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Abstract

We develop asymptotic theory to find small eigenfrequencies of two-dimensional bright solitons in the nonlinear Schrödinger
equation with weak nonlocality. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Nonlocality of nonlinear response in wave propaga-
tion problems is an important factor in many physical
contexts. Among examples which have attracted sig-
nificant recent attention one could mention nonlocal
nonlinearities appearing in the modelling of propaga-
tion of cold atomic beams in the presence of optically
induced dipole–dipole interaction [1,2], nonlocality of
interaction of ultracold atoms in atomic Bose–Einstein
condensation [3] and nonlinear propagation of light in
photorefractive materials [4,5].

Propagation of matter waves with two-body colli-
sions, and of the slowly varying envelope of an elec-

* Corresponding author. Current address: Department of Phys-
ics, University of Bath, Bath BA2 7AY, UK.

E-mail address: d.v.skryabin@bath.ac.uk (D.V. Skryabin).

tromagnetic wave in a medium with a weak nonlocal
nonlinearity, can be described by the same basic model
equation—the nonlocal nonlinear Schrödinger (NLS)
equation [6]:

i
∂Φ(t, r)
∂t

+ ∇2Φ(t, r)

(1)−Φ(t, r)
∫ ∣∣Φ(t, r′)

∣∣2U(r − r′) dr′ = 0.

If effects of nonlocality can be neglected one replaces
potential functionU(r − r′) with Dirac-delta function
δ(r − r′) andEq. (1)is replaced with standard NLS:

i
∂Φ(t, r)
∂t

+ ∇2Φ(t, r)−U0Φ(t, r)
∣∣Φ(t, r)∣∣2 = 0,

(2)

whereU0 = ∫
U(r) dr is the zero-order moment of the

interaction potentialU . Considering applications of
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two-dimensional NLS to the beam propagation prob-
lem an independent variablet should be interpreted as
space coordinate measured along the propagation di-
rection.

Depending on the context of the problem, the
Laplace operator inEqs. (1), (2)can be either one-,
two-, or three-dimensional. Effects of nonlocality on
existence and interaction properties of one-dimen-
sional bright and dark solitons in NLS have been
recently analyzed in [5]. Two- and three-dimensional
cases have been considered in [7–9]. A well-known
phenomenon in two- and three-dimensional NLS(2)
with the cubic nonlinearity is critical or, respectively,
exponential collapse of bright solitons forU0 < 0.
Taking into account higher-order nonlinearities [10] or
nonlocality of the nonlinear interaction can suppress
collapse [7–9].

Suppression of an instability of an equilibrium so-
lution in Hamiltonian systems generally implies ap-
pearance of new frequencies in its spectrum. This is
because the complex frequencies of modes responsi-
ble for instability become purely real and can then be
associated with long-lived oscillations of the equilib-
rium under consideration. This scenario can apply to
solitary wave instabilities [12]. The aim of this Letter
is to present the first analytical calculations of eigen-
frequencies emerging due to suppression of the col-
lapse of two-dimensional solitary waves in the NLS
equation with weak nonlocality.

2. Approximation of weakly nonlocal interaction

To proceed further we assume that nonlinearity
is only weakly nonlocal and therefore to calculate
integral inEq. (1)we can decompose|Φ|2 in a Taylor
series:∣∣Φ(r′)∣∣2 = ∣∣Φ(r + (r′ − r)

)∣∣2
= ∣∣Φ(r)∣∣2 + {

(r′ − r) · ∇}∣∣Φ(r)∣∣2
(3)+ 1

2

{
(r′ − r) · ∇}2∣∣Φ(r)∣∣2 + · · · .

We now fix the dimension of the Laplacian to two,
i.e., r = ixx + iyy, ∇ = ix∂x + iy∂y and assume
the potential functionU is cylindrically symmetric,
i.e., U(r − r′) = U(|r − r′|). Under this assumption
nontrivial contributions to the integral come only from

the first and third terms inEq. (3). Substituting(3)
into (1) we find an NLS equation with weakly nonlocal
nonlinearity:

(4)i
∂Φ

∂t
+ ∇2Φ −U0Φ|Φ|2 −U2Φ∇2|Φ|2 = 0.

Here U2 = (π/2)
∫
r3dr U(r) is the second-order

moment of the interaction potentialU . Let us also
assume that at sufficiently large distancesr > rc
the nonlinear interaction is attractive, i.e.,U(r) < 0,
while at smaller distances it changes to repulsion, i.e.,
U(r) > 0 for r < rc . Then

U2 = π

2

∞∫
0

U(r)r3dr

= π

2

( rc∫
0

U(r)r3dr +
∞∫
rc

U(r)r3dr

)

< 2πr2
c

( rc∫
0

U(r)r dr +
∞∫
rc

U(r)r dr

)

(5)= r2
c U0.

ThereforeU2 < 0 providing thatU0 < 0. The same
estimate can be done for a three-dimensional potential
describing, for example, van der Waals like forces
acting between atoms.

Fixing for the rest of the LetterU0 < 0, which en-
sures existence of bright solitary solutions, and intro-
ducing the scalingΦ̃ = √|U0|Φ, we reduceEq. (4)to
the form

(6)i
∂Φ̃

∂t
+ ∇2Φ̃ + Φ̃

∣∣Φ̃∣∣2 + sΦ̃∇2
∣∣Φ̃∣∣2 = 0.

The parameters = U2/U0 characterizing nonlocality
of the nonlinearity could also be scaled away. How-
ever, it is more convenient for us to keep it in the equa-
tion explicitly, and use it as a small parameter in the
subsequent derivations.

3. Solitary solution

Stationary cylindrically symmetric solitary solution
of Eq. (9)is sought in the form

(7)Φ̃(t, r)=A(r)exp(iκt).
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Hereκ > 0 is the nonlinear frequency shift. The ampli-
tudeA is a real function determined from the ordinary
differential equation

[∇2
r − κ +A2 + s

(∇2
r A

2)]A= 0,

(8)∇2
r = ∂2

∂r2 + 1

r

∂

∂r
,

with the requirement ofdA/dr = 0 at r = 0, A→ 0
at r → ∞ andA(r) > 0. Fors∇2

r A
2 small compare to

A2 we can use a perturbation approach to solve forA

in the form

(9)A(r)=A0(r)+ sA2(r)+ · · · .
In the zero order (s = 0) we have the CGT (Chiao–
Garmire–Tawnes) soliton known from the paraxial
theory of self-focusing of optical radiation [13]

(10)A0 = √
κF0(ρ), ρ = r

√
κ,

whereF0(ρ) solves

(∇2
ρ − 1+ F 2

0

)
F0 = 0,

(11)∇2
ρ = ∂2

∂ρ2 + 1

ρ

∂

∂ρ
.

Note thatEq. (6) conserves the integralP = ∫
dx×

dy |Φ̃|2, the “number of particles”.κ parameterizes
the family of solitary solutions with different width
w ∝ κ−1/2. If s = 0, then one can show thatP = P0
does not depend onκ , i.e.,∂κP0 = 0, where

P0 = 2π

∞∫
0

A2
0r dr = 2π

∞∫
0

F 2
0ρ dρ = 2π11.701.

(12)

The lowest-order nonlocal correction to the CGT soli-
ton is

(13)A2 = sκ3/2F2(ρ),

whereF2(ρ) is the solution of the linear inhomoge-
neous ordinary differential equation

(14)
(∇2

ρ − 1+ 3F 2
0

)
F2 = −F0∇2

ρF
2
0 .

Numerically computed transverse profiles of the func-
tionsF0,2(ρ) are shown inFig. 1.

Fig. 1. Radial profiles of the functionsF0 andF2 corresponding
respectively to the CGT soliton and the lowest-order correction due
to weak nonlocality.

Nonlocality induces a nontrivial dependence ofP

onκ :

P = 2π

∞∫
0

(
A0(r)+ sA2(r)+ · · ·)2r dr

(15)= P0 + 4πsp1κ +O
(
s2),

where

(16)p1 =
∞∫

0

F0(ρ)F2(ρ)ρ dρ = 5.05889.

The limit of local nonlinearity correspondss → 0
or/andκ → 0. According toEqs. (15) and (16), for
s > 0 the density increases withκ , and therefore the
Vakhitov–Kolokolov stability criterion [10]

(17)
∂P

∂κ
= 4πsp1> 0

is satisfied. However, this criterion was not so far
rigorously proved for an arbitrary nonlinearity and,
therefore, needs to be checked on a case by case basis.
This can be done by calculating the modification of the
spectrum of the CGT soliton under the action of small
nonlocal effects. For eigenvalues deviating from zero
this can be done in closed analytical form.

4. Soliton linear stability and internal modes

To find frequencies of the internal modes emerging
from zero fors small, we consider a perturbed station-
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ary soliton fors �= 0:

(18)Φ̃ = [
A(r)+ δΦ(t, x, y)

]
exp(iκt).

The linearized equation(6), ∂t δ� = M̂δ�, for 2-
vector δ� = (ReδΦ, Im δΦ)T, has eigensolutions of
the form

(19)δ� = �(r)exp(λt).

Substituting(19) into this equation we get the follow-
ing linear eigenvalue problem:

(20)M̂� = λ�, M̂ =
(

0 −L̂
N̂ 0

)
,

where

(21)L̂= ∇2 − κ +A2 + 2s
[
A
(∇2A

)+ |∇A|2],

(22)

N̂ = ∇2 − κ + 3A2

+ 2s
[
A2∇2 + 2A(∇A · ∇)
+ 2A

(∇2A
)+ |∇A|2]

are second-order differential operators. The linear op-
eratorM̂ has a double zero eigenvalue with geometri-
cal multiplicity 1:

(23)M̂U0 = 0, M̂U1 = U0,

where the neutral modeU0 = (0,A)T with generalized
eigenvectorU1 = (∂κA,0)T corresponds to the sym-
metry of (6) with respect to a phase shift. Fors = 0,
the linear operator̂M is transformed intoM̂(0) hav-
ing two additional zero eigenvalues responsible for
critical collapse [11]. The second and third general-
ized eigenvectors associated with these eigenvalues
areU2 = (0,−(1/8κ)A0r

2)T andU3:

(24)M̂(0)U2 = U(0)
1 , M̂(0)U3 = U2.

Here U(0)
1 is the vectorU1 evaluated ats = 0. The

vectorU3 can be found only numerically.
Taking into account the nonlocal perturbation (s �=

0), the four-fold degenerate zero eigenvalueλ4 = 0 of
M̂(0) splits into a two-fold degenerate zero eigenvalue
and two nonzero eigenvalues with opposite signs. The
latter eigenvalues can be found by a perturbation ap-
proach similar to used in [11,14–16]. Multiplying (20)
by the neutral eigenmodeV0 = (A,0)T of the adjoint
operatorM̂†, M̂†V0 = 0, and using the relation〈V0,
M̂�〉 = 〈M̂†V0,�〉 = 0, we get

(25)λ〈V0,�〉 = 0.

Next, assuming thatλ is small,λ2 ∼ s, we seek the
eigenfunction� in the form

(26)� = U0 + λU1 + λ2U2+λ3U3 +O
(|λ|4).

Substituting(26)into (25)and taking into account that
〈V0,U2〉 = 0, we find that

(27)λ2〈V0,U1〉 + λ4〈V(0)
0 ,U3

〉=O
(|λ|5),

where〈V0,U1〉 = ∂κP and〈V(0)
0 ,U3〉 = 〈V(0)

1 ,U2〉 =
(2π/16κ3)p3, p3 = ∫∞

0 F 2
0 (ρ)ρ dρ = 2.211. Thus we

find following nonzero roots:

(28)λ2 = −36.60sκ3,

which explicitly shows that the solitary solution would
be exponentially unstable fors < 0 (U2 > 0). How-
ever, fors > 0 (see(5)) the soliton is stable and eigen-
frequenciesω = ±|λ| � ±6.05κ3/2 correspond to the
internal modes, which if excited by initial perturba-
tions do not decay in the present approximation. More
exactly, decay of these perturbations is expected to be
slow (nonexponential) and happens due to transfer of
energy from the discrete part of the spectrum into the
continuum, which can be described by methods devel-
oped in [12,17].

The discrete spectrum of the CGT soliton is known
to consist only of the neutral modes [18]. Therefore
our theory describes all possible modifications of the
discrete spectrum. Preliminary numerical studies of
the spectrum ofM̂ indicate that no discrete eigenval-
ues split from continuum for smalls.

5. Discussion and summary

In physical unitsEq. (1)applied in the context of
Bose–Einstein condensate and after making approxi-
mation(3) takes form

ih̄
∂Φ

∂t
+ h̄2

2m
∇2Φ

(29)− 4πh̄2a

m

(
Φ|Φ|2 + sΦ∇2|Φ|2)= 0,

wherem is the mass of an atom,a is the two-body
scattering length ands is the positive dimensional
nonlocality constant. Assuming thatΦ =ψ(x, y, z)×
eikz−ωt , whereψ is the amplitude slowly varying
along z, k = mv/h̄ is the atomic wavenumber,ω =
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mv2/(2h̄) andv is the atomic velocity, we derive 2D
nonlocal NLS equation

i2k∂zψ + (
∂2
x + ∂2

y

)
ψ

(30)− 8πa
(
ψ|ψ|2 + sψ

(
∂2
x + ∂2

y

)|ψ|2)= 0.

Multiplying this equation by the characteristic width
of the atomic beam, one can easily make it dimen-
sionless, and afterwards the theory developed above
can be applied, providinga is negative, i.e., the in-
teratomic interaction is attractive. Atomic condensate
with a < 0 was experimentally achieved in7Li [ 19]
and beam-like propagation of the condensate was ob-
served in [20]. Though the latter experiments were
performed for atoms witha > 0, we believe that they
can be reproduced for7Li, thereby prospects for ex-
perimental observation of the solitons described in this
Letter look realistic.

In summary, we have developed a theory of col-
lapse suppression of two-dimensional bright solitons
in the NLS equation with weak nonlocality and found
an analytic expression for the eigenfrequency of the
internal modes bifurcating from zero due to nonlocal
effects.
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