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Stable bound states of one-dimensional autosolitons in a bistable laser
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Differential equations describing the interaction of two weakly overlapping autosolitons in the transverse
section of a wide-aperture laser with a saturable absorber are derived and analyzed. The existence of in-phase
and out-of-phase stable bound autosoliton states is predicted analytically and confirmed numerically.
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I. INTRODUCTION II. MODEL EQUATIONS

We consider a model of a wide-aperture class A laser with

Localized structure$L.S’s) of laser radiation that can ap- a saturable absorbét]

pear in the transverse section of wide-aperture laser systems

are of inte.rest from both fundamental and practical stgnd- GE=(i+d)o,E+EF(E|?), 1)
points. Existence of such stable structures was predicted

theoretically and observed experimentally in different active

and passive optical schemé]s—6]. Recen_tly opticgl LS’s_ f(|E[2)=—1+ 9 _
have attracted much attention due to their potential applica- 1+|E|? 1+B|E|?
tions as “bits” for all-optical parallel information storage

and processing. In connection with these applications the Here the electric field envelopg, the transverse coordi-
problem of the LS’s interaction and bound stafB§’s) for- natex, and the timet are dimensionless variables. The nor-
mation becomes very important. Unlike the solitons of themalized diffusion(spatial filtering coefficientd<1 can ap-
nonlinear Schidinger equation, localized solutionguto- ~ pear as a result of relaxation of the atomic polarizaftb®),
solitong of the dissipative equations, such as the complexdo anda, are the normalized linear gain and absorption co-
Ginzburg_l_andau equa“dm:GLE), can form different types efﬁCientS,B is the ratio of the saturation intensities in ab-
of stationary BS'1,7—-17. They arise as a result of inter- S0rbing and amplifying media. _

ference between exponentially decaying autosoliton tails The model equatiofl) is invariant with respect to trans-
characterized by variable phase. In Ré&-17 the interac-  1ations in spacex—x+c,; and phase shiftE —Ee'°2 with
tion of LS’s was studied within the framework of the quintic &rPitrary constant, andc,. In the case whed=0 it has an

CGLE. It was found that both inphase and antiphase BS’s art@dd't"m‘"‘.I symmegy atss?uated[\)/v ith tGa;Ir:!ean transIormatE)n
unstable, while the states with the phase difference= ¢, 0 @ moving-coordinate frame. Lue 1o this symmetry In the

; i diffusionless limitd=0 any stationary motionless localized
— = + E
¢1=* /2 between the autosolitons can be either Weaklyautosoliton) solution E(x,t) =A(x)e of Eq. (1) gener-

unstable or weakly stable. Note, however, that those latte}, " "\ 1o family of uniformly moving autosoliton solu-

BS's are restlesgl2)] . . , tions. All solutions in the family have the same intensity
nge we study the |'nterac't|on of weakly overlappmg au'profile but travel at different velocities. They read as

tosolitons in the one-dimensionélD) transverse section of

a wide-aperture laser with a saturable absorber that is char-

acterized by a purely dissipative type of nonlinearity. An-

other type of weak autosoliton interaction for which autosoli- . .

tons travel with large relative velocity and, therefore, interact €€ @ is the spectral parameter determining the frequency

only at a short time interval is described in REES]. The shift _of the |solat_ed motionless autosqllton. All gutosphton

model under consideration can also be applied to descripePlutions belonging to the same fami(@) have identical

pulse propagation in optical fiber with saturable gain andSt@pility properties. Therefore, we can consider the motion-

absorption. We consider a situation typical of laser system:€Ss solution3) with v =0. Substituting Eq( 3) into Eq.(1)

when the diffusion coefficiend is small. We show that in for d=0 we obtain ordinary differential equation for the au-

this model BS’s with the phase differenge =0, can be tosoliton amplitude

stable provided the diffusion coefficient exceeds certain very ) ] )

low threshold. Numerical evidence of the existence of such a FaA(X) +idxAX) +AX) F(JAX)[9) =0,

threshold is presented. The BS’s with = = 7/2 are found

to be unstable for the parameter values typical of laser equavith boundary condition&\(x) —0 atx— . We have cal-

tions. In the diffusionless limiti=0 numerical simulations Cculated the amplitud&(x) numerically using the procedure

indicate that the only stable BS is that characterized by théescribed in Ref[14].

phase differenc@_: - and Corresponding to minimal dis- Linear Stablllty analySiS of the autosoliton solution leads

tance between the autosolitons. to eigenvalue problerh W=\W with linear operator

Qo

@

E(X,t):A(X_Ut)e_iat+iUX/2_iUZt/4. (3)
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Ly Lo rameter domain where the zero-intensity steady state of Eq.
La=| . ) (4) (1) is stable, we have the inequalify(0)<<0. Using this
2 L inequality we obtain y=Imya—if(0)>0 and o
=ReJa—i >0.
where ReJya—if(0)>0
I:ll(A)Zia+i&xx+f(|A(X)|2)+ |A(X)|2f’(|A(x)|2), Ill. INTERACTION OF AN AUTOSOLITON PAIR

~ In this section we construct equations governing autosoli-
L1 A) =A% (|AX)[?). (5)  ton interaction using a perturbative approach similar to that
- . ) ) _in Ref.[20]. We consider weak interaction of two identical
The stability propgrtles of the isolated autosollFon solutiong ;tosoliton solution$3) each being stable when taken sepa-
(3) were analyzed in Ref14] by means of numerical calcu- rately. It follows from Eq.(8) that if the autosoliton separa-
lation of the discrete spectrum of the operatar It was tion is large their overlap can be characterized by the quan-
shown that a parameter domain exists in which this solutionity e~ 7¢-, where/_=¢,—{,>0 is the distance between
is stable. Further we study the autosoliton interaction in thisautosoliton intensity maxima. Let the overlap be weak
parameter domain only. enough,e”"*-~¢? (e<1) and the diffusion coefficient be
The symmetry properties of E(L) with d=0 imply that  small,d=0(e). The latter condition assumes that the Gal-
the discrete spectrum of the operatocontains a triply de- ilean symmetry of Eq(1) is only slightly broken. We write
generate zero eigenvalue. This eigenvalue having geometithe solution of Eq(1) describing the interacting autosoliton
cal multiplicity 2 corresponds to a pair of eigenvectmeu-  pair in the form
tral mode$ W, , and a root vectorW;, which obey the

. 2
~ A j=1
L‘I'l'2=0, L‘I’gz‘lfl. (6) J
Here W= (i45(X), % (x))" with s=1,2,3 and +O(s3)} . 9
() =,AX), P (X)=IA(X), tha(X)=— %A(x). Here the functionsi{®) are the autosoliton solutions
() u@x,t)=Aje 40, A=AIx-¢(D], (10

Since we consider the case when the amplitude of the is

QWith the coordinates; ,, phase , and velocities?
lated autosoliton solution is an even function>fA(—x) $12. P SP1,2 612

. - being slowly varying functions of time,d.i=0(e),
=A(x), the functionsy, defined by Eq(7) have the prop- 30 ~0(s?). The functionsu™(x,t) Witht nJ1=1,2 in
ertiesy o(X) = — yn f —x) and wZ(X):'{/’?(_X)Z Note,_that_ Eq. (9) describe first- and second-order corrections to Eq.
the neutral mode¥; andW¥, are associated with the invari- (10), uM=0(s™). Since the autosoliton velocities are as-

ance of Eq.1) under translations in space and phase Shiftssumed to be of order. we haveatu(m):O(Serl)

res_pectlvely_, while the root vectol; is related to _the in- Let us introduce the notationsu™=(uM(x,t),
variance with respect to Galilean transformation to a (M) T o o T
moving-coordinate frame. U (x,1))" and W= (e iy, €'41%)) T with ;= yg(x

In what follows along with the vectord, we will use the &) defined by Eq(7). Then substituting Eq9) into Eq.
vectors ‘I’l:(lﬂ;r(x)ylﬁ;r*(x))T with s=1,2,3, which obey (_1) and collecting the first-order terms inwe get the equa-
the relationsL "W} ,=0 and T'w=w!. Here the adjoint
operatorlL" defined by the relatiofd®, [ W)= (L®, W) is (2 2
ogtained from Eq(4) )kgy transposi?ion angi c<<)mplex zzonju- '—( 2 UJ(O)) u= _2 Wi,
gation and the scalar product is (®,W) = =t
=27 Rd ¢* (x) (x)]dx. In particular, using the defini- \which has a solution
tion of LT and Egs.(6) we get (Wl W)=(L"w] W)
=(W} LW,)=0.

Linear stability analysis of the trivial zero intensity solu-
tion of the ordinary differential equation yields the following

2
u®= _,2‘1 W30, +0(%).

asymptotic relations: Finally, equating the second-order termsginve obtain
o (i 2 2
A(X)Nae+(y—lw)x, (ﬁT(X)N(il)Sb e+(7+|w)X, .
s s L 12::1 u{® U(Z)Z—le [Ws;(d:4;)%+ Wodpj+ Waidyd

X— oo, (8)
o _ +dW,0,{]1—H, (11
Here the coefficienta andbg can be calculated numerically.
Since stable autosoliton solutions can appear only in the pawhere W= — d,,W3; and Ws;= 9, Ws; .
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Since the overlap between the autosolitons is weak, the 1.0

vector H= (h(x,t),h* (x,t))" in the right-hand side of Eq.
(12) is small,h(x,t)=0(e?). It is defined by
2)

2
> Ae
j=1

2
h(x,t)z(E Ajei‘Pi)f(
=1

2
_,Zl Aje 9if(|A]2) +0(e)

2
:jzlzj;&k [Ajefi‘l’j(f2+|Ak|2fé—fJ)
+ATAE @m0 ]+ 0(e3), (12)

wherefy ,fs="f, f'(|A%+|A,%) andf;,f/ =f,'(|A]?).

The equations governing the slow-time evolution of the
individual autosoliton parameters are obtained from the solv-

ability conditions for Eq.(11). The right-hand side of Eq.

(11) must be orthogonal to the solutions of the linear homo
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FIG. 1. Numerically calculated bound autosoliton states of Eq.
(1) with d=0, gy=2.04, ay=2, and 8=10. (a) Stable isolated
autosoliton(solid ling). Four in-phase BS's corresponding to small-
est distances between the autosolitédstted lines. These states
are unstable and correspond 1ie=4,5,6,7 in Eq.(20). (b) Two
antiphase bound states with smallest distances between the autosoli-

tons. Stable(unstable state corresponds to=3 (n=4) and is

geneous equatioh’(S7_,u{”)W'=0. These solutions can shown by soliddotted line.

be estimated a&2;_,Cq;W!+0(e?) with arbitrary con-

stantCs; and

Wli=(e gl eyl pli=vlx-¢) (si=12.
(13

Using the relationi\lfljz,llfﬁzo, we obtain the following
orthogonality conditions:

Nydw .= —(W1,= W] H)—qu.d, (14)

p
Nadip == (Wi Wiy H)+ 2{(04 +v-) 2= (v —0-)7],
(15

with o =@r* @1, {+={>*+ {4y, andv.=d{~ . The coef-
ficients in Egs. (14 and (15 are N;=(W¥} W)
=(W,W3), Np=(W;,W,), p=(¥]¥s), and g
=(Ww! w,). The scalar products (WL,+wl H)
=2 Ref” (¢ih+yl*h)dx from Egs.(14) and (15) are

evaluated numerically. In particular, fai=0, go=2.04,
ap=2, andB=10 stable isolated autosoliton solution exists
which corresponds to the frequency shif=0.067 251 3. It

is shown in Fig. 1a) by solid line. The quantities determin-
ing the asymptotic behavior of this solution are givenpy
=0.668992 andv=0.717 497. For the above given param-
eter values we have obtained the following numerical results
g/N,>0, ri~—128, r,=—-169, 6;~-0.14, and 0,~
—0.02. Note that the damping terms in E4$6) and (18)

are proportional to the diffusion coefficiedt(see also Ref.
[21]). In the next section we show that these terms can sta-
bilize certain inphase and antiphase BS'’s.

IV. BOUND AUTOSOLITON STATES

Equations(16) and(17) govern the time evolution of the
distance between the autosoliton intensity maxifnaand
the phase difference _, whereas Eqg(18) and (19) deter-
mine the center-of-mass velocity,/2 and the mean fre-
quency shiftd, ¢ /2 of the autosoliton pair. The steady-state

evaluated in the Appendix. Using the expressions given iyo|ytions of Eqs(16)—(18) correspond to bound-autosoliton

the Appendix we rewrite Eqg€14) and(15) in the forms

dul_+Dol_=re Y- cose_sinwl_+6;), (16

dp_=re” Y-sing_cogwl_+6,)+Pv,v_, (17)

dw,+Dv,.=re " sinp_cofwl_+0;), (18
Ay =T Y- cosp_ sifwl_+ 6,)+P(v2 +v2)/2,
(19

with rg=(—1)%4N_ *|ab¥|/»?+ 0?, 6s=arg(@b®)+arg(y
—iw), D=qd/N;, andP=p/N,. The quantities; ,, and
0 » can be

states. They are given by

’7Tn_01
BS: =0, (.= , v.=0,
w
dipr=(—1)"re "-sin6_, (20)
7Tn_01
BS,: ¢o_.=m, (. = , v,=0,
w
dpr=(—1)""re "-sing_, (21)
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) ) ) FIG. 3. Dimensionless frequency shift of tB&S, state withn
FIG. 2. Absolute value of the dimensionless frequency shift_ 4 s normalized diffusion coefficierd. Solid (dashedi line cor-

|0a|=ay—agvs dimensionless autosoliton intensity maxima Spac-yesponds to stabkeinstabl¢ BS. d, indicates the threshold value of
ing £ for the in-phase BS's. Filledempty squares correspond t0 6 giffusion coefficient above which the inphaBs, state is

BS’s calculated numericalljobtained from Eqgs(20)]. Parameter  giaple. The parameter values agg=2.04, a,=2, andg=10.
values are the same as in Fig. 1.

Using the procedure proposed in Ref4] we have found
LT ~m(n+1/2)— 6, numerically that for the parameter values of Figs. 1 and 2 the
BS. 72! P-==% {-= ® ' BS, state with minimal distance between the autosolitons
corresponds tm=4 [see Fig. 8)]. For the values of the
coefficients of Eqs(16)—(19) given in the end of Sec. Il we
obtainrr,cosd_~21.5<10°*>0 . Since Figs. 1 and 2 cor-
respond to the diffusionless limit= 0, according to Eq(23)
this solution is neutrally stable in the framework of Egs.
with 6_=6,— 6,. According to Egs.(20—(22) the BS’s (16)—(19). As it was mentioned above, numerical results
with the phase difference _ = 0,7 between the autosolitons have indicated that it is weakly unstable. The instability
are motionless, while the states with = = 77/2 travel at the  could be related to the contribution of the higher order terms
velocity v /2= *=[(—1)"r,e” ¥~ sin6_]/(2D). in &, which were neglected in the derivation of Eq$6)—
The stability of the BS solutions can be analyzed in the(19). However, as it follows from Eq(23), for D>0 the
framework of Eqs(16)—(18). For D,w>0 the stability con- in-phase BS can become stable when the contribution of the

.
vo=+(— 1)”51e—%— sind_, dp.=Pv2/2 (22

ditions for the steady statd3S, andBS,, are diffusion coefficient to the eigenvalues describing its stabil-
ity is greater than that of the higher order terms. Hence, one
ryr,cosf_>0, *(—1)"r,>0, (23 could expect that there exists a threshold value of the diffu-

sion coefficientd above which the statBS, with n=4 is
where the sign— (+) corresponds to the sta&S, (BS,). stable. This conclusion is illustrated by Fig. 3 in which nu-
It follows from Eq.(23) that all the stateB S, ,, are unstable merically calculated dependence of the frequency shift of the
whenrr, cosé_<O0. If, on the contraryrr,cosé_>0 the BS, state is shown as a function of the diffusion coefficient
statesBS, (BS,) with sgi(—1)"r;]<0 (sgi(—1)"r,]  d. Solid (dashed line indicates stabldéunstable¢ BS. It is
>0) appear to be stable. According to E¢s6) and(17) for ~ seen from Fig. 3 and Fig. 4 that fde>d, the stateB S, with
D=0 andrr,cosf_>0 these solutions, each having a pairn=4 is stable. Similar threshold should exist for the inphase
of pure imaginary eigenvalues, are neutrally stable. Sever&S’s corresponding to odd>4 and the antiphase BS’s cor-
bound autosoliton states calculated numericallyderO us-  responding to even>3. Since the contribution of the ne-
ing the procedure described in Réfl4] are presented in glected higher order terms is smaller for greaiethe thresh-
Figs. 1a),(b). We have found that all these BS'’s are weakly old valued, is expected to decrease with the increase of the
unstable except for the stable antiphase s&& corre- numbern.
sponding to the steady-state soluti®il) with n=3. The Now let us turn to the stateBS. ., characterized by the
latter state exhibiting minimal possible distance between th@hase shift= 77/2 between the autosolitons. Foyr, cos6_
autosolitons is shown in Fig.() by solid line. Figure 2 >0 these solutions are always unstable in the framework of
presents the comparison of the numerical results with thosEgs. (16)—(19). Moreover, it follows from Eq(18) that the
obtained from Eqs(20). In this figure the quantitya is the  bound state8S. ., travelling with constant velocity do not
frequency shift of thé8 S, state with respect to the frequency exist forD=0 (d=0). This conclusion is in agreement with
of the isolated-autosoliton solution. Analytically it can be the rigorous result obtained in R¢fL4] where it was shown
estimated ada~ d,¢ . /12 with ¢ /2 given by Eq.(20). using the bifurcation-theory methods that the only motion-
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0.004 - weakly unstable. Similar results concerning the instability of
C theB S, states of the quintic CGLE were obtained by direct
0.002 [ numerical simulation in Refd.11,12 where it was shown
C do | that the bound statd3S. ., can be either weakly unstable or
2 0000 =—— oo " obs weakly stable. Here we show that if the value diffusion co-
L A . . . . .
~ C A efficientd is above a certain very low threshold, staBI§; ,.
-0.002 = states can exist in the model equatidn that in contrast to
C the quintic CGLE considered in Ref8-12] is characterized
-0.004 = S by purely dissipative type of nonlinearity.
-0.006 [~
L V. CONCLUSION
-0.008
d We have derived asymptotic equatiod$)—(19) govern-

ing the interaction of two weakly overlapping 1D autosoliton
FIG. 4. Two nonzero eigenvalues with greatest real parts desolutions in the transverse section of a bistable class A laser.
scribing the stability of thé S, branch shown in Fig. 3. S indicates Using these equations we have performed stability analysis
the real part of the two complex conjugate eigenvalues associategf the autosoliton BS’s in the parameter domain where the
with even perturbations invariant under~—x. The eigenvalue jsolated-autosoliton solution is stable. Our analytical results
associated with odd perturbations is represented by the ling A. concerning BS’s stability are in a good agreement with those
=dg correspond.s to a Hopf bifurcation that is the stability thresholdghtgined numerically using the procedure describefiLif]
for the BS solution. (see Fig. 3 According to Eqs(16)—(19) for the parameter
. . . _values of Figs. 1 and 2 the in-pha&mntiphasg BS corre-
less and uniformly moving BS's that can appear in the dif-sponding to evem in Eq. (20) [odd n in Eq. (21)] are neu-
fusionless limitd=0 are in-phase and antiphase ones. trally stable ford=0 and become stable for positice We
When the diffusion coefficient increases the second paye demonstrated numerically that these B®¥%cept for
term in the left-hand side of Eq&L6) and(18) can become a the antiphase BS witm=3) are unstable below a certain
dominating one. In this case we neglect the second derivatiV@ery low thresholdd<d, and are stable fod>d, (see Fig.
dyd - in EQ.(16). Then forv. =0 Eqs.(16) and(17) take the  3) Ford=0 only the antiphase BS with=3 was found to

form be stable. The instability of the autosoliton BS that appears at
d<d, cannot be described in the framework of E¢(K5)—
(19). It could be related to the contribution of the higher
order terms that we neglected in the derivation of Ed6)—
drp_=r,e" "= sing_ cogwl_+6,), (259 (19). However, when the diffusion coefficient is greater
then the threshold valud,, so that the contribution of the
The steady states of these equations coincide with those @fffusion into the eigenvalues that are pure imaginary in the
Egs.(16) and(17). In the framework of Eqgs(24) and (25  framework of Eqs(16)—(19) is greater than the contribution
the stability conditions for the bound statBS; , are again  of the neglected higher order terms, the BS under consider-
given by Eq.(23). Note, however, that now these steady ation becomes stable. All the BS’s with the phase difference
states cannot undergo a Hopf bifurcation since their eigen+ /2 between the autosolitons have been found to be un-
values are always real. The sta@S. ,, of Egs.(16) and  stable for the parameter values we used in our calculations.
(17) are neutrally stable. Therefore, one could expect that the Note that the results presented here differ from those of
stability analysis of the latter states requires inclusion ofprevious studies concerning the stability of BS’s in the quin-
the higher order terms into Eqé24) and (25). Note, that  tic CGLE [8—12 where all the in-phase and antiphase BS's
Eqgs.(24) and(25) are similar to those derived in Ref8,9]  were found to be unstable saddles. Here we have presented
where the interaction of localized solutions of the quinticanalytical and numerical evidence of the existence of such
CGLE was studied. The difference, however, is that in thesgtable states in the model equatighsand(2). Though in a
publications the equations governing autosoliton interactiorcertain limit situation our mode(l) and(2) can be reduced
were derived from a single potential function with the as-to the quintic CGLE, the parameter domain we studied here
sumption that dissipative parameters of the quintic CGLEs quite different from that considered in Ref8—12]. Ana-
can be considered as small perturbations. Under this assumigtical derivation of the interaction potential that was per-
tion the eigenvectors of the adjoint operator can be approxiformed in[8—10] is based on the assumption that the dissi-
mated by the relationllfl= (s(x), =i (X)) (s=1,2), pative terms in the quintic CGLE can be considered as small
which implies thatf_ = 7w —arctan/w). For this particular perturbations. This assumption does not hold in our case
value of§_ the state8 S, ,. of the quintic CGLE were found since we consider a purely dissipative saturable type of non-
to be unstable saddles. Numerical investigation of the BS'$inearity (2). Moreover, when dissipative terms are not small
stability properties that was performed in R¢LO] con- in general case the quantity_ can take arbitrary values,
firmed analytical conclusion about the instability of the and, hence, Eqsi24) and (25 cannot be derived from a
BS,, states and demonstrated that the st®& ., are  single potential function.

d_=D"1re” " cose_ siwl_+6,), (24
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APPENDIX

Taking into account Eq$12) and(13) the scalar products
in Egs.(14) and(15) can be expressed as

(k)= | Tl At A P foes
+ylr AZAE f e ek]dx+c.c4 O(®)

= fl[Ake‘ﬂk{fﬁlAjlzf,-’—f<0>}¢lr
+AZAEf e ekgl* Jdx+ c.c4+ O(e®)

= (U [LT(A)-LT(0)]W])+0(£?)

=—(u? L(o)w!)+0(®

=—2Re [e"”JkAkLll(O)(// *Jdx+0O(e?),

with L, Ly, and u@=(u®,u{?*)T are defined by Egs.
(4),(5), and(10), respectively.gojk=<pj—.<pk ands,j,k=1,2;
j#k. Here we have used the relatiofis=f,+f,—f(0)
+0(?) andL'(A)W!=0.
Thus, we get
(Wh=wl Hy=—2Re [e'¢21A1L11(0)l//sz

+e e, ,,(0)glF Jdx+O(e?),

PHYSICAL REVIEW E 63 056607

whereg,;= g, —p1=¢_ .
Finally, using the relation

| At i 1ax
-0 TA 0wt Tox

~<—1>Sf: (AL 11(0)pl3 Tdx

we obtain

—(WH= W H)

=2 RE{(GW *(—1)%e e )f A1L11(O)l/f )dx

+0(&3)
=—2Im{[e'"*-+(—1)% ']
X[Wd3 axAL = AroxbS k= (.2t T0O(e®)

=—2Im{[el¢-+(— 1)Se_i‘o’]f9§_(A1¢s;)|x=£+/2}
+0(e?)

=2e - Im{(—1)%ab(y—iw)
X[e'¢-=(—1)% ¢ ]e}+0(s?),

where the coefficienta andbg are defined by Eq8).
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