD engineering by periodic variations of the refractive
index, but on the other hand it most often enforces geometrical suppression of the diffraction,
rather than allowing exploration of the functionality of the diffraction control as it has been
done in planar structures [1]. On the theoretical side the results on the spatio-temporal and soli-
ton effects in nonlinear waveguide arrays and related band-gap systems are not that numerous
either. They include the existence of the continuous in timeand discrete in space bullets [5],
multi-dimensional solitons in systems with a gap-like dispersion along one coordinate and the
free space diffraction along the other dimensions [6, 7], spatio-temporal X-waves in waveguide
arrays [8] and solitons in coupled waveguides with Bragg gratings [9].

One of the theoretical methods of dealing with spatio-temporal problems, which has been
well developed for the continuous systems, is to take a spatial soliton and consider its robustness
with respect to the time dependent perturbations [10, 11, 12]. It is known that presence of the
GVD usually destabilizes spatial solitons in the continuous systems via growth of the frequency
side-bands. This process is usually called modulational instability (MI). Spatio-temporal dy-
namics induced by solitonic MI in continuous systems has notonly been studied theoretically

#77646 - $15.00 USD Received 29 November 2006; accepted 30 November 2006

(C) 2006 OSA 11 December 2006 / Vol. 14,  No. 25 / OPTICS EXPRESS  12348



[10, 11, 12], but more recently observed experimentally [13, 14, 15]. Similar instabilities can
be expected to occur for the discrete solitons in waveguide arrays. Our primary goal here is
to consider temporal MI of the single peak spatial solitons in waveguides arrays with GVD.
This problem becomes particularly relevant now because of the advances in fabrication of low
loss planar silicon-on-insulator (SOI) structures with strong and controllable GVD and short
coupling length, see, e.g., [16, 17, 18]. Most importantly the strong spatial confinement on the
nano-scale and large Kerr nonlinearity bring the power levels required for the MI and soliton
related effects to show on the millimeter to centimeter lengths down to few watts. The estimates
for parameters typical for SOI waveguides show that all the effects described below are within
the experimental reach, while GVD induced modulational instability in a single SOI waveguide
has already been reported in [18].

We should also mention here that the MIs of spatially extended, i.e. non-localized, super-
modes of the waveguide arrays induced by the discrete diffraction have been recently observed
experimentally [19] and previously studied theoretically[20]. Papers [21, 22] studied the same
case of diffraction induced MI, but for the supermodes consisting from the temporal solitons.
Spatial MI of spatial surface solitons in optical lattices has been recently reported [23]. How-
ever, none of the known to us studies explored the problems ofGVD induced instabilities of
the spatial discrete solitons.

2. Model

We model an array of dielectric waveguides by a set of coupledNLS equations

i∂ζUn −
1
2

β2∂ 2
τ Un +κ(Un+1 +Un−1−2Un)+ γ|Un|

2Un = 0, n = 1,2. . .N, (1)

with periodic boundary conditionsUN+1 =U1 andU0 =UN . Heren enumerates the waveguides,
τ andζ are the time and coordinate along the waveguide, respectively. γ = 2πn2/(Sλ ) is the
nonlinearity parameter, whereS is the effective mode area andn2 is the Kerr coefficient.β2 is
the GVD coefficient.κ = π/(2lc) is the coupling parameter andlc is the coupling length. In
order to put Eqs. (1) into dimensionless form we divide them by some fixed lengthl. Then in
terms of dimensionless propagation distancez = ζ/l and dimensionless timet = τ/

√

|β2|l
Eqs. (1) take the form

i∂zAn −
1
2

s∂ 2
t An +C(An+1 +An−1−2An)+ |An|

2An = 0,

with C = πl/(2lc), s = sign(β2), andAn = Un
√

γl.

3. Stability analysis

Let us consider time-independent discrete soliton solutions of Eqs. (1) [20]. These solutions
having the formUn = aneiqz can be found numerically, see Figs. 1(a,d,g). It is known that
the discrete solitons are dynamically stable forβ2 = 0 and the Vakhitov-Kolokolov stability
criterion ∂qQ > 0, whereQ = ∑N

n=1 |an|
2, is satisfied for them [24]. As it is shown below the

instabilities can arise as soon as GVD is taken into account.
To study stability with respect to time-dependent perturbations, we make the following ansatz

An = [an + εn,+eiωt−iλ z + ε∗n,−eiλ ∗z−iωt ]eiqz. (2)

Here ω is the perturbation frequency. The linearized equations for the amplitudes of small
perturbationsεn,± can be transformed into the operator form

λ~ε = L̂0~ε +
1
2

sω2L̂1~ε, (3)
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Fig. 1. MI of discrete solitons. The first row corresponds toC = 7, the second toC = 15
and the third one toC = 30, respectively.q = 10 andN = 51 for all the panels. The right
column shows transverse profiles of the discrete solitons. The middle column presents the
frequency dependence of the MI growth rate (Imλ > 0) in the anomalous GVD regime
(s < 0). The right column shows all the unstable eigenvalues in the case of the normal
GVD (s > 0). Letters ’N’ and ’S’ mark the ’neck’ and ’snake’ instabilities, respectively.

where ~ε = (ε1,+,ε1,− . . . ,εN,+,εN,−)T and L̂1 is the diagonal N × N matrix: L̂1 =
diag(1,−1, . . . ,1,−1). The matrixL̂0 has the form























q̃−2γa2
1 −γa2

1 −C 0 · · · −C 0
γa2

1 −q̃+2γa2
1 0 C · · · 0 C
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2 −γa2

2 · · · 0 0
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2 −q̃+2γa2
2 · · · 0 0

· · · · · · · · · · · ·
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0 C 0 0 · · · γa2
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





















, (4)

where ˜q = q+2C. MI of discrete solitons manifests itself through a growth of perturbations in
a certain range of frequenciesω. This means that in this range there exists an eigenvalue of the
problem (3) such thatIm(λ ) > 0. According to the classical results on MI of the bright solitons
in the continuous NLS model [10] the eigenvectors of the corresponding eigenvalue problem
can be either symmetric or antisymmetric with respect to thereflection about the soliton center.
The instabilities associated with symmetric and antisymmetric eigenvectors are usually referred
to as a ’neck’-instability and ’snake’-instability, respectively [10, 11, 12]. We will adopt the
same terminology in our stability analysis of the discrete solitons. If the soliton is centered at
n = n0, then the eigenvectors of Eq. (3) can be either symmetric on the replacement ofn0 + m
with n0−m (as the soliton itself) or antisymmetric.

It follows from Eq. (3) that the stability of a discrete soliton with respect to the perturbations
with ω = 0 is determined by the eigenvalues of the matrixL̂0. Since the soliton is stable in
the absence of GVD, all the eigenvalues ofL̂0 are located on the real axis of the complexλ -
plane. The zero eigenvalues ofL̂0, which are related to the continuous symmetries of Eqs. (1)
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Fig. 2. The left column shows patterns of the ’neck’ instability for anomalous GVD (s < 0)
for 3 consequential values of the propagation distancez: C = 7. The middle column shows
patterns of the ’neck’ instability for normal GVD (s > 0): C = 7. The right column shows
patterns of the ’snake’ instability for normal GVD (s > 0): C = 30.q = 10 andN = 51 for
all the panels.

can be used to get some analytical results. The symmetry transformationUn → Uneiθ (where
θ is an arbitrary phase) together with the Hamiltonian structure of these equations imply the
existence of the two zero eigenvalues of the matrixL̂0 with the same eigenvector~x0. This
means that the following two identities:L̂0~x0 = 0 andL̂0~x1 =~x0, which can be rewritten in the
form L̂2

0~x1 = 0, are satisfied. Here~x0 = (a1,−a1, . . . ,aN ,−aN)T ,~x1 = −∂q(a1,a1, . . . ,aN ,aN)T .
When the frequencyω deviates from zero, see Eq. (3), these two eigenvalues move away from
the origin in the complexλ -plane. They move in the opposite directions either along the real or
along the imaginary axis. The latter case corresponds to the’neck’-instability associated with
the vector~x0 that has the same symmetry as the soliton itself. Note, that in the discrete case
the continuous symmetry with respect to the lateral shifts of the soliton position is absent, and
therefore the degeneracy of the zero eigenvalue ofL̂0 in the discrete model is half less than in
the continuous one [10, 11, 12].

Assuming thatω ≪ 1 we write the following asymptotic expansions for the eigenvalue and
corresponding eigenvector:λ = ωλ1 + ω2λ2 + . . . and~x =~x0 + iλ1ωx1 + ω2~x2 + . . .. Substi-
tuting these expansions into Eqs. (3), we get in the third order of the perturbation theory the
solvability conditionλ 2

1 = sQ/(2∂qQ). According to this condition the long wavelength insta-
bility of the ’neck’-type takes place fors < 0 (anomalous GVD). This result is not surprising
because essentially the same instability persists even forκ = C = 0. The middle column in Fig.
1 shows the ’neck’ instability growth rates for different values ofC. The low frequency part of
the instability growth rates is approximately described bythe above analytical expression. Di-
rect numerical modeling of Eqs. (1) with the initial condition corresponding to a discrete soliton
shows in this case formation of the regular trains of spatio-temporal quasi-solitons, which are
discrete in space and continuous in time, see the left columnin Fig. 2. Thus development of
MI for the anomalous GVD case is qualitatively similar to theMI of the spatial solitons in the
continuous NLS equation with saturable nonlinearity [25].
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In the case of normal GVD (s > 0) we have found complex instability spectra consisting
from multiple sidebands, see the rightmost column in Fig. 1.These type of spectra appear to
be specific to the discrete solitons. For the relatively small coupling strength, i.e. sufficiently
far from the continuous limit, the dominant instability is of the ’neck’-type. This instability
leads to the break-up of the initial soliton to the localizedlumps of light, which disperse with
further propagation, see the middle column in Fig. 2. Contrary, for the continuous 2D NLS with
the normal GVD the anti-symmetric ’snake’-like instability dominates dynamics of 1D bright
solitons [10, 26]. More, recent studies [26] have demonstrated that the symmetric ’neck’-type
eigenvectors also can be unstable in the continuous hyperbolic 2D NLS, with their growth rate
been below the one for the ’snake’ MI. As we have found in our model the ’neck’ instability
dominates the dynamics of the discrete solitons for small tomoderate values of the coupling
coefficient, see Fig. 1. Only for strong coupling, when the system becomes quasi-continuous,
the ’snake’ instability starts to be dominant over the ’neck’ one. This leads to the break up of
the discrete soliton in the snake-like fashion, see the right most column in Fig. 2. Note, that the
dominant MI band of the ’neck’-type found for small frequenciesω close to zero is associated
with a pair of complex eigenvaluesλ . At the same time the dominant band of the ’snake’ MI and
the strongest peak of the ’neck’- MI at the relatively large frequenciesω have purely imaginary
eigenvaluesλ .

4. Physical estimates

As a guideline for physical estimates we consider parameters typical for SOI waveguides. In
particular for a channel waveguide with width 480nm and thickness 220nm [16] GVD at 1.5µm
is anomalous and its value is≃ 580ps/nm/km. For width below 400nm or above 640nm GVD
becomes normal. The coupling length for spacing around 400nm can be estimated at 200µm
[17]. The kerr coefficientn2 for silicon is∼ 6×10−14cm2/W. For our power estimates we take
the effective areaS ≃ 0.3µm2. Then one can show thatC = 7,15,30 used in numerical model-
ing give the following values for the dimensionless unit ofz: 0.88mm, 2mm, 3.8mm. One unit
of the timet corresponds to 22fs, 34fs, 47fs and unit of the peak power – to1.7W, 0.8W, 0.4W,
respectively. Considering that in the best SOI waveguides the loss is few dB/cm and remember-
ing about two-photon and free carrier absorption, our powerestimates should be scaled up. In
particular, MI in a single SOI waveguide reported in [18] hasbeen observed for 10W of pump
power. Note, that though more detailed account of the above absorption mechanisms is desir-
able in future research, it can be forecasted, that they willsimply proportionally suppress the
instability growth rate, without qualitative changes in the effect itself. The above time estimates
show that MI can be observed already with pico-second pump pulses, when the role of the free
carrier absorbtion and dispersion is negligible.

5. Summary

We have analyzed modulational instability of bright discrete solitons in the waveguide arrays
with group velocity dispersion. In the case of normal GVD we have found multiple instabil-
ity bands. For weak to moderate strength of coupling the discrete solitons exhibit the ’neck’
instability leading to breakup of the solitons into a train of dispersive pulses. Only for strong
coupling, i.e., in the quasi-continuous limit, this instability is getting gradually suppressed by
the ’snake’ instability known for the 2D continuous NLS model [10]. In the case of anomalous
GVD the expected neck type instability leads to formation ofcomposite discrete-continuous
spatio-temporal quasi-solitons.
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