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Abstract—We analytically and numerically study the role of the
homogeneous zero mode on the interaction between two modula-
tional instabilities. Periodic and localized structures (LSs) are con-
sidered in two transverse dimensions. We consider a real-order
parameter description for a passive optical cavity driven by an
external coherent field, valid close to the onset of optical bistability.
A global description of pattern formation in both monostable and
bistable regimes is given. We show that the interaction between the
modulational modes and the zero mode modifies the existence and
the stability of diffractive patterns. In particular, this interaction
induces a coexistence between two different types of phase locked
hexagonal structures. We also consider the interaction between two
separated LSs. An analytical expression for the interaction poten-
tial in terms of modified Bessel functions is derived. Numerical sim-
ulations confirm the analytical predictions.

Index Terms—Cavity solitons, localized structures, periodic
patterns, spatial modulational instability, stability of interacting
solitons.

I. INTRODUCTION

DRIVEN optical cavities filled with nonlinear media are the
basic configuration in transverse nonlinear optics. More

specifically, analytical studies have demonstrated that when
diffraction competes with nonlinearity, the homogeneous re-
sponse is destabilized and allows for the spontaneous formation
of self-organized or ordered patterns [1], [2]. Two-dimensional
(2-D) nonlinear cavities have been shown to sustain the stable
periodic patterns such as hexagons and/or stripes that emerge
from the modulational (Turing) instability. (For overviews
on this topic, see [3]–[9].) Important examples of stripe and
hexagon formations and competition have been reported in
various optical systems: Kerr media [10], [11], passive sys-
tems [12]–[16], liquid-crystal light valve with feedback [17],
counterpropagating beams in a nonlinear medium [18], [19],
spin- atomic systems [20], quadratic media [21]–[25], bulk
and quantum-well GaAlAs microresonators [26], and active
media [27]–[29].
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Up to now, analytical analysis of pattern formation in non-
linear optical systems has been restricted to the weakly non-
linear regime, where the stationary response is a single-valued
function of the input field intensity. In this case, above the
modulational instability threshold there exists a band of linearly
unstable transverse modes bounded from below by a nonzero
wavenumber. The linear growth rate of the zero mode is then
negative and the zero mode is damped. As a consequence,
the amplitude of this mode coincides with the homogeneous
steady state (HSS). At the bistability threshold, that mode is
only marginally stable. However, when the system displays
bistability, the homogeneous zero mode is included in the lin-
early unstable transverse modes. The zero mode then becomes
an active mode, and will modify not only the domain of exis-
tence of the emerging 2-D transverse structures, but also their
stability. Such an effect has been studied in one dimension in a
normally dispersive all-fiber ring cavity [30]. In that theoretical
study, diffraction is replaced by chromatic dispersion, i.e., the
intracavity field is spatially stabilized by using a guided-wave
structure. The role of the zero-homogeneous mode in pattern
formation has also been reported in other nonlinear systems: for
the one-dimensional (1-D) Kuramoto–Sivashinsky equation,
modeling longitudinal seismic waves in a viscoelastic medium
[31] and in reaction-diffusion systems [32]. More recently, we
have shown that resonant interaction between the homogeneous
zero mode and the modulational mode prevents the stabilization
of tetrahedral optical dissipative crystals [33].

To investigate such an interaction, we consider a passive
cavity with plane mirrors filled by a resonant two-level
medium, and driven by an injected plane wave beam. We
assume weak dispersion, where the dynamics is described by a
Swift– Hohenberg (SH) equation [34], [35]. The SH model has
been derived for many other problems in optics. In particular,
close to the threshold for the signal generation, the nonlinear
dynamics of the intracavity degenerate optical parametric
oscillator and degenerate four-wave mixing are described by
a SH equation [36], [37]. More recently, a SH equation has
been derived for other classes of nonlinear systems that involve
polarization degrees of freedom due to the birefringence of
the crystal, namely, intracavity type II second harmonic
generation [38]. The SH equation constitutes a paradigm for
the study of both periodical and localized patterns formation.

The aim of this paper is twofold. First, it is to clarify the global
nonlinear description of the interaction between two subcrit-
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ical modulational instabilities and the homogeneous zero mode.
Second, it is to study the implication of these interactions on the
formation of both bright and dark localized structures (LSs).
Throughout this paper, we focus on solutions in two transverse
dimensions. Note that LSs are also called cavity solitons, spatial
solitons, transverse solitons, or autosolitons, depending on the
authors.

Stationary LSs can be observed in optical nonlinear devices
where the spatial coupling is provided by diffraction, which
affects both the amplitude and the phase of a light wave. This
field is now attracting growing interest in optics because of its
potential application in information technology. In particular,
localized pulses could be used as “bits” for parallel informa-
tion storage and processing. LSs have been predicted in 1-D
bistable systems [39]–[42]. These solutions were interpreted
as switching waves connecting two stable branches of the
homogeneous response curve. Later, it was shown that the
existence of an LS does not require bistable behavior of the
spatially homogeneous solutions. They can be stable in the
monostable regime where a single homogeneous steady state
exhibits a subcritical modulational instability [43]. The 2-D
LS appear as bright or dark spots in the profile of intracavity
field amplitude. They can be either spatially independent and
randomly distributed, or form clusters leading to well-defined
spatial patterns in the transverse plane, orthogonal to the
propagation axis [43]. Various mean field models have been
developed to describe the spatial confinement of light leading to
the formation of LS: in purely dispersive two-level media [44],
[45], binary-phase and feedback mirror systems [46], quadratic
media [38], [47]–[50], semiconductor devices [51]–[54],
spin- atomic systems [55], and in active media [56]–[59].

LSs can exhibit periodic oscillations [58]–[64] or chaotic
oscillations [65] in time. Recently, experimental observations
of localized patterns in a variety of nonlinear optical devices
has stimulated further the interest in transverse nonlinear optics,
such as in a vertical-cavity semiconductor microresonator,
which consists of an active layer sandwiched between Bragg
mirrors [66]–[68], in a liquid crystal (LC) light valve with
feedback composed by a nematic LC cell followed by a mirror
and a layer of photorefractive materials [69], [70], and in a
sodium vapor feedback mirror system [71].

In this paper, we show how unstable nontrivial solutions
which emerge from both modulational bifurcation points are
connected to the stable self-organized structures. We also
show that the interaction between the modulational modes
and the zero mode induces a bistable behavior between two
types of phase-locked hexagonal structures. We systematically
compare numerical simulations and the analytical results. This
analysis is motivated by the fact that the occurrence of spatially
periodic patterns is a prerequisite for the emergence of LSs.
However, to envisage applications of LS, a number of problems
must be addressed. Each individual localized structure has an
oscillatory tail. Two or more LSs will interact through their
overlapping tails if they are close enough. Using an asymptotic
approach similar to that proposed in [72] and [73], we show for
the first time that the interaction potential between two LS in
the SH equation can be derived explicitly in terms of modified
Bessel functions that describe the asymptotic behavior of the

LS tail. A similar analysis has been performed for the bright
LS in lasers with a saturable absorber [74] and for a purely
absorptive cavity [75], both described by a Ginzburg–Landau
type of equation with a saturable nonlinearity.

The paper is organized as follows. After briefly intro-
ducing the SH model equation for passive diffractive systems
(Section II), we present the analytical study of the interaction
between the modulational and the zero modes (Section III).
The implications of this interaction in the formation of LSs are
considered in Section IV. In the last part (Section V), we study
analytically and numerically the interaction between LSs. We
conclude in Section VI.

II. SWIFT–OHENBERGMODEL

We consider a ring cavity filled with two-level atoms without
population inversion, and driven by a coherent plane-wave in-
jected signal. We focus on the nascent optical bistability regime
centered around the critical point where the output versus input
characteristics has only one point with an infinite slope. At the
critical point, the cooperativity parameter and the normalized
input field are and , respec-
tively. The HSS of the Maxwell-Bloch equations for the intra-
cavity field, polarization, and population difference are

, , , respectively. In these
expressions, is the de-
tuning parameter, with being the atomic (external,
cavity) frequency, and are the atomic polarization and
cavity decay rates. Near this critical point, the deviationof the
electric field from its value at the onset of bistability is shown
to obey the SH equation [34], [35]

(1)

where and are the deviations
from the injected field and cooperativity at the critical point.
The Laplace operator is . Time has
been scaled as in [34]. Equation (1) is valid only in the weak
dispersion regime . In the following, we shall refer
to , , and simply as the input field, the cavity field, and
the cooperativity parameter, respectively, and not as deviations
from the the corresponding variables at the critical point.

The homogeneous stationary solutions of (1) are given
by . For the trans-
mitted intensity as a function of the input intensity is
monostable (bistable). The HSS undergoes a modulational
(or Turing) instability at
with . At these bifurcation points, the
critical wavenumber is . Thus, spontaneous
pattern-forming instability requires and
to have and real. In the monostable regime, the
single HSS is unstable in the range .
However, when the system exhibits a bistable behavior, two
portions of the upper and the lower homogeneous branches
become modulationally unstable, i.e., this instability occurs
in the range: and ,
where at the turning points. They are
saddle-node bifurcation points connecting the intermediate



218 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 39, NO. 2, FEBRUARY 2003

branch to the upper and lower HSS, which is always unstable
even in the absence of diffraction.

III. T URING AND ZERO-MODE INTERACTION

In our previous work, we have considered the monostable
case by using a weakly nonlinear analysis based on an expan-
sion in terms of a small parameter which measures the dis-
tance from the critical modulational point [12]. The amplitude
equations corresponding to the various types of 2-D solutions
are valid in the weakly nonlinear regime provided the modula-
tional instability is supercritical, i.e., in the range of parameters

with . The transition
from super- to sub-critical of both modulational instabilities oc-
curs at . This transition requires , which is far
from the onset of bistability. For a given, the classification
of the different regimes of instability domains is displayed in
Fig. 1, where we plot the threshold coordinates for the modula-
tional and the saddle-node bifurcations as a func-
tion of the cooperativity parameter. When the Turing bifurca-
tions are supercritical, a weakly nonlinear analysis is sufficient
to construct the stable periodic solution. In this case, the ampli-
tude of the zero mode coincides with the corresponding HSS.
However, when increasing the cooperativity parameter, just be-
fore the occurrence of bistability, the Turing bifurcations are
subcritical. In addition, the zero mode becomes an active mode
and must be taken into account in the dynamics of the system,
which modifies not only the amplitude of the 2-D structures
but also their stability. For large aspect ratios, i.e., large Fresnel
numbers, the distance between the nearest eigenvalues of the
linearized analysis is very small, leading to a quasicontinuous
spectrum of the Laplace operator. The periodic solutions may
then be approximated by a superposition of plane waves with a
critical wavevector , and the homogeneous zero mode

where denotes the complex conjugate. The real amplitude
is the amplitude of the zero-homogeneous (Turing)

mode, and is the phase of the mode. The stripes and rhom-
boids are characterized by and , respectively, and
the hexagons are obtained for .

A. Stripes

We consider the simplest nonlinear solution corresponding
to one transverse dimension (stripes). To calculate the solutions
emerging from both modulational bifurcation points, we use a
standard nonlinear analysis based on a truncated Fourier-mode
expansion of the field, including the homogeneous mode. Such
an analysis allows us to derive analytically amplitude equations
for transverse structures and assess their stability. For the stripes,
we have

(2)

(3)

Fig. 1. Thresholds associated with the modulational instabilitiesY are
plotted (full line) as a function of cooperativity parameter. The broken curve
indicate the coordinate of saddle node bifurcationsY . The two monostable
regimes I, II, correspond respectively the supercritical modulational and
subcritical modulational instability. The HSS undergoes a modulational
instability either atY when the input field is increased from below or at
Y when it is decreased from above. In domain III, the system undergoes
both bistable behavior and modulational instability. The input fields at
the boundary regime separating supercritical and subcritical regimes are
Y = (3�=19) �

p
38.

where . In the case of stripes, the phase equation
is . The phase is an arbitrary constant and we there-
fore cancel it. Equations (2) and (3) admit two types of solutions:
1) the HSS given by and and
2) the stripe solutions and . They are given by

with .
The stability analysis of the stripe structures shows that they
are stable in the domain where they exist. Two typical cases are
considered. First, we consider the situation where the system
approaches the bistable regime corresponding to domain II in
Fig. 1. The bifurcation diagram corresponding to that case is
plotted in Fig. 2. The HSS undergoes a modulational instability
at and at . From both bifurcation points, two unstable
periodical solutions emerge subcritically. At the turning points

, the unstable branches of solutions are connected to
stable stripes solutions which form two continuous lines. They
correspond to the extremal values of the intracavity field am-
plitudes plotted in Fig. 2. In addi-
tion, we plot in the same figure the average value of field ampli-
tude, , which is the amplitude of the
zero mode. Numerical simulations of (1) have been performed
to compare with the analytical results. We plot in Fig. 2 the two
amplitudes obtained by analytical calculation (continuous lines)
and by simulations (black dots). The agreement is excellent.

Second, we consider the bistable regime corresponding to do-
main III in Fig. 1. In that case, we show in Fig. 3 a typical bifur-
cation diagram that is obtained for positive cooperativity. The
thresholds associated with the modulational instability are lo-
cated on the upper and lower branches of HSS. In the bistable
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Fig. 2. 1-D monostable bifurcation diagram. Parameters are� = 0:1 and
C = �10 . Full (broken) curve indicates stable (unstable) maximum and
minimum of the intracavity field amplitude.X andR correspond to the
extrema of periodic structures and the homogeneous zero-mode amplitude,
respectively. HSS denotes the homogeneous steady states. Both bifurcations
appear subcritically. Black dots indicate the maximum and the minimum
amplitude obtained by the numerical simulations of the full model (1).

regime, the modulational instability always appears subcriti-
cally. However, the domain of stability of periodic structures is
much larger than the size of the HSS hysteresis which occurs in
the domain with . This
is one of the consequences of the interaction between the critical

and the homogeneous modes: the branch
of periodic patterns extends beyond the limit points ,
up to the Turing point corresponding to periodic branches of so-
lutions . As in the monostable regime, we plot in Fig. 3
the extremal values of the intracavity field amplitudes
and the amplitude of the zero-homogeneous mode. In that
figure, the results from the numerical simulations (black dots)
are also plotted and it is seen that again the agreement between
numerical and analytical results is excellent.

In the weakly nonlinear regime corresponding to domain
I in Fig. 1, a perturbation expansion in the vicinity of the
Turing critical point can be used to construct the solutions [12].
However, an important difference appears when approaching
the bistable regime: the coupling between the Turing and the
quasineutral homogeneous modes allows transverse patterns to
oscillate around the zero-homogeneous mode amplitude.

B. Hexagons

In Section III-A, we considered only the 1-D case leading to
the stripe structures. Here, we focus on the 2-D problem. The
linear stability analysis is the same as in the 1-D case. An essen-
tial difference appears when considering 2-D pattern selection.
At the threshold associated with modulational instability, the
HSS becomes unstable with respect to transverse wavevectors
that have the same modulus but have no preferred direc-
tion, since the system is isotropic in the transverse plane.
Although an indefinite number of modes may be generated with
an arbitrary direction (rotational degeneracy), a regular pattern

Fig. 3. 1-D bistable bifurcation diagram. Parameters are� = 0:1 and
C = 0:02. Full and broken curves indicate, respectively, stable and
unstable maximum and minimum amplitude of the intracavity field obtained
analytically. TheX andR correspond to the extrema of the periodic
structures and the homogeneous zero-mode amplitude, respectively. HSS
denotes the homogeneous steady states. Both bifurcations appear subcritically.
The black dots indicate the maximum and the minimum amplitude obtained by
the numerical simulations of the full model (1).

is selected and emerges due to the nonlinear interactions. Sup-
pose that there are only two wavevectors . The two modes
compete, interact, and are equally amplified due to the rotational
degeneracy. Two situations can arise: 1) the combination
is not resonant, i.e., does not fall on the critical circle
of radius , and the dynamics can be described in terms of two
modes and and 2) the combination lies
on the critical circle, i.e., , and the resonant mode
generated by the dynamics needs to be included in the analysis.
This can only happen if the angle betweenand is .
In the nonresonant case 1), we deal with rhombic cells, while in
the resonant case 2), we have a lattice of hexagonal cells. With
the SH equation, rhombic structures are intrinsically unstable.
The proof of this point is similar to the instability proof of tetra-
hedral structures in 3-D [33]. We, therefore, focus the analysis
on the resonant case corresponding to hexagonal structures. The
amplitude equations are

(4)

(5)

(6)

where and . The
equation determines the HSS. The equations for,

, , and are obtained from (4)–(6) by a cyclic permutation
of the indices. Equation (6) can be rewritten in terms of the
variable as

(7)
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The stationary nontrivial solutions of the amplitude equations
(4) and (5) in the case of solutions with hexagonal symmetry,
i.e., , are given by

is the stationary solution corresponding the homogeneous
zero-mode amplitude.

To study the stability of these solutions, we consider internal
perturbations with hexagonal symmetry: and

, , where and have the form
, . Inserting these perturbations in the real am-

plitude equations (4) and (5), the roots of the linearized charac-
teristic equation are

where ,
, and . The

steady-state solutions and of (7) give rise to
two types of hexagonal structures. We refer to them asand

structures, respectively. The linear stability analysis with
respect to perturbations that affect only the phase shows that
the hexagons are stable (unstable) if is negative
(positive), and unstable if is positive (negative).

C. Stripes-Hexagons Competition and Bifurcation Diagrams

The preceding analysis has shown the existence and stability
of stripes, and hexagons, with respect to internal pertur-
bations having the symmetry of the pattern. Now we consider
the relative stability analysis of stripes with respect to pertur-
bation favoring the formation of hexagons ,

, , and . Replacing these
relations in the real amplitude equations (4) and (5) leads to a
linearized problem ruled by the eigenvalues

where , ,
, and . The results of both

stability and relative stability analyses are summarized in the
bifurcation diagrams shown in Figs. 4 and 5, where we plot the
maximum amplitude of the stripes and of both
types of hexagons . The results of numerical
simulations of the SH equation (1) are in excellent agreement
with the analytical results, as in the 1-D case. They are not added
to the figures to maintain clarity.

When increasing the input field amplitude, the structures
that appear first are the hexagons . They are stable until
they lose their stability to stripes. Further increasing the input
field amplitude, the stripes become unstable and we observe
a transition toward the hexagons’ branch of solutions.
When reversing the variation of the input field amplitude, the

hexagons remain stable until the system reaches the stripe
branch. Two hysteresis loops involving stripes and hexagons

or appear. This behavior is shown in Fig. 4. In Fig. 5,

Fig. 4. 2-D monostable bifurcation diagram. Parameters are the same as in
Fig. 2. The full and the broken curves indicate, respectively, stable and unstable
maximum amplitude of the intracavity field obtained analytically. HSS denotes
the homogeneous steady states.

Fig. 5. 2-D monostable bifurcation diagram for the zero-mode amplitude.
Same parameters as in Fig. 4. Full and the broken curves indicate stable and
unstable amplitude of the homogeneous zero mode corresponding to hexagons
H0, stripes, andH�, respectively.

Fig. 6. 2-D bistable bifurcation diagram obtained for the same parameters
as in Fig. 3. Full and broken curves indicate, respectively, stable and unstable
maximum amplitude of the intracavity field obtained analytically. HSS denotes
the homogeneous steady states.
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Fig. 7. 2-D bistable bifurcation diagram obtained for the same parameter as
in Fig. 6. Full and the broken curves indicate, respectively, stable and unstable
amplitude of the homogeneous zero mode corresponding to hexagonsH0,
stripes, and hexagonsH�.

Fig. 8. 2-D periodical patterns obtained for the same value of parameters:� =

0:1 andC = 0:02, andY = 10 (a) HexagonsH0. (b) Stripes. (c) Hexagons
H�. Maxima are plain white and the mesh integration is 256� 256.

we plot the amplitude of the zero mode corresponding to,
stripes, and of the Fig. 4. However, when considering a
bistable regime, the hexagons and have an overlapping
finite domain of stability as shown in Fig. 6. The amplitude of
the zero mode is plotted in Fig. 7. This prediction is confirmed
by the numerical integration of (1) displayed in Fig. 8, where
both types of periodical structures are plotted in the
transverse plane. They are obtained for the same parameters
and differ only by the initial condition.

In the domain where the two phase-locked hexagonal struc-
tures and exhibit a bistable behavior, the front between

and cannot be stable for a long time. The time sequence
of destabilization of that front is shown in Fig. 9. Therefore, both
hexagons cannot be stable in the same transverse plane.

IV. LSs

Equation (1) admits a variety of LSs, both dark and bright, in
the regime of subcritical modulational instability [43]. A sample
of dark LS is displayed in Fig. 10. They are obtained by numer-
ical integration of (1) for the same parameter values and differ
only by the initial condition.The 1-D LS are homoclinic solu-
tions of the SH equation. The homoclinic nature of these so-
lutions implies that for a given set of control parameters, the
number and the space distribution of both bright and dark LS im-
mersed in the bulk of the HSS are determined only by the initial
condition. LS may, therefore, be used for signal processing since
the addition or the removal of a LS simply means the change

Fig. 9. Destabilization of the 2-D front connecting the two phase locked
hexagonal structures obtained for the same parameters as in Fig. 8. Maxima
are plain white and the mesh integration is 256� 256.

Fig. 10. Examples of 2-D localized dark LSs obtained in the monostable
regime. Parameter are� = 0:1,C = �10 , andY = 6� 10 . (a) Single
dark LS. (b)–(c) Self-organized LS. (d) Random distribution of dark LS.
Maxima are plain white and the mesh integration is 256� 256.

from one solution to another. 2-D LSs are stationary radially
symmetric solutions of (1) with the cylin-
drical approximation , and boundary
conditions , , and

at . Substituting
we obtain the equation for the deviationfrom the HSS

solution

(8)

with

(9)

(10)

Since the localized solution is small for large
, its asymptotic behavior for can be determined by

solving the linearized problem which can be written as a product
of two independent Helmholtz equations

(11)

where

and (12)

Equation (11) admits an exact solution in terms of the modified
Bessel function . That solution determines the asymptotic
behavior of the LS

Re (13)
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Fig. 11. 1-D monostable localized structure branches. The parameters are
� = 0:1 andC = �10 . Branches BLS (DLS) are the bright (dark) LSs
which correspond to the maxima (minima) of the intracavity field amplitude.
Curve HSS represents the spatially homogeneous solutions.

where and . The parameters and
can be obtained by asymptotically matching (13) with the solu-
tion calculated numerically. Let us make a connection be-
tween the parameters that appear in the expression (13) and the
parameters which characterize the periodic patterns. We see that

is connected to the critical wavenumber at both modulational
bifurcation points through the simple relation . If the pa-
rameter vanishes, we have ,
which are exactly the intracavity amplitude thresholds associ-
ated with the modulational instability. Note that stable LS can
exist only in the parameter domain where the HSS is
stable. In this domain, the quantitydefined by (12) is real.

For large , the Bessel function (13) can be rewritten in terms
of elementary functions

(14)

From this expression, we see that the LS solutionhas oscil-
latory tail and decay for large. The positions of the extrema
of these oscillations forming a tail are determined for largeby
the parameters, , and .

In order to calculate the LS solutions, we have used a pro-
cedure similar to that described in [45], [57]–[59]. First, (8)
was integrated from to , with
initial conditions defined by (13). Second, we integrated (8)
from , to with the initial conditions

, , ,
and . The unknown parameters, , ,
and are calculated by matching the two solutions at .
This method allows the branches of 1- and 2-D localized solu-
tions to be drawn. The 1-D bright and dark LS branches corre-
sponding, respectively, to one hump and one dip in the profile
of the intracavity field amplitude are plotted together with the

Fig. 12. 1-D bistable localized structure branches. The parameters are� =

0:1 andC = 0:02. Branches BLS (DLS) are the bright (dark) LSs which
correspond to the maxima (minima) of the intracavity field amplitude. The curve
HSS represents the spatially homogeneous solutions.

homogeneous response curves in Figs. 11 and 12. They corre-
spond to the monostable and bistable regimes, respectively. The
LS branches emerges from the modulational bifurcation points

with .
The bifurcation diagrams of LS corresponding to the 2-D sys-
tems are displayed in Figs. 13 and 14.

One can see from Fig. 12 that stable LS solutions can exist
even beyond the limit point of the homogeneous bistability
curve. This behavior is similar to periodic structures plotted in
the Fig. 3. From Figs. 2 and 3 and Figs. 11 and 12, we see that
the stability domains and the extremal values of periodic and
LS structures are close one to another.

V. INTERACTION BETWEEN LSs

We have shown in Section IV that the SH equation (1) sup-
ports both dark and bright LS characterized by an oscillatory
tail. In order to envisage applications of LS, a number of prob-
lems must be addressed. In particular, two or more LSs will in-
teract through their overlapping oscillatory tails when they are
close to one another. In the following, we derive analytically
the potential that describes such interaction in the case of weak
overlap [72], [73]. Using this result, it is possible to calculate
the critical distance between LS beyond which the interaction
becomes negligible.

Both bright and dark stationary LS obey the equation
, where is the homogeneous

steady state. Their stability is determined by the spectrum of
the linear operator

where and are defined by (9) and (10), respectively.
We consider the simplest situation corresponding to interac-

tion between two identical radially symmetric bright LS (or two
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Fig. 13. 2-D monostable localized structure branches. Parameters are� =

0:1 andC = �10 . Branches BLS (DLS) are the bright (dark) LSs which
correspond to the maxima (minima) of the intracavity field amplitude. Curve
HSS represents the spatially homogeneous solutions.

dark LS) located respectively at the po-
sitions . Since the SH equation (1) admits a center of sym-
metry , corresponding to the invariance under
the transformation , we focus only on the
bright LS without loss of generality. To simplify further the anal-
ysis, we assume that the maxima of the bright LS are located,
respectively, at the points and along the
direction, where is the distance between
the two LSs. To study the interaction, we add a small perturba-
tion to the linear superposition of the two LSs

(15)

We assume that the positions of LS evolve on a slow time
scale, i.e., . Inserting (15) into the SH equation
(1), using the Maclaurin expansions, and equating the first-order
terms in , we get

(16)

(17)

To solve (16), it is necessary to satisfy the solvability condition:
the right side of (16) should be orthogonal to the null eigen-
functions of the adjoint operator . Since, in our
problem, the operator is self-adjoint, , the eigenfunc-
tions of the operators and coincide. To the
leading order in , the solvability condition is

(18)
where are the eigenfunctions of with
zero eigenvalue. These eigenfunctions correspond to the
so-called translational neutral modes. The integral appearing
in (18) is calculated over the -plane. To

Fig. 14. 2-D bistable localized structure branches. Prameters are� = 0:1 and
C = 0:02. Branches BLS (DLS) are the bright (dark) LSs which correspond to
the maxima (minima) of the intracavity field amplitude. Curve HSS represents
the spatially homogeneous solutions.

perform the integration over the domain, we decompose
that domain into two half-planes, namely,
and . Since the LS solution is small in the
integration domain , we can apply the first-order Maclaurin
expansion

Substituting this expression into (17) and neglecting the small
contribution of , the integral over

becomes

A similar calculation shows that the second part of the integral
is negligible, , since and are small quantities
in the integration domain . Therefore, (18) leads to an ex-
pression for the velocity of the bright LS located at the position

in as follows:

(19)

where . The expression for the velocity
of the LS located at is obtained from (19) by permuta-
tion of the indices.

By using the relation and performing an
integration by parts, (19) becomes

(20)
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with

Green’s theorem is used to transform the integralinto an
integral over the line separating the two half planesand .
This line is the axis

(21)

Here, we have used the relations

that follow from the fact that the unperturbed localized solu-
tions are radially symmetric and located symmetrically with
respect to the axis. Similar to (21), the integral can be trans-
formed into an integral over theaxis

(22)

Substituting the asymptotic expression (13) of the LS into (21)
and (22) and performing the integration over, we obtain

Im

Fig. 15. Interaction potential between 2-D LSs. The parameters are� = 0:1,
C = 0:02, andY = �5 � 10 .

Finally, using the relation , we get

with

Im (23)

The minima (maxima) of the interaction potential cor-
respond to stable (unstable) bound states of two LS. They are
bound together by the interaction force. From (23), we see that
the positions of the extrema depend on three parameters:, ,
and . The first two parameters are expressed analytically in
terms of the parameters of the SH equation, namely, the coop-
erativity and the detuning parameter. The third parameter

can be easily extracted from the LS solution itself. According
to (13) or (14), the parameterdetermines the positions of the
extrema of the spatial profile of LS. An example of the interac-
tion potential is plotted in Fig. 15. Unlike the case of absorptive
cavity with an injected signal [75], the construction of the in-
teraction potential for the SH equation does not require
the numerical calculation of the null eigenfunction of the adjoint
linear operator. Physically, the meaning of this potential is that
any initial condition with two LS separated by a distance less
than the distance from the origin to the first maximum leads to
an asymptotic state in which the separation equal to the poten-
tial first minimum (see Fig. 15).

VI. CONCLUSIONS

In the first part of this paper, we have described pattern for-
mation in passive systems, including the coupling between the
modulational modes and the quasineutral homogeneous zero
mode. We established the following analytical results: 1) the sta-
bility domains of periodic patterns are much larger than the size
of the homogeneous hysteresis and 2) the interaction between
modulational modes and the zero-homogeneous mode induces
the coexistence of two phase-locked hexagonal structures. The
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second part of the paper focused on the interaction and stability
of both bright and dark LSs. We derived the interaction poten-
tial between two LSs. In particular, this determines the critical
distance beyond which the interaction between two symmetric
LSs becomes negligible.
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