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s L Introduction tromagnetic wave in a medium with a weak nonlocal,
- nonlinearity, can be described by the same basic modg|
2 Nonlocality of nonlinear response in wave propaga- €quation—the nonlocal nonlinear Schrodinger (NLS),
s tion problems is an important factor in many physical equation f]: 82
35 contexts. Among examples which have attracted sig- Ab(t.1) 83
s hificant recent attention one could mention nonlocal i ————= + VZCD(z‘, r) 84
37 honlinearities appearing in the modelling of propaga- 85
sg  tion of cold atomic beams in the presence of optically — o, r)/|cp(;, r’)|2U(r —r)dr' =0. (1) e
39 induced dipole—dipole interactiod p], nonlocality of 87
40 interaction of ultracold atoms in atomic Bose—Einstein |f effects of nonlocality can be neglected one replaces
41 condensationd] and nonlinear propagation of lightin  potential function/ (r — r’) with Dirac-delta function se
42 photorefractive materialst[3). 8(r —r’y andEq. (1)is replaced with standard NLS: s
43 Propagation of matter waves with two-body colli- o1
«  sions, and of the slowly varying envelope of an elec- ;2.1 V20 (1,1) — Uod (1.1)|®(1.1)|> =0 o
45 93
46 * (2) 94
Corresponding author. Current address: Department of Phys- .
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48 E-mail address: d.v.skryabin@bath.ac.uk (D.V. Skryabin). interaction potentiall. Considering applications of 9

0375-9601/02/% — see front mattér 2002 Elsevier Science B.V. All rights reserved.
PIl: S0375-9601(01)00835-0


http://www.elsevier.com/locate/pla

ARITICLE IN PRE

© 0 N O g b~ W N P

A OB D A B B B D D WO OW W W W WWWWNNRNIDRNDNNDRNNNRNIDRNERRR B B B
© N o 0B W N R O © © N o b8 ®N P O © O N0 0 h ®N P O © ® N O O~ WN R O

50375-9601(01)00835-0/SC0  AID:11219 Vol.eee(eee)
ELSGMLTM(PLA) :m3 2001/12/20 Prn:22/12/2001; 9:05

P.2(1-5)
by:Reda p. 2

PLA11219

2 N.N. Rosanov et al. / Physics LetterS A eee (eeee) ec0e—see

two-dimensional NLS to the beam propagation prob-
lem an independent variabdeshould be interpreted as

space coordinate measured along the propagation di-

rection.

Depending on the context of the problem, the
Laplace operator ifEgs. (1), (2)can be either one-,
two-, or three-dimensional. Effects of nonlocality on
existence and interaction properties of one-dimen-
sional bright and dark solitons in NLS have been
recently analyzed ing]. Two- and three-dimensional
cases have been considered 1. A well-known
phenomenon in two- and three-dimensional NIZ$
with the cubic nonlinearity is critical or, respectively,
exponential collapse of bright solitons féf < O.
Taking into account higher-order nonlinearitié§jor
nonlocality of the nonlinear interaction can suppress
collapse 9.

Suppression of an instability of an equilibrium so-
lution in Hamiltonian systems generally implies ap-
pearance of new frequencies in its spectrum. This is

because the complex frequencies of modes responsi-

ble for instability become purely real and can then be
associated with long-lived oscillations of the equilib-

rium under consideration. This scenario can apply to
solitary wave instabilities][2]. The aim of this Letter

is to present the first analytical calculations of eigen-

frequencies emerging due to suppression of the col-
lapse of two-dimensional solitary waves in the NLS

equation with weak nonlocality.

2. Approximation of weakly nonlocal interaction

To proceed further we assume that nonlinearity i@

is only weakly nonlocal and therefore to calculate
integral inEq. (1)we can decompose|? in a Taylor
series:

() =[e(r+a" -n)f
2 2
=leO|"+{0" =1 VHem)
1 /
—{(r 3
+ 51 (3)

We now fix the dimension of the Laplacian to two,
i.e., r =iwx +iyy, V=0 +i,d, and assume
the potential functionU is cylindrically symmetric,

i.e., U(r —r’y=U(r —r’|). Under this assumption
nontrivial contributions to the integral come only from

—0- VP oM+

the first and third terms iEqg. (3) Substituting(3) 49
into (1) we find an NLS equation with weakly nonlocal so
nonlinearity: 51

52

i2+v2cp—U0q>|q>|2—U2q>v2|q>|2=o (4) =3
Here U, = (7/2) [r3drU(r) is the second-order ss
moment of the interaction potentidl. Let us also s6
assume that at sufficiently large distances- r. 57
the nonlinear interaction is attractive, i.¢/(r) <0, 58
while at smaller distances it changes to repulsion, i.esy

U(r)>0forr <r.. Then 60
o 61
i 3 62
Uz—E/U(r)r dr o
0 64
Fe o 65
=z f U(r)r?’dr + / U(r)r?’dr 66
2 67
0 re
re 00 68
2 69
< 2nrf UWr)rdr+ | U(r)rdr o
0 re 71
= r?Uo. 5B) 7

ThereforeU; < 0 providing thatUp < 0. The same )
estimate can be done for a three-dimensional potent|a5I
describing, for example, van der Waals like forces
acting between atoms.

Fixing for the rest of the Lettet/g < 0, which en- 8
sures existence of bright solitary solutions, and intro-9
ducing the scalingp = /]Uo|®, we reducecq. (4)to

the form %0

81

82
©) o

The parametes = U/ Uy characterizing nonlocality **
of the nonlinearity could also be scaled away. How§5
ever, it is more convenient for us to keep it in the equa®
tion explicitly, and use it as a small parameter in thé7
subsequent derivations.

; + V20 + &| B[+ 50V D)

89
90
91
92

3. Solitary solution

Stationary cylindrically symmetric solitary solution %
94

of Eqg. (9)is sought in the form
95

(t,1) = A(r) explikt). (7) o
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Herex > 0 is the nonlinear frequency shift. The ampli-
tudeA is a real function determined from the ordinary
differential equation

[VZ -k + A% +5(V2A?%)]A =0,
32 19
V= 4+, 8
" ar2 orar ®)
with the requirement ofA/dr =0 atr =0,A — 0
atr — oo andA(r) > 0. ForsV?A2 small compare to

A? we can use a perturbation approach to solveAor
in the form

A(r) = Ao(r) +sAx(r)+---. 9)

In the zero orders(= 0) we have the CGT (Chiao—
Garmire—Tawnes) soliton known from the paraxial
theory of self-focusing of optical radiatiof ]

Ao=+kFo(p), p=rk, (10)
whereFy(p) solves
(V2—1+ F§)Fo=0,
2 19
V2= — 42—, 11
P8p2  pap (1)

Note thatEq. (6) conserves the integra = [ dx x
dy |®|?, the “number of particles’x parameterizes
the family of solitary solutions with different width
w o kY2 |f s =0, then one can show th# = Py
does not depend on i.e.,d, Pop = 0, where

o o0
Po=27t/ASrdr=271/ngd,0=27r11.701
0 0

12)

The lowest-order nonlocal correction to the CGT soli-
tonis

Az = sk3?Fy(p), (13)

where F>(p) is the solution of the linear inhomoge-

neous ordinary differential equation
2 2 252

(V5 — 1+ 3F5) F2 = —FoV, F§. (14)

Numerically computed transverse profiles of the func-
tions Fo 2(p) are shown irFig. L

49
50
51
52
53
54

L 55
56
57

58

59

Fig. 1. Radial profiles of the functiongy and F» corresponding

respectively to the CGT soliton and the lowest-order correction dud

to weak nonlocality. 62
63

64
65
66

Nonlocality induces a nontrivial dependencef
onk:

® ) 67
P=2nf(Ao(r)+sA2(r)+-~-) rdr 68
0 69

2 70

= Po+ 4mspik + O(S ), (15) )
where 72
o 73

74

pr= / Fo(o) Fa(p)p dp = 5.05889 (16)
0 76

The limit of local nonlinearity corresponds— 0 77
or/andk — 0. According toEqs. (15) and (16)for 78
s > 0 the density increases with and therefore the 79
Vakhitov—Kolokolov stability criterion]0] 80

or =4nsp1 >0 17) 82
dk 83
is satisfied. However, this criterion was not so fams
rigorously proved for an arbitrary nonlinearity and,ss
therefore, needs to be checked on a case by case basis.
This can be done by calculating the modification of the?
spectrum of the CGT soliton under the action of smaklls
nonlocal effects. For eigenvalues deviating from zereo
this can be done in closed analytical form. 90
91
92
4. Soliton linear stability and internal modes 93
94
To find frequencies of the internal modes emergings
from zero fors small, we consider a perturbed station-es
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ary soliton fors # 0:
=[A(r)+8D(t, x, y)| explixt). (18)

The linearized equatiori6), 3,6® = Ms®, for 2-
vector§® = (Res®, Ims®)T, has eigensolutions of
the form

§® = W (r) exp(rt). (19)

Substituting(19) into this equation we get the follow-
ing linear eigenvalue problem:

MW =AW, I\7I=<](\)7 _OL>, (20)
where
L=V2—i+ A2+ 25[A(V?A) +|VAIZ],  (21)
N =V?—k + 342
+25[A2V% + 2A(VA - V)
+2A(V2A) +|VA?] (22)

are second-order differential operators. The linear op-
eratorM has a double zero eigenvalue with geometri-
cal multiplicity 1:

MUg=0, MU= Uy, (23)

where the neutral modgy = (0, A)T with generalized
eigenvectolU; = (3. A, 0)T corresponds to the sym-
metry of (6) with respect to a phase shift. Foe= 0,

the linear operatoM is transformed intdV1© hav-
ing two additional zero eigenvalues responsible for

Next, assuming that is small, A2 ~ s, we seek the 49

eigenfunction¥ in the form 50

51
W = Ug + AUz + 12Up+23Us + O (1a14). (26) o,

Substituting(26)into (25) and taking into account that 52

(Vg, Uz) =0, we find that 54
55

32(Vo, Uy) + 14V, Usg) = 0 (14[%), 27) s
_ ©) _ O _
where(Vo,U1) =9, P and(Vy~,Uz) = (V;",U2) =

(27/16¢3) p3, p3= [o° FE(p)pdp =2.211. Thuswe ¢,
find following nonzero roots: 60
61

(28) o
which explicitly shows that the solitary solution would 63
be exponentially unstable for< 0 (U2 > 0). How- 64
ever, fors > 0 (seg(5)) the soliton is stable and eigen- es
frequenciess = & || ~ £6.05¢%? correspond to the s
internal modes, which if excited by initial perturba-e7
tions do not decay in the present approximation. Mores
exactly, decay of these perturbations is expected to ke
slow (nonexponential) and happens due to transfer af
energy from the discrete part of the spectrum into the
continuum, which can be described by methods devel:
opedinfl2,17. 73
The discrete spectrum of the CGT soliton is knowr4

to consist only of the neutral mode$q. Therefore 75
our theory describes all possible modifications of thes
discrete spectrum. Preliminary numerical studies ofr
the spectrum oM indicate that no discrete eigenval-7s

22 = —36.605x3,

critical collapse 11]. The second and third general- €S Split from continuum for smail 7
ized eigenvectors associated with these eigenvalues 8
areUs = (0, —(1/8x)Aor®) T andUs: _ _ 81

5. Discussion and summary 82

MOuUz = Us.

M©Ou, = U,

(24)
Here U(lo) is the vectorU; evaluated att = 0. The
vectorUs can be found only numerically.

Taking into account the nonlocal perturbatieng
0), the four-fold degenerate zero eigenvalfe= 0 of
M © splits into a two-fold degenerate zero eigenvalue
and two nonzero eigenvalues with opposite signs. The
latter eigenvalues can be found by a perturbation ap-
proach similar to used irLfL,14—1§. Multiplying (20)
by the neutral eigenmodéy = (A, 0)" of the adjoint
operatorM T, M1V = 0, and using the relatiotVo,
M) = (MTVq, ¥) =0, we get

A{Vo, ¥) =0. (25)

83
In physical unitsEq. (1) applied in the context of 4
Bose—Einstein condensate and after making appros

mation(3) takes form 86
o h? o7
ih— + — V2 88
ot 2m 89

4 ha

(2191? + 50V |®|?) =0, (29)

wherem is the mass of an atona, is the two-body 92
scattering length and is the positive dimensional 93
nonlocality constant. Assuming thét= ¢ (x, y,z) x 94
etkz—et where y is the amplitude slowly varying 9
alongz, k = mv/h is the atomic wavenumbesy = 9
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