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Curvature Instability in Passive Diffractive Resonators
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We study the stability of localized structures in a passive optical bistable system. We show that there
is a critical value of the input field intensity above which localized structures are unstable with respect
to a curvature instability. Beyond this instability boundary, a transition from the localized branch of
solutions to stable hexagons is found.
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namics [14]. This behavior also establishes a connection
between the optical reaction-diffraction systems and the

jEEj are given by the implicit equationEi � II	�1� F� �
����F�2
 with F � 2C=�1� �2 � �II�. For simplicity,
Nonlinear cavities driven by an external field can dis-
play localized structures (LS), also called spatial solitons.
They arise in the domain where two branches of stable
solutions coexist, typically a branch of homogeneous
steady states and either another branch of steady states
[1] or a branch of spatially periodic solutions [2,3] arising
from a Turing or spatial modulational instability [4]. In
the degenerate optical parametric oscillator [5,6] the for-
mation of LS is related to the phase indetermination in a
bistable system and does not rely on a spatial modula-
tional instability. LS consist of bright or dark pulses in
the transverse profile of the intracavity field amplitude. If
there is more than one LS, they can be either spatially
independent and randomly distributed or clustered and
forming spatial patterns in the transverse plane. They may
also exhibit periodic or chaotic oscillations in time [7,8].
Reviews on the LS formation can be found in [9].

Experimental evidence of LS [10,11] has reinforced
interest in the spatial confinement of light. There is a
possibility that LS could be used as bits for information
manipulation [12,13]. Therefore, the question of stability
of a LS is central and sources of instabilities must be
carefully scrutinized. In this Letter, we report on a new
instability of two types of LS, circular spots and stripes,
in a driven passive resonator described by a Lugiato-
Lefever model with saturating nonlinearity. We show
that there is a critical value of the input field intensity,
above which these two LS are unstable with respect to a
curvature instability. For appropriate values of the pa-
rameters, the LS exhibits an elliptical deformation and
splitting. The circular LS, for instance, breaks down in
two bright spots connected by a tube of lower intensity. A
single localized stripe can also be destroyed by this
curvature instability. When the instability takes place,
either type of LS exhibits a transition toward the same
stationary �-hexagon (or honeycomb) pattern which fills
the transverse plane. The numerical results are supported
by a qualitative analytical analysis. The curvature insta-
bility bears analogies with the morphological instability
occurring during the solidification process in fluid dy-
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chemical reaction-diffusion systems [15] where a similar
instability has been observed. Experimental observation
of the curvature instability is also possible in a liquid
crystal light valve with feedback [16]. Similar instabil-
ities affecting the circular shape of LS [17] and a single
stripe [18] have been reported for other nonlinear optical
systems involving high dimensions. In this Letter we
show that an equation of the complex Ginzburg-Landau–
type with saturating nonlinearity is sufficient to display
the curvature instability.

We consider a passive resonator with plane mirrors,
filled by a resonant two-level medium without population
inversion and driven by a coherent plane-wave injected
signal. We assume that the medium relaxes much faster
than the cavity field. In this regime, two types of LS may
be generated, depending on the magnitude of the critical
wave number associated with the modulational instabil-
ity: circular localized bright spots [12] and a stationary
localized single stripe [19]. Both types of LS can occur
for the same parameter values [19]. In the mean field
approximation, the space-time evolution of the intracav-
ity field is described by the following dimensionless
partial differential equation:

@E
@t

� Ei � f�E;E�� � iL?E; (1)

f�E;E�� � ��1� i��E�
2C�1� i��E

1� �2 � jEj2
; (2)

where E is the normalized slowly varying complex enve-
lope of the electric field. The input field amplitude Ei is
real and constant. The detuning parameters are � �
�!c �!e�=� and � � �!a �!e�=�?, where !c
�!e;!a� are the cavity (external, atomic) frequency, �
and �? are the cavity and the atomic polarization decay
rates, respectively. The cooperativity parameter C deter-
mines the steady state bistability. The diffraction operator
is L? � @2=@x2 � @2=@y2.

The homogeneous steady state solutions of Eq. (1) �II �
� 2 2 � 2
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FIG. 1. Real part of the nonzero eigenvalues #m correspond-
ing to the angular harmonics m � 0, 1, 2, 3, and 4 as a function
of the input field amplitude. Parameters are � � �2 and
C � 20.
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we will consider the limit of an absorptive bistability
�� � 0�. As we shall see in the following, this assump-
tion does not affect the generality of our analysis.
The cavity intensity �II as a function of the input intensity
E2
i is bistable if C > Cc, where Cc is the real solution of

�Cc � 4��1� 2C2
c� � 27�2C2

c. The corresponding critical
intensity is �IIc � �1� 2Cc�=�Cc � 1�. We consider the
domain � < 0 �!c < !e� where �II undergoes a modula-
tional instability leading to the formation of stationary
patterns which are periodic in space [3,20]. The instabil-
ity domain is bounded by two thresholds I�T � 	C� 1���������������������
C�C� 4�

p

=2. The critical wave number corresponding

to the maximum gain is kT �
�������
��

p
at both bifurcation

points.
We first consider the circular localized bright spots.

They are stationary radially symmetric localized struc-
tures E�x; y� � E0�r�. They derive from Eq. (1) with
@E=@t � 0, L? � @2=@r2 � �1=r�@=@r, and the bound-
ary condition E0�r� ! 0 when r! 1. In order to calcu-
late LS we use the following procedure. We first integrate
Eq. (1) from r � l� 1 to r � r1 � O�1�, with the initial
condition E0 � �a� ib�K0��l�v1 � �a� ib�K0���l�v2
where � and �v1; v2�T are, respectively, the eigenvalue
and eigenvector of the matrix

i
� @f

@E
@f
@E�

� @f�

@E � @f�

@E�

�
E�E0

;

where f is given by Eq. (2) and K0 is the modified Bessel
function of the second kind. Second, we perform the
integration from r � r0 � 10�8 � 1 to r � r1; the initial
condition used is E0 � A� iB and @E0=@r � 0. The un-
known parameters a, b, A, and B are determined by
matching the two solutions at r � r1. This allows us to
calculate the 2D LS amplitude as a function of the input
field amplitude. To study the stability of 2D LS, we
introduce the perturbations

E � E0�r� � "E�r�e#mteim’:

We consider m � 0 since only these perturbations affect
the shape of the bounding circle of the LS. Linearizing
Eq. (1) with respect to "E leads to the characteristic
equation for the eigenvalues #m

#m"E � i
�
@rr �

1

r
@r �

m2

r2
� �

�
"E� "E

�
2C"E

1� jE0j
2 �

2C �jE0j
2"E� E2

0"E
��

�1� jE0j
2�2

:

A discretization of the differential operators in the inter-
val 	r0; l
 is adopted to calculate numerically the eigen-
values #m. This leads to an eigenvalue problem for a real
2N � 2N matrix. The calculation is performed for N �
256. The eigenvalue with the greatest real part is plotted
in Fig. 1 for m � 0, 1, 3, and 4. It is clearly seen from this
figure that in the domain 19 � Ei � 20:5 only perturba-
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tions with the angular index m � 2 become unstable as
the driving field Ei increases. This instability occurs at
Ei � 19:81. Other perturbations of the 2D LS corre-
sponding to m � 0, 1, 3, and 4 decay.

To make explicit comparisons with these results, nu-
merical simulations of the full model Eq. (1) have been
made for the range of parameters where the system ex-
hibits a pattern forming instability which affects only a
portion of the upper S-shaped steady state intensity.We fix
� and C and let the input field amplitude be the control
parameter. We have exclusively looked at periodic bound-
ary conditions in both transverse directions. Let us con-
sider an initial condition leading to stable circular
localized structures for the input field Ei � 18 with � �
�2 and C � 20. They are similar to the LS analyzed in
[2,12]. With the same initial condition but a larger input
field intensity, the circular shape evolves quickly to an
ellipse [see Figs. 2(a1) and 2(a2)]. This bright spot be-
comes unstable with respect to radially asymmetric dis-
tortions. This curvature instability arises in the vicinity
of the boundary layer connecting the LS and the stable
homogeneous background. As time increases, the ellip-
tical spot grows by elongation and splits into two bright
spots connected by a tube of lower amplitude [see
Figs. 2(a3)]. This transient process of deformation, elon-
gation, and splitting continues until the system reaches a
stable hexagonal branch. This leads to the filling of the
plane by a periodic pattern as illustrated on the left side of
Fig. 2. We stress that the processes of deformation, split-
ting, and transition to the hexagonal static attractor are
not specific to the zero atomic detuning (� � 0). They
can occur for a nonzero detuning. As an example, for
� � 0:5, � � �2, and C � 20, the curvature instability
occurs at Ei � 20:36.

Equation (1) also supports single localized stripes
(SLS). We first calculate the SLS solution by using a
procedure similar to that outlined for the bright spots.
It allows us to plot the maximum amplitude jE0�x�jx�0 as
233901-2



FIG. 2. Curvature instability affecting both circular and
single stripe localized structures. Time sequence of the real
part of the intracavity field. Maxima are plain white and the
grid size is 256.

Ei = 20.5

0.005

VOLUME 89, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 2 DECEMBER 2002
a function of input field amplitude (Fig. 3). To study the
stability of these solutions we linearize Eq. (1) around the
SLS solution E0�x�. This yields a linear operator L̂L which
can be represented as L̂L � L̂L0 � )̂)@2=@y2. The linear
operator L̂L0 describes the stability of 1D LS E�x� �
E0�x� and )̂) � �01

�1
0 �. Replacing @2=@y2 by �k2 in L̂L,

where k is the wave number of the perturbation along the
y direction, we obtain the eigenvalue problem

L̂L�k� ~  �k� � �L̂L0 � k2)̂)� ~  �k� � #�k� ~  �k�: (3)
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FIG. 3. 1D localized structures for � � �2 and C � 20. The
branches of localized structures are labeled LS. The homoge-
neous response curve is labeled S.
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The invariance of Eq. (1) with respect to the transfor-
mation x! x� c with arbitrary constant c implies that
for k � 0 this equation has the eigenvalue #�0� � 0 with
eigenfunction ~  �0� � ~  0 � @x	ReE0�x�; ImE0�x�


T . It
is the translational neutral mode of L̂L0. To study the
stability of the SLS, let us consider the eigenvalue #�k�
which verifies limk!0 #�k� � 0 and its eigenfunction
limk!0

~  �k� � ~  0. The eigenvalue #�k� is negative (posi-
tive) for small nonzero k and therefore the SLS is stable
(unstable) if d2#�k�=dk2jk�0 is negative (positive).

From Eq. (3), we get the following stability criterion
for the SLS:

d2#

dk2

�������k�0
� �2

h ~  y
0 ; )̂) ~  0i

h ~  y
0 ; ~  0i

< 0;

where ~  y
0 is the eigenfunction of the adjoint operator L̂Ly

0
with zero eigenvalue. For � � �2 and C � 20, which are
the parameters chosen for all figures, the function
d2#=dk2jk�0 vanishes at Ei � Eth � 20:02 and is mono-
tonically increasing close to that point. This corresponds
to the threshold associated with the curvature instability
as shown in Fig. 4.

Numerical simulations of Eq. (1) have also been per-
formed to check these analytical results. The initial con-
dition consists of a single stripe along the x direction
to which we add a pointlike perturbation along the y
direction. The initial perturbation grows and the single
stripe exhibits deformation and splitting along the y
direction [see Figs. 2(b1), 2(b2), 2(b3), and 2(b4)].
Then a transition to �-hexagons occurs [see Figs. 2(b5),
2(b6), 2(b7), and 2(ab)]. The wavelength associated with
the �-hexagon [Fig. 2(ab)] is essentially the same as that
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FIG. 4. Stability of 1D localized stripe along the x coordinate
with respect to small perturbations acting on the y direction.
For k � 0, the eigenvalue is always equal to zero. It corre-
sponds to the neutral mode associated with the translational
symmetry along the x axis. The single localized stripe is stable
for Ei � 20, weakly unstable for Ei � 20:2, and unstable for
Ei � 20:5. Parameters are � � �2 and C � 20.
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calculated from the linear stability analysis of the homo-
geneous state: �T � 2�=kT � 2�=

�������
��

p
� 4:44.

In summary, this analysis reveals the existence of
curvature instability that prevents the stabilization of
localized structures when the input field exceeds some
threshold. These results are supported by analytical,
though implicit, results. The results obtained from nu-
merical simulations are in good agreement with the ana-
lytical results.
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