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Abstract—We analytically and numerically study the role of the Up to now, analytical analysis of pattern formation in non-
homogeneous zero mode on the interaction between two modula-jinear optical systems has been restricted to the weakly non-
tional instabilities. Periodic and localized structures (LSs) are con- |inear regime, where the stationary response is a single-valued
sidered in two transverse dimensions. We consider a real-order functi fthe i t field intensity. In thi b th
parameter description for a passive optical cavity driven by an unc IOI’].O .e '”DE‘, ield intensity. In ,'S case, a O\_/e e
external coherent field, valid close to the onset of optical bistability. Modulational instability threshold there exists a band of linearly
A global description of pattern formation in both monostable and unstable transverse modes bounded from below by a nonzero
bistable regimes is given. We show that the interaction between the wavenumber. The linear growth rate of the zero mode is then
modulational modes and the zero mode modifies the existence andnegative and the zero mode is damped. As a consequence,

the stability of diffractive patterns. In particular, this interaction . . - .
induces a coexistence between two different types of phase Iockeothe amplitude of this mode coincides with the homogeneous

hexagonal structures. We also consider the interaction between two Steady state (HSS). At the bistability threshold, that mode is
separated LSs. An analytical expression for the interaction poten- only marginally stable. However, when the system displays

tial in terms of modified Bessel functions is derived. Numerical sim-  pjstability, the homogeneous zero mode is included in the lin-
ulations confirm the analytical predictions. early unstable transverse modes. The zero mode then becomes
Index Terms—Cavity solitons, localized structures, periodic an active mode, and will modify not only the domain of exis-
patterns, spatial modulational instability, stability of interacting tence of the emerging 2-D transverse structures, but also their
solitons. . o " S
stability. Such an effect has been studied in one dimension in a
normally dispersive all-fiber ring cavity [30]. In that theoretical
I. INTRODUCTION study, diffraction is replaced by chromatic dispersion, i.e., the

RIVEN optical cavities filled with nonlinear media are thé'ntracavity field is spatially stabilized by using a guidgd-wave
D basic configuration in transverse nonlinear optics. Mm%tructure. The role of the zero-homogeneous mode in pattern

specifically, analytical studies have demonstrated that wh mation has al§o been reported in Other.”on”'.‘ear systems: for
diffraction competes with nonlinearity, the homogeneous ri¢ one-dimensional (1-D) Kuramoto-Sivashinsky equation,

sponse is destabilized and allows for the spontaneous forma ﬂdellng longitudinal seismic waves in a viscoelastic medium

of self-organized or ordered patterns [1], [2]. Two-dimension 1] andin react|on—d|ﬁu5|pn systgms [32]. More recently, we
(2-D) nonlinear cavities have been shown to sustain the staB&’® shown that resonant interaction between the homogeneous

periodic patterns such as hexagons and/or stripes that em mode and the modulational mode prevents the stabilization

from the modulational (Turing) instability. (For overviews® tetrahedral optical dissipative crystals [33].

on this topic, see [3]-[9].) Important examples of stripe and TO investigate such an interaction, we consider a passive
hexagon formations and competition have been reportedGavity with plane mirrors filled by a resonant two-level
various optical systems: Kerr media [10], [11], passive sy§iedium, and driven by an injected plane wave beam. We
tems [12]-[16], liquid-crystal light valve with feedback [17],2Ssume weak dispersion, where the dynamics is described by a
counterpropagating beams in a nonlinear medium [18], [1§}Wift— Hohenberg (SH) equation [34], [35]. The SH model has
spin-1/2 atomic systems [20], quadratic media [21]-[25], bulleeen derived for many other problems in optics. In particular,

and quantum-well GaAlAs microresonators [26], and activéose to the threshold for the signal generation, the nonlinear
media [27]-[29]. dynamics of the intracavity degenerate optical parametric

oscillator and degenerate four-wave mixing are described by

, . . _ a SH equation [36], [37]. More recently, a SH equation has
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ical modulational instabilities and the homogeneous zero modsS tail. A similar analysis has been performed for the bright

Second, itis to study the implication of these interactions on th& in lasers with a saturable absorber [74] and for a purely

formation of both bright and dark localized structures (LSspbsorptive cavity [75], both described by a Ginzburg—Landau

Throughout this paper, we focus on solutions in two transvergge of equation with a saturable nonlinearity.

dimensions. Note that LSs are also called cavity solitons, spatialThe paper is organized as follows. After briefly intro-

solitons, transverse solitons, or autosolitons, depending on thecing the SH model equation for passive diffractive systems

authors. (Section II), we present the analytical study of the interaction
Stationary LSs can be observed in optical nonlinear devidestween the modulational and the zero modes (Section IlI).

where the spatial coupling is provided by diffraction, whicihe implications of this interaction in the formation of LSs are

affects both the amplitude and the phase of a light wave. Thignsidered in Section IV. In the last part (Section V), we study

field is now attracting growing interest in optics because of i@nalytically and numerically the interaction between LSs. We

potential application in information technology. In particulaigonclude in Section VI.

localized pulses could be used as “bits” for parallel informa-

tion storage and processing. LSs have been predicted in 1-D Il. SWIFT-OHENBERGMODEL

bistable systems [39]-[42]. These solutions were interpreteo\N

as switching waves connecting o stable branches of the e consider a ring cavity filled with two-level atoms without

: H%Jeoulation inversion, and driven by a coherent plane-wave in-
homogeneous response curve. Later, it was shown that . : . o .
eected signal. We focus on the nascent optical bistability regime

existence of an LS does not require bistable behavior of th i . -
. . . centered around the critical point where the output versus input
spatially homogeneous solutions. They can be stable in thé - . . P
. . aracteristics has only one point with an infinite slope. At the
monostable regime where a single homogeneous steady °Sitical point, the cooperativity parameter and the normalized
exhibits a subcritical modulational instability [43]. The 2-D hoint, P yp

: — 2 — 2 -
LS appear as bright or dark spots in the profile of intracaviInput field arec, = 4(1 + A®) andy. = 3(1 + A V3, respec
. . . . . vely. The HSS of the Maxwell-Bloch equations for the intra-
field amplitude. They can be either spatially independent and™.”" .. - . :
L . .~ cavity field, polarization, and population difference afe =
randomly distributed, or form clusters leading to well-defined : .
: . 3(1 4+ iA), P. = V/3/4, F. = 1/4, respectively. In these
spatial patterns in the transverse plane, orthogonal to tP{g . "
: . : ) expressionsA = (w, — we)/v7L = —(we. — we)/k is the de-
propagation axis [43]. Various mean field models have be?n . . . :
| > ! . : ning parameter, wit,(w.,w.) being the atomic (external,
developed to describe the spatial confinement of light leading 10 . ; T
. o . . . cavity) frequency;y, andx are the atomic polarization and
the formation of LS: in purely dispersive two-level media [44], . . . .
. . vity decay rates. Near this critical point, the deviatioof the
[45], binary-phase and feedback mirror systems [46], quadra%aF o . i o
. . . eléctric field from its value at the onset of bistability is shown
media [38], [47]-[50], semiconductor devices [51]—[54]to obey the SH equation [34], [35]
spin-L/2 atomic systems [55], and in active media [56]-[59]. y q '
LSs can exhibit periodic oscillations [58]-[64] or chaotic Hx ) 4
oscillations [65] in time. Recently, experimental observations 5, = 4Y +X(C = X%) —4AL X — oL L X, (1)
of localized patterns in a variety of nonlinear optical devices
has stimulated further the interest in transverse nonlinear optisiereY = y — y. — /3C/2 andC = ¢ — c.. are the deviations
such as in a vertical-cavity semiconductor microresonatdrom the injected field; and cooperativity: at the critical point.
which consists of an active layer sandwiched between Bragge Laplace operator i5, = 9%/92% + 9%/9y?. Time has
mirrors [66]-[68], in a liquid crystal (LC) light valve with been scaled as in [34]. Equation (1) is valid only in the weak
feedback composed by a nematic LC cell followed by a mirralispersion regimed << 1. In the following, we shall refer
and a layer of photorefractive materials [69], [70], and in ® Y, X, andC simply as the input field, the cavity field, and
sodium vapor feedback mirror system [71]. the cooperativity parameter, respectively, and not as deviations
In this paper, we show how unstable nontrivial solutionfsom the the corresponding variables at the critical point.
which emerge from both modulational bifurcation points are The homogeneous stationary solutiakis of (1) are given
connected to the stable self-organized structures. We alyo4Y = X (X2 — C). ForC < 0(C > 0) the trans-
show that the interaction between the modulational modestted intensity as a function of the input intensity? is
and the zero mode induces a bistable behavior between twonostable (bistable). The HSS undergoes a modulational
types of phase-locked hexagonal structures. We systematicétly Turing) instability atYry. = +(3A% — 20)Xrp4/12
compare numerical simulations and the analytical results. Thigh X+ = +./A2 4+ C/3. At these bifurcation points, the
analysis is motivated by the fact that the occurrence of spatiatlsitical wavenumber iskr = +/3A/2. Thus, spontaneous
periodic patterns is a prerequisite for the emergence of L$mttern-forming instability requiredA > 0 andC > —3AZ2
However, to envisage applications of LS, a number of problertts have k- and X1y real. In the monostable regime, the
must be addressed. Each individual localized structure hassamgle HSS is unstable in the rangg_- < Y < Ypgu.
oscillatory tail. Two or more LSs will interact through theirHowever, when the system exhibits a bistable behavior, two
overlapping tails if they are close enough. Using an asymptoportions of the upper and the lower homogeneous branches
approach similar to that proposed in [72] and [73], we show f(lecome modulationally unstable, i.e., this instability occurs
the first time that the interaction potential between two LS im the rangelY;y < Y < Yr_ andYry < Y < Y.,
the SH equation can be derived explicitly in terms of modifiedthereY;. = 4(1/2)(C/3)3/? at the turning points. They are
Bessel functions that describe the asymptotic behavior of teaddle-node bifurcation points connecting the intermediate
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branch to the upper and lower HSS, which is always unstable \
even in the absence of diffraction. N

I

I1l. TURING AND ZERO-MODE INTERACTION Nl NN

In our previous work, we have considered the monostable
case by using a weakly nonlinear analysis based on an expan-
sion in terms of a small parameter which measures the dis-
tance from the critical modulational point [12]. The amplitude
equations corresponding to the various types of 2-D solutions
are valid in the weakly nonlinear regime provided the modula-
tional instability is supercritical, i.e., in the range of parameters
—A% < C < Cyyp, with Cyy, = —87A2/38. The transition
from super- to sub-critical of both modulational instabilities oc-
curs atC = Cgy,. This transition require€’ < 0, which is far
from the onset of bistability. For a givefy, the classification 3N
of the different regimes of instability domains is displayed in
Fig. 1, where we plot the threshold coordinates for the modula-
tional (Yr+) and the saddle-nod@) bifurcations as a func- Input field amplitude
tion of the cooperativity parameter. When the Turing bifurca-
tions are supercritical, a weakly nonlinear analysis is sufficiepy. 1. Thresholds associated with the modulational instabilties. are
to construct the stable periodic solution. In this case, the amplietted (full line) as a function of cooperativity parameter. The broken curve
tude of the zero mode coincides with the corresponding HS&)7C2 1 Fe0 e B Fe e T e odiational and
However, when increasing the cooperativity parameter, just B@bcritical modulational instability. The HSS undergoes a modulational
fore the occurrence of bistability, the Turing bifurcations ar@stability eith_er atYr_ when the input field is in‘creased from below or at
subriical. In addiion, the zero mode becomes an active magl, ‘e, L% decreased fom abave In domain l, e syste undergoes
and must be taken into account in the dynamics of the systafg, boundary regime separating supercritical and subcritical regimes are
which modifies not only the amplitude of the 2-D structure¥n= = (34/19)>Av/38.
but also their stability. For large aspect ratios, i.e., large Fresnel

numbgrs, the dis.taljce between the nearest eigenyalugs Ofvm%reu — O + 3A2. In the case of stripes, the phase equation
linearized analysis is very small, leading tol a guasmqntmuogsa(/)l/at — 0. The phase is an arbitrary constant and we there-
spectrum of the Laplace operator. The periodic solutions Maye cancel it. Equations (2) and (3) admit two types of solutions:
then be approximated by a superposition of plane waves Wltfj_)’:lthe HSS given byY + (C — R2)R, = 0 andR; = 0 and
critical wavevectok;, and the homogeneous zero mode 2) the stripe solution®, # 0 andR; # 0. They are given by

Ay = +£/1/3 — RZ, with 4Y + (C — 2u + 5R2, ) Rost = 0.

The stability analysis of the stripe structures shows that they
are stable in the domain where they exist. Two typical cases are
considered. First, we consider the situation where the system

wherec.c. denotes the complex conjugate. The real amplitud®Proaches the bistable regime corresponding to domain Il in
Ry (R,) is the amplitude of the zero-homogeneous (Turind)i9- 1- The bifurcation diagram corresponding to that case is

the hexagons are obtained & = 3. periodical solutions emerge subcritically. At the turning points

Y = Y4, the unstable branches of solutions are connected to
stable stripes solutions which form two continuous lines. They
] ] ) . _correspond to the extremal values of the intracavity field am-
We consider the simplest nonlinear solution correspondingiydes X, min = Ros + 2A.; plotted in Fig. 2. In addi-

to one transverse dimension (stripes). To calculate the solutiqﬁ,' we plot in the same figure the average value of field ampli-
emerging from both modulational bifurcation points, we usegqe Rost = (Xmax + Xmin)/2, which is the amplitude of the
standard nonlinear analysis based on a truncated Fourier-mogg, mode. Numerical simulations of (1) have been performed
expansion of the field, including the homogeneous mode. Sugft:ompare with the analytical results. We plot in Fig. 2 the two
an analysis allows us to derive analytically amplitude equatioggpjitudes obtained by analytical calculation (continuous lines)
for transverse structures and assess their stability. For the strigggy by simulations (black dots). The agreement is excellent.
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X(r,t)=Ro(t) + Y_ Rj(t)expi(kyr + ¢;) + c.c.
j=1

A. Stripes

we have Second, we consider the bistable regime corresponding to do-
IR, ) ) main Il in Fig. 1. In that case, we show in Fig. 3 a typical bifur-
¢ =4 + (C = Rg)Ro — 6R{ Ry (2)  cation diagram that is obtained for positive cooperativity. The
OR, thresholds associated with the modulational instability are lo-

5 ~HBL- 3(R5 + R Ry (3) cated on the upper and lower branches of HSS. In the bistable
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. . . . Fig. 3. 1-D bistable bifurcation diagram. Parameters Are= 0.1 and
Fig. 2. 1-D monostable bifurcation diagram. Parametersfare= 0.1 and ¢~ = (.02. Full and broken curves indicate, respectively, stable and

C = —10~". Full (broken) curve indicates stable (unstable) maximum anghstable maximum and minimum amplitude of the intracavity field obtained
minimum of the intracavity field amplitudeY . and R,.; correspond to the analytically. TheX, and Ro.. correspond to the extrema of the periodic
extrema of periodic structures and the homogeneous zero-mode amplitudgctures” and the homogeneous zero-mode amplitude, respectively. HSS
respectively. HSS denotes the homogeneous steady states. Both bifurcatigftfptes the homogeneous steady states. Both bifurcations appear subcritically.

appear subcritically. Black dots indicate the maximum and the minimuffhe plack dots indicate the maximum and the minimum amplitude obtained by
amplitude obtained by the numerical simulations of the full model (1). the numerical simulations of the full model (1).

regime, the modulational instability always appears subcrils selected and emerges due to the nonlinear interactions. Sup-
cally. However, the domain of stability of periodic structures igose that there are only two wavevectkis,. The two modes
much larger than the size of the HSS hysteresis which occurgimpete, interact, and are equally amplified due to the rotational
the domairt; < Y < Vi, with Vi = £(1/2)(C/3)%/2. This  degeneracy. Two situations can arise: 1) the combin&tjeik
is one of the consequences of the interaction between the critigahot resonant, i.ek; + k- does not fall on the critical circle
(Ik| = kr) and the homogeneoudgk| = 0) modes: the branch of radiusk,, and the dynamics can be described in terms of two
of periodic patterns extends beyond the limit poikits= Y;., modesk; andk, and 2) the combinatiok; + ko = k; lies
up to the Turing point corresponding to periodic branches of sen the critical circle, i.e.lks| = kz, and the resonant mode
lutionsY = Y7.. Asinthe monostable regime, we plotin Fig. 3yenerated by the dynamics needs to be included in the analysis.
the extremal valued,,,.x, min Of the intracavity field amplitudes This can only happen if the angle betwdenandks, is 27 /3.
and the amplitude of the zero-homogeneous migle. In that  |n the nonresonant case 1), we deal with rhombic cells, while in
figure, the results from the numerical simulations (black dotg)e resonant case 2), we have a lattice of hexagonal cells. With
are also plotted and it is seen that again the agreement betwgenSH equation, rhombic structures are intrinsically unstable.
numerical and analytical results is excellent. The proof of this point is similar to the instability proof of tetra-

In the weakly nonlinear regime corresponding to domaifedral structures in 3-D [33]. We, therefore, focus the analysis

| in Fig. 1, a perturbation expansion in the vicinity of theon the resonant case corresponding to hexagonal structures. The
Turing critical point can be used to construct the solutions [12mplitude equations are

However, an important difference appears when approaching
the bistable regime: the coupling between the Turing and the OR, 3 )
quasineutral homogeneous modes allows transverse patternsto ;= 2 (f0) —6Fo > R} —12R RyRycost) (4)

oscillate around the zero-homogeneous mode ampliftyde ) i=1
O =By~ 3R+ B+ 2B + Ry
B. Hexagons — 6RoRyR3 cos ) (5)
In Section IlI-A, we considered only the 1-D case leading to Rl% =6RoR2R3 sin(v)) (6)

the stripe structures. Here, we focus on the 2-D problem. The
linear stability analysis is the same as in the 1-D case. An eSS@ere S(Ry) = 4Y + (C' — R2)Ry andy) = Z%_l ¢;. The
tial difference appears when considering 2-D pattern Se'““%uationS(Ro) — 0 determines the HSS. The eqju_ationsﬁgr,
At the threshold associated with modulational instability, thgs’ ¢», ande; are obtained from (4)—(6) by a cyclic permutation

HSS becomes unstable with respect to transverse wavevectilge indices. Equation (6) can be rewritten in terms of the
that have the same modullis= k7 but have no preferred direc-y4iapley as

tion, since the system is isotropic in the y) transverse plane.

Although an indefinite number of modes may be generated with o R?R3 + RZR% + R3RZ .

an arbitrary direction (rotational degeneracy), a regular pattern ot 6.1 RiRyRs sin(¢)). ()
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The stationary nontrivial solutions of the amplitude equations
(4) and (5) in the case of solutions with hexagonal symmetry,
i.e.,R; = Apex, j = 1,2,3 are given by

S(Ropex) — 1842, Ropex — 1243 costp, =0

hex

u/3 — 5A}210X - R%hcx - 2Ahch0hcx Cos djs =0.

e
o
@

Ronex IS the stationary solution corresponding the homogeneou:
zero-mode amplitude.

To study the stability of these solutions, we consider internal
perturbations with hexagonal symmeti)g = Ropex + 79 @and
R; = Apex + aj, (j = 1,2,3), wherery anda; have the form
ro,a; o exp(At). Inserting these perturbations in the real am- S
plitude equations (4) and (5), the roots of the linearized charac /

teristic equation are Z0.0005

)\1,2 = 6Ahex<Ahex + 2Rohex COS l/’s)
Fig. 4. 2-D monostable bifurcation diagram. Parameters are the same as in
)\3,4 = (fo + 52)/2 + \/(50 - 52)2 - 144§1R0hexAhex/2 Fig. 2. The full and the broken curves indicate, respectively, stable and unstable
maximum amplitude of the intracavity field obtained analytically. HSS denotes
whereéy = C — 3R3, .. — 1847, &1 = —6Apex(Ronex +  the homogeneous steady states.

Apex €081y ), andés = —6Apex (3Anex + 2Ronex c0s1s). The
steady-state solutiong, = 0 andv, = = of (7) give rise to
two types of hexagonal structures. We refer to therifsand

Hr structures, respectively. The linear stability analysis with
respect to perturbations that affect only the phase shows the
the hexagon#/0( H ) are stable (unstable) .« IS negative
(positive), and unstable R, IS positive (negative).

0.05 |

Amplitude MAX

\

A\ /

-0.05 | NU .
\ !

'
0.0005

0.05 |

C. Stripes-Hexagons Competition and Bifurcation Diagrams

The preceding analysis has shown the existence and stabilit
of stripes,H 0 and H  hexagons, with respect to internal pertur-
bations having the symmetry of the pattern. Now we consider
the relative stability analysis of stripes with respect to pertur-
bation favoring the formation of hexagoiy = Rost + 70,

Ay = Ay + a1, Ao = ao, and A3 = a3. Replacing these
relations in the real amplitude equations (4) and (5) leads to &.
linearized problem ruled by the eigenvalues

-0.05

Zero mode amplitude

Fig. 5. 2-D monostable bifurcation diagram for the zero-mode amplitude.
Mo=CGE( cos(q/J ) Same parameters as in Fig. 4. Full and the broken curves indi(_:ate stable and
L2 =53 =561 s/ unstable amplitude of the homogeneous zero mode corresponding to hexagons
1 HO, stripes, andd 7, respectively.

Az = 3 [(CQ + o) + /(G0 — (2)? + 8(12} .

WhereCO =C — 3R%st — GAEN Cl = —6A. Rost, CQ = C() +
3A?% — 342, and(s = (o + 3A? — 2R3_,. The results of both
stability and relative stability analyses are summarized in the o022}
bifurcation diagrams shown in Figs. 4 and 5, where we plot the
maximum amplitude of the stripé®Rys; + 2A45;) and of both
types of hexagonéRonex + 6Ane,). The results of numerical
simulations of the SH equation (1) are in excellent agreement £
with the analytical results, as inthe 1-D case. They are not added g' 002 b
to the figures to maintain clarity. <
When increasing the input field amplitudg, the structures
that appear first are the hexagof®). They are stable until
they lose their stability to stripes. Further increasing the input y
field amplitude, the stripes become unstable and we observe . .
a transition toward the hexagongln branch of solutions. '°'°°°\1( 0.0009
When reversing the variation of the input field amplitude, the

Hrn hexagons remain stable until the system reaches the stfijse 6. 2-D bistable bifurcation diagram obtained for the same parameters
as In Fig. 3. Full and broken curves indicate, respectively, stable and unstable

branch. Two hySteres_iS |OOpS_ in\_/olving Stripes and hexagqn%imum amplitude of the intracavity field obtained analytically. HSS denotes
HO or Hm appear. This behavior is shown in Fig. 4. In Fig. Sthe homogeneous steady states.

tude MAX
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Fig. 9. Destabilization of the 2-D front connecting the two phase locked
hexagonal structures obtained for the same parameters as in Fig. 8. Maxima
are plain white and the mesh integration is 26@56.

Zero mode amplitude

1

e

S
T

Fig. 7. 2-D bistable bifurcation diagram obtained for the same parameter as
in Fig. 6. Full and the broken curves indicate, respectively, stable and unstable
amplitude of the homogeneous zero mode corresponding to hexdgons
stripes, and hexagorg r.

Fig. 10. Examples of 2-D localized dark LSs obtained in the monostable
regime. Parameter ar® = 0.1,C = —10—*, andY = 6 x 10~*. (a) Single
Fig.8. 2-D periodical patterns obtained for the same value of paraméters: dark LS. (b)—(c) Self-organized LS. (d) Random distribution of dark LS.
0.1 andC = 0.02,andY” = 105 (a) HexagonsZ0. (b) Stripes. (c) Hexagons Maxima are plain white and the mesh integration is 25856.

H=. Maxima are plain white and the mesh integration is 25856.

) ) from one solution to another. 2-D LSs are stationary radially
we plot the amplitude of the zero mode corresponding/tg symmetric solutionsX (z,y) = Xo(r) of (1) with the cylin-

s'anes, and_Hr of the Fig. 4. However, when con&dermg Hrical approximatio | = 92/9r2+(1/r)d/dr, and boundary
bistable regime, the hexagohA&) and H= have an overlapping conditionsdXo(r)/dr|r—o = 0, d*Xo(r)/dr®],—o 0, and
finite domain of stability as shown in Fig. 6. The amplitude ofy r) — X, atr — oco. SubstitutingX (z,y) = X, +
the zero mode is plotted in Fig. 7. This prediction is confirmeg(l,?y) we obtain the equation for the deviatigrfrom the HSS
by the numerical integration of (1) displayed in Fig. 8, wherg,| tion

both types of periodical structures are plotted(iny) the

transverse plane. They are obtained for the same parameters L(X))Z+N(Z)=0 (8)
and differ only by the initial condition.

with

In the domain where the two phase-locked hexagonal struc- ) 4
turesH0 andH r exhibit a bistable behavior, the front between L(Xs) =(C - 3X])—4AL, - gL1lL 9)
HO0 andH = cannot be stable for a long time. The time sequence N(Z)= - (3X, + Z)Z>. (10)

of destabilization of that front is shown in Fig. 9. Therefore, both
hexagons cannot be stable in the same transverse plane.  Since the localized solutioff(z,y) = Zo(r) is small for large
r, its asymptotic behavior for — oo can be determined by
IV. LSs solving the linearized problem which can be written as a product

Equation (1) admits a variety of LSs, both dark and bright, {if W0 independent Helmholtz equations

the regime of subcritical modulational instability [43]. A sample

of dark LS is displayed in Fig. 10. They are obtained by numer-

ical integration of (1) for the same parameter values and difféere
only by the initial condition.The 1-D LS are homoclinic solu- (= 34 and¢ = é\/m (12)
tions of the SH equationThe homoclinic nature of these so- 2 2 )

lutions implies that for a given set of control parameters, theguation (11) admits an exact solution in terms of the modified

number and the space distribution of both brightand dark LS ilBessel functionk,. That solution determines the asymptotic
mersed in the bulk of the HSS are determined only by the initigbhavior of the LS

condition. LS may, therefore, be used for signal processing since 4
the addition or the removal of a LS simply means the change Zo(r — 00) = Re{Ae'? K[(y + iw)r]} (13)

(Ly+ (=) (L +(+i€)Zo =0 11)
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Fig. 11. 1-D monostable localized structure branches. The parameters i 12. 1-D bistable localized structure branches. The parameters are

A = 0.1 andC = —10—*. Branches BLS (DLS) are the bright (dark) LSs0.1 andC' = 0.02. Branches BLS (DLS) are the bright (dark) LSs which
which correspond to the maxima (minima) of the intracavity field amplitude&orrespond to the maxima (minima) of the intracavity field amplitude. The curve
Curve HSS represents the spatially homogeneous solutions. HSS represents the spatially homogeneous solutions.

wherey +iw = /= + i andy > 0. The parameterd and¢ homogeneous response curves in Figs. 11 and 12. They corre-
can be obtained by asymptotically matching (13) with the solgpond to the monostable and bistable regimes, respectively. The
tion Zy(r) calculated numerically. Let us make a connection béS branches emerges from the modulational bifurcation points
tween the parameters that appear in the expression (13) andithe = +(3A? — 2C) X4 /12 with Xpp = £,/A%2 + C/3.
parameters which characterize the periodic patterns. We see & bifurcation diagrams of LS corresponding to the 2-D sys-
¢ is connected to the critical wavenumber at both modulationt®ims are displayed in Figs. 13 and 14.
bifurcation points through the simple relatior= k2. If the pa- One can see from Fig. 12 that stable LS solutions can exist
rameter¢ vanishes, we hav& . = +,/A% +C/3 = X4, even beyond the limit point of the homogeneous bistability
which are exactly the intracavity amplitude thresholds associrve. This behavior is similar to periodic structures plotted in
ated with the modulational instability. Note that stable LS cahe Fig. 3. From Figs. 2 and 3 and Figs. 11 and 12, we see that
exist only in the parameter domain where the HBS= X, is the stability domains and the extremal values of periodic and
stable. In this domain, the quantifydefined by (12) is real. LS structures are close one to another.

For larger, the Bessel function (13) can be rewritten in terms

of elementary functions V. INTERACTION BETWEEN LSs
A T We have shown in Section IV that the SH equation (1) sup-
Z T— O0) = —_— X —vr . . .
of ) SN p(—7) ports both dark and bright LS characterized by an oscillatory

tail. In order to envisage applications of LS, a number of prob-
lems must be addressed. In particular, two or more LSs will in-
teract through their overlapping oscillatory tails when they are
close to one another. In the following, we derive analytically
the potential that describes such interaction in the case of weak
overlap [72], [73]. Using this result, it is possible to calculate
the critical distance between LS beyond which the interaction
I%e_:comes negligible.

Both bright and dark stationary LS obey the equation
Xs)Zo(r) + N[Zo(r)] = 0, whereX, is the homogeneous
teady state. Their stability is determined by the spectrum of
e linear operator

1
X COS (wr + 3 arctan & — ¢5> . (19
Y

From this expression, we see that the LS soluffgrhas oscil-
latory tail and decay for large. The positions of the extrema
of these oscillations forming a tail are determined for lardpy
the parameters, w, andq.

In order to calculate the LS solutions, we have used a p
cedure similar to that described in [45], [57]-[59]. First, (8% (
was integrated from = L = 50tor = r; ~ 1, with
initial conditions defined by (13). Second, we integrated (
fromr = 7y = 1078, tor = r; with the initial conditions

Zo(ro) = B, dZo(r)/dr|p=r, = 0, d2Zo(7)/dr?*|s=r, = C, ON
andd?®Zy(r)/dr3|,=,, = 0. The unknown parameters, ¢, B, L(Zo(r)) = L(Xs) + 97 |Z=20(r)
andC are calculated by matching the two solutions at r;. =L(X,) - 32X, + Z0) %o

This method allows the branches of 1- and 2-D localized solu-

tions to be drawn. The 1-D bright and dark LS branches cornghereL(X,) andN are defined by (9) and (10), respectively.
sponding, respectively, to one hump and one dip in the profileWe consider the simplest situation corresponding to interac-
of the intracavity field amplitude are plotted together with thdon between two identical radially symmetric bright LS (or two
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Fig. 13. 2-D monostable localized structure branches. Parameters are Fig. 14. 2-D bistable localized structure branches. Prameters are).1 and

0.1 andC = —10~*. Branches BLS (DLS) are the bright (dark) LSs whichC' = 0.02. Branches BLS (DLS) are the bright (dark) LSs which correspond to
correspond to the maxima (minima) of the intracavity field amplitude. Cury@e maxima (minima) of the intracavity field amplitude. Curve HSS represents
HSS represents the spatially homogeneous solutions. the spatially homogeneous solutions.

darkLS)Z; »(r) = Zo(r— R 2) located respectively at the po-perform the integration over the domaid, we decompose
sitionsR; . Since the SH equation (1) admits a center of synthat domain into two half-planes, namelp; = R~ x R
metry (C,Y) = (0,0), corresponding to the invariance undeandQ, = R+ x R. Since the LS solutiorZ, is small in the
the transformatioriC,Y’) = (—C,-Y), we focus only on the integration domairf2,, we can apply the first-order Maclaurin
bright LS without loss of generality. To simplify further the analexpansion

ysis, we assume that the maxima of the bright LS are located,

respectively, at the poin{s-R/2,0) and(R/2,0) along thex N(Zi + Z») ~N(Z1) + Zo ON
direction, where? = |R| = |R — R4] is the distance between 0Z z=2:(r)
the two LSs. To study the interaction, we add a small perturba- =N(Zy)— L(Xs)Zy + L(Z1)Z>
tion to the linear superposition of the two LSs =N(Z1) + N(Zy) + L(Z1) Zo.
Z(r,t) = Z1(r) + Zz(r) + €dz(r, ). (15)  substituting this expression into (17) and neglecting the small
contribution ofj'Ql VZ1(0Ry /0t - VZy)dr, the integral over

We assume that the positioRs » of LS evolve on a slow time
scale,i.e.R1 2 = R4 »(et). Inserting (15) into the SH equation
(1), using the Maclaurin expansions, and equating the first-order 1O & /VZ { 8R1
~ 1
1

Q; becomes

terms ine, we get e -VZy - L(Z,)Z5| dr.

1

L(Zt+ Z2)02 = — % VZi— 8;:2 VZy+Q  (16) A similar calculation shows that the second part of the integral
Q =N(Z1)+ N(Zy) — N(Z1 + Z»). (A7) is neingibIe,ISZ) ~ 0, sinceZ, andV Z; are small quantities
in the integration domaif),. Therefore, (18) leads to an ex-
To solve (16), it is necessary to satisfy the solvability conditioqression for the velocity of the bright LS located at the position
the right side of (16) should be orthogonal to the null eiget—R/2,0) in 2; as follows:
functions of the adjoint operatdt™(Z; + Z,). Since, in our
problem, the operatak is self-adjoint,L. = LT, the eigenfunc- 8R1
tions of the operatoré,(Z; ») and L™ (Z ») coincide. To the 3f
leading order ire, the solvability condition is

:_/vauaﬂﬂr (19)

931

OR OR where2l" = le(VZI)er > 0. The expression for the velocity
10 = / 1.0 [——1 V7 — 2 .VZ,+Q|dr=0 ofthe LS located atR/2,0) is obtained from (19) by permuta-
ot (18) tion of the indices.
wherei, » = V7 are the eigenfunctions of(Z; ») with By using the relatiorL.(7, )V 7, » = 0 and performing an
zero eigenvalue. These eigenfunctions correspond to {nggratlon by parts, (19) becomes
so-called translational neutral modes. The integral appearing _9R, 4 ) )
in (18) is calculated over th@ = R x R = (z,y)-plane. To I'—-=3 [S2 —2(7* — w?)S4] (20)
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with
Sl = — /(VZlLJ_ZQ — Z2LJ_VZ1)dr7
o
Sy, = — /(VZILJ_LJ_ZQ - ZZLJ_LJ_VZI)dr'
Q
Green'’s theorem is used to transform the inte§rainto an

integral over the line separating the two half plafiesand(2,.
This line is they axis

Sl = — /(VZlLJ_ZQ — ZQLJ_VZl)dr
oh
T 0%, OV Z,
= — VZ,—= -7 d
/ < L ox e > Y
= 73(Z VZ)d (21)
= O 1 1)ay.
Here, we have used the relations
07, 07,
Z3|e=0 = Z1|o=0, =—- -
2|., 0 1|. 0 8:1: o 8:17 0
OV Zy ovVZ,
VZ3|p—0 = — VZi|p—0, —— = —
2|., 0 1|. 0 8$’ o ax —o
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Fig. 15. Interaction potential between 2-D LSs. The parameterd ase0.1,
C = 0.02,andY = —5 x 10—,

Finally, using the relatio@R, /0t = —0R, /Jt, we get

OR.
5 = VrU(R)
with
U(R) = 227 A2ywim{eX¢ Koy + iw)R]}.  (23)

3T

that follow from the fact that the unperturbed localized soluFhe minima (maxima) of the interaction potentia( ) cor-
tions Z; are radially symmetric and located symmetrically witfiéspond to stable (unstable) bound states of two LS. They are
respect to thg axis. Similar to (21), the integr&, can be trans- bound together by the interaction force. From (23), we see that

formed into an integral over thg axis

82 = — /(VZILLLLZQ — ZQLLLLVZl)dr
o
= — /[VZlLLLlZZ — (L1 Z5)L,V Zy]dr
Q

- / (ZL1 L1V Zy — (L1 Z5) L.V Z1)dr

Q,
i oL, 7o A
= 7 — (L, Z
/ {V 1 (L1Z5) gy }dy
T OL.VZ 07,
— fo——-—= — (L Z1)—=| d
/ [ 2 g (LLVZ1) 8;1:} Y

(V2L Z1 + 70 L.V Zy)dy. (22)

S

g

the positions of the extrema depend on three parametess:

and ¢. The first two parameters are expressed analytically in
terms of the parameters of the SH equation, namely, the coop-
erativity C' and the detuning parametér. The third parameter

¢ can be easily extracted from the LS solution itself. According
to (13) or (14), the parameterdetermines the positions of the
extrema of the spatial profile of LS. An example of the interac-
tion potential is plotted in Fig. 15. Unlike the case of absorptive
cavity with an injected signal [75], the construction of the in-
teraction potential/ (R) for the SH equation does not require
the numerical calculation of the null eigenfunction of the adjoint
linear operator. Physically, the meaning of this potential is that
any initial condition with two LS separated by a distance less
than the distance from the origin to the first maximum leads to
an asymptotic state in which the separation equal to the poten-
tial first minimum (see Fig. 15).

VI. CONCLUSIONS

In the first part of this paper, we have described pattern for-
mation in passive systems, including the coupling between the
modulational modes and the quasineutral homogeneous zero

Substituting the asymptotic expression (13) of the LS into (21),de. We established the following analytical results: 1) the sta-

and (22) and performing the integration oyemwe obtain

SQ — 2(’}/2 — w2)81
= — 4w A%ywIim{e*? K,[(y + iw)R]}.

bility domains of periodic patterns are much larger than the size

of the homogeneous hysteresis and 2) the interaction between
modulational modes and the zero-homogeneous mode induces
the coexistence of two phase-locked hexagonal structures. The
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second part of the paper focused on the interaction and stabilitgs]
of both bright and dark LSs. We derived the interaction poten-

tial between two LSs. In particular, this determines the criticaf,;

distance beyond which the interaction between two symmetric

LSs becomes negligible.
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