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Abstract—We present results of a semianalytical and numerical containing a cell with Na vapor [8]. There are also schemes
study of transverse two-dimensional stationary and oscillating soli- without the external signal, such as wide-aperture lasers with
tons in a wide-aperture laser with a saturable absorber and fast 5 garraple absorbetaser solitonsin such schemes were
nonlinearity of both gain and absorption. We determine the sta- . . .
bility conditions and bifurcations of axially symmetric solitons with predicted |.n (91, [10] (;ee also ,[11])' _Subseq_uent theoretlcal
screw wavefront dislocations of different order. We demonstrate and experimental studies of dissipative optical solitons are
the existence of asymmetric rotating laser solitons with different summarized in a number of recent reviews [12]-[20].

numbers of intensity maxima. Both “driven” (passive) and “laser” schemes are especially
Index Terms—tasers, nonlinear optics, optical bistability, op- Promising for applications when based on semiconductor
tical solitons. microcavities with multiple quantum wells or dots [21], [22].

The main difference between dissipative solitons in passive and
active schemes is the following. Stationary solitons in driven
schemes have the frequency of the external signal and are
ISSIPATIVE optical solitons are self-organized lightphase-matched with it, whereas the frequency of a stationary
beams created by hard (threshold-type) excitation jaser soliton is the unknown eigenvalue of the problem, and its
nonlinear optical media or schemes with a balance betwegitase is arbitrary. Note also that feedback is not a prerequisite
optical energy losses and gain. The requirement of enengy the existence of the laser soliton. Localized structures
balance results in a discrete spectrum of the main parameterg@icribed by equations similar to laser equations can be
dissipative solitons, as distinct from the continuous spectrum@kated in a continuous medium, planar waveguide, or fiber
more familiar conservative optical solitons, e.g., in fibers witith nonlinear gain and absorption. Therefore, the teavity
a nonlinear refractive index [1]-[3]. This important differenceolitonis not appropriate here. As a consequence, laser solitons
is interesting not only from a fundamental standpoint. Thare extremely diverse. (For a review of features of one-, two-,
robustness of the dissipative optical solitons and the suppraad three-dimensional (1-, 2-, and 3-D) laser solitons, see
sion of noise due to the threshold character of their excitati¢g®0].) Also highly diversified are the scenarios of laser soliton
open up perspectives of their possible applications in optiasthbility loss and generation of new structures.
information processing. Our aim is to present a systematic semianalytical and numer-
There are a number of optical schemes in which dissipatiiel study of the stability and bifurcations of transversely 2-D
solitons exist. The dissipative optical solitons were first foungblitons characterized by different topological charges (local-
theoretically in wide-aperture nonlinear driven interferomezed vortices of different order) in a wide-aperture laser with an
ters [4], [5]. Experimentally, they were first demonstrated in @tracavitary nonlinear absorber. We also demonstrate the exis-
liquid-crystal valve scheme with spatial filtering in the feedbacience of rotating asymmetric “multihumped” solitons with dif-
[6], [7]. Another example of such “driven” schemes in whiclierent numbers of intensity maxima.
dissipative solitons exist is a single-mirror feedback systemin Section I, we describe the laser model, present the
governing equation, and discuss its symmetries. In Section I,
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are involved. In Section V, we briefly discuss some possible lll. AXIALLY SYMMETRIC LASER SOLITONS
generalizations of the model and applications of laser solitonﬁ. Stationary Symmetric Localized Structures

Let us consider a stationary localized structure with an axi-

ally symmetric intensity distribution. Then, in polar coordinates
We consider a wide-aperture—with a large Fresnel number(r o), 2 = rcos ¢, y = rsin p, the electric field is

laser with an intracavitary saturable absorber. The relaxation ‘ .
times of both gain and absorption are assumed to be small as E = A(r) exp(imp — iat) (5)
compared with the field lifetime in the empty cavity (the whereq is the radiation frequency shift with respect to the fre-

class-A laser). In the mean-field approximation [23] valid f(:ﬁjjency of transversely homogeneous lasing and an integer

Il. LASER MODEL AND EQUATIONS

the case of small variations of the electric-field envelope p . . ) .

. ) : . e topological charge, or azimuthal index. The structures with
one-cavity round trip, the governing equation has the form [20], . ) ; ) .
[24] # 0 correspond to localized vortices with screw dislocations

of the radiation wavefront. In the vortex center, the field is zero
OF . (i.e., A(0) = 0). Substituting (5) into (1), we get the following
ot (i+d)ALE+Ef (|E]) @) ordinary differential equation for the radial functiet{(r):

where ' is the dimensionless complex electric-field envelope dz_A 1dA m_ZA + i+ [ (|AP) A=0 (6)
averaged over the longitudinal coordinate. The dimensionless dr?2  rdr = 72 i+d

time ¢ is normalized byt.. A, = Vi = 0°/0z* + 0°/9y* \up natural boundary conditiond(r) ~ rI™l atr — 0 and

is the transverse Laplacian with the dimensionless transve@@r) — 0 atr — oo. Note that the frequency shit plays the

Cartesian coordinatesandy, normalized by the width of the oot the eigenvalue of the nonlinear problem (6) and has a dis-

effective Fresnel zone crete spectrum. We will use the small-signal gajras a control
parameter. The multicharged localized laser vortices were first

L. (2) found in [25]. More recently, the stability of localized vortices

2k(1 - R) for a nonlaser case with strong diffusion was demonstrated in

] ) ] ) [26]. In this section, we will find the conditions of their stability,
whereL. is the cavity lengthk is the light wavenumber, andtaking into account the effect of weak diffusion.

R is the product of the cavity mirror amplitude coefficients of pi5r to the discussion of 2-D structures. note that for
reflection. The nonlinear functiori(/) of the field intensity 1_p |gcalized laser structures. the dependeﬁceyod)n g

R . ; . .
I = |E|” describes the fast saturation of gain and absorptiqflys 5 spiral-like form [20], [27]. Different coils of the spiral
Neglecting frequency detuningg(/) becomes real and takesygpresent structures with different width. Stable laser solitons

Lp =

the form correspond to some parts of the coils with a negative derivative
9 9o ag da/dge < 0 adjacent to the points of saddle-node bifurcation
f(EP)=-1+ - (3) _ -
1+ |EZ 1+bER where|da/dgg| = oco. The narrowest localized structures cor-

responding to the first coil can be referred to as “ground-state”
wherego andag are small-signal gain and absorption, respetaser solitons, whereas wider structures associated with other
tively, andb is the ratio of the saturation intensities for gain andoils, as “excited” solitons [20], [27], [28]. The dependence
absorption. The nonresonant absorption is rescaled to unitydfya on g, calculated numerically for 2-D axially symmetric
the time normalization. The “diffusion coefficient’ > 0 de- structures with topological charges = 0, ..., 3 is presented
scribes a weak spatial dispersion of the optical media and is asFigs. 1 and 2. Fig. 1 corresponds to the zero-diffusion coef-
sumed to be smalli(< 1). Generally, the diffusion coefficient ficient d = 0 and Fig. 2 corresponds tb= 0.1. Note that the
is intensity dependent, but this dependence is absent in the agsgendence af on g shown in Fig. 1 is quite different from
of zero-frequency detunings [24]. that obtained in [27] for 1-D localized structures. Instead of an
Equation (1) is invariant under a constant phase ghjfof infinite number of coils for the fundamental solitom (= 0),
the electric-field envelop& and also under shiftX, Y, ofthe only one spiral coil with a negative derivativiy/dgy < 0
transverse coordinates (translation symmetry) remains. It is off the scale of Fig. 1. For the localized vortices
(m = 1, 2), the size of the second coil decreases with the
E — Eexp(i®), E(z,y.t) — E(z+ Xo,y + Yo,t). (4) increase of the diffusion coefficient (see Fig. 2). The second
coil disappears forn = 3 andd = 0.1. The first coils
The existence of these symmetries implies that the soliton pegrresponding ton = 1, 2 are off the scale of both Figs. 1 and
sesses the so-called neutral modes, which we will describeginin the next section, we analyze the effect of diffusion on the
Section lll. The symmetry of (1) with respect to rotations ogtabnity of the localized structures.
the(z, y) plane can also produce neutral modes. However, in the
case of a soliton with axially symmetric intensity distributionB. Linear Stability Analysis

the neutral mode generated by the rotational symmetry coiny; ig necessary for the stability of a localized structure that the

cides with that generated by the phase symmetry. In the NUMgyi| jinear absorption be greater than the small-signal gain
ical simulations below, we fix the following values of parame-

tersiag = 2, b = 10. f(0)=—=1—ap+go <O0. @)
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0.1 — We seek the solution of (9) in the form
. 0A(r,¢,t) = a(r) exp(idmy + 1)
0.09 — +b*(r)exp (—iémp + ¥*t), om=0,1,2,... (11)
with the asymptotics(r),b(r) — 0 atr — oo. The equation
] resulting from the substitution of (11) into (9) can be written in
0.08 — matrix form as
. Lu=~u, L= <a11’ a”), u= (“1>. (12)
a217 a22 LI2
0.07 — Here, the components of the matrix operdicare given by
1 a11,22ZRe(flif2)—2im5mT72_dAngHMQ)
0.06 — T T T 212,21 =FAFRE(f1 F f2) £ 2idmsmr > F AL H0m)(13)
2.1 2.12 2.14 2.16 The two components of the vectarare

Fig. 1. Spiral-like dependencies of the nonlinear frequency shifin the u=atb ur= Z(b - a). (14)

small-signal gairy, for laser solitons with topological charges = 0 (solid ; : :
line)andm = 1, 2, 3 (dashed lines). The first coils of the spirals are not shown: The symmetry properties (4) of the governing equation (1)

they are off the scale. All the vortices are unstable. Diffusion coefficiento.  IMply the existence of the so-called “neutral modes” which are
the eigensolutions of the linearized equation (9) with the zero

o RE eigenvaluey = 0. Specifically, the symmetry with respect to
01— W\ ) the phase shift gives rise to the axially symmetric neutral mode

AR 8A = iA(r) with 6m = 0. The translation symmetry results in
the existence of two neutral modes with, = 1

0A dA da
§A, = — = [ == Ca=0b" = dr
ox < dr ) cose, a 2

dA

/2,\\ 5@:%: (%) sing, a=—b"= 2. (15)
L_ The stability of localized structure is determined by the
3OS / discrete spectrum of the eigenvaluesf (12) with a nonzero
N real part. More precisely, a localized structure is unstable if
W h £, max Revy) > 0, where the maximum is chosen among all
T T T T the roots of (12). At the bifurcation point, the real part of
206 21 214 the critical eigenvalue; changes its sign. A complex critical
eigenvalue with a nonzero imaginary part corresponds to the
Fig. 2. Dependencies of the nonlinear frequency shiéin the small-signal  Andronov—Hopf bifurcation. Fafm = 0, this bifurcation leads
gaing, for laser vortices withn = 1, 2. 3. Diffusion coefficientd = 0.1. The tg the perturbed structure exhibiting temporal oscillations.

vortices are stable within the intervals shown by thick solid lines. The arro

points to the narrow interval of stability of excited solitons with the topologica$mCe (11) can be rewritten in the form

chargern = 1. 8A(r, p,t) = a(r) exp [id6m (e — Q)]

Otherwise, small peripheral perturbations grow exponentially. +b7(r) exp [—ibm(p — Qt)] - (16)
The sufficient stability conditions are found by linear stabilitfor §m # 0 the rotation of the perturbed structure arises with the
analysis. We introduce a small perturbatioh by the relation  rotation angular velocit§2 = —Im~/ém. Note that according

to (8) and (11), the field intensity of the rotating structure has
6m maxima with the angle variation at fixed- and¢ (a mul-

Then, in polar coordinates, the governing equation (1) (lihumped localized structure).

0.055

E =[A(r) + 6A(r, ¢, t)] exp(imp — iat). (8)

earized with respect t6A) takes the form We have found numerically the eigenvalugsusing dis-
cretization of (12) over the radial coordinate The results
96A =(i+d) (A(mz) + 2im 0 + i3_2> SA are presented in Figs. 2-7. The axially symmetric localized
ot " 2 Jp = 12 P2 structures are stable within finite ranges of small-signal
+ (i + f1)0A + f20A* (9) gain. The stability range of the fundamental soliton is
where 2.094 < go < 2.116 for d = 0 (see Fig. 3), and it is only
) 92 16 m2 slightly affected by diffusion. The low-gain boundary of the
Al = a2t e =l folo, f2= f3A%,  stability range corresponds to the saddle-node bifurcation
df where stable and unstable localized solutions merge and

fo=fo), fo = gpl=n fo= |A(r) . (10) disappear. At the high-gain boundary of the stability range,
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Fig. 5. Dependencies of the small perturbation growth rate Be the
small-signal gairy, for the perturbation azimuthal harmonics withe =0-3
for the case of a vortex solitom; = 1. Diffusion coefficientd = 0.1. Inset
shows the maximum growth rate of perturbations wiith = 0 for the excited
vortex soliton in the narrow interval of its stability (see Fig. 2).

(@) (b)

0.04 -
Fig. 4. (a) Wired surface and (b) surface relief illustrating the transverse

distribution of intensity of a stable excited soliton with = 1; d = 0.06,

go = 2.129776, anda = 0.065 76. -

go = 2.116, the fundamental soliton loses its stability due to
growth of perturbation harmonics withm = 2. In this case, the
imaginary part of the critical eigenvalugis nonzero; hence, -
the Andronov—Hopf bifurcation appears. In the framework of
the linear stability analysis, it is not possible to determine what -0.04 —
regimes are formed after this bifurcation. This question will be
considered in the next section.

Unlike the fundamental solitons, all the localized vortices
(m # 0) are unstable fod = 0, because there are roots with
Rey > 0 for the perturbation harmonics wihim = 2. More
precisely, the width of the stability range of a laser localized 2.04 2.08 2.12
vortex tends to zero wheth — 0. As illustrated in Figs. 2 and
5-7, there are finite ranges of stability of ground-state and exg. 6. Dependencies of the small perturbation growth rate Re the
cited laser vortices. An example of the transverse intensity dfgpall-signal gairy, for the perturbation azimuthal harmonics with: =0-3
tribution corresponding to an excited vortex is given in Fig. 4.7 @1aser vortex soliton of the second order,= 2,d = 0.1.

Now let us turn to ground-state vortices that for positive dif-
fusion (d > 0) have greater stability ranges than the excited For the parameters used in our simulations, all the vortices
ones. The dependence of the maximum growth rate of pertiose their stability with the increase of gain due to the growth
bations for harmonics witlirm = 0, 1, 2, 3 on small-signal of perturbations wittén = 0, whereas the fundamental soliton
gain is given in Figs. 57 for localized vortices with topologicak destabilized by the perturbation harmonics with = 2 (see
chargesn = 1, 2, 3, respectively. Forl — 0, the curve rep- Fig. 3). Since the imaginary part of the critical eigenvalue is
resenting the maximum growth rate @t = 2 shifts upward. nonzero, this instability corresponds to the Andronov—Hopf bi-
At d = 0, it is tangent to the line Re= 0 at a certain value furcation. With the decrease of gain, the vortex solitons with
go (see [29, Fig. 5]). There is an additional degeneracy of the = 1, 2 are destabilized by the perturbations wéith, = 2
eigenvalues of the problem (12) at this value. (see Figs. 5 and 6). The soliton with = 3 is destabilized by

-0.08 T T T | 1
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Fig. 7. Dependencies of the perturbation growth rate Bethe small signal
gaing, for a laser vortex of the third ordem, = 3,d = 0.1.

Fig. 9. Dynamics of transverse intensity distribution during one oscillation
cycle of the transient regime. The initial field is the fundamental laser soliton
formed atgo = 2.1140, then gain is increased slowly upge = 2.1145 and,
finally, the initial gain value is restored, = 2.1140).

600

velocity. The latter soliton is axially asymmetric and has two
intensity maxima (a two-humped structure, Figt8= 800).

More precisely, a stationary rotating soliton can be formed if
gain first increases above the stability threshold and then de-
creases to a value corresponding to the range of this soliton sta-

. 0' 'l' bility (see Fig. 10). The rotation is connected with the asym-
.m. '}" \ metry of the transverse distribution of the complex electric-field
' ,'l' ” \\\ envelope and is not related to the structure topological charge.
"':'m o X The localized structures shown in Fig. 8 have no vortices. Such

rotating laser solitons were first found in [25]. Below, we will
give new examples of rotating solitons and study their bifurca-
tions. Note that Fig. 8 corresponds to the fast gain increase. If it
is slow, then a metastable nonrotating localized structure arises
Fig. 8. Transverse intensity distributions illustrating transformation of ththat oscillates quasi-periodically. One of the oscillation cycles of
_axiaIIy symmetric solito_rﬂt = 0)_ into an asymmetric rotating soliton with fast the almost periodic antiphase pulsatiomoandy sizes of the
increase of the small-signal gain frop = 2.116 t0 2.14, d = 0. . I
structure is shown in Fig. 9. There are two symmetry axesd

y, for the field distributions. More than 100 oscillation cycles
occur during the metastable state lifetime. Then the structure
foses its symmetry and transforms into a stable rotating soliton.

For the parameters of Fig. 3, there is a hysteresis between sta-
tionary fundamental solitons and asymmetric rotating solitons.
Coexistence of the two branches of stable solitons is shown in

The semianalytical procedure described in the previous s&dg. 10 where widths [Fig. 10(a)] and intensities [Fig. 10(b)]
tions is incapable of describing localized solutions with axiallgf solitons are given as functions of small-signal gain. The two
asymmetric intensity distributions. In order to study these solwidths of the rotating soliton are determined as the temporal
tions, we need to perform direct numerical simulations of thmaximum and minimum over the rotation period at the level of
governing equation (1). In this section, we present the resulte intensity of the transversely homogeneous lasing. This level
of such simulations based on the splitting method and the algeindicated in Fig. 10(b) by the dashed line.
rithm of the fast Fourier transform [20]. The rotating soliton arising after the Andronov—Hopf bifur-

Note that destabilization of a fundamental soliten,= 0, cation bifurcates again with a further gain increase gf\t=
above the high-gain boundary of its stability range is associated 17, it transforms into a new structure — a pulsating rotating
with the asymmetric perturbation harmonics with = 2 (see asymmetric laser soliton. Then the curves representing the max-
Fig. 3). Numerical calculations confirm the subcritical charactégnmum and minimum widths [Fig. 10(a)] and maximum intensity
of the corresponding Andronov—Hopf bifurcation. With the infFig. 10(b)] split due to time-periodic oscillations that are slow
crease of gain, an initially axially symmetric soliton (Fig. 8compared with the rotation period. With the gain decrease, the
t = 0) transforms into a soliton rotating with a constant angulaotating soliton persists over a narrower range as compared with

the perturbation harmonics withn = 3 (see Fig. 7). This insta-
bility results in an intensity distribution of the perturbed soliton
with three maxima.

IV. NUMERICAL SIMULATIONS
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Fig. 10. Dependencies of (a) soliton widthsand (b) intensitied on the — 1
small-signal gainyo. The 1 (a) and 2 (b) curves correspond to a stable axially v g
symmetric soliton with widthw, and maximum intensity>. Curves 2 and 5 q T T I T 0
3 in both (a) and (b) indicate the maximum and minimum values cdnd | | | | |
I for an asymmetric rotating soliton. Curve 0 (b) shows the intensity of the 2.04 2.06 2.08 2.1 2.12 2.14

transversely homogeneous lasing. The splitting of the curves corresponds to

temporal pulsations of the width and the maximum intensity of the asymmetric

rotating and pulsating soliton that appears after the Andronov—Hopf bifurcatidrig. 12. Maximum intensity of stable symmetric and asymmetric laser

d = 0. localized vortices versus the small-signal gain. Curves 0, 1, and 2 correspond
to symmetric,n = 1, asymmetric one-humped and asymmetric two-humped
vortices, respectively. Vertical dashed lines with arrows represent hysteresis

the fundamental soliton characterized by axially symmetric ifumps that take place with gain variation. The oblique dashed line indicates

tensity distribution. With the decrease of gain, a rotating solitgh/ump o a regime with the soliton splitting into two decaying localized
. fragmentsd = 0.06.
becomes unstable, and the transition to the fundamental soh[oﬂ
occurs. In Fig. (10a), this transition is shown by the downward
arrow. a further increase in the gain, this soliton also loses its stability.
For laser vorticegm # 0), both high- and low-gain bound- Then, after an intermediate metastable regime of oscillations,
aries of the stability range correspond to the Andronov—Hopfe lasing zone progressively widens in the form of a cylindrical
bifurcations (see Figs. 5-7). Numerical simulations of the lasgwitching wave [20].
vortex destabilization give a wide spectrum of stable localized With the decrease of gain, the one-humped rotating soliton
structures. It would appear reasonable that the Andronov—Hdrnsforms into a vortex soliton with the axially symmetric in-
bifurcation results in the formation of a rotating soliton with théensity distribution. There exists an extremely narrow hysteresis
number of maxima equal to the valde: of the perturbation range where both types of solitons coexist. The hysteresis range
responsible for the instability. However, this conclusion is nas fairly wide in the low-gain region where symmetric vortices
universally valid, because the linear stability analysis does ramexist with two-humped solitons (Fig. 12). Note that, in this
describe the nonlinear stage of perturbation growth. case, two-humped solitons cannot be formed from symmetric
The symmetric vortex of the first ordem = 1, is asso- vortices by a slow gain variation, but they can be excited by a
ciated with two types of stable rotating asymmetric solitonsufficiently strong asymmetric perturbation.
two-humped solitons existing in the low-gain region and one- Further decrease of gain results in splitting of both symmetric
humped solitons in the high-gain region (Fig. 11). Note that ttend asymmetric (rotating) vortex solitons into two fragments
formation of the one-humped soliton cannot be explained by thdthout dislocations. Then these fragments disappear. This
results of the linear stability analysis (see Fig. 5). The coexigrocess is illustrated in Fig. 13, where the transverse distri-
tence of different solitons and hysteresis jumps between théutions of intensity and phase are given for different time
with gain variations are shown in Fig. 12. With the increasmoments. The sharp change of the phase correspondto its
of gain, the initially symmetric localized vortex loses its symjump at the line starting from the dislocation center where the
metry and transforms into a rotating one-humped soliton. Withdiation intensity is zero.
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Fig. 13. Breakdown of the symmetric laser vortex soliton with = 1
occurring at an abrupt decrease of the small-signal gain from 2.054 to 2.05;

d = 0.06.
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Fig. 15. Breakdown of the symmetric laser vortex soliton with = 2
occurring at an abrupt decrease of the small-signal gain from 2.057 to 2.056;
d = 0.06.

Similar or even more complex are bifurcations of higher order
localized vortices. In this case, stable rotating and simultane-
ously oscillating solitons (Fig. 14n = 2) exist within a fairly
wide range of gain. In Fig. 15, we demonstrate the breakdown
of the symmetric second-order laser vortex with= 2 into two
vortices of the first ordeft = 485) and their further splitting
and decay. In the case of breakdown of the rotating asymmetric
soliton (Fig. 16), the fragments arising from the vortex splitting
have a rather large relative velocity. It can be attributed to the
initial angular momentum, which is absent in the case of the
symmetric vortex shown in Fig. 13.

Bifurcations of the third-order vortices; = 3, are even more
varied. Without going into detail, we simply present in Fig. 17
the stable state of a rotating asymmetric vortex with three in-
tensity maxima. The number of the maxima corresponds to the

Fig. 14. (a) Wired surfaces and (b) surface reliefs illustrating the transvekgg|uesm = 3 of the perturbation associated with the bifurcation

distribution of intensity of a rotating and simultaneously oscillating laser vortex;
m = 2,99 = 2.115,d = 0.06; distribution is approximately periodic with the

periodT" =~ 38.

Gf the symmetric laser vortex that takes place with the decrease
of gain (see Fig. 7).
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ister and optical adder [20], as well as other devices for optical
information processing.

Let us take a brief look at the experimental realization of the
solitons considered in this paper. Until recently, experiments
with laser solitons were made with extremely slow absorbers.
To get fast systems that can be integrated with other information
processing devices, it is natural to use the semiconductor ver-
tical cavity surface-emitting lasers (VCSELS) with a saturable
absorber integrated in the same semiconductor device of a mi-
cron in size. The saturable absorber could consist of passive
layers with multiple quantum wells or dots. The electrodes nec-
essary for laser pumping by the electric current should be placed
between the active and passive layers. They should be trans-
parent to light. Such laser devices could be complementary to
the semiconductor passive driven interferometers of the type re-

-40 30 20 -10 0 10 20

Fig. 16. Transverse intensity distributions illustrating the breakdown of the
asymmetric rotating laser localized vortex = 2). The breakdown occurs at
an abrupt decrease of the small-signal gain from 2.083 to 24082(.06.
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Fig. 17. (a) Wired surface and (b) surface relief illustrating the transversg12]

intensity distribution of a rotating triple-humped laser vortex;= 3, go =

2.0869,d = 0.1. [13]
V. CONCLUSION [14]

The results presented demonstrate a great variety of dissipa-
. . S . 15]
tive solitons in wide-aperture lasers with a saturable absorber.
Even more diverse are the forms of solitons in bistable class-B
lasers where finite relaxation rates of gain and absorption shoul(f6
be taken into consideration. It would appear reasonable that thgs )

rich variety can be used in designs of such devices as a shift reg-

'173(. - 7 viewed in [15] and [19].
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