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Abstract. – We study the synchronization properties of an array of nonidentical globally
coupled limit cycle oscillators. Above a critical coupling strength, some oscillators undergo a
self-pulsing instability. We study analytically the synchronization conditions below and above
this instability threshold, thus removing the usual restriction of limit cycle stability. Self-pulsing
decreases the order parameter and synchronization degradation can be reduced by delaying the
coupling among the oscillators. Semiconductor lasers coupled by an external mirror are used
as a convenient realization of that model.

Physics, chemistry, and biology offer many examples of large systems of weakly interacting
limit cycle oscillators [1]. If the limit cycles are stable, nearly identical, and the coupling is
weak enough, the dynamics of a system of N coupled oscillators can be described in an N -
dimensional phase space whose coordinates are the phases of the individual oscillators. When
studying collective behaviors, the reduction to a phase model constitutes a great simplifica-
tion. In particular, the Kuramoto phase equations result from such a reduction [2]. Since
these equations are universal and allow analytical description, they are good reference models
to study the transition to synchronization. Arrays of Josephson junctions [3], neural networks
in the brain [4], rhythmic applause [5], flavor evolution of neutrinos [6] and, to some extent,
arrays of coupled semiconductor lasers [7,8] have been successfully modelled by the Kuramoto
equations. Recently several generalizations of this model were proposed, which include am-
plitude dynamics [9], time delay [7, 10–13] and inertia [14]. Phase synchronization was also
described analytically for the Winfree mean-field model [15].
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In many cases, however, the main assumption underlining these phase models is the stabil-
ity of the limit cycles. If the coupling strength is comparable to the dynamical decay rates that
characterize the stability of the individual limit cycles, additional degrees of freedom can be
excited and the limit cycles may be destabilized. The Kuramoto model and its variations be-
come inadequate in this case. In this letter, we analyze such a situation analytically and show
that a third-order equation can be derived as a generalization of the Kuramoto equation for the
case of nonidentical oscillators. We study this equation analytically and show that beyond the
threshold where some of the oscillators become unstable, the order parameter decreases with a
3/2 scaling power law near threshold. Below the threshold, the situation was studied in [12,13]
but led to results expressed in terms of unsolved integrals. We show how to solve them, which
leads eventually to a complete analytic discussion. This is achieved in terms of an infinite set
of eigenfunctions which are the analog of the external cavity modes in lasers with feedback.
To express the problem in terms amenable to an explicit formulation, we consider as an

example the synchronization properties of an array of semiconductor lasers globally coupled
through an optical feedback produced by an external mirror. Aside from its fundamental
interest, this subject is also of technological importance: if the lasers are locked in phase, a
coherent high power output can be concentrated in a single-lobe far field pattern. Each laser
in the array is a limit cycle oscillator for the single-mode electric field with a single natural
(i.e., optical) frequency. Taken separately, the lasers are only weakly stable: The eigenvalues
of the equations linearized around the constant intensity solution (or cw regime) have real
parts which are strictly negative but very close to zero. In order to study synchronization in
the array, we use coupled third-order delayed phase equations that are an extension of the Ku-
ramoto phase model. We show that for small values of the coupling strength, the dependence
of the modulus of the complex order parameter [2] is the same as for the usual Kuramoto
phase model with a time delay. As the coupling strength is increased, some lasers can be
destabilized via a Hopf bifurcation which may result in a degradation of the synchronization.
Consider an array of N coupled semiconductor lasers modelled by coupled Lang-Kobayashi

equations [16] for the dimensionless electric-field envelope E and excess free carrier density Z.
For the j-th laser, these equations are

dEj

dt
= iδjEj + (1 + iα)

ZjEj

τp
+ i

κe−iωtD

N

N∑
n=1

En(t− tD), (1)

dZj

dt
=
1
τc

[
Pj − Zj − (1 + 2Zj)|Ej |2

]
, (2)

where ω = N−1
∑

j ωj is the average frequency in the array, δj = ωj − ω, α is the linewidth
enhancement factor, τp � 10−12 s is the photon lifetime, κ is the feedback rate, tD is the
external cavity round-trip time, ωtD is the mean optical phase-shift between emitted and
feedback fields, and τc � 10−9 s is the free carrier lifetime. Finally, Pj is the excess pump
parameter which is proportional to the injection current above threshold. In previous studies,
synchronization in an array of solid-state lasers characterized by different natural frequencies
was analyzed, but with the assumption that the population inversions Zj can be adiabatically
eliminated [17].
The j-th solitary laser exhibits a low-frequency dynamics characterized by a relaxation

oscillation frequency ΩR,j that lies in the gigahertz range. Assuming that |1 − Pj/P | � 1,
where P = N−1

∑
j Pj , we have ΩR,j ≈ ΩR =

√
2P/τcτp. The coupling can be achieved

by an external mirror placed at the Talbot distance from the array, which is of the order
of 1mm [18]. In this case, ΩRtD � 1 and the approximation En(t − tD) � En(t) can be
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used in (1). If, however, the distance between the array and the feedback mirror is such that
ΩRtD = O(1), the time delay tD in the argument of En(t− tD) cannot be neglected [7, 8].
To study the synchronization properties of the array, we decompose the electric field as

Ej = |Ej |eiΦj . It is also convenient to rescale the time s = ΩRt (sD = ΩRtD) and introduce
the complex Kuramoto order parameter

σ(s)eiξ(s) =
1
N

∑
n

ei[Φn(s)−ωtD]. (3)

For semiconductor lasers with a large α factor, eqs. (1) and (2) can be asymptotically approx-
imated by the third-order phase equations [8]

d3Φj

ds3
+ ε
d2Φj

ds2
+ (1 + 2εΩj)

dΦj

ds
= ε∆j + εKσ(s− sD) sin

[
ξ(s− sD)− Φj(s)

]
, (4)

where ε = (2P+1)
√
τp/2Pτc, Ωj = (Pj/P−1)/ε, ∆j = δjτc/(1+2P ), andK = ακτc/(1+2P ).

For semiconductor and other class-B lasers we have τp/τc � 1. Therefore, for moderate pump
strengths, P = O(1), weak enough coupling κτc = O(1), and small parameter dispersion
over the array, Pj/P − 1 = O(ε), δjτc = O(1), we obtain ε � 1 and Ωj ,∆j ,K = O(1).
The frequencies ∆j are randomly distributed with Lorentzian probability g(∆) = Γ/[π(∆2 +
Γ2)]. We note that neglecting d2Φj/ds2 and d3Φj/ds3 in (4) yields the delayed Kuramoto
model [12, 13], while neglecting d3Φj/ds3 only yields the system used to study the effect of
inertia on the synchronization properties of globally coupled phase oscillators [14]. The system
of equations (4) is a generic model for an array of weakly stable globally coupled oscillators.
In the limit N → ∞, the absolute value of the order parameter, σ, vanishes if the lasers

are completely desynchronized, and tends to unity as they approach perfect synchronization.
Our aim is to determine the dependence of σ on the coupling strength K and on Γ, the width
of the natural frequency distribution. We restrict our analysis to the solutions of (4) with
time-independent σ. This includes the branch of partially synchronized solutions emerging at
the synchronization threshold where σ becomes nonzero [2, 13].
For typical low-power semiconductor lasers, we have ε� 1. This is related to the weak sta-

bility of the cw regime. Setting ε = 0 in eq. (4) yields the solution Φj = φj+ρj sin(s+θj) with
time-independent φj , ρj , and θj . For small but finite ε, we therefore seek a solution of the form

Φj(s) = φj(τ) + ρj(τ) sin
[
s+ θj(τ)

]
, (5)

where φj , ρj , and θj depend on the slow time τ = εs (τD = εsD). A similar ansatz was
recently used in [19]. If ρj = 0 for all j in eq. (5), all the lasers in the array operate in a
cw regime which is the stable limit cycle oscillator regime. As the coupling strength reaches
a critical value, a fraction of the phase-locked lasers acquires a nonzero ρj . The number of
destabilized lasers depends on the laser parameters and on the natural frequency distribution.
As a result, their intensities and phases oscillate at a frequency close to the relaxation oscil-
lation frequency ΩR. This primary partially synchronized cw state is then destabilized by a
secondary branch of partially synchronized solutions, and so on. Various phase configurations
are possible for the relaxation oscillation phases θj , each giving rise to a secondary branch.
We shall describe only the branch characterized by completely desynchronized phases θj . The
existence of such a solution is inferred from the analysis of identical lasers. If the time delay is
small on the relaxation oscillation time scale, sD � 1, the Hopf bifurcation always produces
antiphase oscillations of the laser intensities [7, 8]. We focus on the most commonly observed
antiphase regime, the so-called splay state regime characterized by θj = θ0 + 2jkπ/N with
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integer k. In the continuous limit, N → ∞, the relaxation phases constrained by this relation
are homogeneously distributed over the entire interval (0, 2π), independently of ρj and φj .
This suggests to neglect harmonic corrections of the order parameter on the time s. In the
large-N limit, we therefore seek solutions of the form

σeiξ =
1
N

∑
n

ei[φn+ρn sin(s+θn)−ωtD] � 1
N

∑
n

ei(φn−ωtD)J0(ρn), (6)

where σ is time-independent and ξ varies linearly in time, ξ = ντ . The parameters σ and ν
are still to be determined. Substituting (5) into eq. (4) and using the averaging procedure,
we obtain the following equations for the slow time evolution of φj , ρj , and θj :

dφj

dτ
= ∆j +Kσ sin

[
ν(τ − τD)− φj

]
J0(ρj), (7)

dρj

dτ
= −1

2
ρj +Kσ cos

[
ν(τ − τD)− φj

]
J1(ρj), (8)

dθj

dτ
= Ωj . (9)

Equation (9) is consistent with the assumption that the relaxation oscillations phases θj are
unlocked since, in general, the frequencies Ωj differ for different oscillators.
We first consider the domain Kσ < 1 where all lasers are stable. The solution ρj = 0

of eq. (8) is linearly stable for all φj and relaxation oscillations decay on the τ time-scale:
ρj(τ)→ 0. Equations (7) to (9) then reduce to the delayed Kuramoto model

dφj

dτ
= ∆j +Kσ sin

[
ν(τ − τD)− φj

]
. (10)

The solution σ = σ(K) can be derived in two steps using the approach described in [2]: first,
eq. (10) is solved as a function of σ and ν; second, that solution φj is used to determine σ
and ν from (6). Introducing the phase deviations ψj = φj − ντ + ντD, let P (ψ,∆) be the
probability for an oscillator with natural frequency ∆ to have its phase between ψ and ψ+dψ.
Using (6) with ρn = 0 and taking the continuum limit N → ∞, the order parameter becomes

σei(ωtD+ντD) =
∫ ∞

−∞

∫ 2π

0

g(∆)P (ψ,∆)eiψ d∆dψ. (11)

The form of P (ψ,∆) in (11) is well known [13], while the analytical expression for the value of
the integral is not. Performing the integration over ψ and then over ∆ in the complex plane,
we find

σei(ωtD+ντD) =

√
1 +

(
Γ + iν
Kσ

)2

− Γ + iν
Kσ

. (12)

Solving (12) leads to

σ2 = 1− 2Γ/[K cos(ντD + ωtD)], (13)

ν = −K sin(ντD + ωtD) + Γ tan(ντD + ωtD), (14)

with cos(ντD+ωtD) > 0. These equations determine an infinite number of branches of partially
coherent solutions that emerge from the fully incoherent state. Letting σ → 0 reproduces the
linear stability results for that incoherent state [12], so that (13) and (14) complete the analysis
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Fig. 1 – Branches of partially synchronized solutions obtained by solving eq. (12) with Γ = 0.143,
mod(ωtD, 2π) = 2.9, and τD = 1.5. Dots represent the time-average of σ obtained by numerical
simulations of eq. (10) with 300 elements.

Fig. 2 – Order parameter σ as a function of K with Γ = 0.143, mod(ωtD, 2π) = 0.1, Ωj = 0 for all
j, and ε = 0.09. This corresponds to the laser parameters: τp = 10−12 s, τc = 10−9 s, and P = 3.
Circles are the averaged values of σ obtained by numerical integration of the phase equations (4)
with sD = 0. Crosses are the averages of σ obtained with the original laser equations (1)-(2). Full
line: solution of eqs. (16) and (17). Dashed line: unstable primary branch of partially synchronized
solutions. Dotted line: σ = 1/K. Inset shows the enlarged vicinity of the secondary instability point
Kσ = 1. Finally, squares are the averaged values of σ obtained by numerical integration of the phase
equations (4) with sD = 11.5, corresponding to τD � 1.

of these authors. The multiplicity of the synchronized solutions directly follows from the time
delay in the coupling. In the short-delay limit, τD � 1, (12) leads to the result obtained for
arrays of solid-state lasers well above lasing threshold [17]. Physically, the multiple solutions
of (12) can be considered as the external cavity modes (ECM) of the partially coherent array.
They generalize the ECM of the single semiconductor laser with external feedback [20]. The
two branches of solutions of eqs. (13) and (14) shown in fig. 1 correspond to two different
ECM. Multiple branches of solutions of eqs. (10) similar to those presented in fig. 1 were
found numerically with g(∆) being a Gaussian distribution [13]. Finally, the ECM of an array
of identical lasers [7] are simply obtained by letting Γ→ 0 in (13) and (14).
Next, we analyze the domain Kσ > 1, where part of the oscillators undergo a Hopf

bifurcation leading to undamped pulsations of their intensities |Ej |2. We focus on the limit
τD � 1. Equation (8) indicates that the phases of the locked oscillators with Kσ cos(ντ −
φj) > 1 acquire an oscillating component with finite amplitude ρj . These oscillators move
periodically away from the center of mass of the synchronized cluster on the [0, 2π) interval.
As a result of this dynamical dispersion, the modulus σ of the order parameter (6) decreases.
Moreover, it follows from (7) that the destabilized oscillators experience an effective coupling
strength that is reduced by a factor J0(ρj). This, in turn, degrades their synchronization. On
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this secondary branch of partially synchronized solutions we find in the long-time limit

sinψ =
∆− ν

KσJ0(ρ)
, cosψ =

ρ

2KσJ1(ρ)
, (15)

for the oscillators such that ∆ ∈ [∆−,∆+], where ∆± = ν ± √
K2σ2 − 1. Eliminating ψ

from (15) determines ρ as a function of ∆ and K. By contrast, eiψ becomes eiψ|0 ≡ [1 −
(∆ − ν)2/K2σ2]1/2 + i(∆ − ν)/Kσ on the primary branch that is the solution of eq. (12).
Using (15), the implicit relation between σ and K becomes

σeiωtD =

√
1 +

(
Γ + iν
Kσ

)2

− Γ + iν
Kσ

+R1, (16)

where

R1 =
∫ ∆+

∆−
g(∆)

[
eiψJ0(ρ)− eiψ|0

]
d∆. (17)

In the vicinity of the instability Kσ = 1, we introduce a small parameter ε ≡ Kσ− 1, so that
ρ� 1 and ∆± � 1. Therefore (17) becomes

R1 = − 27/2Γε3/2

15π(ν2 + Γ2)
+O

(
ε5/2

)
. (18)

Note that it follows from (16) and (18) that, unlike the usual 1/2 scaling, the solution bifurcat-
ing atKσ = 1 scales as δσ ∝ δK3/2, where δσ and δK are small deviations from the instability
threshold (see inset in fig. 2). Equation (16) has been solved numerically. The result is shown
in fig. 2 and compared with a direct numerical simulation of eqs. (1), (2), and (4) with 100 and
with 1000 elements. For sD = 0, the equations have been integrated until s = 3800 for each
value of K in order to discard the transient behavior. Then, σ was averaged over the time
interval ∆s = 200 and plotted against K. During this time interval, σ was almost time inde-
pendent on the whole range of coupling strengths notwithstanding unavoidable fluctuations
of the order 1/

√
N . The figure indicates that σ(K) is maximum at Kσ � 1. Substituting this

value in eq. (16), the maximum attainable coherence is σmax � √
1 + Γ2 sec2(ωtD)−Γ sec(ωtD),

with sec(ωtD) > 0. The maximal possible value of the coherence parameter is thus reached
for a finite coupling strength and is less than unity. Except for the numerical example shown
in fig. 2, we have not performed any study of the stability of the secondary branch bifurcating
from the partially coherent state (12). This could be the subject of a separate investigation.
Note, however, that the stability problem is still not completely solved even for the partially
coherent solution of the usual Kuramoto model without delay [2, 21].
A possible way to improve the synchronization performance of the array is to exploit

the time-delay τD in the global coupling. For identical oscillators, large delays produce new
bifurcations leading to periodic solutions of the type (5), but with all relaxation phases θj

equal [7, 8]. Due to these instabilities, a higher level of synchronization can be maintained.
Like the ECM, the number of branches of “in-phase” self-pulsing solutions is infinite and
their density increases with the time delay. Therefore, if the delay is sufficiently large, the
system is liable to operate on one of these self-pulsing states. Numerical simulations with
nonidentical oscillators confirm this interpretation: the dynamic degradation of synchroniza-
tion reported in this letter can be substantially reduced by using the delayed coupling with
τD = O(1). The time-averaged absolute values of the order parameter calculated for τD � 1
are shown by squares in fig. 2. One can see that above the self-pulsing instability threshold
the synchronization level is increased in the presence of delay.
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