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We report existence of a qualitatively distinct class of spiral waves in the two-dimensional cubic-quintic
complex Ginzburg-Landau equation. These are stable clusters of localized states rotating around a central
vortex core emerging due to interference of the tails of the individual states involved. We also develop
an asymptotic theory allowing calculation of the angular frequency and stability analysis of the rotating
clusters.
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Emergence of a coherent phase in physical systems is
typically associated with a phase transition. For example,
in condensed matter these are transitions to superfluid and
superconducting states, and in optics it is a transition from
the incoherent photon emission to coherent generation in
laser systems. There are also other ways of looking at
the emergence of phase degrees of freedom. In particular,
Hopf bifurcation is generic in nonlinear systems of any na-
ture [1] and it is universally followed by the emergence of
a periodic state, which is parametrized by a certain initial
phase. The dynamics in the vicinity of all the above tran-
sitions can be described by the ubiquitous complex gener-
alization of the Ginzburg-Landau equation (CGLE) [1,2],

≠tc 2 �i 1 d�=2c � c0c 1 cf�jcj2� , (1)

where d . 0 is the diffusion constant and c0 measures
distance from the threshold.

If the bifurcation at c0 � 0 is supercritical, then it suf-
fices in many cases to use the cubic CGLE, i.e., f � �c1 1

ic2� jcj2 , [1]. The two-dimensional, = � jx≠x 1 jy≠y ,
cubic CGLE admits well-known and extensively stud-
ied types of solutions with quantized circulation [1,2].
They are often referred to as vortices or spiral waves
and have the following general form: c � A�r� 3

eiMu2iVt, where r � jrj � jjxx 1 jyyj, u � arg�x 1

iy�, and M � 61, 62, . . . is the topological charge. Rec

and Imc vanish simultaneously at the vortex core: r � 0.
V�M is the frequency of rotation of the phase flow around
the core. These and other similar types of rotating solu-
tions are well known in many specific practical models
such as, e.g., optical Maxwell-Bloch equations [3] and
reaction-diffusion systems [1] broadly used in biological
and chemical applications, which are reducible to the
GL model.

If the bifurcation at c0 � 0 is subcritical, as, e.g., in
lasers with a saturable absorber [4], then the normal form
of f in (1) is f � �c1 1 ic2� jcj2 2 �c3 1 ic4� jcj4 [1].
Remarkably, this form of f admits existence, for c0 , 0,
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and stability of the two dimensional (2D) spatially local-
ized states (LSs) seating on a zero background [5,6]. One
should expect that, in this case, a strong enough initial ex-
citation of the system can lead to the emergence of a set
of LSs. Thereby long term evolution of the system will be
determined by the laws of the interaction of these struc-
tures, which have been studied previously in 1D and 2D
geometries (see, e.g., [4,6–12]).

The constant phase of a solitary LS is arbitrary due to
invariance of Eq. (1) under the phase shift: c ! ceiw .
However, the relative phase was found to play a paramount
role in their pairwise interaction [4,7–10]. The theory of
interaction of dissipative LSs in the somewhat simple situ-
ation without phase degrees of freedom has been recently
explored in detail in the framework of models describing
externally pumped optical cavities; see [13] and [14], re-
spectively, for 1D and 2D cases. In the Hamiltonian limit,
d � c0,1,3 � 0, Eq. (1) conserves a number of integrals of
motion including momentum. Therefore the effective cen-
ter of mass of the initially resting group, or in other words
cluster, of the interacting LSs must remain steady in time.
The interaction induced motion can be only relative in this
case. For example, two p-out-of-phase LSs will repel each
other, moving along the line connecting their centers [10].
In contrast, non-Hamiltonian terms present in Eq. (1) al-
low spontaneous motion of structures emerging from ini-
tial conditions with zero momentum [1]. In particular, this
motion can arise through interaction of LSs [4,8,9].

In this work, we describe qualitatively new dynamical
behavior that appears in the cubic-quintic CGLE as a re-
sult of the interplay between the quantized circular phase
flow and the binding of the LSs through the spatial oscil-
lations of their tails. In particular, we consider clusters
of N two-dimensional LSs arranged in a way that total
phase w � argc changes by 2p when making a closed
loop around the geometrical center of the cluster, i.e., the
nth LS has phase wn � 2�n 2 1�p�N with n � 1, . . . ,N .
We calculate frequency of rotation and determine stability
properties of such clusters focusing our attention on the
simplest rotating cluster with N � 3.
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A LS positioned at the origin of the coordinate system
is a solution of Eq. (1) having the form c � c �0��r� 3

e2in�0�t1iw, where n�0� is the frequency shift [5]. For r
large enough nonlinear terms in Eq. (1) can be ne-
glected, which gives asymptotic behavior of the tails
of the LS: c�0� � bK0�kr�, where k � kr 1 iki �p

�ic0 2 n�0����1 2 id�, kr . 0, b is a constant which
can be determined numerically, and K0 is the zeroth-order
modified Bessel function.

We start our analysis of the rotational dynamics with
the description of the results of numerical simulations of
Eq. (1) with initial conditions in the form c�t � 0� �PN

n�1 c�0��r 2 Rn�eiwn . Here wn � 2�n 2 1�p�N are
the LS phases and Rn � jxXn 1 jyYn are their positions.
As in the case of vortices, we expect that rotational dy-
namics can be created by the presence of the phase singu-
larity of the field, i.e., of a point with Rec � Imc � 0, in
the center of the structure. In the simplest case—N � 2,
Y1,2 � 0, and X1 � 2X2— elementary symmetry consid-
erations show that the lines Rec � 0 and Imc � 0 simply
coincide along the line x � 0. Thus, no circular phase flow
is created and we observe only formation of stable bound
states of out-of-phase LSs for a discrete set of the sepa-
ration distances. These bound states exist and are stable
over a broad range of parameters, similar to the 1D case
[4]. The phase flow can be easily introduced by taking ini-
tial phases of the LSs in the form wn 1 anxx 1 anyy with
a1x,1y � 2a2x,2y. This creates opposite tilts of the lines
Rec � 0, Imc � 0 introducing a vortex located between
the LSs. However, stationary bound states of two LSs with
a point vortex between them do not exist. In typical evo-
lutions of such initial conditions, the LSs begin to rotate
around the vortex, but centrifugal forces quickly become
dominant and the LSs are pushed away from each other.
If the initial tilt is less than some critical value, then the
stationary bound state is quickly restored. Using notion of
the centrifugal force, we have implicitly assumed that the
LSs under consideration can be considered as quasiparti-
cles having some sort of effective mass. This fact is well
known in the Hamiltonian limit, d, c0,1,3 ! 0 (see, e.g.,
[4,10]), and will be put into a more formal context below.

The next example we examine is the possible existence
of N � 3 rotating clusters of LSs forming an equilateral
triangle. Plotting transverse profiles of the real and the
imaginary parts of the linear superposition of three LSs
with phases wn � 2p�n 2 1��3, n � 1, 2, 3, positioned
in the vertices of the triangle straightforwardly reveals ex-
istence of a unit vortex in the center. For certain values
of the separation distance, we have found that these ini-
tial conditions converge to periodic solutions correspond-
ing to the triangular cluster spiralling around the vortex
core for the duration of tens of periods with no notice-
able changes (see Fig. 1(a) and [15]). The phase difference
2p�3 between the neighboring LSs remains unchanged in
the course of the spiralling.

Introducing small deviations of the relative phases and
positions of LSs forming spiralling solution shown in
044101-2
FIG. 1. (a) Stable rotation of the triangular cluster: d � 0.03.
(b) Onset of the instability, d � 0.01, predicted by the presence
of the eigenvalue with positive real part shown in Fig. 2(b). In-
tegration time (horizontal axis) is (a) 18 000 and (b) 4000 time
units; c0 � 20.38, c1 � 1, c2,4 � 0, c3 � 0.46. (c) Trajecto-
ries of the peaks of the individual LSs showing transformation
of the rotating triangle into the moving one. Parameters as for
(b). Integration time t � 32 000.

Fig. 1(a), we have observed that the deviations decay
sufficiently quickly and perfect spiralling is restored,
which indicates its dynamical stability. Stable rotation
was always observed to happen in the direction of increase
of phase around the vortex. We therefore conclude that
for a certain set of the separation distances the binding
force due to oscillatory tails of the interacting LSs can
be strong enough to hold a cluster of three LSs against
breakup due to centrifugal force created by the rotation.

The presence of the vortex at the center of the rotat-
ing triangle can be rigorously proven using transparent
symmetry considerations. Since the three interacting LSs
are identical the structure shown in Fig. 1(a) is invariant
under rotation by 2p�3 in the �x, y� plane accompanied
by phase shift 2p�3. Therefore, at any given moment
of time the total field c obeys the relation c�x, y� �
c�x cos 2p

3 2 y sin 2p

3 , y cos 2p

3 1 x sin2p

3 �ei2p�3. In par-
ticular, for x � y � 0 we obtain c�0, 0� � c�0, 0�ei2p�3,
which implies that c must vanish at the origin, while its
phase w � arg�c� changes by 2p when making a round-
trip along a contour encircling the origin. It is now obvious
that the rotating triangles must have a central vortex with
unit charge. Note that, throughout this paper, we study
only structures with topological charge 11. As well as
the obvious existence of rotating clusters with charge 21,
one can also find clusters with other integer charges and
study their stability using the approach described below.

After having established existence of the rotating clus-
ters with quantized circulation numerically, we turn our
attention to their analytical understanding. This will al-
low us to gain deeper insight into the physical mechanisms
involved in this phenomenon. Our theoretical approach
originates from and further develops the perturbation tech-
nique of the seminal papers [10,12]. The essence of the
method is an assumption that overlap of the tails of the
LSs induces adiabatic evolution of their phases and posi-
tions, which is governed by the equations to be determined.

Assuming that to leading approximation a cluster of
LSs can be represented as a linear superposition of N
044101-2



VOLUME 89, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 22 JULY 2002
noninteracting LSs, we write the solution of Eq. (1) in the
form

c � e2int

"√
NX

n�1

c �0�
n 1 c�1�

n

!
1 c�2� 1 O�e3�2�

#
.

(2)

Here n � n�0� 1 n�1� 1 n�2� 1 O�e3�2�, n�m� � O�em�2�,
e ø 1 is a dummy parameter, and c

�0�
n � e2iwn�t� 3

c�0��rn�t�� with rn � r 2 Rn. c
�1�
n � O�e1�2� is a

function localized in the vicinity of the nth LS, which
describes radially nonsymmetric corrections related to the
LSs motion. Also, c�2� � O�e� is a function describing
deviation of the true cluster solution from the linear
superposition of LSs due to overlap of their tails. In what
follows, we choose d as a primary control parameter and
assume that d � O�e1�2�.

Making assumptions about order of smallness of the in-
teraction induced velocity, ≠tRn � O�e1�2�, acceleration,
≠ttRn � O�e�, and derivative of the phase, ≠twn � O�e�,
substituting Eq. (2) into Eq. (1) and equating terms of the
same order in e, we obtain a recurrent system of equations,
which is quite cumbersome to be presented in the Letter
format. Therefore we restrict ourselves to the qualitative
description of the essence of our calculations.

At order e1�2, one needs to solve N independent in-
homogeneous problems for differential operators L̂n de-
scribing spectral stability of the nth LS for d � 0. These
problems can be resolved providing that the correspond-
ing right-hand sides are orthogonal to the neutral modes,
i.e., the eigenmodes corresponding to zero eigenvalues,
of the operators L̂ y

n . Here L̂ y
n is the linear operator

adjoint to L̂n. The spectra of L̂n and L̂ y
n are identi-

cal, but their eigenmodes are not. Applying infinitesi-
mal phase rotation and transverse translations to the LSs,
one can generate phase and translational neutral eigen-
modes of L̂n. No equivalent procedure is known, how-
ever, for the corresponding eigenmodes of L̂ y

n , and they
can be found only numerically. Note that there is only
one zero eigenvalue corresponding to the phase related
neutral mode and two pairs of zero eigenvalues corre-
sponding to x and y translations. Each of the eigenvalues
corresponding to the translational neutral modes is doubly
degenerate. This is because for d � 0 Eq. (1) acquires
an extra symmetry group, which is the Galilean transfor-
mation: c�r� ! c�r 2 vt�e�i�2�v?r2�1�4�jvj2t. Solvability
conditions at order e1�2 can be satisfied by choosing the
value of n�1� only.

Because the overlap of the tails of the LSs is assumed
to be O�e�, it means that the corresponding equation for
c�2� cannot be split into independent parts corresponding
to the different LSs. Solvability conditions at this order
have been applied to the operator

PN
n�1 L̂n. These condi-

tions not only fix the value of n�2�, but result in a set of
coupled dynamical equations governing evolution of the
coordinates and phases of the interacting LSs:
044101-3
m≠ttRn 1 g�r�≠tRn � =Rn

NX
lfin

G
�r�
nl 1 O�e3�2� , (3)

g�w�≠twn 2 Qj≠tRnj
2 �

NX
lfin

G
�w�
nl 1 O�e3�2� . (4)

Here G
�r,w�
nl � 4p Im�eiwnl 2i arg�k��21F �r,w�

K0�kRnl�� are
functions describing coupling between the LSs, F�r,w�

are constants which can be found from the analysis
of the behavior of the tails of the neutral modes of
L̂n and L̂ y

n , wnl � wn 2 wl , Rnl � jRn 2 Rl j, and
=Rn 	 jx≠Xn 1 jy≠Yn . Also m � O�1� is the constant
characterizing effective mass of a LS, and g�w� � O�1�
and g�r� � O�e1�2� are the phase relaxation and friction
coefficients, which can be calculated only numerically
as scalar products of the neutral eigenmodes of L̂n and
L̂ y

n . The term Qj≠tRnj
2 describes the frequency shift

of an individual LS due to its motion. The existence of
a frequency shift proportional to the square of the LS
velocity can be inferred from the Galilean transformation.
Note that all coefficients in Eqs. (3) and (4) are real
and g�r�jd�0 � 0. For d � O�1�, we get g�r� � O�1�,
≠tRn � O�e�. In this case, the terms proportional to m
and Q have a higher order of smallness than the other
ones and can be neglected.

For the rotating cluster shown in Fig. 1(a), we have
krRnl � 10 ¿ 1; therefore we can with a good accuracy
replace Bessel functions with their asymptotics and find the
solutions of Eqs. (3) and (4) corresponding to the rotating
equilateral triangle in the closed analytical form:

wnJ � 2p�n 2 1��3 1 ñJ t ,

XnJ � �rJ 1 dJ��
p

3 sin�VJt 1 2p�n 2 1��3� ,

YnJ � �rJ 1 dJ��
p

3 cos�VJ t 1 2p�n 2 1��3� .

(5)

Here n � 1, 2, 3 labels the LSs, and ñJ � �21�J 3

e2krrJ �g�w�prJ �21 sin�F�w� 2 F�r� 1 dJ� 1 3Qe22kr rJ 3

cos2dJ�4rJm2g�r�2�21 is the constant frequency shift
induced by the interaction. Index J � 1, 2, 3, 4, . . . is
a positive integer determining the discrete set of the
equilibrium distances rJ 1 dJ between the LSs in the
cluster. Here the rJ are associated directly with the set
of maxima and minima of the function G

�r�
nl . Further, VJ

is the rotation frequency of the cluster characterized by
equilibrium distances rJ 1 dJ:

VJ � ṼJ cos�kidJ� , ṼJ � �21�J 3e2kr rJ

2g�r�r
3�2
J

, (6)

and ṼJ is the rotation frequency calculated for m � Q �
0. When inertia is present, i.e., m fi 0, a centrifugal force
appears and leads to a small increase of the equilibrium dis-
tances between the LSs in the rotating cluster by an amount
dJ. Stationary values of rJ and dJ are obtained solving
two coupled equations: ki�rJ 2 dJ� � pJ 2 F�r� and

ṼJ � g�r� sin�kidJ�
q

g�r� 1 m2Ṽ
2
J . Thus, see also (6),
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FIG. 2. Frequency V (a) and real part of the critical eigenvalue
(b) of the rotating triangular cluster calculated from Eqs. (3)– (6)
for J � 4. Dots show frequency found by the numerical mod-
eling of Eq. (1). Other parameters as Fig. 1.

dJ (as well as the centrifugal force itself) increases with
decreasing effective friction g�r� � O�d�. Let us stress
that frequency of rotation is uniquely determined through
the system parameters. This is in contrast to the spiralling
structures known in the Hamiltonian systems [12,16,17],
where frequency of rotation is a continuously tunable pa-
rameter determined by the value of the angular momentum
integral stored in the initial conditions.

Frequency of rotation decreases with increasing rJ [see
(6)]. This indicates that stronger interaction induces faster
rotation. The rotating triangle shown in Fig. 1(a) corre-
sponds to J � 4 and has r4 1 d4 � 26.7, which is the
closest stable distance we have been able to identify. Com-
parison of the values of V4 given by Eq. (5) with those
obtained by direct numerical modeling of Eq. (1) is pre-
sented in Fig. 2(a). It reveals excellent agreement be-
tween the two. For larger J stable triangles also exist,
but they rotate so slowly that their stability cannot be
practically studied by means of direct numerical model-
ing of Eq. (1). Even values of J correspond to triangles
rotating in the direction of increasing of the total phase
around the cluster center. These triangles can be either
dynamically stable or not. Triangles with J odd rotate
in the direction of phase decrease and are always unsta-
ble. The complete set of the stability conditions, for the
triangular clusters with even J, can be derived by lineariz-
ing Eqs. (3) and (4) near solution (5). However, it is an
extremely cumbersome procedure, which was practically
accomplished using computer algebra. Therefore we pre-
fer to show dependence of the critical eigenvalue gov-
erning stability of the rotating triangular cluster against
diffusion parameter d in Fig. 2(b). One can see that for d
small enough, i.e., when d4 and centrifugal forces are rela-
tively large, the cluster destabilizes. This result was found
to be in excellent agreement with direct numerical mod-
eling of Eq. (1). The onset of the instability leading to
the destruction of the regular spiral structure is shown in
Fig. 1(b). Note that the instability does not affect signifi-
cantly the distance between the LSs, and the final outcome
of this process is transformation of the rotating equilateral
triangle into a uniformly moving isosceles one. Simula-
044101-4
tion of Eq. (1) visualizing this process can be downloaded
from [15], and trajectories calculated from Eqs. (4) and
(5) are shown in Fig. 1(c). Both models demonstrate very
close dynamical behavior, thereby supporting once more
the validity of our asymptotic approach. Existence of a
wide variety of other restless clusters can be derived from
Eqs. (3) and (4). Further studies of those will be the sub-
ject of future research.

In conclusion, we have provided numerical and analyti-
cal evidence for the existence of a distinct class of stable
spiral waves in the 2D cubic-quintic CGLE, which are
formed due to balance between interaction forces binding
three LSs together and a centrifugal force. The latter force
appears due to rotation induced by the quantized vortex
formed through the interference of the tails of the LSs.
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Note added.—After submission of this manuscript,
Ref. [17] describing rotating clusters with central vortices
in the nonlinear Schrödinger equation with saturable type
of nonlinearity has been published. This corresponds to
the Hamiltonian limit of the model considered above.
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