Modulational instability of discrete
solitonsin coupled waveguides with
group velocity dispersion

A.V. Yulin and D.V. Skryabin

Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Bath
BA2 7AY, UK

http: //imww.bath.ac.uk/physi cs/groups/cppnv

A.G. Vladimirov

Weierstrass I nstitute for Applied Analysis and Stochastics, Mohrenstrasse, 39, D-10117
Berlin, Germany

http: //mmww.wias-berlin.de/

Abstract: We study temporal modulational instability of spatial dete
solitons in waveguide arrays with group velocity dispens{&VD). For
normal GVD we report existence of the strong 'neck’-typdabdity spe-
cific for the discrete solitons. For anomalous GVD the inditgtdeads to
formation of the mixed discrete-continuous spatio-terapquasi-solitons.
Feasibility of experimental observation of these effectshie arrays of
silicon-on-insulator waveguides is discussed.
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1. Introduction

Interplay between nonlinear effects and diffraction cohin planar arrays of optical waveg-
uides and in the light induced lattices in photorefractivetenials have recently attracted sub-
stantial interest, see, e.g., [1] for a review. Spatioteralpionlinear effects relying on group
velocity dispersion and, in particular, the topic of lightllets, is another active research area
[2]. Despite numerous interesting effects, which inteymécontrollable diffraction and GVD
can bring into nonlinear optics, the experimental effosated to these problems in recent
years have been limited [3]. This is most likely becausetéitions imposed by the material
and structure parameters. Photonic crystal fibers couldohsidered as a notable exception
[4], which allows large degree of the GVD engineering by peic variations of the refractive
index, but on the other hand it most often enforces geonagsigopression of the diffraction,
rather than allowing exploration of the functionality oftldiffraction control as it has been
done in planar structures [1]. On the theoretical side thelte on the spatio-temporal and soli-
ton effects in nonlinear waveguide arrays and related lyapdsystems are not that numerous
either. They include the existence of the continuous in t&meé discrete in space bullets [5],
multi-dimensional solitons in systems with a gap-like @isgon along one coordinate and the
free space diffraction along the other dimensions [6, @fisgtemporal X-waves in waveguide
arrays [8] and solitons in coupled waveguides with Bragdgigga [9].

One of the theoretical methods of dealing with spatio-terapproblems, which has been
well developed for the continuous systems, is to take aaatiiton and consider its robustness
with respect to the time dependent perturbations [10, 1]L,Itl known that presence of the
GVD usually destabilizes spatial solitons in the contiraisystems via growth of the frequency
side-bands. This process is usually called modulatiorst&bility (MI). Spatio-temporal dy-
namics induced by solitonic Ml in continuous systems hasondt been studied theoretically
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[10, 11, 12], but more recently observed experimentally, [l 15]. Similar instabilities can
be expected to occur for the discrete solitons in waveguitiys. Our primary goal here is
to consider temporal Ml of the single peak spatial solitansvaveguides arrays with GVD.
This problem becomes particularly relevant now becauskeofitivances in fabrication of low
loss planar silicon-on-insulator (SOI) structures wittosg and controllable GVD and short
coupling length, see, e.g., [16, 17, 18]. Most importarty $trong spatial confinement on the
nano-scale and large Kerr nonlinearity bring the powerlexequired for the MI and soliton
related effects to show on the millimeter to centimeter taaglown to few watts. The estimates
for parameters typical for SOl waveguides show that all ffects described below are within
the experimental reach, while GVD induced modulationakibgity in a single SOl waveguide
has already been reported in [18].

We should also mention here that the MIs of spatially extdnde. non-localized, super-
modes of the waveguide arrays induced by the discrete diifrahave been recently observed
experimentally [19] and previously studied theoretic§l9]. Papers [21, 22] studied the same
case of diffraction induced MI, but for the supermodes cstitgy from the temporal solitons.
Spatial Ml of spatial surface solitons in optical latticesstbeen recently reported [23]. How-
ever, none of the known to us studies explored the problen@@uid induced instabilities of
the spatial discrete solitons.

2. Model

We model an array of dielectric waveguides by a set of coulle8 equations
. 1
IaZUn - EBZaTZUn + K(Un+1 +Un1— ZUn) + V|Un|2Un = Oa n= 17 2... N7 (1)

with periodic boundary conditiondy ;1 = U1 andUp = Uy . Heren enumerates the waveguides,
T and( are the time and coordinate along the waveguide, respBctive- 2rmy/(SA) is the
nonlinearity parameter, whefis the effective mode area angd is the Kerr coefficient; is
the GVD coefficientk = 11/(2l¢) is the coupling parameter amgis the coupling length. In
order to put Egs. (1) into dimensionless form we divide thgnsdme fixed length. Then in
terms of dimensionless propagation distamee /I and dimensionless time= 1/+/|S32||
Egs. (1) take the form

. 1
i0,An — 5sdEAn+C(An+1+AM —2A0) + |An|?An =0,

with C = i /(2l¢), s=sign(Bz), andA, = Un\/W.
3. Stability analysis

Let us consider time-independent discrete soliton salstiof Eqgs. (1) [20]. These solutions
having the formU, = a,€% can be found numerically, see Figs. 1(a,d,qg). It is known tha
the discrete solitons are dynamically stable fiar= 0 and the Vakhitov-Kolokolov stability
criterion dqQ > 0, whereQ = Z”:l |an|?, is satisfied for them [24]. As it is shown below the
instabilities can arise as soon as GVD is taken into account.

To study stability with respect to time-dependent perttidoe, we make the following ansatz

An = [an+£n7+eiwt7i/\z+gr»;’_ei)\*zfiwt]eiqz_ (2)

Here w is the perturbation frequency. The linearized equatiomstie amplitudes of small
perturbations, + can be transformed into the operator form

L o~ 1 ~
AE= Loe+§sw2L1£, ©)
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Fig. 1. Ml of discrete solitons. The first row correspond<te- 7, the second t€ = 15
and the third one t€ = 30, respectivelyg = 10 andN = 51 for all the panels. The right
column shows transverse profiles of the discrete solitons. The middimnguesents the
frequency dependence of the MI growth rakenf > 0) in the anomalous GVD regime
(s < 0). The right column shows all the unstable eigenvalues in the case obtheh
GVD (s> 0). Letters 'N" and 'S’ mark the 'neck’ and 'snake’ instabilities, resfpeely.

where & = (e11,&1....en4,&n )" and [y is the diagonalN x N matrix: [; =
diag(1,-1,...,1,—1). The matrixLg has the form
[ §—2ya2  —ya? —C 0 -C 0 1
ya2 —G+2ya? 0 C 0 C
-C 0 G— 2ya3 —ya3 0 0
0 C yas  —G+2ya’ 0 0 @
-C 0 0 0 G- 2yad —yad
. 0 c 0 0 covag —A+2yag |

whered’= q+ 2C. Ml of discrete solitons manifests itself through a growtiperturbations in

a certain range of frequencies This means that in this range there exists an eigenvalueeof t
problem (3) such thdim(A) > 0. According to the classical results on Ml of the bright &wis

in the continuous NLS model [10] the eigenvectors of theegponding eigenvalue problem
can be either symmetric or antisymmetric with respect todflection about the soliton center.
The instabilities associated with symmetric and antisymnimeigenvectors are usually referred
to as a 'neck’-instability and 'snake’-instability, regpieely [10, 11, 12]. We will adopt the
same terminology in our stability analysis of the discretktens. If the soliton is centered at
n = ngp, then the eigenvectors of Eq. (3) can be either symmetribemdplacement afp + m
with np — m (as the soliton itself) or antisymmetric.

It follows from Eq. (3) that the stability of a discrete solitwith respect to the perturbations
with w = 0 is determined by the eigenvalues of the matrix Since the soliton is stable in
the absence of GVD, all the eigenvalues_gfare located on the real axis of the complex
plane. The zero eigenvalues iaf, which are related to the continuous symmetries of Egs. (1)
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Fig. 2. The left column shows patterns of the 'neck’ instability for anomal@VD (s < 0)
for 3 consequential values of the propagation distam€e= 7. The middle column shows
patterns of the 'neck’ instability for normal GV ¢ 0): C = 7. The right column shows
patterns of the 'snake’ instability for normal GVB ¢ 0): C = 30.q = 10 andN = 51 for
all the panels.

can be used to get some analytical results. The symmetrgftranationU, — U,&® (where

6 is an arbitrary phase) together with the Hamiltonian stmecof these equations imply the
existence of the two zero eigenvalues of the malrixwith the same eigenvectd. This
means that the following two identitiekyXy = 0 andLg%X; = Xo, which can be rewritten in the
form L2, = 0, are satisfied. Hem = (a1, —au, ..., an, —an)", X1 = —dq(as, a1, ..., an,an) " .
When the frequencw deviates from zero, see Eq. (3), these two eigenvalues nveag faom
the origin in the complex -plane. They move in the opposite directions either aloegéial or
along the imaginary axis. The latter case corresponds tnduk’-instability associated with
the vectorXp that has the same symmetry as the soliton itself. Note, thtd discrete case
the continuous symmetry with respect to the lateral shifth® soliton position is absent, and
therefore the degeneracy of the zero eigenvalugdfi the discrete model is half less than in
the continuous one [10, 11, 12].

Assuming thatw < 1 we write the following asymptotic expansions for the eigéne and
corresponding eigenvectok: = wA1 + w?Ax + ... andX = Xo + iA1wXy + W% + . ... Substi-
tuting these expansions into Egs. (3), we get in the thiretioad the perturbation theory the
solvability conditionA? = sQ/(2d4Q). According to this condition the long wavelength insta-
bility of the 'neck’-type takes place fa&s < 0 (anomalous GVD). This result is not surprising
because essentially the same instability persists even$o€ = 0. The middle column in Fig.
1 shows the 'neck’ instability growth rates for differeniwes ofC. The low frequency part of
the instability growth rates is approximately describedhsy above analytical expression. Di-
rect numerical modeling of Egs. (1) with the initial conditicorresponding to a discrete soliton
shows in this case formation of the regular trains of speioporal quasi-solitons, which are
discrete in space and continuous in time, see the left coliankig. 2. Thus development of
MI for the anomalous GVD case is qualitatively similar to féof the spatial solitons in the
continuous NLS equation with saturable nonlinearity [25].
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In the case of normal GVDs(> 0) we have found complex instability spectra consisting
from multiple sidebands, see the rightmost column in FigiTHese type of spectra appear to
be specific to the discrete solitons. For the relatively si@lpling strength, i.e. sufficiently
far from the continuous limit, the dominant instability i the 'neck’-type. This instability
leads to the break-up of the initial soliton to the localizeahps of light, which disperse with
further propagation, see the middle column in Fig. 2. Cagfar the continuous 2D NLS with
the normal GVD the anti-symmetric 'snake’-like instalyildominates dynamics of 1D bright
solitons [10, 26]. More, recent studies [26] have demoltiréhat the symmetric 'neck’-type
eigenvectors also can be unstable in the continuous hyliegtid NLS, with their growth rate
been below the one for the 'snake’ MI. As we have found in oudetdhe 'neck’ instability
dominates the dynamics of the discrete solitons for smathéalerate values of the coupling
coefficient, see Fig. 1. Only for strong coupling, when thstesn becomes quasi-continuous,
the 'snake’ instability starts to be dominant over the 'remte. This leads to the break up of
the discrete soliton in the snake-like fashion, see the righst column in Fig. 2. Note, that the
dominant MI band of the 'neck’-type found for small frequéessxw close to zero is associated
with a pair of complex eigenvaluds At the same time the dominant band of the 'snake’ Ml and
the strongest peak of the 'neck’- Ml at the relatively largegluencieso have purely imaginary
eigenvalues\.

4. Physical estimates

As a guideline for physical estimates we consider paraméygical for SOl waveguides. In
particular for a channel waveguide with width 480nm andkhéss 220nm [16] GVD at.Bum

is anomalous and its value i 580ps/nm/km. For width below 400nm or above 640nm GVD
becomes normal. The coupling length for spacing around #0€mn be estimated at 20t
[17]. The kerr coefficienhy, for silicon is~ 6 x 10~ 14cm?/W. For our power estimates we take
the effective are$~ 0.3um?. Then one can show th@t= 7,15, 30 used in numerical model-
ing give the following values for the dimensionless unizo®.88mm, 2mm, 3mm. One unit
of the timet corresponds to 22fs, 34fs, 47fs and unit of the peak powed-7i, 0.8W, 0.4W,
respectively. Considering that in the best SOl waveguidesdass is few dB/cm and remember-
ing about two-photon and free carrier absorption, our pargdimates should be scaled up. In
particular, Ml in a single SOl waveguide reported in [18] bagn observed for 10W of pump
power. Note, that though more detailed account of the abbseration mechanisms is desir-
able in future research, it can be forecasted, that theysiwiply proportionally suppress the
instability growth rate, without qualitative changes ie #ffect itself. The above time estimates
show that Ml can be observed already with pico-second pungepiwhen the role of the free
carrier absorbtion and dispersion is negligible.

5. Summary

We have analyzed modulational instability of bright digersolitons in the waveguide arrays
with group velocity dispersion. In the case of normal GVD vawé found multiple instabil-
ity bands. For weak to moderate strength of coupling thereliscsolitons exhibit the 'neck’
instability leading to breakup of the solitons into a trafrdispersive pulses. Only for strong
coupling, i.e., in the quasi-continuous limit, this ingtap is getting gradually suppressed by
the 'snake’ instability known for the 2D continuous NLS mb#]. In the case of anomalous
GVD the expected neck type instability leads to formatiorcamposite discrete-continuous
spatio-temporal quasi-solitons.
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