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Two-dimensional clusters of solitary structures in driven optical cavities
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Using analytical and numerical approaches we study clusters of the two-dimensional localized structures of
light excited in the externally driven optical cavities. Stability and instability properties of clusters of two,
three, and four structures are analyzed in detail. We develop a technique for calculation of the expression for
the interaction potential through modified Bessel functions that has applicability going beyond the model under
consideration. Qualitative differences between stability properties of triangular and square structures are found
that emphasize the role of diagonal interactions in the latter.
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I. INTRODUCTION cally [15—-17. The problem of formation of clusters from 2D
. . . . - .. dissipative localized structures has also been addressed in the
Localized structures of light in optical cavities cawtysgeneral context of Swift-Hohenberg modefd7—20,

solitons—have attracted significant attention in recent year oon-diffusi 9212 d vibrated |
This is largely due to some striking experimental observafeaction-diffusion systeml9,21,23, and vibrated granular

tions [1—4] and the variety of complex and interesting non- layers[20,23. In dissipative nonlinear optics, ana!ytical ap-
linear phenomena involved in their stabilifg—7], interac-  Proaches closest to ours have been developed in[RéY.
tion [8—11], and contro[2,3,5,13. The last aspect also gives where an extensive, though qualitative, discussion has been
some hope for potential application of these structures fogiven for 2D clusters of cavity solitons, and in R¢24],
optical processing of information. where pairwise interaction of 2D solitary waves in the com-
Solitons in coherently pumped cavities are typically ex-plex Ginzburg-Landau equation has been considered using a
cited by a localized address pulse of light launched in addiHamiltonian-based approach. Note that more attention has
tion to the sustained pump field2,3,5. The latter is been devoted to interaction of localized structures in 1D
transversely-extended, ideally very broad compared to th&inzburg-Landau-like models,25—28§.
cavity soliton. Therefore, independent solitons can be created For Hamiltonian models, also abundant in nonlinear op-
at arbitrary nonoverlapping address locations. If, howevertics, formation of 2D structures with multiple intensity peaks
they are excited sufficiently close one to another, then theyas been quite an active topic of experimenf9,30 and
exert mutual forces due to overlap of their tails, which typi-theoretical[29,31,33 research. Interpretation of these struc-
cally consist of diffraction ripples under a sechlike envelope tures as bound states of single-hump 2D solitons is to a large
Through these forces, cavity solitons can group themselvesxtent an open topic with the only known analytical results
into geometrical configurations, which will be referred belowrelated to the spiralling of two solitorf83,34.
as clusters Clusters of a different kind can be formed Below we have chosen to consider a prominent model in
through modulational instability of the background field, the theory of intracavity nonlinear optics, which is a two-
where the driving field has a limited beam width, so that itlevel absorbing medium in an optical cavity with photon-
can only support a limited number of cavity solitons. life time long compare to the characteristic times of the me-
A thorough theoretical study of cluster formation in mod- dium itself[5]. After introduction of the governing equations
els with external driving has been done so far only for onedin the next section, we proceed to describe relevant details of
dimensional(1D) cavity solitons[8—11], with relevant ex- the asymptotic behavior of the tails of the 2D cavity solitons
perimental results described in Refd4]. Two other and their neutralGoldston¢ modes. In Sec. IV we develop
experimental papers investigating semiconductor microcavithe theory of existence and stability of clusters and compare
ties[3] and single mirror feedback systgm3] reported ob- its predictions with direct modeling of the dynamical and
servations of two-dimension&2D) clusters posing, thereby, stationary versions of the governing equations, as well as
the problem of generalization of the theoretical results ofwith numerical linear stability analysis of the clusters. We
Refs.[8—11] to the case of two transverse dimensions. analyze a variety of structures, providing detailed coverage
Of course, the most interesting are those 2D clusters thaif the stability properties of clusters of two, three, and four
do not have analogs in the 1D geometry, e.g., trianglesgavity solitons. Let us note here that cavity solitons in the
squares, hexagons. This type of structure has been observetbdel considered below have a minimal number of possible
in optical cavities both experimentalyd,14] and numeri- degrees of freedom, simply their position coordinates in the
transverse plane. 2D clusters of solitary waves having phase
[24,26-28,3band other{10] degrees of freedom are inter-
*Corresponding author. Email address: d.v.skryabin@bath.ac.ukesting subjects not treated in the present work.
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IIl. MODEL EQUATIONS Frtrg, F=(XY), (5)

We consider the mod¢b] and rotations around the origin

HE=iV2E—E

_ 2C
1+i6+ mz

+E (1) ( cosé sinéd ©
r r

— -
—siné co0sé

describing dynamics of the slowly varying amplituef an

electromagnetic wave inside a coherently pumped opticdh the (x,y) plane. Hered=arg(xo+iyo) is an arbitrary

cavity with fast saturable absorber. Hetdés the detuning of ~angle of rotation.

the pump frequency from the cavity resonance, normalized

to the decay time of a photon(2parametrizes the nonlinear Ill. PROPERTIES OF ISOLATED CAVITY SOLITONS

absorption, an, is the(spatially independepaimplitude of

the driving field.t is the time measured in units of the photon

decay time in the empty cavityd=0). We assume that there Equation(3) has multiple families of cavity solitons ex-

is no dispersive contribution to the nonlinear response, whiclsting in the vicinity of the bistability region dg, [5,17]. We

corresponds to that of a two-level atomic medium in whichwill be interested below in the interaction of the simplest,

the detuning of the pump frequency from the atomic reso+adially symmetric, cavity solitonsS=S(r), obeying

nance is zero.Vf is the transverse LaplaciarV |, =j,dy 2 1d

+j,dy . Al 2 = T Bro1g i AT

The spatially homogeneous time-independent solution of D<dr2 i dr) V5= PIOJYs HINTYs], 0

Egs.(1), E=E, serves as a background for localized struc-

tures[5], clusters of which we are going to study. For appro-wherer = \/x>+y? and IZS(I'HOO)HO. In the context of the

priate parameters, including those we will adof; is  cluster formation the behavior of the soliton tails is particu-

unique. It is convenient for us to substitu@=Eq[1 |arly important. Because functioN~O(| ), it becomes

+8(x,y,t)] into Eq.(1). In terms of§, cavity solitons sit on  pegligible at large asS— 0. In this limit, Eq.(7) reduces to

zero backgroundS obeys an explicitly solvable linear problem and the asymptotic be-
) 2 " havior of the tails of a cavity soliton positioned &t 0 is
19;S+V1S=ig(S,5%), given by, cf. Ref[5],

A. Tails of the cavity solitons

QE—(1+i¢9)S+%§ do(r—2)—bBKo(kr) +b* 7B* K (kr), )
2C(1+5) where
C1+[E[A(1+9)(1+SF) @ A_(o 1)
™11 o 9

Introducing the vector functiorg'7=(S,S*)T we rewrite Eq.

2) in a form convenient for our analysis . . . > .
@ 4 is the transposition matrixx and 5 are an eigenvalue and

iﬁt‘Z*‘ I5Vi lZ: PLO]d+iNT lZ]. 3) eigenvector of the generalized eigenvalue prob(&viP)
where P[01B=K?DB (10
R 1 0 . dsg dsxQ with
D= 0o -1l PLy]=i 2g* dsgt | 4

, 2C 2 4C?Ey*
k?= 0+ 1+ (11

22| 2\4 -
We have separated the linear and nonlinear terms on the (1+]|Eol%) (1+]Eol%)

right-hand side of Eq(3): P[0]=P[¢=0] and function Ko andK; (see below are modified Bessel functions of

. - s * T_ ol - . . N
|(N[z,0]—||(g,g ) hP[O] ﬁ T)erlz and é)ellow \:jecttc;]rs n thte zero and first orders, respectivel. and P[0] are 2x2
X.Y) plane are shown Dy Dold Symbols anc other VEClors, ., ;- qq and, therefore, all eigenvalues of EX) are in-
associated with two-component structure of our field are ; *
o cluded in the set-k and+ k*. From Eq.(8) we must choose

marked by arrows. The definitions of the scalarR k>0, | der th tzZ sh in th .

. T * AT e , in order thatys vanish asr—c. In the parameter
products'used below are: for *vectot!sm (U12,U19 range whereS=0 is stable, which is a necessary condition
we define  U;-Uy)=2ReUiU;), then (UilUy)  for the existence of stable cavity solitons, k#0 and,

=[”_dx/”.dy(U;-U,), and for two vectors in thex(y)  therefore, the tail of the soliton is oscillatory. The complex

plane @-b)=a,b,+ab,. constantb has to be found numerically, e.g., by matching of
It is important for the following that Eq(3) is invariant  Eq. (8) with an exact soliton solution of Eq7). This can be
under translations efficiently done using the shooting method, which was intro-
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0.002 \ A~ Hoy="L5, (12
0. . * .
! where
5 - 0.002 ;
1 A1 AY2_iBr
- 0.004 \ L[s]=IDVI—iP[ ] (13
[}
- 0.006 : (O) Applying infinitesimal translationg5) to the cavity soliton
! " ) " " solution we generate two neutrdtranslationa) modes
d L:I(X)=(9)izzs=(xlr)27{(’) and E{<{>faylzs=(y/r)0<r>, with
7 o e o e e U =9,.4. These modes obegi/*Y)=0. Application of
the infinitesimal rotationg6) around the cavity soliton center
. generates zero eigenmod@;i=0, s=arg(x+iy). Note
6.8 . that rotational symmetry becomes broken for clusters, which

are therefore have an extra neutfrltational) mode in their
spectra. The asymptotic behavior of the tails of the neutral

o 6.6f . modes ofZ can be easily obtained using E@) and the
identity d,Kq(r)=—Kq(r).
The neutral mode¥ of the adjoint operator’’, obeying

6.4r T L'Y=0, are required when solvability conditions are applied
[b] to equations appearing at different stages of the asymptotic

expansions performed in Sec. IV. The spectraloand £
6.2 Lot b Do SN are identical, but their eigenmodes are not. The neutral
1.10 1.20 1.30 1.40 1.50 ~t . .
IE, 12 rpodes gfﬁ corfesponglng to the tr:inslatlonal symmetry are
YO =xyOrr yN=ypO/r whereV" has the following
FIG. 1. (a) Potential functionG, describing two cavity soliton asymptotic behavior:
interaction. Minima of this function correspond to stable stationary
two cavity soliton clusters. Dotcrosseson thed axis indicate the
intersoliton distances for stabl@instable clusters calculated nu-
merically using the Newton method. The parameters of(Bgare
C=5.4, =—1.2, and|Ey|?=1.33. This corresponds to=0.565 Hereais a constant coefficient with arbitrary absolute value
—1.232 andab/y=—0.184-0.080 in Eq. (24). (b) First stable  but a fixed phase, which can be found by matching of the
separation distance as a function|B§|? for the two-soliton clus-  zeros of Eq(14) and of the exact neutral modes 6f. A is
ters ¢ andC as above. Dots indicate numerical and full line theo- gn eigenvector of the EVP,
retical results.

VO(r—w)—a* AK} (kr)+ard*Ky(kr). (14

: . . PT0]A=k*?D A. 15
duced in the given context in Rg6]. The phase ob deter- (014 A (19
mines the positions of the zeros of the real and imaginary
parts of the soliton tail. IV. ASYMPTOTIC THEORY OF CLUSTER FORMATION

We start by considering the simplest example of two in-
B. Neutral modes teracting cavity solitons. Once equations for two are derived,
they can be straightforwardly generalized for an arbitrary
number of solitons. We assume that in the leading approxi-
mation the solution of Eq93) can be represented as a su-
?rposition of two independent cavity solitons:

One of the main goals of our asymptotic theory is reduc
tion of the partial differential equatiof8) to a set of ordinary
differential equations for somarder parameters of the inter-
acting solitons. These order parameters are the amplitudes B
those eigenmodes of the cavity soliton spectrum that are I,
most easily excited by perturbations. The latter in our case b= g+ hpt+ E+0O(3?), (16)
come from the overlap of the tails of neighboring solitons.

The dimensionality of the phase space of the reduced proQi; e lz _
lem is determined by the number of critical modes times th sn
number of interacting solitons. To find these modes we nee
to consider the linear EVP associated with an isolated cavit

soliton. ) . . -
, , 5 s vidual solitons. The soliton positions are assumed to be
In order to do this we substitute the ansatz=ys(r)  gowly varying functions of time,R,~ O(e), wheree<1 is
+6y(x,y,t) into Eq.(3) and, disregarding all terms nonlin- a measure of the smallness of the overlap of the soliton tails.
ear in 51,7/, derive Substituting Eq(16) into Eq. (3) we find at ordere

Js([rn]) are the two cavity solitons located at
n=1xXntiyYn, N=12, r,=r—R, and & is a correction

ue to nonlinearity, describing deviations of the two cavity
oliton solution from the linear superposition of the indi-

046606-3



VLADIMIROV, McSLOY, SKRYABIN, AND FIRTH PHYSICAL REVIEW E 65 046606

(c)

—20 A0
= o —1\© <

-20-10 0 10 20 -20-10 0 10 20

X X

FIG. 2. Real part of fields for (a) the N=2 unstable cluster, and its respective neufial (c), (d) and unstablée) modes. Parameters
as in Fig. 1a).

) - absolute value of the solutiolﬁSm is small compared to that

—L of s,. This smallness can be used to make the following
a7 asymptotic estimates:

N A e _ [T
Ll Y1+ hspE= _Ul(r)<a : 07tR1) _UZ(r)(G <R,

where NT o1+ $rs2) = NThon] + (2L rsn — ZL0]) thom™ 0<e3’2>2,1
F= Mgt bl - Nial-Nigl, (19 @)
and{"=1/"(|r,|). Solvability of Eq.(17) requires that its

right-hand side is orthogonal to the neutral modesCdf

which yields T= (L[ fhsnl = LLO]) thsmt O(€¥?) = LL thsn] st O(¥).
(22

and N sml=0(€¥?). Substituting Eq.(21) into Eq. (18)
we get

> N
Y Ry= — < r—”vn(” I> . (19
n

Up to the leading order terniis obviously linear iy,
= () _ (1) o) (%) and, therefore, in the case of more than two solitbiean be
Heria(r) )()r") v (lr““’_ and ) 2y=2(Vy . U7™") estimated as the sum of the right-hand side of @8) over
=(Vn"'|Uy"’)>0. The soliton velocity under a given pertur- m, Using Eq.(22) we calculate all integrals in Eq20) ex-
bation is inversely proportional tg, which plays the role of piicitly (see Appendix for detailsand finally derive equa-
a viscosity coefficient. tions governing the motion dfl interacting cavity solitons

Now we briefly outline the analytical calculation of the
overlap integral§(r,/r,)V"|Z). Let Ry=|R,— R;| be the B
distance between the cavity solitons. Without loss of gener- YRa= _47Tm=%:n +n Rom
ality we can assume that their intensity maxima are located '

at the points {-R,,/2,0) and R24/2,0) lying on thex axis of  From a formal point of view this system of equations is valid
the (x,y) plane. Then the scalar product in the overlap inteproviding that every term on the right-hand side has order of

N
nm

Im[abKy(kRym]. (23

grals can be represented as e. In other words, all cavity solitons should be located at
" " . approximately the same distance from one another. Practi-
<_”1}n f> = <_”]}n j> + <_n]jn f> , (200  cally, however, Eq(23), taking into account only the leading
In In n o \ln m order contributions from all the pairwise interactions, gives a

good approximation for intersoliton distances in a cluster
wherem=1,2, m#n and(|), means that the corresponding even when these distances are significantly different.
integral is calculated over the half-plane {)"x>0. It can be shown that neglecting tk *?) corrections in
If the intensity maximum of the localized solutigh,, lies  Eq.(16) cannot alter stability of a stable cluster. In particular,
in the half-plane £1)"x>0, then, inside this region, the it cannot lead to appearance of extra neutral modes in the
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pair of cavity solitons is independent of any other cavity
solitons present. The net force on a given cavity soliton is
simply the vector sum its interaction forces with every other
soliton. Thus the interaction forces between solitons in an
externally driven cavity obey the same principle of superpo-
sition as, e.g., Coulomb or gravitational forces. Note, how-
ever, that on the left-hand side of E®3) we have the ve-
locity, not the acceleration, of theth soliton, and so the
forces acting between the cavity solitons are Aristotelian
rather than Newtonian.

For |k|R,»>1 the oscillatory nature of the interaction
forces due to the soliton tails becomes obvious from the

approximation

. . . - o |2 : 1
' FIG. 3. Qontour Ilpes of pqtentlal functioB;(l,d) describing KO(kR)=[— e kR-iagl/2 1 4 O _” (25)
isosceles triangles with the sidésl, and d<2l. Dots (crosses 2lk|R kIR
correspond to stabléunstable clusters of three cavity solitons
found by the Newton method. Parameters as in Fig). 1 which gives
cIu'ste'r spectrum. The latter does happen, however, if' some Go N e_Re(k)lecos:—|m(k)R“+¢]
pairwise interactions themselves are neglected, even if they N—7 2 , (26
are relatively weak. Such an example arises in the case of the 17! VRji

stability of four-soliton clusters in Sec. IV C. 3
Equation.(23) can be easily transformed into the gradientWhere — Go=(2/|k[)**(|abl/y)| ~ and  $=arg(ab)

form —(3/4)argk).
We are not aware of any previous work in which the

#Ry=VRg Gy, (24)  interaction potential of 2D localized structures has been ob-
! tained in explicit form based on Bessel functions, see Egs.
(23), (24) and Appendix. Approximations similar to E@5),
are usually applied from the very beginning, when calculat-
ing the asymptotic behavidB) of the soliton tailg18,24.

b N
> Ko(kRy)
k j#l

Gy=2mIm| &
=27Im| —
N y

whereVRn=jann+jyaYn. Thus in our model the tails of any

numberN of cavity solitons create an effective potent@&j
and a system oN scattered solitons will evolve towards a  For two solitons, systen23) can be reduced to separate
state where the solitons’ positions correspond to a minimunequations for the relatived=R;—R,, and absolute, §;

of the potentialGy,. Clearly the interaction between a given +R,)/2, positions, namely,

-20-10 0 10 20 -20-10 0 10 20 -20-10 O 10 20
X x

A. Clusters of two cavity solitons

(b)

FIG. 4. Real part of fieldS for (a) the N=3 unstable cluster, and its respective neutby) (c), (d) and unstablde), (f), (g) modes.
Parameters as in Fig(d.
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. four of the eigenmodes associated with the eigenvalugs of
with largest real parts. Looking for small perturbations of the
0.008 e . equilibria, 9;G,=0, of Egs.(27)—(29) in the form~e' we
AAAAAA find the characteristic polynomial
0.006f e ] N3\ —233G,)=0, (30)
<
2 where three zero roots correspond to the neutral modes. Neu-
0.004 T T tral modes in Figs. ), 2(c) linked to Eq.(29) are transla-
asarsesestitites” tional ones,dy (s + ¥sp) + O(€). The rotational neutral
0.002 I ] mode in Fig. 2d) corresponds to Eq28) and is given by
ds( lZSﬁ J52)+O(e). The only unstable mode;?x(<ZSl
0.000 , , , — ;) +O(e), is shown in Fig. Pe). Its excitation changes
1710 1.20 1.30 1.40 1.50 the distance between the interacting solitons, transforming an

IE 2 unstable cluster into one of the neighboring stable ones.
More generally, any cluster df cavity solitons has B de-

FIG. 5. Growth rates of unstable modes [#&)|? for an N=3
cluster of the type shown in Fig. 4. Triangles, dots, and diamonds,
respectively, denote eigenmodes shown in paf@)<f), and(g) of
Fig. 4.

47 |ab
(71d22(9dG2, Gz(d): ’ylm{kKo(kd)}, (27)

darg(jy-d)+i(jy-d)}=0, (29)
a(Ry+R,)/2=0, (29

whered=|d|. Thus a system of two two-dimensional soli-
tons has four effective degrees of freedom. Three of them are
neutral and only one, which is the distandebetween the
soliton centers, governs possible instability scenarios. A plot
of the functionG, for typical parameters is shown in Fig.
1(a). It indicates that stablgminima of G,(d)] and unstable
clustersimaxima ofG,(d)] alternate with increasind.

To check our theoretical predictions we have prepared
several numerical programs. First, direct modeling of &}.
using the standard split-step approach. Second, a Newton-
method-based program solving E() (able to find both
stable and unstable soliton clusterdhird, an Arnoldi-
method-based36] program that calculates the spectrum of

the operatot’ for stationary solutions found by the Newton
method. Fourth, the already mentioned above high-accuracy
shooting method to calculate the radial profiles of the soli-

tons and neutral modes of the operatdrand Z'. The latter
were used to evaluate the quantitigsa, andb that enter
Egs.(24). In all our numerical calculations we fig=—1.2
andC=5.4.

Dots (crossepin Fig. 1(a) show distances for stablen-
stablg cavity soliton pairs found by the Newton method,
indicating excellent agreement between the numerical and
theoretical predictions. The latter give for the first two stable
distancesl=6.81 andd=11.93 and for the unstable distance
between themd=9.38, for our selected system parameters.

o (©

n/4

/6

/3

n/4

/6

/3

/4 |

/6

(@)

P ——
e \nHmm))]?))))))))))))))

FIG. 6. Potential functiors4(d, @) describing a rhomboid clus-

Figure Xb), showing dependence of the first stable separager with sidesd and angle 2 between the sidega), (b), (c) panels
tion distance V$Ey|?, further facilitates comparison between cover three successive intervals af Dots (crosses indicate the
numerical and theoretical predictions. Figure 2 shows th&table(unstabl¢ clusters calculated numerically using the Newton
numerically computed unstable cluster with=9.38, and  method. Parameters as in Figal
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20 (a)

-20-10 0 10 20 -20-10 0 10 20 -20-10 0 10 20 -20-10 0 10 20
x X X X

FIG. 7. Real part of fiel&for (a) theN=4 unstable cluster, and its respective neutnal(c), (d) and unstablée), (f), (g), (h), (i) modes.
Parameters as in Fig(a.

grees of freedom. Three of those are always neutv  G,. The numerically calculated distancdsand| are only

translational and one rotationaivhile the others can be ei- gjightly different from those corresponding to critical points
ther stable or not. of the theoretical potential given by E(R4). However, we
expect that this discrepancy can be mainly attributed to the
B. Clusters of three cavity solitons errors of the numerical solutions, and to the less extent to the
approximations of the analytical technique.
An arbitrary triangle is stable if it consists of three stable

more cavity solitons the interaction potential is just the sumy, ., ¢,ji10n clusters. This is because only possible transfor-

of pairwise poter_1tials, with the pairs of sqlitons exerting mations of the triangles, different from the symmetry trans-
equal and opposite forces on each other directed along thfe '

line joining them. It follows that for a triangular configura- Grmations(5)—(6), are stretching or shortening of the sides.

tion of three solitons that the only possible stationary Con_Therefore, if all side lengths correspond to stable two-soliton

figurations, i.e., when the total force on each soliton is equa‘i:IUSterS’ then the whole triangle is stable. This can be proved

to zero, are those when each pairwise interaction is exactl{fough linear stability analysis of Eq23) for N=3.
balanced. Simple visual representation of the stability of tri-' "0ugh the general case results in a rather cumbersome ex-
angular clusters is possible when the cluster can be fullpression, it can be handled with a computer algebra package.
characterized by just two geometrica] parameters1 e.g., thwe will see in the next subsection that four-soliton clusters
case of isosceles triangles, with two sides of ledgihd the ~ are qualitatively different from three-soliton ones, because
third side of lengthd. The level lines ofG; for this case are for N=4 diagonal interactions play an important role.

shown in Fig. 3. Stationary triangular clusters are predicted The numerically computed equilateral cluster of three
whered,G,(l) =0 anddyG,(d)=0. The marks in this figure solitons ford=9.38 is shown in Fig. &). It has six degrees
indicate the three-soliton clusters calculated numerically usef freedom, three of which are neutral, see Fig&)44(d).

ing the Newton's method, and again there is very goodThe other three are unstable because all three side interac-
agreement with the extrema &f;. Each of the stable clus- tions are obviously unstable for the chosen distance, see Fig.
ters indicated by dots corresponds closely to a minimum ofl(a). In Fig. 5 we show numerically computed dependencies
the potential functiorG;. Unstable clusters are indicated by of all three unstable eigenvalues vs pump parameter showing
crosses, and each corresponds to a maximum or saddle tifat dominating instability scenario is the dilation transfor-

It is clear from Eqs(23), (24) that for clusters of three or
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AL tion, which arises in this context is whether interaction along

0.0040 F Dnggfig“ ] the diagonals of the square and rhombus are relevant in Eq.
g 2?353""-.. (23) or not. But it is clear that if we disregard interaction
gg!!!liig forces along the diagonals any square is neutrally stable with
0.0030F ] respect to perturbations transforming it into the rhombus

with the same side length. To make a rigid square we need to
take into account both diagonal interactions. For a rhombus
0.0020¢ 1 it is enough to include into Eqg(23) interaction along the
shortest diagonal only.

As for the case of triangles, we present here numerical

Re())

0.0010¢ 1 calculations and qualitative discussion of the stability prop-
erties of rhombuses and squares supported by the level plots
0.0000 19920729009000C800000000, of the potentialG,, see Fig. 6. To parametrize the interaction
1.051.101.151.201.251.301.351.40 potential in this case we use parametérsvhich is the side

IE, 2 length, andx, which is the half angle between the two sides.
5 Stable and unstable clusters calculated numerically by New-
FIG. 8. Growth rates of unstable modes [&)|” for anN=4 41 method are shown by dots and crosses, respectively. De-
square cluster of the type shown in Fig. 7. Dots, diamonds, squaregyie giagonal forces being significant, they are still weaker
and triangles, respectively, denote eigenmodes of the form shown i, , forces acting along the sides. Therefore, the equilibrium
panels(e), (f). (g). and(h), (i) of Fig. 7. distances between neighboring solitons are quite close to
those found from the analysis of side interactions only. De-
grees of freedom corresponding to the transformation of a

eral triangle into one of the stable ones. The eigenmode@ombo'dal cluster into rectangular, trapezoid, or quadrangle

corresponding to the transition to the isosceles triangle, S€f rg'ro'a\éll():'sc% noot fg\ﬂegng ttr:f sFt):lfbt'I!? Elfgt.hg.s:g\/g;g
Fig. 4g), and to a triangle with all sides different, see Fig. - <" Nciusion Wou MY "

A(f), have smaller growth rates throughout the entire regioﬁ@’.h'Ch are minima in Fig. 6. This is because the Ilmlta}tlons of
of existence. ig. 6 are related to degrees of freedom corresponding to the

change of the length of one side with respect to another. The
latter, however, is determined from the pairwise side interac-
tions only. At the same time stability due to degrees of free-

We will focus here on the simplest and most importantdom associated with stretching of the diagonal is taken into
cases of square and rhomboidal clusters. An immediate queaecount through the angte.

mation, see the eigenmode in Figey This mode retains the
shape of the cluster, while transforming the unstable equila

C. Clusters of four and more cavity solitons

-10 -5 O 5 10 —10 -5 O 5 10 -10 -5 O 5 10
X X X

FIG. 9. Evolution of an unstable squa(e. Fig. 7), perturbed by noise at pump valu|?=1.15 (a)—(c) and |Ey|?=1.3 (e)—(q). (a)
t=0, (b) t=350, (c) t=800, (d) t=0, (f) t=140, (g) t=400. Other parameters as in Figall
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explained by the rigidity arguments given above for the tri-
angular and rhomboidal clusters.

A major difference between clusters and patterns is that
the period of a pattern can be continuously varied within a
certain range, when all other parameters of the problem are
fixed, see, e.g., Ref§37,38. We remark that théuniquely
determinedl closest stable distanakof the clusters consid-
ered here, see, e.g., Fig. 1, is within the range of lattice
constants for stable hexagonal patterns found for the same
parameter$38]. Therefore, the potentids seems to be rel-
evant even for large close-packed clusters approaching full
patterns. More detailed analysis of the interplay between ex-
istence and stability of clusters and corresponding patterns
will be the subject of a separate investigation. For earlier
approaches to this problem, see, e.g., Rédgl2,16. Apart
from the clusters discussed above we have been able to form
a rich variety of stable and unstable clusters viith 4, four
examples of which are shown in Fig. 10.

-20-10 0 10 20 —-20-10 O 10 20
X x V. SUMMARY

FIG. 10. Stablda), unstable(b), pentagonal and stable hexago- ~ We have developed asymptotic theory of cluster forma-
nal (c), (d) clusters found through the Newton meth¢stability — tion from two-dimensional localized structures of light ex-
calculated and verified using Arnoldi and split-step method pro-cited in an externally driven optical cavity with nonlinear
grams. |Eq|?=1.3; other parameters as in Figal absorber. It was shown that these structures interact through

forces obeying a linear superposition principle and that they

It is worthwhile to stress that the smallest str;xtionaryca_ln fo_r_m various types of clusters. A tephnlqye, having ap-
square, i.e., withd=6.85 (very close to the first stable dis- plicability beyond the model under consideration, for calcu-

tance found in the pairwise analysis actually unstable. It lation of the interaction potential through modified Bessel

evolves into the rhombus formed by two equilateral trianglesfuncuons’ was developed. The stability and instability prop-

[39]. The instability with respect to stretching of the diagonalert'es of clusters of two, three, and four cavity solitons have

is the only instability of the smallest square. The next squarebeen analyzed in detail using a combination of analytical and

with d=9.42 [see Fig. )] is unstable with respect to all numerical methods. A qualitative difference between the sta-
: 9 . b bility properties of triangular and square structures was iden-
non-neutral degrees of freedom described by (2§). Cor- e . - : .
. . D . tified and discussed, emphasizing the role of diagonal inter-
responding eigenmodes are shown in Figh)77(i) and de-

endencies of the unstable eigenvaluedEx}? are plotted actions in the square cluster.
penc 9 are p Note added in proofWe acknowledge N. N. Rosanov for
in Fig. 8. They are all smaller than the dominant unstable

mode of the corresponding triangle, shown in Fig. 5. Thenotlng that isosceles triangles generally move very slowly

eigenvalues corresponding to the modes depicted in Figéi.nd the(ijr t\)/elohcity iz th(eﬁordelr of” or h:jghte)r, which is not
7(h)—7(i) are degenerate and very small. The three Iarges?apture y the order afanalyses used above.
eigenvalues are quite close in value, and correspond to the

three modes shown in Fig$ef—7(f). Initializing Egs. (1) ACKNOWLEDGMENTS

with the d=9.42 square one can observe any of the three
dominant scenarios of evolution. We find, however, that, in

agreement with our stability analysis, at low values of the IANOS. A.G.V. acknowledges support from the Royal So-
pump the square first evolves towards the square cluster wit

d~6.85, which, being itself unstable, eventually transforms ety. The authors are grateful to G.K. Harkness for collabo-

into a rhombus, see Figs(@®-9(c) and Ref[39]. For higher ration in the initial stages of the work.
pump values, the dominant scenarios are either evolution to-

wards a trapezoidal structure, see Figsl)99(f) or towards APPENDIX

a rectangular one. Selection of either of the latter two was
found to be highly sensitive to the noise level and to the
accuracy of the numerical integration.

This work was largely supported by the UK EPSRC Grant
No. GR/N19830 and partially by ESPRIT project 28235

Using Egs.(22) and(20) we obtain

The square atl=11.93 is stable, which suggests that a = Tnslz) My |2 Tn |7
3 Is stat jests that ¢ lh={ Vs VolZ) +{
stable square pattern with sufficiently large period exists in Mn Mn n \ln m
this system. Note, that clusters of equilateral triangles natu-
rally form hexagons, which are well known to be dominating r
pattern in thig5] and many other dissipative systems exhib- = <—”17n f> +0(¥?)
iting spatial instabilities. Their domination can be in part Tn n
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NS PN 32 ; n|” = Tnas
= I‘_Vn L(Psp) hsm) +0O(€™) Ih~i(—1) dy| dy| ¥sn: r_DVn . (A1)
n n - n x=0
:< j;‘r(,zsn)r_”ﬁn @Sm> Substituting into Eq(A1) the asymptotic$8) and(14), and
fn n using the orthogonality conditions7B-D.4)=(B-D7.A)
w P ) =0, we get
+i£wdyfndx (ﬁVWDVfwsm)
o r
ot Inwi(—l)”abf dy[ax<—nK0(krn)K1(krn)” —c.c.
_(‘//sm' 'DVf I’_Vn) +O(€3/2) - fn x=0
n
nm,
) rn_) R R :47TR |m[abK1(kan)]
:_i(_l)nf dy[(rvn’pax¢sm) nm
o " ab
I =—4mVg Im < -Ko(kRym) |,
_(‘ﬁsm' D’?xr_vn) +O(63/2)1
n x=0

, " where R,n=R,— R, and R,,=|R,m and n,m=1,2, m
with n,m=12, m#n, [idx=/2.dx and [odx=/gdX. . Here we have used the relation
Here we have used Green’s theorem to transform the integral
over the halfplane £ 1)"x>0 into an integral over thg
axis. Since the intensity maxima of the two cavity solitons * r

f ) f [@(ﬁKo(krn)Kl(krn)”

are located symmetrically on theaxis with respect to its _wdy
Origjn we have Oxismx=0=—(Ix¥sn)x=0 and smx=o R
= (s x=0- Using these relations the overlap intedratan =—2m(—1)" anl(kan)-

be rewritten as nm

x=0

[1] M. Saffman, D. Montgomery, and D.Z. Anderson, Opt. Lett. (1990; N.N. Rosanov, Prog. Op85, 1 (1996.

19, 518(1994. [16] N. N. Rozanov,Optical Bistability and Hysteresis in Distrib-
[2] V.B. Taranenko, K. Staliunas, and C.O. Weiss, Phys. Rev. A uted Nonlinear Systeni{dlauka, Moscow, 1997 Chap. 4.

56, 1582(1997; K. Staliunas, V.B. Taranenko, G. Slekys, R. [17] M. Tlidi, P. Mandel, and R. Lefever, Phys. Rev. Lei8, 640

Viselga, and C.O. Weisshid. 57, 599 (1998. (1994.
[3] V.B. Taranenko, I. Ganne, R.J. Kuszelewicz, and C.O. Weiss|[18] |.S. Aranson, K.A. Gorshkov, A.S. Lomov, and M.l. Rabinov-
Phys. Rev. A61, 063818(2000. ich, Physica D43, 435(1990.
[4] S. Barland, M. Giudici, J. R. Tredicce, L. Spinelli, G. Tissoni, [19] P. Coullet, C. Riera, and C. Tresser, Phys. Rev. 18t.3069
L. A. Lugiato, and M. BrambillaNonlinear Guided Waves and (2000.
Their Applications OSA Technical DigestOptical Society of  [20] C. Crawford and H. Riecke, Physica I29 83 (1999.
America, Washington, D.C., 2001pp. 2—4. [21] C.P. Schenk, P. Schey M. Bode, and H.-G. Purwins, Phys.
[5] W.J. Firth and A.J. Scroggie, Phys. Rev. L&, 1623(1996. Rev. E57, 6480(1998.
[6] W.J. Firth, A. Lord, and A.J. Scroggie, Phys. St67, 12 [22] Yu.A. Astrov and Yu.A. Logvin, Phys. Rev. Let#79, 2983
(1996. (1997.
[7] D.V. Skryabin, Phys. Rev. BEO, R3508(1999. [23] P. Umbanhowar, F. Melo, and H. Swinney, Natt®ndon
[8] S. Longhi, Phys. Rev. B3, 5520(1996); 55, 1060(1997. 382 793(1996.
[9] I.V. Barashenkov, Y.S. Smirnov, and N.V. Alexeeva, Phys. Rev[24] B.A. Malomed, Phys. Rev. B8, 7928(1998.
E 57, 2350(1998. [25] B.A. Malomed, Phys. Rev. A4, 6954(1991).
[10] D.V. Skryabin and W.J. Firth, Opt. Let24, 1056(1999. [26] V.V. Afanasjev, B.A. Malomed, and P.L. Chu, Phys. Re\b&
[11] T. Maggipinto, M. Brambilla, G.K. Harkness, and W.J. Firth, 6020(1997).
Phys. Rev. B62, 8726(2000. [27] N.N. Akhmediev, A. Ankiewicz, and J.M. Soto-Crespo, Phys.
[12] M. Brambilla, L.A. Lugiato, and M. Stefani, Europhys. Lett. Rev. Lett. 79, 4047 (1997; J.M. Soto-Crespo and N.N.
34, 109 (1996. Akhmediev, J. Opt. Soc. Am. B6, 674(1999.
[13] B. Schaers, M. Feldmann, T. Ackemann, and W. Lange, Phys[28] A.G. Vladimirov, G.V. Khodova, and N.N. Rosanov, Phys.
Rev. Lett.85, 748(2000. Rev. E63, 056607(2001).
[14] M. Saffman(private communication [29] A.V. Mamaeyv, A.A. Zozulya, V.K. Mezentsev, D.Z. Anderson,
[15] N.N. Rosanov and G.V. Khodova, J. Opt. Soc. Am7,8L057 and M. Saffman, Phys. Rev. 36, R1110(1997.

046606-10



TWO-DIMENSIONAL CLUSTERS OF SOLITARY ... PHYSICAL REVIEW B5 046606

[30] W. Krolikowski, E.A. Ostrovskaya, C. Weilnau, M. Geisser, G. Lett. 84, 463(2000.
McCarthy, Y.S. Kivshar, C. Denz, and B. Luther-Davies, Phys.[36] R. B. Lehoucq, D. C. Sorensen, and C. Ya®plutions of
Rev. Lett.85, 1424(2000. Large Scale Eigenvalue Problems with Implicitly Restarted Ar-

[31] M. Soljacic, S. Sears, and M. Segev, Phys. Rev. 184it4851 noldi Methods (Rice University, Houston, 1997 http://
(1998. www.caam.rice.edu/software/ARPACK/

[32] A.S. Desyatnikov and Y.S. Kivshar, Phys. Rev. Le, [37] P.K. Jakobsen, J. Lega, Q. Feng, M. Staley, J.V. Moloney, and
033901(2002). A.C. Newell, Phys. Rev. A9, 4189(1994.

[33] A.V. Buryak, Y.S. Kivshar, M.F. Shih, and M. Segev, Phys. [38] G. K. Harkness, W. J. Firth, and G.-L. Oppo, International
Rev. Lett.82, 81 (1999. Quantum Electronics Conference, Nice, 2000, Conference Di-

[34] J. Schjodt-Eriksen, M.R. Schmidt, J.J. Rasmussen, P.L. Chris-  gest(IEEE Catalog No. 00TH8504p. 47.
tiansen, Y.B. Gaididei, and L. Berge, Phys. Lett2A6, 423 [39] Movies in the mpg format visualizing dynamics of clusters can
(1998. be downloaded from http://staff.bath.ac.uk/pysdvs/ and http://
[35] D.V. Skryabin, A.R. Champneys, and W.J. Firth, Phys. Rev. cngo.phys.strath.ac.uk/movies/

046606-11



