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Two-dimensional clusters of solitary structures in driven optical cavities
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Using analytical and numerical approaches we study clusters of the two-dimensional localized structures of
light excited in the externally driven optical cavities. Stability and instability properties of clusters of two,
three, and four structures are analyzed in detail. We develop a technique for calculation of the expression for
the interaction potential through modified Bessel functions that has applicability going beyond the model under
consideration. Qualitative differences between stability properties of triangular and square structures are found
that emphasize the role of diagonal interactions in the latter.
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I. INTRODUCTION

Localized structures of light in optical cavities—cavi
solitons—have attracted significant attention in recent ye
This is largely due to some striking experimental obser
tions @1–4# and the variety of complex and interesting no
linear phenomena involved in their stability@5–7#, interac-
tion @8–11#, and control@2,3,5,12#. The last aspect also give
some hope for potential application of these structures
optical processing of information.

Solitons in coherently pumped cavities are typically e
cited by a localized address pulse of light launched in ad
tion to the sustained pump field@2,3,5#. The latter is
transversely-extended, ideally very broad compared to
cavity soliton. Therefore, independent solitons can be cre
at arbitrary nonoverlapping address locations. If, howev
they are excited sufficiently close one to another, then t
exert mutual forces due to overlap of their tails, which ty
cally consist of diffraction ripples under a sechlike envelo
Through these forces, cavity solitons can group themse
into geometrical configurations, which will be referred belo
as clusters. Clusters of a different kind can be forme
through modulational instability of the background fiel
where the driving field has a limited beam width, so tha
can only support a limited number of cavity solitons.

A thorough theoretical study of cluster formation in mo
els with external driving has been done so far only for o
dimensional~1D! cavity solitons@8–11#, with relevant ex-
perimental results described in Ref.@4#. Two other
experimental papers investigating semiconductor microc
ties @3# and single mirror feedback system@13# reported ob-
servations of two-dimensional~2D! clusters posing, thereby
the problem of generalization of the theoretical results
Refs.@8–11# to the case of two transverse dimensions.

Of course, the most interesting are those 2D clusters
do not have analogs in the 1D geometry, e.g., triang
squares, hexagons. This type of structure has been obse
in optical cavities both experimentally@3,14# and numeri-
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cally @15–17#. The problem of formation of clusters from 2D
dissipative localized structures has also been addressed i
general context of Swift-Hohenberg models@17–20#,
reaction-diffusion systems@19,21,22#, and vibrated granular
layers@20,23#. In dissipative nonlinear optics, analytical a
proaches closest to ours have been developed in Ref.@16#,
where an extensive, though qualitative, discussion has b
given for 2D clusters of cavity solitons, and in Ref.@24#,
where pairwise interaction of 2D solitary waves in the co
plex Ginzburg-Landau equation has been considered usi
Hamiltonian-based approach. Note that more attention
been devoted to interaction of localized structures in
Ginzburg-Landau-like models@8,25–28#.

For Hamiltonian models, also abundant in nonlinear o
tics, formation of 2D structures with multiple intensity pea
has been quite an active topic of experimental@29,30# and
theoretical@29,31,32# research. Interpretation of these stru
tures as bound states of single-hump 2D solitons is to a la
extent an open topic with the only known analytical resu
related to the spiralling of two solitons@33,34#.

Below we have chosen to consider a prominent mode
the theory of intracavity nonlinear optics, which is a tw
level absorbing medium in an optical cavity with photo
life time long compare to the characteristic times of the m
dium itself @5#. After introduction of the governing equation
in the next section, we proceed to describe relevant detai
the asymptotic behavior of the tails of the 2D cavity solito
and their neutral~Goldstone! modes. In Sec. IV we develop
the theory of existence and stability of clusters and comp
its predictions with direct modeling of the dynamical an
stationary versions of the governing equations, as well
with numerical linear stability analysis of the clusters. W
analyze a variety of structures, providing detailed covera
of the stability properties of clusters of two, three, and fo
cavity solitons. Let us note here that cavity solitons in t
model considered below have a minimal number of poss
degrees of freedom, simply their position coordinates in
transverse plane. 2D clusters of solitary waves having ph
@24,26–28,35# and other@10# degrees of freedom are inte
esting subjects not treated in the present work.k
©2002 The American Physical Society06-1
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II. MODEL EQUATIONS

We consider the model@5#

] tE5 i“'
2 E2EF11 iu1

2C

11uEu2G1EI ~1!

describing dynamics of the slowly varying amplitudeE of an
electromagnetic wave inside a coherently pumped opt
cavity with fast saturable absorber. Hereu is the detuning of
the pump frequency from the cavity resonance, normali
to the decay time of a photon, 2C parametrizes the nonlinea
absorption, andEI is the~spatially independent! amplitude of
the driving field.t is the time measured in units of the photo
decay time in the empty cavity (C50). We assume that ther
is no dispersive contribution to the nonlinear response, wh
corresponds to that of a two-level atomic medium in wh
the detuning of the pump frequency from the atomic re
nance is zero.“'

2 is the transverse Laplacian:“'5 j x]x

1 j y]y .
The spatially homogeneous time-independent solution

Eqs.~1!, E5E0, serves as a background for localized stru
tures@5#, clusters of which we are going to study. For app
priate parameters, including those we will adopt,E0 is
unique. It is convenient for us to substituteE5E0@1
1S(x,y,t)# into Eq. ~1!. In terms ofS, cavity solitons sit on
zero background.S obeys

i ] tS1“'
2 S5 ig~S,S* !,

g[2~11 iu!S1
2C

11uE0u2

2
2C~11S!

11uE0u2~11S!~11S* !
. ~2!

Introducing the vector functioncW 5(S,S* )T we rewrite Eq.
~2! in a form convenient for our analysis

i ] tcW 1D̂“'
2 cW 5 P̂@0#cW 1 iNW @cW #, ~3!

where

D̂5F1 0

0 21G , P̂@cW #5 i F ]Sg ]S* g

]Sg* ]S* g* G . ~4!

We have separated the linear and nonlinear terms on
right-hand side of Eq.~3!: P̂@0#[ P̂@cW 50W # and function
iNW @cW #5 i (g,g* )T2 P̂@0#cW . Here and below vectors in th
(x,y) plane are shown by bold symbols and other vect
associated with two-component structure of our field
marked by arrows. The definitions of the sca
products used below are: for vectorsUW 1,25(U1,2,U1,2* )T,

we define (UW 1•UW 2)[2 Re(U1* U2), then ^UW 1uUW 2&
[*2`

` dx*2`
` dy(UW 1•UW 2), and for two vectors in the (x,y)

plane (a•b)[axbx1ayby .
It is important for the following that Eq.~3! is invariant

under translations
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r→r1r0 , r5~x,y!, ~5!

and rotations around the origin

r→S cosd sind

2sind cosd D r ~6!

in the (x,y) plane. Hered5arg(x01 iy0) is an arbitrary
angle of rotation.

III. PROPERTIES OF ISOLATED CAVITY SOLITONS

A. Tails of the cavity solitons

Equation~3! has multiple families of cavity solitons ex
isting in the vicinity of the bistability region ofE0 @5,17#. We
will be interested below in the interaction of the simple
radially symmetric, cavity solitons,S5Ss(r ), obeying

D̂S d2

dr2 1
1

r

d

dr DcW s5 P̂@0#cW s1 iNW @cW s#, ~7!

wherer 5Ax21y2 andcW s(r→`)→0. In the context of the
cluster formation the behavior of the soliton tails is partic
larly important. Because functionNW ;O(ucW su2), it becomes
negligible at larger asS→0. In this limit, Eq.~7! reduces to
an explicitly solvable linear problem and the asymptotic b
havior of the tails of a cavity soliton positioned atr50 is
given by, cf. Ref.@5#,

cW s~r→`!→bBW K0~kr !1b* t̂BW * K0* ~kr !, ~8!

where

t̂5S 0 1

1 0D ~9!

is the transposition matrix,k and BW are an eigenvalue an
eigenvector of the generalized eigenvalue problem~EVP!

P̂@0#BW 5k2D̂BW ~10!

with

k25u6 iAS 11
2C

~11uE0u2!2D 2

2
4C2uE0u4

~11uE0u2!4 . ~11!

K0 and K1 ~see below! are modified Bessel functions o
zero and first orders, respectively.D̂ and P̂@0# are 232
matrices and, therefore, all eigenvalues of Eq.~10! are in-
cluded in the set6k and6k* . From Eq.~8! we must choose
Rek.0, in order thatcW s vanish asr→`. In the parameter
range whereS50 is stable, which is a necessary conditio
for the existence of stable cavity solitons, ImkÞ0 and,
therefore, the tail of the soliton is oscillatory. The compl
constantb has to be found numerically, e.g., by matching
Eq. ~8! with an exact soliton solution of Eq.~7!. This can be
efficiently done using the shooting method, which was int
6-2
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TWO-DIMENSIONAL CLUSTERS OF SOLITARY . . . PHYSICAL REVIEW E65 046606
duced in the given context in Ref.@5#. The phase ofb deter-
mines the positions of the zeros of the real and imagin
parts of the soliton tail.

B. Neutral modes

One of the main goals of our asymptotic theory is red
tion of the partial differential equation~3! to a set of ordinary
differential equations for someorder parameters of the inter
acting solitons. These order parameters are the amplitude
those eigenmodes of the cavity soliton spectrum that
most easily excited by perturbations. The latter in our c
come from the overlap of the tails of neighboring soliton
The dimensionality of the phase space of the reduced p
lem is determined by the number of critical modes times
number of interacting solitons. To find these modes we n
to consider the linear EVP associated with an isolated ca
soliton.

In order to do this we substitute the ansatzcW 5cW s(r )
1dcW (x,y,t) into Eq. ~3! and, disregarding all terms nonlin
ear indcW , derive

FIG. 1. ~a! Potential functionG2 describing two cavity soliton
interaction. Minima of this function correspond to stable station
two cavity soliton clusters. Dots~crosses! on thed axis indicate the
intersoliton distances for stable~unstable! clusters calculated nu
merically using the Newton method. The parameters of Eq.~2! are
C55.4, u521.2, anduE0u251.33. This corresponds tok50.565
21.232i and ab/g520.18420.080i in Eq. ~24!. ~b! First stable
separation distance as a function ofuE0u2 for the two-soliton clus-
tersu andC as above. Dots indicate numerical and full line the
retical results.
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] tdcW5L̂dcW , ~12!

where

L̂@cW s#5 iD̂“'
2 2 i P̂@cW s#. ~13!

Applying infinitesimal translations~5! to the cavity soliton
solution we generate two neutral~translational! modes
UW (x)5]xcW s5(x/r )UW (r ) and UW (y)5]ycW s5(y/r )UW (r ), with
UW (r )5] rcW s . These modes obeyL̂UW (x,y)50. Application of
the infinitesimal rotations~6! around the cavity soliton cente
generates zero eigenmode:]dcW s50, d5arg(x1 iy). Note
that rotational symmetry becomes broken for clusters, wh
are therefore have an extra neutral~rotational! mode in their
spectra. The asymptotic behavior of the tails of the neu
modes ofL̂ can be easily obtained using Eq.~8! and the
identity ] rK0(r )52K1(r ).

The neutral modesVW of the adjoint operatorL̂†, obeying
L̂†VW50, are required when solvability conditions are appli
to equations appearing at different stages of the asymp
expansions performed in Sec. IV. The spectra ofL̂ and L̂†

are identical, but their eigenmodes are not. The neu
modes ofL̂† corresponding to the translational symmetry a
VW (x)5xVW (r )/r , VW (y)5yVW (r )/r , whereVW (r ) has the following
asymptotic behavior:

VW (r )~r→`!→a* AW K1* ~kr !1at̂AW * K1~kr !. ~14!

Herea is a constant coefficient with arbitrary absolute val
but a fixed phase, which can be found by matching of
zeros of Eq.~14! and of the exact neutral modes ofL̂†. AW is
an eigenvector of the EVP,

P̂†@0#AW 5k* 2D̂AW . ~15!

IV. ASYMPTOTIC THEORY OF CLUSTER FORMATION

We start by considering the simplest example of two
teracting cavity solitons. Once equations for two are deriv
they can be straightforwardly generalized for an arbitra
number of solitons. We assume that in the leading appro
mation the solution of Eqs.~3! can be represented as a s
perposition of two independent cavity solitons:

cW 5cW s11cW s21EW1O~e3/2!, ~16!

where cW sn5cW s(urnu) are the two cavity solitons located a
Rn5 j xXn1 j yYn , n51,2, rn5r2Rn and EW is a correction
due to nonlinearity, describing deviations of the two cav
soliton solution from the linear superposition of the ind
vidual solitons. The soliton positions are assumed to
slowly varying functions of time] tRn;O(e), wheree!1 is
a measure of the smallness of the overlap of the soliton ta

Substituting Eq.~16! into Eq. ~3! we find at ordere

y

6-3
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FIG. 2. Real part of fieldS for ~a! the N52 unstable cluster, and its respective neutral~b!, ~c!, ~d! and unstable~e! modes. Parameter
as in Fig. 1~a!.
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L̂@cW s11cW s2#EW52UW 1
(r )S r1

r 1
•] tR1D2UW 2

(r )S r2

r 2
•] tR2D2IW,

~17!

where

IW5NW @cW s11cW s2#2NW @cW s1#2NW @cW s2#, ~18!

andUW n
(r )5UW (r )(urnu). Solvability of Eq.~17! requires that its

right-hand side is orthogonal to the neutral modes ofL̂†,
which yields

g] tRn52 K rn

r n
VW n

(r )UIWL . ~19!

Here VW n
(r )5VW (r )(urnu), and 2g52^VW n

(x,y)uUW n
(x,y)&

5^VW n
(r )uUW n

(r )&.0. The soliton velocity under a given pertu
bation is inversely proportional tog, which plays the role of
a viscosity coefficient.

Now we briefly outline the analytical calculation of th
overlap integralŝ(rn /r n)VW n

(r )uIW &. Let R215uR22R1u be the
distance between the cavity solitons. Without loss of gen
ality we can assume that their intensity maxima are loca
at the points (2R21/2,0) and (R21/2,0) lying on thex axis of
the (x,y) plane. Then the scalar product in the overlap in
grals can be represented as

K rn

r n
VW nUIWL 5 K rn

r n
VW nUIWL

n

1 K rn

r n
VW nUIWL

m

, ~20!

wherem51,2, mÞn and^u&n means that the correspondin
integral is calculated over the half-plane (21)nx.0.

If the intensity maximum of the localized solutioncW sn lies
in the half-plane (21)nx.0, then, inside this region, th
04660
r-
d

-

absolute value of the solutioncW sm is small compared to tha
of cW sn . This smallness can be used to make the follow
asymptotic estimates:

NW @cW s11cW s2#5NW @cW sn#1~L̂@cW sn#2L̂@0# !cW sm1O~e3/2!,
~21!

and NW @cW sm#5O(e3/2). Substituting Eq.~21! into Eq. ~18!
we get

IW5~L̂@cW sn#2L̂@0# !cW sm1O~e3/2!5L̂@cW sn#cW sm1O~e3/2!.
~22!

Up to the leading order termsIW is obviously linear incW sm

and, therefore, in the case of more than two solitonsIW can be
estimated as the sum of the right-hand side of Eq.~22! over
m. Using Eq.~22! we calculate all integrals in Eq.~20! ex-
plicitly ~see Appendix for details! and finally derive equa-
tions governing the motion ofN interacting cavity solitons

g] tRn524p (
m51,mÞn

N Rnm

Rnm
Im@abK1~kRnm!#. ~23!

From a formal point of view this system of equations is va
providing that every term on the right-hand side has orde
e. In other words, all cavity solitons should be located
approximately the same distance from one another. Pra
cally, however, Eq.~23!, taking into account only the leadin
order contributions from all the pairwise interactions, give
good approximation for intersoliton distances in a clus
even when these distances are significantly different.

It can be shown that neglecting theO(e3/2) corrections in
Eq. ~16! cannot alter stability of a stable cluster. In particula
it cannot lead to appearance of extra neutral modes in
6-4
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TWO-DIMENSIONAL CLUSTERS OF SOLITARY . . . PHYSICAL REVIEW E65 046606
cluster spectrum. The latter does happen, however, if s
pairwise interactions themselves are neglected, even if
are relatively weak. Such an example arises in the case o
stability of four-soliton clusters in Sec. IV C.

Equation.~23! can be easily transformed into the gradie
form

] tRn5“Rn
GN , ~24!

GN52p ImFab

gk (
j Þ l

N

K0~kRjl !G ,

where“Rn
5 j x]Xn

1 j y]Yn
. Thus in our model the tails of an

numberN of cavity solitons create an effective potentialGN
and a system ofN scattered solitons will evolve towards
state where the solitons’ positions correspond to a minim
of the potentialGN . Clearly the interaction between a give

FIG. 3. Contour lines of potential functionG3( l ,d) describing
isosceles triangles with the sidesl, l, and d,2l . Dots ~crosses!
correspond to stable~unstable! clusters of three cavity soliton
found by the Newton method. Parameters as in Fig. 1~a!.
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pair of cavity solitons is independent of any other cav
solitons present. The net force on a given cavity soliton
simply the vector sum its interaction forces with every oth
soliton. Thus the interaction forces between solitons in
externally driven cavity obey the same principle of superp
sition as, e.g., Coulomb or gravitational forces. Note, ho
ever, that on the left-hand side of Eq.~23! we have the ve-
locity, not the acceleration, of thenth soliton, and so the
forces acting between the cavity solitons are Aristotel
rather than Newtonian.

For ukuRnm@1 the oscillatory nature of the interactio
forces due to the soliton tails becomes obvious from
approximation

K0~kR!.F p

2ukuRG1/2

e2kR2 i arg(k)/2F11OS 1

ukuRD G , ~25!

which gives

GN5
G0

2 (
j Þ l

N
e2Re(k)Rjl cos@2Im~k!Rjl 1f#

ARjl

, ~26!

where G05(2p/uku)3/2(uabu/g)u and f5arg(ab)
2(3/4)arg(k).

We are not aware of any previous work in which th
interaction potential of 2D localized structures has been
tained in explicit form based on Bessel functions, see E
~23!, ~24! and Appendix. Approximations similar to Eq.~25!,
are usually applied from the very beginning, when calcul
ing the asymptotic behavior~8! of the soliton tails@18,24#.

A. Clusters of two cavity solitons

For two solitons, system~23! can be reduced to separa
equations for the relative,d5R12R2, and absolute, (R1
1R2)/2, positions, namely,
FIG. 4. Real part of fieldS for ~a! the N53 unstable cluster, and its respective neutral~b!, ~c!, ~d! and unstable~e!, ~f!, ~g! modes.
Parameters as in Fig. 1~a!.
6-5



li-
a

plo
.

re

to

o
n
ra
ol

d,
an
bl
e
rs
ra
n
th

f
he

eu-

an
es.

d

-

on

VLADIMIROV, McSLOY, SKRYABIN, AND FIRTH PHYSICAL REVIEW E 65 046606
] td52]dG2 , G2~d!5
4p

g
ImFab

k
K0~kd!G , ~27!

] targ$~ j x•d!1 i ~ j y•d!%50, ~28!

] t~R11R2!/250, ~29!

whered5udu. Thus a system of two two-dimensional so
tons has four effective degrees of freedom. Three of them
neutral and only one, which is the distanced between the
soliton centers, governs possible instability scenarios. A
of the functionG2 for typical parameters is shown in Fig
1~a!. It indicates that stable@minima of G2(d)# and unstable
clusters@maxima ofG2(d)# alternate with increasingd.

To check our theoretical predictions we have prepa
several numerical programs. First, direct modeling of Eq.~2!
using the standard split-step approach. Second, a New
method-based program solving Eq.~7! ~able to find both
stable and unstable soliton clusters!. Third, an Arnoldi-
method-based@36# program that calculates the spectrum
the operatorL̂ for stationary solutions found by the Newto
method. Fourth, the already mentioned above high-accu
shooting method to calculate the radial profiles of the s
tons and neutral modes of the operatorsL̂ andL̂†. The latter
were used to evaluate the quantitiesg, a, and b that enter
Eqs.~24!. In all our numerical calculations we fixu521.2
andC55.4.

Dots ~crosses! in Fig. 1~a! show distances for stable~un-
stable! cavity soliton pairs found by the Newton metho
indicating excellent agreement between the numerical
theoretical predictions. The latter give for the first two sta
distancesd.6.81 andd.11.93 and for the unstable distanc
between themd.9.38, for our selected system paramete
Figure 1~b!, showing dependence of the first stable sepa
tion distance vsuE0u2, further facilitates comparison betwee
numerical and theoretical predictions. Figure 2 shows
numerically computed unstable cluster withd.9.38, and

FIG. 5. Growth rates of unstable modes vsuE0u2 for an N53
cluster of the type shown in Fig. 4. Triangles, dots, and diamon
respectively, denote eigenmodes shown in panels~e!, ~f!, and~g! of
Fig. 4.
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four of the eigenmodes associated with the eigenvalues oL̂
with largest real parts. Looking for small perturbations of t
equilibria,]dG250, of Eqs.~27!–~29! in the form;elt we
find the characteristic polynomial

l3~l22]d
2G2!50, ~30!

where three zero roots correspond to the neutral modes. N
tral modes in Figs. 2~b!, 2~c! linked to Eq.~29! are transla-
tional ones,]x,y(cW s11cW s2)1O(e). The rotational neutral
mode in Fig. 2~d! corresponds to Eq.~28! and is given by
]d(cW s11cW s2)1O(e). The only unstable mode,]x(cW s1

2cW s2)1O(e), is shown in Fig. 2~e!. Its excitation changes
the distance between the interacting solitons, transforming
unstable cluster into one of the neighboring stable on
More generally, any cluster ofN cavity solitons has 2N de-

s,

FIG. 6. Potential functionG4(d,a) describing a rhomboid clus
ter with sidesd and angle 2a between the sides.~a!, ~b!, ~c! panels
cover three successive intervals ofd. Dots ~crosses! indicate the
stable~unstable! clusters calculated numerically using the Newt
method. Parameters as in Fig. 1~a!.
6-6
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FIG. 7. Real part of fieldS for ~a! theN54 unstable cluster, and its respective neutral~b!, ~c!, ~d! and unstable~e!, ~f!, ~g!, ~h!, ~i! modes.
Parameters as in Fig. 1~a!.
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grees of freedom. Three of those are always neutral~two
translational and one rotational!, while the others can be ei
ther stable or not.

B. Clusters of three cavity solitons

It is clear from Eqs.~23!, ~24! that for clusters of three o
more cavity solitons the interaction potential is just the s
of pairwise potentials, with the pairs of solitons exerti
equal and opposite forces on each other directed along
line joining them. It follows that for a triangular configura
tion of three solitons that the only possible stationary c
figurations, i.e., when the total force on each soliton is eq
to zero, are those when each pairwise interaction is exa
balanced. Simple visual representation of the stability of
angular clusters is possible when the cluster can be f
characterized by just two geometrical parameters, e.g.,
case of isosceles triangles, with two sides of lengthl and the
third side of lengthd. The level lines ofG3 for this case are
shown in Fig. 3. Stationary triangular clusters are predic
where] lG2( l )50 and]dG2(d)50. The marks in this figure
indicate the three-soliton clusters calculated numerically
ing the Newton’s method, and again there is very go
agreement with the extrema ofG3. Each of the stable clus
ters indicated by dots corresponds closely to a minimum
the potential functionG3. Unstable clusters are indicated b
crosses, and each corresponds to a maximum or sadd
04660
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of

G3. The numerically calculated distancesd and l are only
slightly different from those corresponding to critical poin
of the theoretical potential given by Eq.~24!. However, we
expect that this discrepancy can be mainly attributed to
errors of the numerical solutions, and to the less extent to
approximations of the analytical technique.

An arbitrary triangle is stable if it consists of three stab
two-soliton clusters. This is because only possible trans
mations of the triangles, different from the symmetry tran
formations~5!–~6!, are stretching or shortening of the side
Therefore, if all side lengths correspond to stable two-soli
clusters, then the whole triangle is stable. This can be pro
through linear stability analysis of Eq.~23! for N53.
Though the general case results in a rather cumbersome
pression, it can be handled with a computer algebra pack
We will see in the next subsection that four-soliton clust
are qualitatively different from three-soliton ones, becau
for N54 diagonal interactions play an important role.

The numerically computed equilateral cluster of thr
solitons ford.9.38 is shown in Fig. 4~a!. It has six degrees
of freedom, three of which are neutral, see Figs. 4~b!–4~d!.
The other three are unstable because all three side inte
tions are obviously unstable for the chosen distance, see
1~a!. In Fig. 5 we show numerically computed dependenc
of all three unstable eigenvalues vs pump parameter show
that dominating instability scenario is the dilation transfo
6-7
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mation, see the eigenmode in Fig. 4~e!. This mode retains the
shape of the cluster, while transforming the unstable equ
eral triangle into one of the stable ones. The eigenmo
corresponding to the transition to the isosceles triangle,
Fig. 4~g!, and to a triangle with all sides different, see F
4~f!, have smaller growth rates throughout the entire reg
of existence.

C. Clusters of four and more cavity solitons

We will focus here on the simplest and most importa
cases of square and rhomboidal clusters. An immediate q

FIG. 8. Growth rates of unstable modes vsuE0u2 for an N54
square cluster of the type shown in Fig. 7. Dots, diamonds, squa
and triangles, respectively, denote eigenmodes of the form show
panels~e!, ~f!, ~g!, and~h!, ~i! of Fig. 7.
04660
t-
es
ee
.
n

t
s-

tion, which arises in this context is whether interaction alo
the diagonals of the square and rhombus are relevant in
~23! or not. But it is clear that if we disregard interactio
forces along the diagonals any square is neutrally stable
respect to perturbations transforming it into the rhomb
with the same side length. To make a rigid square we nee
take into account both diagonal interactions. For a rhom
it is enough to include into Eq.~23! interaction along the
shortest diagonal only.

As for the case of triangles, we present here numer
calculations and qualitative discussion of the stability pro
erties of rhombuses and squares supported by the level
of the potentialG4, see Fig. 6. To parametrize the interactio
potential in this case we use parametersd, which is the side
length, anda, which is the half angle between the two side
Stable and unstable clusters calculated numerically by N
ton method are shown by dots and crosses, respectively.
spite diagonal forces being significant, they are still wea
than forces acting along the sides. Therefore, the equilibr
distances between neighboring solitons are quite close
those found from the analysis of side interactions only. D
grees of freedom corresponding to the transformation o
rhomboidal cluster into rectangular, trapezoid, or quadran
are obviously not covered by the plot in Fig. 6. Howev
their inclusion would not alter the stability of those cluste
which are minima in Fig. 6. This is because the limitations
Fig. 6 are related to degrees of freedom corresponding to
change of the length of one side with respect to another.
latter, however, is determined from the pairwise side inter
tions only. At the same time stability due to degrees of fre
dom associated with stretching of the diagonal is taken i
account through the anglea.

s,
in
FIG. 9. Evolution of an unstable square~cf. Fig. 7!, perturbed by noise at pump valuesuE0u251.15 ~a!–~c! and uE0u251.3 ~e!–~g!. ~a!
t50, ~b! t5350, ~c! t5800, ~d! t50, ~f! t5140, ~g! t5400. Other parameters as in Fig. 1~a!.
6-8
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It is worthwhile to stress that the smallest stationa
square, i.e., withd.6.85 ~very close to the first stable dis
tance found in the pairwise analysis! is actually unstable. It
evolves into the rhombus formed by two equilateral triang
@39#. The instability with respect to stretching of the diagon
is the only instability of the smallest square. The next squ
with d.9.42 @see Fig. 7~a!# is unstable with respect to a
non-neutral degrees of freedom described by Eq.~23!. Cor-
responding eigenmodes are shown in Figs. 7~b!–7~i! and de-
pendencies of the unstable eigenvalues onuE0u2 are plotted
in Fig. 8. They are all smaller than the dominant unsta
mode of the corresponding triangle, shown in Fig. 5. T
eigenvalues corresponding to the modes depicted in F
7~h!–7~i! are degenerate and very small. The three larg
eigenvalues are quite close in value, and correspond to
three modes shown in Figs.7~e!–7~f!. Initializing Eqs. ~1!
with the d.9.42 square one can observe any of the th
dominant scenarios of evolution. We find, however, that,
agreement with our stability analysis, at low values of t
pump the square first evolves towards the square cluster
d.6.85, which, being itself unstable, eventually transfor
into a rhombus, see Figs. 9~a!–9~c! and Ref.@39#. For higher
pump values, the dominant scenarios are either evolution
wards a trapezoidal structure, see Figs. 9~d!–9~f! or towards
a rectangular one. Selection of either of the latter two w
found to be highly sensitive to the noise level and to
accuracy of the numerical integration.

The square atd.11.93 is stable, which suggests that
stable square pattern with sufficiently large period exists
this system. Note, that clusters of equilateral triangles n
rally form hexagons, which are well known to be dominati
pattern in this@5# and many other dissipative systems exh
iting spatial instabilities. Their domination can be in pa

FIG. 10. Stable~a!, unstable~b!, pentagonal and stable hexag
nal ~c!, ~d! clusters found through the Newton method~stability
calculated and verified using Arnoldi and split-step method p
grams!. uE0u251.3; other parameters as in Fig. 1~a!.
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explained by the rigidity arguments given above for the
angular and rhomboidal clusters.

A major difference between clusters and patterns is t
the period of a pattern can be continuously varied within
certain range, when all other parameters of the problem
fixed, see, e.g., Refs.@37,38#. We remark that the~uniquely
determined! closest stable distanced of the clusters consid-
ered here, see, e.g., Fig. 1, is within the range of latt
constants for stable hexagonal patterns found for the s
parameters@38#. Therefore, the potentialG seems to be rel-
evant even for large close-packed clusters approaching
patterns. More detailed analysis of the interplay between
istence and stability of clusters and corresponding patte
will be the subject of a separate investigation. For ear
approaches to this problem, see, e.g., Refs.@6,12,16#. Apart
from the clusters discussed above we have been able to
a rich variety of stable and unstable clusters withN.4, four
examples of which are shown in Fig. 10.

V. SUMMARY

We have developed asymptotic theory of cluster form
tion from two-dimensional localized structures of light e
cited in an externally driven optical cavity with nonlinea
absorber. It was shown that these structures interact thro
forces obeying a linear superposition principle and that th
can form various types of clusters. A technique, having
plicability beyond the model under consideration, for calc
lation of the interaction potential through modified Bess
functions, was developed. The stability and instability pro
erties of clusters of two, three, and four cavity solitons ha
been analyzed in detail using a combination of analytical a
numerical methods. A qualitative difference between the s
bility properties of triangular and square structures was id
tified and discussed, emphasizing the role of diagonal in
actions in the square cluster.

Note added in proof. We acknowledge N. N. Rosanov fo
noting that isosceles triangles generally move very slow
and their velocity is the order ofe 2 or higher, which is not
captured by the order ofe analyses used above.
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APPENDIX

Using Eqs.~22! and ~20! we obtain

In[ K rn

r n
VW nUIWL 5 K rn

r n
VW nUIWL

n

1 K rn

r n
VW nUIWL

m

5 K rn

r n
VW nUIWL

n

1O~e3/2!

-

6-9
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5 K rn

r n
VW nUL̂~cW sn!cW smL

n

1O~e3/2!

5 K L̂†~cW sn!
rn

r n
VW nUcW smL

n

1 i E
2`

`

dyE
n
dxF S rn

r n
VW n•D̂“'

2 cW smD
2S cW sm•D̂“'

2 rn

r n
VW nD G1O~e3/2!

52 i ~21!nE
2`

`

dyF S rn

r n
VW n•D̂]xcW smD

2S cW sm•D̂]x

rn

r n
VW nD G

x50

1O~e3/2!,

with n,m51,2, mÞn, *1dx5*2`
0 dx, and *2dx5*0

`dx.
Here we have used Green’s theorem to transform the inte
over the halfplane (21)nx.0 into an integral over they
axis. Since the intensity maxima of the two cavity solito
are located symmetrically on thex axis with respect to its
origin we have (]xcW sm)x5052(]xcW sn)x50 and (cW sm)x50

5(cW sn)x50. Using these relations the overlap integralIn can
be rewritten as
tt.

.
.

is

i,
d

ev

h,

t.

ys

04660
ral

In' i ~21!nE
2`

`

dyF]xS cW sn•
rn

r n
D̂VW nD G

x50

. ~A1!

Substituting into Eq.~A1! the asymptotics~8! and ~14!, and
using the orthogonality conditions (t̂BW •D̂AW )5(BW •D̂ t̂AW )
50, we get

In' i ~21!nabE
2`

`

dyF]xS rn

r n
K0~krn!K1~krn! D G

x50

2c.c.

54p
Rnm

Rnm
Im@abK1~kRnm!#

524p“Rn
ImFab

k
K0~kRnm!G ,

where Rnm5Rn2Rm and Rnm5uRnmu and n,m51,2, m
Þn. Here we have used the relation

E
2`

`

dyF]xS rn

r n
K0~krn!K1~krn! D G

x50

522p~21!n
Rnm

Rnm
K1~kRnm!.
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@13# B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, Ph

Rev. Lett.85, 748 ~2000!.
@14# M. Saffman~private communication!.
@15# N.N. Rosanov and G.V. Khodova, J. Opt. Soc. Am. B7, 1057
A

s,

.

.

~1990!; N.N. Rosanov, Prog. Opt.35, 1 ~1996!.
@16# N. N. Rozanov,Optical Bistability and Hysteresis in Distrib-

uted Nonlinear Systems~Nauka, Moscow, 1997!, Chap. 4.
@17# M. Tlidi, P. Mandel, and R. Lefever, Phys. Rev. Lett.73, 640

~1994!.
@18# I.S. Aranson, K.A. Gorshkov, A.S. Lomov, and M.I. Rabino

ich, Physica D43, 435 ~1990!.
@19# P. Coullet, C. Riera, and C. Tresser, Phys. Rev. Lett.84, 3069

~2000!.
@20# C. Crawford and H. Riecke, Physica D129, 83 ~1999!.
@21# C.P. Schenk, P. Schu¨tz, M. Bode, and H.-G. Purwins, Phys

Rev. E57, 6480~1998!.
@22# Yu.A. Astrov and Yu.A. Logvin, Phys. Rev. Lett.79, 2983

~1997!.
@23# P. Umbanhowar, F. Melo, and H. Swinney, Nature~London!

382, 793 ~1996!.
@24# B.A. Malomed, Phys. Rev. E58, 7928~1998!.
@25# B.A. Malomed, Phys. Rev. A44, 6954~1991!.
@26# V.V. Afanasjev, B.A. Malomed, and P.L. Chu, Phys. Rev. E56,

6020 ~1997!.
@27# N.N. Akhmediev, A. Ankiewicz, and J.M. Soto-Crespo, Phy

Rev. Lett. 79, 4047 ~1997!; J.M. Soto-Crespo and N.N
Akhmediev, J. Opt. Soc. Am. B16, 674 ~1999!.

@28# A.G. Vladimirov, G.V. Khodova, and N.N. Rosanov, Phy
Rev. E63, 056607~2001!.

@29# A.V. Mamaev, A.A. Zozulya, V.K. Mezentsev, D.Z. Anderso
and M. Saffman, Phys. Rev. A56, R1110~1997!.
6-10



.
ys

s.

ri

ev

r-

and

al
Di-

an
p://

TWO-DIMENSIONAL CLUSTERS OF SOLITARY . . . PHYSICAL REVIEW E65 046606
@30# W. Krolikowski, E.A. Ostrovskaya, C. Weilnau, M. Geisser, G
McCarthy, Y.S. Kivshar, C. Denz, and B. Luther-Davies, Ph
Rev. Lett.85, 1424~2000!.

@31# M. Soljacic, S. Sears, and M. Segev, Phys. Rev. Lett.81, 4851
~1998!.

@32# A.S. Desyatnikov and Y.S. Kivshar, Phys. Rev. Lett.87,
033901~2001!.

@33# A.V. Buryak, Y.S. Kivshar, M.F. Shih, and M. Segev, Phy
Rev. Lett.82, 81 ~1999!.

@34# J. Schjodt-Eriksen, M.R. Schmidt, J.J. Rasmussen, P.L. Ch
tiansen, Y.B. Gaididei, and L. Berge, Phys. Lett. A246, 423
~1998!.

@35# D.V. Skryabin, A.R. Champneys, and W.J. Firth, Phys. R
04660
.

s-

.

Lett. 84, 463 ~2000!.
@36# R. B. Lehoucq, D. C. Sorensen, and C. Yang,Solutions of

Large Scale Eigenvalue Problems with Implicitly Restarted A
noldi Methods ~Rice University, Houston, 1997!, http://
www.caam.rice.edu/software/ARPACK/

@37# P.K. Jakobsen, J. Lega, Q. Feng, M. Staley, J.V. Moloney,
A.C. Newell, Phys. Rev. A49, 4189~1994!.

@38# G. K. Harkness, W. J. Firth, and G.-L. Oppo, Internation
Quantum Electronics Conference, Nice, 2000, Conference
gest~IEEE Catalog No. 00TH8504!, p. 47.

@39# Movies in the mpg format visualizing dynamics of clusters c
be downloaded from http://staff.bath.ac.uk/pysdvs/ and htt
cnqo.phys.strath.ac.uk/movies/
6-11


