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Dynamics of a semiconductor laser array with delayed global coupling
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We study the dynamics of an array of single mode semiconductor lasers globally but weakly coupled by a
common external feedback mirror and by nearest neighbor interactions. We seek to determine the conditions
under which all lasers of the array are in phase, whether in a steady, periodic, quasiperiodic, or chaotic regime,
in order to maximize the output far field intensity. We show that the delay may be a useful control parameter
to achieve in-phase synchronization. For the in-phase steady state, there is a competition between a delay-
induced Hopf bifurcation leading to an in-phase periodic regime and a delay-independent Hopf bifurcation
leading to an antiphased periodic regime. Both regimes are described analytically and secondary Hopf bifur-
cations to quasiperiodic solutions are found. Close to the stable steady state, the array is described by a set of
Kuramoto equations for the phases of the fields. Above the first Hopf bifurcation, these equations are gener-
alized by the addition of second and third order time derivatives of the phases.
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I. INTRODUCTION

Many physical, chemical, and biological systems con
of interacting elementary units. A general class of such s
tems is that of weakly coupled oscillators. If the coupli
does not modify significantly the phase space trajector
one phase variable suffices to describe each oscillating
ment. This leads to phase models, including the extensi
studied Kuramoto equations@1,2#. In recent years, it was
realized that delaying the interactions between elemen
cells can have a profound influence on their collective
havior. The principal consequences of time delay do
mented for phase models concern the occurrence of sync
nization @3,4# and multistability between states o
synchronization@5#. However, if the coupling strength i
comparable to the attraction to the limit cycle, amplitu
quenching or ‘‘oscillation death’’ can also result from th
delay@6#. From the general viewpoint of coupled oscillato
the physical system we study in the present paper mixes
two situations. We consider an array of semiconduc
lasers~SCL’s! that are weakly and globally coupled by th
optical feedback of an external mirror. For very small valu
of the coupling strength, the electric fields emitted by ea
SCL are essentially described by their optical phases, and
system can be modeled by phase equations of the Kuram
type. However, increasing the coupling strength gives ris
time periodic intensities by way of a Hopf bifurcation. Th
amplitude of the limit cycle created by this mechanis
strongly depends on the coupling strength. Each elemen
the array thus becomes a two-frequency oscillator with
frequency in the optical domain and the other frequency c
responding to sustained relaxation oscillations and typic
lying in the GHz range for a SCL. To investigate the dyna
ics of this system, we have suggested an extension of
Kuramoto model@7#.

Aside from its fundamental interest, this subject has
technological application. SCL arrays are a compact
high power optical source. To concentrate the maximum
herent output power in a single lobed far field pattern, it
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required to lock the SCL elements in phase. For this,
symmetry of the coupling is an essential characteristic of
system. It was indeed found theoretically@8#, in the absence
of delay, that a global coupling is more suitable than
nearest-neighbor coupling to synchronize the SCL’s
phase. Numerical simulations tend to extend this conclus
to the case where the coupling is delayed@9#. On the other
hand, phase locking was investigated in a laser array wi
random distribution of frequencies and instantaneous glo
coupling @10#. The idea to use optical feedback in order
synchronize a laser array was already exploited in Ref.@11#.
However, up to now, only strong coupling has been cons
ered, which raises some technical difficulties. The very sm
transverse size of the SCL’s makes it difficult to efficien
reinject a substantial fraction of the emitted field back in
their active region. Usually, the mirror is placed a few m
limeters away from the array, for instance at the Talbot d
tance. With such a small external cavity length, the o
effect of the delay is to change the phase of the reinjec
field.

In this paper, we again consider the model discussed
Ref. @7#: a one-dimensional array of SCL’s with possib
nearest-neighbor coupling, with a global coupling of the
sers by a spherical mirror placed centimeters away from
array, as depicted in Fig. 1. The spherical shape of the mi
minimizes the optical path difference between SCL’s. Suc
spherical feedback mirror was recently used to stabilize
emission of a broad area laser@12#. Since we consider only a
weak coupling between the lasers in our model, the feedb
field is assumed to be smaller by orders of magnitude tha
Ref. @11#. We give a detailed and extended analysis of
model presented in Ref.@7#. Our purpose is to determin
how to maximize the array output. This goal is achieved
the lasers are phase locked, which in this case means
they should be in phase. We show that the problem is ph
sensitive, and that the cw regimes can be either in-phas
out of phase. The in-phase steady state can bifurcate tow
a time periodic regime, following two different routes, an
the array can be either in phase or antiphase in this t
©2001 The American Physical Society13-1
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periodic regime. The bifurcation to the in-phase time pe
odic regime does not exist in the absence of a delayed f
back. It is therefore a delay-induced bifurcation. Maximiz
tion of the array output is achieved if parameters are sele
such that the bifurcation occurs toward the in-phase perio
regime.

This paper is organized as follows. In Sec. II, we descr
the model and introduce the evolution equations. In Secs
and IV, we study the synchronization properties of the S
array in the cw regime. We calculate the self-pulsing thre
olds from the cw states. For the in-phase steady state, t
are two possible thresholds: a degenerate Hopf bifurca
leading to antiphase periodic laser intensities, and a reg
Hopf bifurcation leading to in-phase periodic laser inten
ties. In Sec. V, we present an analytical treatment of
synchronization in the self-pulsing domain in the simplifyin
limit of a large linewidth enhancement factora. This results
from an explicit derivation of evolution equations governi
the slow time dependence of the laser intensities, also kn
as the solvability condition of the bifurcation equations.

II. MODEL

The mathematical model of our system is a set ofN
coupled Lang-Kobayashi equations in dimensionless form

dEj

dt
5 iv jEj1~11 ia!ZjEj1 i

x

2
e2 i z~Ej 211Ej 11!

1 i
h

N (
n51

N

e2 i (q jn1q̄)En~ t2tD!, ~1!

g21
dZj

dt
5Pj2Zj2~112Zj !uEj u2, ~2!

with periodic boundary conditionsE05EN , EN115E1. In
Eqs.~1! and~2!, Ej is the electric field, andZj is the carrier
excess density of thej th laser. The time unit is the photo
cavity lifetime tp.2310212 s. g5tp /tc.1023 is the ra-
tio of the photon to carrier lifetimes, anda.5 is the line-
width enhancement factor.Pj is the excess pump paramet
of laserj, which is proportional to the injection current abov

FIG. 1. Schematic representation of a SCL array with glo
optical coupling between the lasers.d is the transverse size of th
array. The spherical feedback mirrorM of radiusr is placed at the
focus of the converging lens CL, and at a distanceL from the array.
A is an attenuator, controlling the strength of the coupling.
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threshold. We suppose that all lasers operate in the s
single longitudinal mode of the short cavity. This may r
quire the use of frequency
slection techniques@13#, or require one to pump the lase
not too far above the lasing threshold. Thej th laser has a
lasing frequencyv j /tp in the absence of optical feedbac
and coupling between the lasers. We denote byP̄ andv̄ the
average pump and optical frequency over the SCL arr
Hereafter we will assume that the deviationsuPj2 P̄u and
uv j2v̄u are small.

The parameterh describes the global coupling strengt
The phase of the fields reinjected in the array of SCL’s
qn j1q̄, and tD52L/(ctp) is the external cavity round-trip
time normalized bytp . Note that, for symmetry reasons, i
Eqs. ~1! and~2! we do not follow the commonly adopte
notations in which the feedback term appears without
imaginary uniti @14#. This, however, is equivalent to settin
q̄5p/2, or shifting the position of the external mirror by on
eighth of the optical wavelength. Since the exact value of
external cavity length is not known with precision, we m
simply set q̄ equal to zero. The phase dispersionuqn ju
[v̄udn ju/c can be made small if the feedback mirror~with
radiusr !L) is placed at the focus of a converging lens a
sufficiently far from the SCL array~see Fig. 1!. Indeed, if the
lateral dimensiond of the array is small compared to th
external cavity lengthL, one has an inequalityudn ju
&r (d/2L)2. For instance, ifd51 mm, r 51 mm, andL
510 cm, the dispersion in the optical path lengths isudn ju
&2.531028 m, which is much shorter than one optic
wavelength. Hereafter, theoretical conclusions will theref
be stated forqn j50. The parametersx and z measure, re-
spectively, the strength and the phase of the local coup
that can arise due to the interaction between neighbo
lasers via evanescent fields. Note that the phase of the l
coupling z is usually assumed to be zero@15#. Finally, we
will assume that the coupling between the lasers is we
h,x!1.

III. SYNCHRONIZATION BELOW SELF-PULSING
THRESHOLD

A. In-phase synchronization

In this section, we derive the steady states of Eqs.~1! and
~2!. These equations are phase sensitive, and admit in-p
and antiphase solutions. In this problem, steady states
defined by the property that the laser intensities are cons
We study the linear stability of the in-phase and antiph
cw regimes. Since we are mainly interested in the effec
time delay on the synchronization of globally coupled lase
we present a detailed stability analysis for the casex50, and
only briefly discuss the influence of the local coupling on t
stability properties of cw states. The optical feedback c
destabilize the SCL array from its cw operation. Howev
beforeh exceeds the self-pulsing threshold, the SCL’s d
liver a constant intensity. Below this threshold, the stabil
of the steady state justifies thatZj and the modulus of the
fields uEj u can be adiabatically eliminated in Eqs.~1! and~2!.

l
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In the limit uPj / P̄21u5udPj u!1, this yields the following
set of coupled equations for the field phases:

df j

dt
5v j2

h

N
A11a2

3 (
n51

N

sin@q jn1f j2fn~ t2tD!2cot21 a#

2
x

2
A11a2 (

q51,21
sin~f j2f j 1q1z2cot21a!,

~3!

with the boundary conditionsf05fN andfN115f1. Note
that the effective coupling strength in Eq.~3! is proportional
to A11a2, and therefore increases with the linewidth e
hancement factora. If local interactions are negligible,x
!h, and if uq jnu!1, Eq.~3! reduces to the Kuramoto equa
tions with a time delay@3,4#.

Let all the lasers be identical, so thatv j5v̄. The in-phase
solutions of Eq.~3! are given byf j5vt, with the common
frequencyv obeying the transcendental equation

v5v̄2A11a2 @h sin~vtD2cot21 a!

1x sin~z2cot21 a!#. ~4!

This equation can have multiple solutions. They corresp
to the external cavity modes~ECM’s! of the single laser@14#,
which grow in number with increasinghtD . The linear sta-
bility analysis of the in-phase cw state can be performed
substituting

f j5vt1«(
k51

N

dfke
2i jk /N ~5!

into Eq. ~3! and collectingO(«) terms. The linearized equa
tions for dfk yield the stability conditions

h cos~vtD2cot21 a!12x cos~z2cot21 a!sin2S kp

N D.0,

~6!

wherek51, . . . ,N21. The effect of the local coupling on
the stability of the in-phase cw regimes depends on the r
tive phase between the global and local couplings. If the
cosine functions in Eq.~6! have the same sign for largeN,
local coupling almost does not change the stability domain
the cw in-phase solution. Otherwise this stability domain
creases with increasing local coupling strengthx. This was
also observed in Ref.@16#.

Letting x→0, the bifurcations defined by Eq.~6! merge
into a single (N21)-fold degenerate bifurcation. Then, su
cessively solving Eqs.~6! and ~4!, one finds instability do-
mains of the in-phase cw state which are triangles in
(v̄tD ,h) parameter plane,
01661
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1htDA11a2<v̄tD2cot21~a!22np

<
3p

2
2htDA11a2, ~7!

wheren is an arbitrary integer. These inequalities are cons
tent with results derived in Ref.@3#, and obtained in the limit
N→`. In Eq. ~7! the time delay appears on two well sep
rated time scales:v̄tD andhtD . Sinceh!1!v̄, the varia-
tion of the external cavity lengthL over one optical wave-
length leads to a variation of 4p for v̄tD , but leaveshtD

almost constant. Therefore, we can considerv̄tD , andhtD
as independent parameters of the problem. Inside the dom
defined by Eq.~7!, in-phase synchronization is lost in favo
of antiphase cw regimes. The size of these instability
mains is inversely proportional tohtD . Therefore, to in-
crease the time delay favors in-phase cw operation. In S
IV, we shall define selfpulsing thresholdshH1 and hH2 to
periodic intensities. If tD is sufficiently large and if
p(2tDA11a2)21,h,hH1,2, stable cw in-phase operatio
exists for all values ofv̄tD . This is due to the overlap o
stability domains of cw in-phase solutions corresponding
different ECM’s.

B. Antiphase synchronization

The antiphase cw solutions are defined by

f j5v̄t12 jM p/N, ~8!

where the integerM determines the type of antiphase sta
The stability conditions for Eq.~8! can be obtained using
discrete Fourier transformation similar to Eq.~5!. They are

x cos~z2cot21 a!cosS 2Mp

N D sin2S kp

N D.0, ~9!

with k51, . . . ,N, kÞM ,N2M and

h cos~vtD2cot21 a!

24x cos~z2cot21 a!cosS 2Mp

N D sin2S Mp

N D,0, ~10!

wherev verifies the transcendental equation:

v5v̄2A11a2 Fh2 sin~vtD2cot21 a!

12x sin2S Mp

N D sin~z2cot21 a!G . ~11!

The stability boundaries defined by Eqs.~9! and ~10! corre-
spond to Hopf bifurcations with the frequencyv2v̄. Ac-
cording to the stability condition@Eq. ~9!#, the local coupling
selects the antiphase states withM such that cos(z
2cot21 a)cos(2Mp/N).0. It then follows from Eq.~10! that
the stability domain of these states increases withx.
3-3
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In the absence of local coupling, the left hand side of E
~9! vanishes, which implies that the antiphase state@Eq. ~8!#
is neutrally stable withN22 zero eigenvalues. In addition
there is a zero eigenvalue associated with the invariance
der the global phase shiftf j→f j1const. This neutral sta
bility is related to the existence of a (N21)-dimensional
invariant manifold in the phase space of Eq.~3!. It is the
manifold spanned by the antiphase solutions that verify
relation ( j exp(ifj)50 @16–18#. Expressions~10! and ~11!
yield the following neutral stability domains of the antipha
cw solutions@Eq. ~8!#:

p

2
1

htD

2
A11a2<v̄tD2cot21 a22np

<
3p

2
2

htD

2
A11a2. ~12!

Finally, we note that the phase equations~3! are valid in
the limit h,x,udPj u!1, and below the self-pulsing threshol
Under these assumptions, the stability conditions obtaine
this section agree with the linear stability analysis of the f
equations~1! and ~2!.

Let us now relax the assumptionv j5v̄. Then, in the
large N limit, assuming a Lorentzian distribution for th
natural frequencies,g(v8)5(G/p)@G21(v82v̄)2#21, the
stability condition for the desynchronized state becom
@3,4#

h,hc[
2G

A11a2 cos~vtD2cot21 a!
, ~13!

wherev verifies Eq.~11! with h5hc andx50. Note that,
as G→0, the stability boundary defined by Eq.~13! trans-
forms into Eq.~10!, with x50.

IV. SELF-PULSING INSTABILITIES

A. Antiphase Hopf bifurcation

In order to describe Hopf bifurcations of the in-phase
state leading to solutions with self-pulsing laser intensiti
we return to the original set of coupled Lang-Kobaya
equations~1! and~2!. We confine our treatment to the case
identical lasers by settingv j5v̄ and Pj5 P̄. The complete
in-phase cw solution of Eqs.~1! and ~2! is then

Ej~ t !5S P̄1h sin~vtD!1x sinz

122h sin~vtD!22x sinz
D 1/2

eivt, ~14!

Zj~ t !52h sin~vtD!2x sinz, ~15!

wherev is the solution of Eq.~4!. Besides the desynchron
zation boundaries@Eqs. ~7!#, a linear stability analysis o
Eqs. ~14! and ~15! reveals the existence of two differen
types of Hopf bifurcations, leading to self-pulsing solution
The bifurcations of the first type are associated with per
bations transverse to the synchronization manifold$E1
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5•••5EN ,Z15•••5ZN%. In the limit h,x,g!1, these bifur-
cations are defined by the condition

h5hH1~k!

[sec~vtD1cot21 a!

3Fg~112P̄!

A11a2
22x sin2S pk

N D cos~z1cot21 a!G ,

~16!

with k51, . . . ,N21. The associated relaxation oscillatio
frequency is (2g P̄)1/2. If cos(z1cot21 a),0, the lowest bi-
furcation threshold@Eq. ~16!# corresponds tok51. In the
limit N→`, it coincides with the threshold in the absence
local coupling. Conversely, if cos(z1cot21 a).0, the self-
pulsing threshold is lowered by the local coupling, even
largeN.

For x50, Eq.~16! gives a single boundaryh5hH1 asso-
ciated with an (N21)-fold degenerate Hopf bifurcation
Such a degenerate bifurcation is known to produce mult
branches of antiphase self-pulsing solutions@19#. The an-
tiphase character of the emerging sustained relaxation o
lations partially destroys the in-phase synchronization of
cw state. The solutions describing these oscillations will
constructed in Sec. IV B.

B. In-phase Hopf bifurcation

Another Hopf bifurcation, which is always nondegene
ate, is located at

h5hH2[
hH1

12cosw
, w[VH2tD . ~17!

Note that the bifurcation condition@Eq. ~17!# is independent
of x, and is identical to that of a solitary laser with a fee
back strengthh instead ofh/N in Eq. ~1!. The frequency
VH2 characterizing the oscillations ath5hH2 satisfies the
transcendental equation

VH25~2g P̄!1/21g~ P̄11/2!cotS VH2tD

2 D . ~18!

This equation has an infinity of solutions, each producin
different hH2 through the value ofw in Eq. ~17!. The peri-
odic solution that bifurcates ath5hH2 lies within the syn-
chronization manifold. It is therefore characterized by
phase synchronization, not only in the optical frequencyv
but also in the relaxation oscillations at frequencyVH2.

Which of the two Hopf bifurcations,h5hH1 or h5hH2,
takes place first and, hence, destabilizes the cw solution
pends on the order of magnitude of the time delaytD? We
discuss three different situations:~i! small,~ii ! moderate, and
~iii ! large delays.

~i! If tD!g21/2, thenw!1 and the cw solutions~14! and
~15! can only be destabilized through the Hopf bifurcation
3-4
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DYNAMICS OF A SEMICONDUCTOR LASER ARRAY . . . PHYSICAL REVIEW E64 016613
h5hH1. In this limit, however, the phase dispersionsqn j
may become non negligible, which makes the validity
formula ~16! questionable.

~ii ! If tD;g21/2, i.e., the time delay is comparable to th
relaxation oscillations period. The value ofw corresponding
to the lowest bifurcation thresholdhH2 is well approximated
by (2g P̄)1/2tD . Then the relative position ofhH1 and hH2
can be controlled throughw by changing the external cavit
length on the centimeter scale.

~iii ! Finally, if tD*pg21(2P̄11)21 there exists at leas
one solutionVH2 of Eq. ~18! such thathH2,hH1. There-
fore, it is always the in-phase Hopf bifurcation@Eq. ~17!# that
destabilizes the in-phase cw solution. Moreover, our num
cal simulations indicate that for large delays the in-ph
synchronized self-pulsing solution emerging ath5hH2 is
stable in a wide domain above the desynchronization thre
old given byh5hH1. In this sense, the antiphase instabil
is bypassed, and in-phase synchronization is preserved b
in-phase Hopf bifurcation ath5hH2.

Figure 2 illustrates the dependence of the minimal c
pling strength necessary for the Hopf bifurcationsh5hH1
andh5hH2 on the time delay. From Eqs.~16! and~17!, hH1

and hH2 have minimahH15g(112P̄)/A11a2 and hH2
5hH1 /(12cosw) at cos(vtD1cot21 a)51. These minima
are shown as functions of the external cavity lengthL. One
can see that forL&20 cm the order of appearance of th
two Hopf bifurcations,h5hH1 and h5hH2, can be con-
trolled throughL. For largerL, the in-phase Hopf bifurcation
always precedes the antiphase Hopf bifurcation.

FIG. 2. Relative positions of the two Hopf bifurcations.x50,
a55, P51.5, andg51023. The dashed lineH1 shows the mini-
mal coupling strength necessary to reach the degenerate Hop
furcation h5hH1. It corresponds to the minima of the curvesH1

shown in Fig. 3. The solid lineH2 represents the minimal couplin
strength corresponding to the in-phase Hopf bifurcationh5hH2,
calculated using Eq.~17!.
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The linear stability analysis of the cw states is summ
rized in Figs. 3~a! and 3~b! for values of the external cavity
length in the vicinity ofL.13.7 and 44 cm, respectively. I
these figures,L varies on the scale of the optical waveleng
which we fix atl51 mm. The gray areas labeled I and
are the stability domains of different cw in-phase solutio
each corresponding to a certain ECM. In Fig. 3~a!, it is the
Hopf bifurcation to antiphase self-pulsing solutions ath
5hH1,hH2, which takes place first and destabilizes the
phase cw state. In Fig. 3~b!, corresponding to a larger valu
of feedback delay, the first Hopf bifurcation leading to i
phase self-pulsing regime takes place ath5hH2,hH1.

Having determined the critical coupling strengthshH1
andhH2, we can complete the conditions to achieve synch
nization in the cw operation,

hc,h,hH1 ,hH2 ,

bi-

FIG. 3. Stability boundaries of cw solutions. The parameters
the same as in Fig. 2.~a! L5L01dL and ~b! L5L11dL with L0

513.7 cm andL1544 cm. In-phase states corresponding to d
ferent ECM’s are stable in the grey areas~I and II!. In the regions II
stable antiphase and in-phase states coexist. In the white trian
regions III, only antiphase states are stable. CurvesH1,2 indicate the
locations of Hopf bifurcations.
3-5
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G. KOZYREFF, A. G. VLADIMIROV, AND PAUL MANDEL PHYSICAL REVIEW E 64 016613
wherehc is defined in Eq.~13!. Qualitatively, this imposes
that the dispersion of the natural frequenciesG be smaller
than the relaxation rate of the carrier densityg.

Finally we conclude that according to the linear stabil
analysis, a large time delay favors in-phase synchronizat
because it reduces the size of the instability domains@Eq.
~7!# of the cw in-phase state, and favors the in-phase H
bifurcation ath5hH2 against the antiphase bifurcation
h5hH1.

V. SELF-PULSING SOLUTIONS

We now construct the time periodic solutions that bifu
cate from the in-phase cw solutions~14! and ~15!. For the
sake of mathematical convenience, we assume thata@1.
Using this approximation, it is possible to describe analy
cally not only small amplitude self-pulsing solutions of Eq
~1! and ~2! near Hopf bifurcation thresholds, but finite am
plitude periodic intensity solutions as well. Although,
practice,a.5, the agreement with numerical results is qu
remarkable. Working in the limitg,h,x,a21!1, we seek a
solution of Eqs.~1! and ~2! of the following forms:

Ej~ t !5APj S 11
yj

a Dexp~ iF j !, ~19!

Zj~ t !5V j

xj

a
, V j5A2gPj . ~20!

Following the procedure described in the Appendix, we o
tain the third order phase equation

1

V j
2 Fd3F j

dt3
1g~2Pj11!

d2F j

dt2
G1

dF j

dt

5v j2
ah

N (
n51

N

sin@q jn1F j2Fn~ t2tD!#

2
ax

2 (
p5 j 21,j 11

sin~z1F j2Fp!. ~21!

These equations generalize the phase equation~3! by the
presence of higher order derivatives ofF j . The left hand
side of Eq.~21! has a structure similar to the equation d
rived in Ref.@20# for a multimode single SCL with externa
feedback. One can also note an analogy between Eq.~21!
and the extended Kuramoto model, studied in Refs.@21,22#,
in which a second derivative of the phase variable was
cluded in order to take into account ‘‘inertial’’ effects. Th
authors of Ref.@21# found, in the limit N→`, that inertia
‘‘embarrasses’’ the in-phase synchronization. In our case
ertial terms proportional to higher order derivatives in E
~21! are responsible for the appearance of self-pulsing in
bilities at h5hH1 and h5hH2. As already mentioned, th
first of these two instabilities leads to the solutions with p
tially broken in-phase synchrony.
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We derive amplitude equations by following the two-tim
scale perturbation approach proposed in Ref.@23#. To this
end, we introduce the two time variabless and t and their
delays by

~s,sD!5V̄~ t,tD!, ~t,tD!5g~ P̄11/2!~ t,tD!, ~22!

whereV̄5A2g P̄. Coupling parameters and frequencies a
rescaled as

~K,X,dv j ,dV j !5
~ah,ax,v j2v̄,V j2V̄!

g~ P̄11/2!
,

and dV j5(Pj2 P̄)/@V̄( P̄11/2)#. In the leading order ap-
proximation, one obtains

xj52Im@zj~t!eis#, yj5Re@zj~t!eis#,

F j5v̄t1f j~t!1Re@zj~t!eis# ~23!

In the Appendix, we derive the slow time evolution equ
tions for f j (t) andzj (t):

df j

dt
5dv j2

K

N (
n51

N

sin~f jn!J0~ uzjnu!

2
X

2 (
q5 j 21,j 11

sin~j jq!J0~ uwjqu!, ~24!

dzj

dt
5~211 idV j !zj1

K

N (
n51

N

cos~f jn!zjn

J1~ uzjnu!
uzjnu

1
X

2 (
q5 j 21,j 11

cos~j jq!wjq

J1~ uwjqu!
uwjqu

. ~25!

In these equations,Jn(x) are Bessel functions of the firs
kind, and

f jn5v̄tD1q jn1f j2fn~t2tD!,

zjn5zj2zn~t2tD!exp~2 isD!, ~26!

j jq5z1f j2fq , wjq5zj2zq . ~27!

We use the amplitude equations~24! and ~25! in order to
describe analytically periodic self-pulsing regimes in the
ray. Specifically, the steady statez15•••5zN50 of Eqs.
~24! and~25! corresponds to the cw solutions of the origin
Lang-Kobayashi equations, whereas the states with time
dependentuzj uÞ0 correspond to periodic self-pulsing solu
tions of Eqs.~1! and~2!. Although, for the sake of generality
local coupling and dispersion in natural frequencies are
cluded in Eqs.~24! and~25!, below we focus on the synchro
nization of globally coupled oscillators with identical param
eters in the absence of local coupling:X,dV j ,dv j ,q jn50.
3-6
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DYNAMICS OF A SEMICONDUCTOR LASER ARRAY . . . PHYSICAL REVIEW E64 016613
A. In-phase periodic solution

An in-phase periodic solution of Eqs.~1! and ~2!, that
bifurcates ath5hH2, is obtained by substitutingf j5Dvt
and zj (t)5r exp(iDVt) with a time independentr in Eqs.
~24! and ~25!. The amplituder of the oscillations is then
related to the coupling parameterK by the implicit relations

K215
r̃J1~ r̃ !

2r2
cosc, r̃52r sin~w/2!, ~28!

c5v̄tD1DvtD , w5V̄tD1DVtD , ~29!

where the frequency shiftsDv and DV obey the transcen
dental equations

Dv522
r2J0~ r̃ !

r̃J1~ r̃ !
tanc, DV5cotS w

2 D . ~30!

Equations~30! for the correction to the relaxation oscillatio
frequencyDV is in fact equivalent to Eq.~18!. The value of
w can be controlled by varying the external cavity length
the cm scale. If the delay is moderate,tD!1, one can use the
approximationc.v̄tD . Then Eqs.~28! decouple from the
equation for Dv in Eqs. ~30!. Note that K→KH2
52sec(c)/(12cosw) asr→0, which is consistent with Eq
~17! for a@1 andx50. The stability of solutions~28!–~30!
can be determined by linearizing Eqs.~24! and ~25!, and
applying a discrete Fourier transformation of variables as
Eq. ~5!. This yields stability conditions for perturbation
transverse to the synchronization manifold.

If hH2,hH1, that is, if cosw,0, the in-phase periodic
solution is stable in the vicinity of the self-pulsing thresho
However, it can be destabilized by a secondary bifurcat
Kf . The conditionK5Kf defines an (N21)-fold degener-
ate steady state bifurcation of Eqs.~24! and ~25! which cor-
responds to a secondary bifurcation of the in-phase peri
solutions of Eqs.~1! and ~2!. This bifurcation leads to a
gradual desynchronization of the optical phasesf j . To dem-
onstrate this point, we perturb the in-phase solutions~28!–
~30! as f j5Dvt1df j and zj5r exp(iDVt)1dzj . In the
particular case cosc51, the linearized equations fordf j de-
couple from those fordzj :

ddf j

dt
52KJ0~ r̃ !(

n
df j2dfn~t2tD!. ~31!

According to Eq.~31! the secondary instabilityK5Kf takes
place when the quantityJ0( r̃) changes from positive to
negative with increasingr.

If hH2.hH1, the cw regime is already unstable at t
Hopf bifurcationK5KH2, and the in-phase periodic solutio
emerging from this point is, therefore, also unstable. Ho
ever, the laser array can be stabilized in the in-phase s
through an (N21)-fold degenerate Hopf bifurcation of Eq
~24! and ~25! at K5Ku . This corresponds to a seconda
antiphase Hopf bifurcation of the in-phase self-pulsing so
tion in the original laser equations. Further increasingK, the
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laser array again loses its in-phase synchronization aK
5Kf.Ku . This situation is illustrated by the bifurcatio
diagram shown in Fig. 4~a! @27#. In this figure, the branche
of stable self-pulsing solutions bifurcating from the in-pha
cw state are shown as functions of the coupling strength.
seen that in-phase and antiphase self-pulsing regimes
coexist in a broad range of coupling strengths. The bifur
tion thresholdsK5Ku and K5Kf are shown in Fig. 5 as
functions ofvtD .

The bifurcation diagram shown in Fig. 6 corresponds t
large value of the delay,tD51.83, for which the in-phase
Hopf bifurcation always precedes the antiphase Hopf bif
cation. As seen from the figure, the stable in-phase s
pulsing solution emerging ath5hH2 undergoes a secondar
Hopf bifurcation to an in-phase synchronized solution w
quasiperiodic laser intensities. Since this secondary bifu
tion takes place before the desynchronizing bifurcation
K5Kf , in-phase synchronization is preserved in the qua
periodic self-pulsing regime. This eventually leads to an
phase synchronized chaotic regime with increasingh.

B. Antiphase periodic solutions

From the linear stability analysis, we know that the a
tiphase self-pulsing solutions can destabilize the cw in-ph
state only iftD is sufficiently small. Otherwise,hH2,hH1,
and the in-phase periodic solution emerges first. Let us
sume thattD!1 and, therefore, neglect the delaytD in Eq.
~26!. Substitutingf j5Dvt and zj5r exp(iDVt12ijkp/N)
in Eqs. ~24! and~25!, we obtain the following relation be
tween the amplituder of the antiphase selfpulsing solutio
with the discrete wave numberk and the coupling paramete
K:

K215
cos~vtD!

N (
n51

N
rn,kJ1~rn,k!

2r2
, ~32!

where

rn,k52r sinS V̄tD

2
2

nkp

N
D .

Letting r→0 in Eq. ~32!, we obtainK→KH152/cos(vtD),
which is consistent with Eq.~16! for x50 anda→`. All
these solutions have the same scaling nearK5KH1, namely,
r5A8DK/31O(DK3/2) with DK5K/KH121, except the
solution corresponding tok5N/2 with N even, which scales
as

r5A 8DK

31cos~2V̄tD!
1O~DK3/2!. ~33!

The self-pulsing antiphase solution with the wave num
k5N/2 is often observed in numerical simulations whenN is
even in Eqs.~1! and~2!. For this wave number, two cluster
form in the array. Within each cluster, individual laser inte
sities oscillate in phase, while SCL’s pertaining to differe
clusters differ by a phase shift ofp in their relaxation oscil-
3-7
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FIG. 4. ~a! Branches of self-pulsing solutions bifurcating from the in-phase cw state obtained by simulating numerically Eqs.~1! and~2!

with N55, mod(v̄tD,2p)50.14 andtD591.7, which corresponds toV̄tD55.02 andtD50.18. The minima and maxima of the total fie
are plotted as functions ofh. Other parameters are the same as in Fig. 2. The secondary bifurcationhu (hf) corresponds toKu (Kf )
discussed in Sec. V A. Dotted lines are the analytical approximations for the self-pulsing solutions obtained using Eqs.~28!–~30!, ~34! and
~35!. ~b! Laser intensities for the antiphase self-pulsing branch AP of~a!. h51.1231023. ~c! Intensities for the in-phase self-pulsing bran
IP of ~a!. h51.1231023.
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lations. The denominator in Eq.~33! indicates that the
growth rate of the amplitude of this self-pulsing state w
DK is maximum for cos(2V̄tD)521. Such a resonance con
dition, with respect to the frequency 2V̄, is connected to the
fact that the total reflected field oscillates at twice the os
lation frequency of the individual lasers if the laser arr
is in the k5N/2 state. Indeed, let us reconstru
Etot5( j 51

N Ej using Eq. ~19! and f j5Dvt, zj

zj5(21) jr exp(iDVt):

Etot}cos@r cos~V̄t1DVt!#1O~r/a!

.J0~r!22J2~r!cos~2V̄t12DVt!.
01661
l-

With the increase of the coupling strength, a symme
breaking instability of thek5N/2 solution takes place by
which the two antiphase clusters acquire different opti
phases. In order to demonstrate this phenomenon, we su
tute into Eqs.~24! and~25! a perturbed antiphase solution
the form f j5Dvt1(21) jdf, zj5(21) jr exp(iDVt)
1(21)jdz, and derive linearized equations fordf anddz. In
the particular case cos(vtD)51, the equation fordf does not
depend ondz, and is

ddf

dt
52KJ0@2r cos~V̄tD/2!#df.

Accordingly, the symmetry breaking bifurcation arises wh
3-8
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J0@2r cos(V̄tD/2)# becomes negative with increasingr. The
total field for the solution with the optical phase differen
df of the antiphase clusters can be written as

Etot}cos@r cos~V̄t1DVt!1df#1O~r/a!.

Note that the trigonometric expression above possess
distinct minima at cos(df6r). A similar feature is exhibited
by the antiphase self-pulsing regime bifurcating ath51.49
in Fig. 4~a!.

Two antiphase clusters can appear in the array ifN is odd,
except that one laser does not belong to any cluster. The
order amplitude equations~24! and~25! predict that this laser
is in a steady state. Higher order effects lead to correction
the form of very small amplitude oscillations. This behav
is illustrated in Fig. 4~b!, and corresponds to the branch
the solution labeled AP in Fig. 4~a!. In Fig. 4~b!, two an-
tiphase clusters are formed by lasers 1 and 2 and 4 an
whereas laser 3 is almost cw. A self-pulsing solution w
two antiphase clusters and a single cw laser can be desc
analytically with the help of Eqs.~24! and~25!. Looking for
a solution of the formsz150, zj .15(21) jr exp(iDVt),
f j .15Dvt, and f15Dvt2df, and using the self-
consistency conditiondf1 /dt5df j .1 /dt, we obtain a
transcendental equation for the optical phase lagdf:

~N22!cos~df!2N cot~vtD!sin~df!

5
~N21!@J0~r1!1J0~r2!#22

2J0~r!
, ~34!

wherer152r cos(V̄tD/2) andr252r sin(V̄tD/2). The am-
plitude r and the coupling parameterK are related by

FIG. 5. Bifurcation loci of the in-phase self-pulsing solutio
labelled IP in Fig. 4~a!. The curvehH2 corresponds to the Hop
bifurcation from the already unstable cw in-phase solution. T
in-phase self-pulsing solution exists above this curve, and is st
in the grey region delimited by the curveshu andhf .
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K215cos~vtD1df!
J1~r!

Nr

1
N21

N
cos~vtD!

r2J1~r2!1r1J1~r1!

4r2
. ~35!

Due to the permutation symmetry of the problem withx
50, the laser indices can be rearranged such that theN
21)/2 first lasers belong to the first cluster and theN
21)/2 last lasers form the second cluster. The cw lase
thus at the center, and can be viewed as a transition p
between the two clusters where a sudden relaxation ph
shift of p takes place. Numerical simulations with nonze
but smallx and boundary conditionsE05EN1150 lead to
such a situation. This state of synchronization can there
be viewed as a discrete analog of a domain wall.

VI. CONCLUSION

We have studied the synchronization properties of a S
array subjected to a delayed global coupling through opt
feedback. If the lasers are identical and the coupling stren
is below the self-pulsing threshold, the array dynamics c
be modeled with Kuramoto phase equations~3! that include
a time delay. Depending on the optical dephasing of
feedback field, the coupling induces either in-phase or
tiphase cw synchronization. Increasing the time delay,
stability domains expand for the in-phase cw states, whe

FIG. 6. ~a! Numerically calculated bifurcation diagram for Eq

~1! and ~2! with N54, mod(v̄tD,2p)50.14 andtD5917, which

corresponds toV̄tD550.2 andtD51.83. Other parameters are th
same as in Fig. 2. The cw in-phase state undergoes the Hopf b
cation, leading to a stable in-phase self-pulsing solution. With
increase of the coupling strengthh, this solution bifurcates into a
quasiperiodic in-phase synchronized regime via a secondary H
bifurcation. The latter regime bifurcates to a chaotic in-phase s
chronized regime ash is further increased. Dotted lines show an
lytical results obtained using Eqs.~28!–~30!.

e
le
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G. KOZYREFF, A. G. VLADIMIROV, AND PAUL MANDEL PHYSICAL REVIEW E 64 016613
they shrink and tend to disappear for the antiphase cw st
@compare Figs. 3~a! and 3~b!#. In the more realistic situation
where there is a distribution of the SCL’s optical freque
cies, the coupling strength must exceed some critical va
hc in order to establish synchronization. An estimation
hc , given by Eq.~13!, can be obtained from the Kuramot
model@Eq. ~3!# in the limit of an infinitely large array@3,4#.
We note, however, that a more complete description of
laser synchronization properties can be expected from
extended model@Eq. ~21!#, because it takes into accou
weakly damped relaxation oscillations. These oscillations
typical of solid state and semiconductor lasers. Thou
damped, they could degrade the synchronization prope
of the array. Recently, it was shown that a second or
derivative term included in the Kuramoto phase equati
can increase the in-phase synchronization threshold@21#.

As the coupling strength exceeds the Hopf bifurcat
threshold, the laser intensities become time periodic. T
exhibit either in-phase or antiphase pulsations, with a
quency close to the relaxation oscillations frequencyV of
the solitary SCL. Antiphase dynamics is a common feat
typical of many other systems consisting of globally coup
identical elements@24–26#. A Hopf bifurcation, leading to
antiphase dynamics, exists even in the absence of time d
Conversely, in-phase self-pulsing instability can appear o
if VtD5O(1). Formoderate delays, i.e.,VtD5O(1), which
of the two self-pulsing bifurcations destabilizes the cw
phase state depends on the relaxation dephasing betwee
emitted and reinjected fields. In this case we found that e
if the antiphase Hopf bifurcation takes place first, the
phase self-pulsing solution can become stable with the
crease of the coupling strength, illustrated by Fig. 4~a!. On
the other hand, for large delays, verifyingtD*pg21(2P̄
11)21, the in-phase bifurcation always precedes the
tiphase one, thus preserving in-phase synchrony in the
pulsing regime.

Above the self-pulsing threshold, the phase equations~3!
are no longer valid. Therefore, in order to describe the s
pulsing dynamics, we use an extended version of the Ku
moto model with higher order derivative terms@Eq. ~21!#.
Using a perturbation method, we reduced Eqs.~21! to the
amplitude equations~24! and ~25!. This allowed us to de-
scribe analytically various self-pulsing solutions emerg
from the Hopf bifurcations, and discuss their stability.
particular, we have studied secondary antiphase bifurcat
of the in-phase self-pulsing solution. For moderate dela
VtD5O(1), these bifurcations can destroy the synchrony
the in-phase self-pulsing regime, and, hence, decrease
amplitude of the total field( j 51

N Ej . However, if tD;g21,
they are bypassed by another secondary bifurcation
leads to in-phase synchronized output with quasiperiodic
ser intensities. Numerically, in-phase synchrony is then s
to persist even in the chaotic regimes.

Finally we have described a particular antiphase state
turing extinction of the sustained relaxation oscillations o
single laser. The existence of such stable regime was ver
by means of numerical simulations of the original laser eq
tions ~1! and ~2!. If a weak local coupling is added t
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the system, the cw laser becomes a discrete analog
domain wall.

Thus we can conclude that the effect of time delay
essentially to increase the complexity of the array dynam
by producing new branches of in-phase cw, periodic, qu
periodic, or chaotic solutions. The symmetry of the glob
coupling imposes that these solutions lie within the in-ph
synchronization manifold, where all the elements of the ar
behave identically. For large delays, the bifurcations
which in-phase solutions are created precede antiphase i
bilities. In this way, the phase trajectory may be kept in t
in-phase synchronization manifold.
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APPENDIX: DERIVATION OF THE
SOLVABILITY CONDITION

Substituting Eqs.~19! and~20! into Eqs.~1! and~2! yields

dxj

dt
52g~112Pj !xj2V j y j1O~Ag/a!, ~A1!

dyj

dt
5V j xj1

ah

N (
n51

N

sin@q jn1F j2Fn~ t2tD!#

1
ax

2 (
p5 j 21,j 11

sin~z1F j2Fp!

1O~Ag/a,h,x,ahdPj ,axdPj !, ~A2!

dF j

dt
5v j1V j xj1O~h,x!. ~A3!

wheredPj5Pj /P̄21. In these equations, we keep terms
orderah, ax, andg, because they are of the same order
the bifurcation points@Eqs. ~16! and ~17!#. Differentiating
Eq. ~A3! twice with respect to time, and using Eqs.~A1! and
~A2!, one obtains Eqs.~21!.

Next we introduce the two time scales in Eq.~22! and
expand the dependent variables in Eqs.~A1!–~A3! as

xj5xj
(0)~s,t!1Agxj

(1)~s,t!1•••,

yj5yj
(0)~s,t!1Agyj

(1)~s,t!1•••, ~A4!

F j5v̄t1F j
(0)~s,t!1AgF j

(1)~s,t!1•••.

CollectingO(g0) terms, we obtain

S ]

]s
2LD S xj

(0)

yj
(0)

F j
(0)
D 50, L5S 0 21 0

1 0 0

1 0 0
D . ~A5!

This equation has the solutions
3-10
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xj
(0)52Im@zj~t!eis#, yj

(0)5Re@zj~t!eis#, ~A6!

F j
(0)5f j~t!1Re@zj~t!eis#.

Next, equating the terms of orderg1/2, we obtain

S ]

]s
2LD S xj

(1)

yj
(1)

F j
(1)
D 5

P̄11/2

A2P̄
BW . ~A7!

The quantityBWW on the right-hand side of Eq.~A7! is com-
puted using the following properties of Bessel functions:

sin@v̄tD1q jn1F j
(0)2Fn

(0)~s2sD!#

5J0~ uzjnu!sinf jn1
J1~ uzjnu!

uzjnu ~zjneis1c.c.!

3cosf jn1h.h.,

and

sin~z1F j
(0)2Fq

(0)!

5J0~ uwjqu!sinj jq1
J1~ uwjqu!

uwjqu ~wjqeis1c.c.!

3cosj jq1h.h.,

where c.c. and h.h. mean ‘‘complex conjugate’’ and ‘‘high
harmonics,’’ respectively. This yields

BW 52
]

]t S xj
(0)

yj
(0)

F j
(0)
D 1S 22xj

(0)2dV j y j
(0)

dV j xj
(0)

dv j

D
1S 0

1

0
D H K

N (
n

Fsinf jnJ0~ uzjnu!

1cosf jn

J1~ uzjnu!
uzjnu ~zjneis1c.c.!G
ce

e

v.

01661
r

1
X

2 (
q5 j 21,j 11

Fsinj jqJ0~ uwjqu!

1cosj jq

J1~ uwjqu!
uwjqu ~wjqeis1c.c.!G J 1h.h.

The existence of nontrivial solutions of Eq.~A7! implies the
orthogonality conditions or solvability conditions

E
0

2p

vW 0•BW ds50, E
0

2p

vW 6•BW e6 isds50,

wherevW 05(0,1,21) andvW 65(7 i ,1,0) are the left eigen-
vectors ofL associated with the eigenvalues 0 and6 i , re-
spectively. These solvability conditions lead to Eqs.~24! and
~25!.

The error in Eqs.~24! and~25!, related to the assumptio
a@1, can be estimated near the Hopf bifurcation points.
this end, we introduce a small parameter« by

K5KH1«2K2 ,

and seek periodic solutions of the forms

f j5Re~« f j ,1e
is1••• !, f j5xj ,yj ,F j2v̄t.

This produces a set of linear differential equations at e
order in«. At third order, the solvability condition yields th
corrected version of Eq.~25! in the vicinity of the bifurcation
point:

dzj

dt
52

iA2P̄

12a2Ag~2P̄11!
zj uzj u2

1
K H cosc

16N (
n

zjnS 8
K2KH

KH
2uzjnu2D1O~a21!.

The principal correction to Eq.~25!, close to the bifurcation
point, is thusO(a22g21/2). Since it is imaginary, it only
affects the relaxation frequency and not the amplitude of
oscillations. The next corrections are onlyO(a21), which
explains the good agreement between numerical and the
ical curves in Figs. 4~a! and 6.
nt,
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