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Abstract—We present results of a semianalytical and numerical
study of transverse two-dimensional stationary and oscillating soli-
tons in a wide-aperture laser with a saturable absorber and fast
nonlinearity of both gain and absorption. We determine the sta-
bility conditions and bifurcations of axially symmetric solitons with
screw wavefront dislocations of different order. We demonstrate
the existence of asymmetric rotating laser solitons with different
numbers of intensity maxima.

Index Terms—Lasers, nonlinear optics, optical bistability, op-
tical solitons.

I. INTRODUCTION

D ISSIPATIVE optical solitons are self-organized light
beams created by hard (threshold-type) excitation in

nonlinear optical media or schemes with a balance between
optical energy losses and gain. The requirement of energy
balance results in a discrete spectrum of the main parameters of
dissipative solitons, as distinct from the continuous spectrum of
more familiar conservative optical solitons, e.g., in fibers with
a nonlinear refractive index [1]–[3]. This important difference
is interesting not only from a fundamental standpoint. The
robustness of the dissipative optical solitons and the suppres-
sion of noise due to the threshold character of their excitation
open up perspectives of their possible applications in optical
information processing.

There are a number of optical schemes in which dissipative
solitons exist. The dissipative optical solitons were first found
theoretically in wide-aperture nonlinear driven interferome-
ters [4], [5]. Experimentally, they were first demonstrated in a
liquid-crystal valve scheme with spatial filtering in the feedback
[6], [7]. Another example of such “driven” schemes in which
dissipative solitons exist is a single-mirror feedback system
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containing a cell with Na vapor [8]. There are also schemes
without the external signal, such as wide-aperture lasers with
a saturable absorber.Laser solitonsin such schemes were
predicted in [9], [10] (see also [11]). Subsequent theoretical
and experimental studies of dissipative optical solitons are
summarized in a number of recent reviews [12]–[20].

Both “driven” (passive) and “laser” schemes are especially
promising for applications when based on semiconductor
microcavities with multiple quantum wells or dots [21], [22].
The main difference between dissipative solitons in passive and
active schemes is the following. Stationary solitons in driven
schemes have the frequency of the external signal and are
phase-matched with it, whereas the frequency of a stationary
laser soliton is the unknown eigenvalue of the problem, and its
phase is arbitrary. Note also that feedback is not a prerequisite
for the existence of the laser soliton. Localized structures
described by equations similar to laser equations can be
created in a continuous medium, planar waveguide, or fiber
with nonlinear gain and absorption. Therefore, the termcavity
solitonis not appropriate here. As a consequence, laser solitons
are extremely diverse. (For a review of features of one-, two-,
and three-dimensional (1-, 2-, and 3-D) laser solitons, see
[20].) Also highly diversified are the scenarios of laser soliton
stability loss and generation of new structures.

Our aim is to present a systematic semianalytical and numer-
ical study of the stability and bifurcations of transversely 2-D
solitons characterized by different topological charges (local-
ized vortices of different order) in a wide-aperture laser with an
intracavitary nonlinear absorber. We also demonstrate the exis-
tence of rotating asymmetric “multihumped” solitons with dif-
ferent numbers of intensity maxima.

In Section II, we describe the laser model, present the
governing equation, and discuss its symmetries. In Section III,
we study stationary localized structures with axially symmetric
intensity distribution, including localized vortices of different
order. We analyze their stability with respect to small pertur-
bations. In Section IV, we present the results of numerical
solutions of the governing equation. We describe the bifurca-
tions of the symmetric laser vortices, the appearance of new
types of laser solitons, asymmetric and nonstationary ones,
and hysteresis phenomena in which all these types of solitons
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are involved. In Section V, we briefly discuss some possible
generalizations of the model and applications of laser solitons.

II. L ASER MODEL AND EQUATIONS

We consider a wide-aperture—with a large Fresnel number—
laser with an intracavitary saturable absorber. The relaxation
times of both gain and absorption are assumed to be small as
compared with the field lifetime in the empty cavity (the
class-A laser). In the mean-field approximation [23] valid for
the case of small variations of the electric-field envelope per
one-cavity round trip, the governing equation has the form [20],
[24]

(1)

where is the dimensionless complex electric-field envelope
averaged over the longitudinal coordinate. The dimensionless
time is normalized by .
is the transverse Laplacian with the dimensionless transverse
Cartesian coordinatesand , normalized by the width of the
effective Fresnel zone

(2)

where is the cavity length, is the light wavenumber, and
is the product of the cavity mirror amplitude coefficients of

reflection. The nonlinear function of the field intensity
describes the fast saturation of gain and absorption.

Neglecting frequency detunings, becomes real and takes
the form

(3)

where and are small-signal gain and absorption, respec-
tively, and is the ratio of the saturation intensities for gain and
absorption. The nonresonant absorption is rescaled to unity by
the time normalization. The “diffusion coefficient” de-
scribes a weak spatial dispersion of the optical media and is as-
sumed to be small ( ). Generally, the diffusion coefficient
is intensity dependent, but this dependence is absent in the case
of zero-frequency detunings [24].

Equation (1) is invariant under a constant phase shiftof
the electric-field envelope and also under shifts , of the
transverse coordinates (translation symmetry)

(4)

The existence of these symmetries implies that the soliton pos-
sesses the so-called neutral modes, which we will describe in
Section III. The symmetry of (1) with respect to rotations of
the plane can also produce neutral modes. However, in the
case of a soliton with axially symmetric intensity distribution,
the neutral mode generated by the rotational symmetry coin-
cides with that generated by the phase symmetry. In the numer-
ical simulations below, we fix the following values of parame-
ters: , .

III. A XIALLY SYMMETRIC LASER SOLITONS

A. Stationary Symmetric Localized Structures

Let us consider a stationary localized structure with an axi-
ally symmetric intensity distribution. Then, in polar coordinates

the electric field is

(5)

where is the radiation frequency shift with respect to the fre-
quency of transversely homogeneous lasing and an integeris
the topological charge, or azimuthal index. The structures with

correspond to localized vortices with screw dislocations
of the radiation wavefront. In the vortex center, the field is zero
(i.e., ). Substituting (5) into (1), we get the following
ordinary differential equation for the radial function :

(6)

with natural boundary conditions at and
at . Note that the frequency shift plays the

role of the eigenvalue of the nonlinear problem (6) and has a dis-
crete spectrum. We will use the small-signal gainas a control
parameter. The multicharged localized laser vortices were first
found in [25]. More recently, the stability of localized vortices
for a nonlaser case with strong diffusion was demonstrated in
[26]. In this section, we will find the conditions of their stability,
taking into account the effect of weak diffusion.

Prior to the discussion of 2-D structures, note that for
1-D localized laser structures, the dependence ofon
has a spiral-like form [20], [27]. Different coils of the spiral
represent structures with different width. Stable laser solitons
correspond to some parts of the coils with a negative derivative

adjacent to the points of saddle-node bifurcation
where . The narrowest localized structures cor-
responding to the first coil can be referred to as “ground-state”
laser solitons, whereas wider structures associated with other
coils, as “excited” solitons [20], [27], [28]. The dependence
of on calculated numerically for 2-D axially symmetric
structures with topological charges is presented
in Figs. 1 and 2. Fig. 1 corresponds to the zero-diffusion coef-
ficient and Fig. 2 corresponds to . Note that the
dependence of on shown in Fig. 1 is quite different from
that obtained in [27] for 1-D localized structures. Instead of an
infinite number of coils for the fundamental soliton ( ),
only one spiral coil with a negative derivative
remains. It is off the scale of Fig. 1. For the localized vortices
( ), the size of the second coil decreases with the
increase of the diffusion coefficient (see Fig. 2). The second
coil disappears for and . The first coils
corresponding to are off the scale of both Figs. 1 and
2. In the next section, we analyze the effect of diffusion on the
stability of the localized structures.

B. Linear Stability Analysis

It is necessary for the stability of a localized structure that the
total linear absorption be greater than the small-signal gain

(7)
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Fig. 1. Spiral-like dependencies of the nonlinear frequency shift� on the
small-signal gaing for laser solitons with topological chargesm = 0 (solid
line) andm = 1; 2; 3 (dashed lines). The first coils of the spirals are not shown:
they are off the scale. All the vortices are unstable. Diffusion coefficientd = 0.

Fig. 2. Dependencies of the nonlinear frequency shift� on the small-signal
gaing for laser vortices withm = 1; 2; 3. Diffusion coefficientd = 0:1. The
vortices are stable within the intervals shown by thick solid lines. The arrow
points to the narrow interval of stability of excited solitons with the topological
chargem = 1.

Otherwise, small peripheral perturbations grow exponentially.
The sufficient stability conditions are found by linear stability
analysis. We introduce a small perturbation by the relation

(8)

Then, in polar coordinates, the governing equation (1) (lin-
earized with respect to ) takes the form

(9)

where

(10)

We seek the solution of (9) in the form

(11)

with the asymptotics at . The equation
resulting from the substitution of (11) into (9) can be written in
matrix form as

a a
a a

u
u

(12)

Here, the components of the matrix operatorare given by

a Re

a Re (13)

The two components of the vectorare

(14)

The symmetry properties (4) of the governing equation (1)
imply the existence of the so-called “neutral modes” which are
the eigensolutions of the linearized equation (9) with the zero
eigenvalue . Specifically, the symmetry with respect to
the phase shift gives rise to the axially symmetric neutral mode

with . The translation symmetry results in
the existence of two neutral modes with

(15)

The stability of localized structure is determined by the
discrete spectrum of the eigenvaluesof (12) with a nonzero
real part. More precisely, a localized structure is unstable if

Re , where the maximum is chosen among all
the roots of (12). At the bifurcation point, the real part of
the critical eigenvalue changes its sign. A complex critical
eigenvalue with a nonzero imaginary part corresponds to the
Andronov–Hopf bifurcation. For , this bifurcation leads
to the perturbed structure exhibiting temporal oscillations.
Since (11) can be rewritten in the form

(16)

for the rotation of the perturbed structure arises with the
rotation angular velocity . Note that according
to (8) and (11), the field intensity of the rotating structure has

maxima with the angle variation at fixed and (a mul-
tihumped localized structure).

We have found numerically the eigenvaluesusing dis-
cretization of (12) over the radial coordinate. The results
are presented in Figs. 2–7. The axially symmetric localized
structures are stable within finite ranges of small-signal
gain. The stability range of the fundamental soliton is

for (see Fig. 3), and it is only
slightly affected by diffusion. The low-gain boundary of the
stability range corresponds to the saddle-node bifurcation
where stable and unstable localized solutions merge and
disappear. At the high-gain boundary of the stability range,
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Fig. 3. Dependencies of the small perturbation growth rate Re
 on the
small-signal gaing for m = 0, �m = 0; 1; 2; 3; 4, andd = 0.

(a) (b)

Fig. 4. (a) Wired surface and (b) surface relief illustrating the transverse
distribution of intensity of a stable excited soliton withm = 1; d = 0:06,
g = 2:129776, and� = 0:06576.

, the fundamental soliton loses its stability due to
growth of perturbation harmonics with . In this case, the
imaginary part of the critical eigenvalueis nonzero; hence,
the Andronov–Hopf bifurcation appears. In the framework of
the linear stability analysis, it is not possible to determine what
regimes are formed after this bifurcation. This question will be
considered in the next section.

Unlike the fundamental solitons, all the localized vortices
are unstable for , because there are roots with

Re for the perturbation harmonics with . More
precisely, the width of the stability range of a laser localized
vortex tends to zero when . As illustrated in Figs. 2 and
5–7, there are finite ranges of stability of ground-state and ex-
cited laser vortices. An example of the transverse intensity dis-
tribution corresponding to an excited vortex is given in Fig. 4.

Now let us turn to ground-state vortices that for positive dif-
fusion ( ) have greater stability ranges than the excited
ones. The dependence of the maximum growth rate of pertur-
bations for harmonics with on small-signal
gain is given in Figs. 5–7 for localized vortices with topological
charges , respectively. For , the curve rep-
resenting the maximum growth rate for shifts upward.
At , it is tangent to the line Re at a certain value

(see [29, Fig. 5]). There is an additional degeneracy of the
eigenvalues of the problem (12) at this value.

Fig. 5. Dependencies of the small perturbation growth rate Re
 on the
small-signal gaing for the perturbation azimuthal harmonics with�m =0–3
for the case of a vortex soliton,m = 1. Diffusion coefficientd = 0:1. Inset
shows the maximum growth rate of perturbations with�m = 0 for the excited
vortex soliton in the narrow interval of its stability (see Fig. 2).

Fig. 6. Dependencies of the small perturbation growth rate Re
 on the
small-signal gaing for the perturbation azimuthal harmonics with�m =0–3
for a laser vortex soliton of the second order,m = 2, d = 0:1.

For the parameters used in our simulations, all the vortices
lose their stability with the increase of gain due to the growth
of perturbations with , whereas the fundamental soliton
is destabilized by the perturbation harmonics with (see
Fig. 3). Since the imaginary part of the critical eigenvalue is
nonzero, this instability corresponds to the Andronov–Hopf bi-
furcation. With the decrease of gain, the vortex solitons with

are destabilized by the perturbations with
(see Figs. 5 and 6). The soliton with is destabilized by
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Fig. 7. Dependencies of the perturbation growth rate Re
 on the small signal
gaing for a laser vortex of the third order,m = 3, d = 0:1.

Fig. 8. Transverse intensity distributions illustrating transformation of the
axially symmetric soliton(t = 0) into an asymmetric rotating soliton with fast
increase of the small-signal gain fromg = 2:116 to 2:14, d = 0.

the perturbation harmonics with (see Fig. 7). This insta-
bility results in an intensity distribution of the perturbed soliton
with three maxima.

IV. NUMERICAL SIMULATIONS

The semianalytical procedure described in the previous sec-
tions is incapable of describing localized solutions with axially
asymmetric intensity distributions. In order to study these solu-
tions, we need to perform direct numerical simulations of the
governing equation (1). In this section, we present the results
of such simulations based on the splitting method and the algo-
rithm of the fast Fourier transform [20].

Note that destabilization of a fundamental soliton, ,
above the high-gain boundary of its stability range is associated
with the asymmetric perturbation harmonics with (see
Fig. 3). Numerical calculations confirm the subcritical character
of the corresponding Andronov–Hopf bifurcation. With the in-
crease of gain, an initially axially symmetric soliton (Fig. 8,

) transforms into a soliton rotating with a constant angular

Fig. 9. Dynamics of transverse intensity distribution during one oscillation
cycle of the transient regime. The initial field is the fundamental laser soliton
formed atg = 2:1140, then gain is increased slowly up tog = 2:1145 and,
finally, the initial gain value is restored(g = 2:1140).

velocity. The latter soliton is axially asymmetric and has two
intensity maxima (a two-humped structure, Fig. 8, ).
More precisely, a stationary rotating soliton can be formed if
gain first increases above the stability threshold and then de-
creases to a value corresponding to the range of this soliton sta-
bility (see Fig. 10). The rotation is connected with the asym-
metry of the transverse distribution of the complex electric-field
envelope and is not related to the structure topological charge.
The localized structures shown in Fig. 8 have no vortices. Such
rotating laser solitons were first found in [25]. Below, we will
give new examples of rotating solitons and study their bifurca-
tions. Note that Fig. 8 corresponds to the fast gain increase. If it
is slow, then a metastable nonrotating localized structure arises
that oscillates quasi-periodically. One of the oscillation cycles of
the almost periodic antiphase pulsation ofand sizes of the
structure is shown in Fig. 9. There are two symmetry axes,and
, for the field distributions. More than 100 oscillation cycles

occur during the metastable state lifetime. Then the structure
loses its symmetry and transforms into a stable rotating soliton.

For the parameters of Fig. 3, there is a hysteresis between sta-
tionary fundamental solitons and asymmetric rotating solitons.
Coexistence of the two branches of stable solitons is shown in
Fig. 10 where widths [Fig. 10(a)] and intensities [Fig. 10(b)]
of solitons are given as functions of small-signal gain. The two
widths of the rotating soliton are determined as the temporal
maximum and minimum over the rotation period at the level of
the intensity of the transversely homogeneous lasing. This level
is indicated in Fig. 10(b) by the dashed line.

The rotating soliton arising after the Andronov–Hopf bifur-
cation bifurcates again with a further gain increase. At

, it transforms into a new structure — a pulsating rotating
asymmetric laser soliton. Then the curves representing the max-
imum and minimum widths [Fig. 10(a)] and maximum intensity
[Fig. 10(b)] split due to time-periodic oscillations that are slow
compared with the rotation period. With the gain decrease, the
rotating soliton persists over a narrower range as compared with
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(a)

(b)

Fig. 10. Dependencies of (a) soliton widthsw and (b) intensitiesI on the
small-signal gaing . The 1 (a) and 2 (b) curves correspond to a stable axially
symmetric soliton with widthw and maximum intensityI . Curves 2 and
3 in both (a) and (b) indicate the maximum and minimum values ofw and
I for an asymmetric rotating soliton. Curve 0 (b) shows the intensity of the
transversely homogeneous lasing. The splitting of the curves corresponds to
temporal pulsations of the width and the maximum intensity of the asymmetric
rotating and pulsating soliton that appears after the Andronov–Hopf bifurcation;
d = 0.

the fundamental soliton characterized by axially symmetric in-
tensity distribution. With the decrease of gain, a rotating soliton
becomes unstable, and the transition to the fundamental soliton
occurs. In Fig. (10a), this transition is shown by the downward
arrow.

For laser vortices , both high- and low-gain bound-
aries of the stability range correspond to the Andronov–Hopf
bifurcations (see Figs. 5–7). Numerical simulations of the laser
vortex destabilization give a wide spectrum of stable localized
structures. It would appear reasonable that the Andronov–Hopf
bifurcation results in the formation of a rotating soliton with the
number of maxima equal to the value of the perturbation
responsible for the instability. However, this conclusion is not
universally valid, because the linear stability analysis does not
describe the nonlinear stage of perturbation growth.

The symmetric vortex of the first order, , is asso-
ciated with two types of stable rotating asymmetric solitons:
two-humped solitons existing in the low-gain region and one-
humped solitons in the high-gain region (Fig. 11). Note that the
formation of the one-humped soliton cannot be explained by the
results of the linear stability analysis (see Fig. 5). The coexis-
tence of different solitons and hysteresis jumps between them
with gain variations are shown in Fig. 12. With the increase
of gain, the initially symmetric localized vortex loses its sym-
metry and transforms into a rotating one-humped soliton. With

Fig. 11. Transverse intensity distributions for rotating one- and two-humped
localized laser vortices.m = 1, d = 0:06, (a)g = 2:13, (b) g = 2:09.

Fig. 12. Maximum intensity of stable symmetric and asymmetric laser
localized vortices versus the small-signal gain. Curves 0, 1, and 2 correspond
to symmetric,m = 1, asymmetric one-humped and asymmetric two-humped
vortices, respectively. Vertical dashed lines with arrows represent hysteresis
jumps that take place with gain variation. The oblique dashed line indicates
a jump to a regime with the soliton splitting into two decaying localized
fragments;d = 0:06.

a further increase in the gain, this soliton also loses its stability.
Then, after an intermediate metastable regime of oscillations,
the lasing zone progressively widens in the form of a cylindrical
switching wave [20].

With the decrease of gain, the one-humped rotating soliton
transforms into a vortex soliton with the axially symmetric in-
tensity distribution. There exists an extremely narrow hysteresis
range where both types of solitons coexist. The hysteresis range
is fairly wide in the low-gain region where symmetric vortices
coexist with two-humped solitons (Fig. 12). Note that, in this
case, two-humped solitons cannot be formed from symmetric
vortices by a slow gain variation, but they can be excited by a
sufficiently strong asymmetric perturbation.

Further decrease of gain results in splitting of both symmetric
and asymmetric (rotating) vortex solitons into two fragments
without dislocations. Then these fragments disappear. This
process is illustrated in Fig. 13, where the transverse distri-
butions of intensity and phase are given for different time
moments. The sharp change of the phase corresponds to its
jump at the line starting from the dislocation center where the
radiation intensity is zero.
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Fig. 13. Breakdown of the symmetric laser vortex soliton withm = 1

occurring at an abrupt decrease of the small-signal gain from 2.054 to 2.05;
d = 0:06.

(a) (b)

Fig. 14. (a) Wired surfaces and (b) surface reliefs illustrating the transverse
distribution of intensity of a rotating and simultaneously oscillating laser vortex;
m = 2, g = 2:115, d = 0:06; distribution is approximately periodic with the
periodT � 38.

Fig. 15. Breakdown of the symmetric laser vortex soliton withm = 2

occurring at an abrupt decrease of the small-signal gain from 2.057 to 2.056;
d = 0:06.

Similar or even more complex are bifurcations of higher order
localized vortices. In this case, stable rotating and simultane-
ously oscillating solitons (Fig. 14, ) exist within a fairly
wide range of gain. In Fig. 15, we demonstrate the breakdown
of the symmetric second-order laser vortex with into two
vortices of the first order and their further splitting
and decay. In the case of breakdown of the rotating asymmetric
soliton (Fig. 16), the fragments arising from the vortex splitting
have a rather large relative velocity. It can be attributed to the
initial angular momentum, which is absent in the case of the
symmetric vortex shown in Fig. 13.

Bifurcations of the third-order vortices, , are even more
varied. Without going into detail, we simply present in Fig. 17
the stable state of a rotating asymmetric vortex with three in-
tensity maxima. The number of the maxima corresponds to the
value of the perturbation associated with the bifurcation
of the symmetric laser vortex that takes place with the decrease
of gain (see Fig. 7).
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Fig. 16. Transverse intensity distributions illustrating the breakdown of the
asymmetric rotating laser localized vortex(m = 2). The breakdown occurs at
an abrupt decrease of the small-signal gain from 2.083 to 2.082,d = 0:06.

(a)

(b)

Fig. 17. (a) Wired surface and (b) surface relief illustrating the transverse
intensity distribution of a rotating triple-humped laser vortex;m = 3, g =
2:0869, d = 0:1.

V. CONCLUSION

The results presented demonstrate a great variety of dissipa-
tive solitons in wide-aperture lasers with a saturable absorber.
Even more diverse are the forms of solitons in bistable class-B
lasers where finite relaxation rates of gain and absorption should
be taken into consideration. It would appear reasonable that this
rich variety can be used in designs of such devices as a shift reg-

ister and optical adder [20], as well as other devices for optical
information processing.

Let us take a brief look at the experimental realization of the
solitons considered in this paper. Until recently, experiments
with laser solitons were made with extremely slow absorbers.
To get fast systems that can be integrated with other information
processing devices, it is natural to use the semiconductor ver-
tical cavity surface-emitting lasers (VCSELs) with a saturable
absorber integrated in the same semiconductor device of a mi-
cron in size. The saturable absorber could consist of passive
layers with multiple quantum wells or dots. The electrodes nec-
essary for laser pumping by the electric current should be placed
between the active and passive layers. They should be trans-
parent to light. Such laser devices could be complementary to
the semiconductor passive driven interferometers of the type re-
viewed in [15] and [19].
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