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Stable bound states of one-dimensional autosolitons in a bistable laser
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Differential equations describing the interaction of two weakly overlapping autosolitons in the transverse
section of a wide-aperture laser with a saturable absorber are derived and analyzed. The existence of in-phase
and out-of-phase stable bound autosoliton states is predicted analytically and confirmed numerically.
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I. INTRODUCTION

Localized structures~LS’s! of laser radiation that can ap
pear in the transverse section of wide-aperture laser sys
are of interest from both fundamental and practical sta
points. Existence of such stable structures was predi
theoretically and observed experimentally in different act
and passive optical schemes@1–6#. Recently optical LS’s
have attracted much attention due to their potential appl
tions as ‘‘bits’’ for all-optical parallel information storag
and processing. In connection with these applications
problem of the LS’s interaction and bound states~BS’s! for-
mation becomes very important. Unlike the solitons of t
nonlinear Schro¨dinger equation, localized solutions~auto-
solitons! of the dissipative equations, such as the comp
Ginzburg-Landau equation~CGLE!, can form different types
of stationary BS’s@1,7–17#. They arise as a result of inter
ference between exponentially decaying autosoliton t
characterized by variable phase. In Refs.@8–12# the interac-
tion of LS’s was studied within the framework of the quint
CGLE. It was found that both inphase and antiphase BS’s
unstable, while the states with the phase differencew25w2

2w156p/2 between the autosolitons can be either wea
unstable or weakly stable. Note, however, that those la
BS’s are restless@12#.

Here we study the interaction of weakly overlapping a
tosolitons in the one-dimensional~1D! transverse section o
a wide-aperture laser with a saturable absorber that is c
acterized by a purely dissipative type of nonlinearity. A
other type of weak autosoliton interaction for which autoso
tons travel with large relative velocity and, therefore, inter
only at a short time interval is described in Ref.@18#. The
model under consideration can also be applied to desc
pulse propagation in optical fiber with saturable gain a
absorption. We consider a situation typical of laser syste
when the diffusion coefficientd is small. We show that in
this model BS’s with the phase differencew250,p can be
stable provided the diffusion coefficient exceeds certain v
low threshold. Numerical evidence of the existence of suc
threshold is presented. The BS’s withw256p/2 are found
to be unstable for the parameter values typical of laser eq
tions. In the diffusionless limitd50 numerical simulations
indicate that the only stable BS is that characterized by
phase differencew25p and corresponding to minimal dis
tance between the autosolitons.
1063-651X/2001/63~5!/056607~6!/$20.00 63 0566
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II. MODEL EQUATIONS

We consider a model of a wide-aperture class A laser w
a saturable absorber@1#

] tE5~ i 1d!]xxE1E f~ uEu2!, ~1!

f ~ uEu2!5211
g0

11uEu2
2

a0

11buEu2
. ~2!

Here the electric field envelopeE, the transverse coordi
natex, and the timet are dimensionless variables. The no
malized diffusion~spatial filtering! coefficientd!1 can ap-
pear as a result of relaxation of the atomic polarization@19#,
g0 anda0 are the normalized linear gain and absorption c
efficients,b is the ratio of the saturation intensities in a
sorbing and amplifying media.

The model equation~1! is invariant with respect to trans
lations in spacex→x1c1 and phase shiftsE→Eeic2 with
arbitrary constantc1 andc2. In the case whend50 it has an
additional symmetry associated with Galilean transformat
to a moving-coordinate frame. Due to this symmetry in t
diffusionless limitd50 any stationary motionless localize
~autosoliton! solution E(x,t)5A(x)e2 iat of Eq. ~1! gener-
ates a whole family of uniformly moving autosoliton solu
tions. All solutions in the family have the same intens
profile but travel at different velocitiesv. They read as

E~x,t !5A~x2vt !e2 iat1 ivx/22 iv2t/4. ~3!

Here a is the spectral parameter determining the freque
shift of the isolated motionless autosoliton. All autosolito
solutions belonging to the same family~3! have identical
stability properties. Therefore, we can consider the moti
less solution~3! with v50. Substituting Eq.~ 3! into Eq.~1!
for d50 we obtain ordinary differential equation for the a
tosoliton amplitude

iaA~x!1 i ]xxA~x!1A~x! f ~ uA~x!u2!50,

with boundary conditionsA(x)→0 atx→6`. We have cal-
culated the amplitudeA(x) numerically using the procedur
described in Ref.@14#.

Linear stability analysis of the autosoliton solution lea
to eigenvalue problemL̂CÄlC with linear operator
©2001 The American Physical Society07-1
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L̂~A!5S L̂11 L̂12

L̂12* L̂11*
D , ~4!

where

L̂11~A!5 ia1 i ]xx1 f „uA~x!u2
…1uA~x!u2f 8„uA~x!u2

…,

L̂12~A!5A2f 8„uA~x!u2…. ~5!

The stability properties of the isolated autosoliton solut
~3! were analyzed in Ref.@14# by means of numerical calcu
lation of the discrete spectrum of the operatorL̂. It was
shown that a parameter domain exists in which this solu
is stable. Further we study the autosoliton interaction in t
parameter domain only.

The symmetry properties of Eq.~1! with d50 imply that
the discrete spectrum of the operatorL̂ contains a triply de-
generate zero eigenvalue. This eigenvalue having geom
cal multiplicity 2 corresponds to a pair of eigenvectors~neu-
tral modes! C1,2 and a root vectorC3, which obey the
relations

L̂C1,250, L̂C35C1 . ~6!

HereCs5„cs(x),cs* (x)…T with s51,2,3 and

c1~x!5]xA~x!, c2~x!5 iA~x!, c3~x!52
ix

2
A~x!.

~7!

Since we consider the case when the amplitude of the
lated autosoliton solution is an even function ofx, A(2x)
5A(x), the functionscs defined by Eq.~7! have the prop-
ertiesc1,3(x)52c1,3(2x) andc2(x)5c2(2x). Note, that
the neutral modesC1 andC2 are associated with the invar
ance of Eq.~1! under translations in space and phase sh
respectively, while the root vectorC3 is related to the in-
variance with respect to Galilean transformation to
moving-coordinate frame.

In what follows along with the vectorsCs we will use the
vectors Cs

†5„cs
†(x),cs

†* (x)…T with s51,2,3, which obey

the relationsL̂†C1,2
† 50 and L̂†C3

†5C1
† . Here the adjoint

operatorL̂† defined by the relation̂F,L̂C&5^L̂†F,C& is
obtained from Eq.~4! by transposition and complex conju
gation and the scalar product is ^F,C&
52*2`

` Re@f* (x)c(x)#dx. In particular, using the defini

tion of L̂† and Eqs.~6! we get ^C1
† ,C1&5^L̂†C3

† ,C1&
5^C3

† ,L̂C1&50.
Linear stability analysis of the trivial zero intensity sol

tion of the ordinary differential equation yields the followin
asymptotic relations:

A~x!;ae7(g2 iv)x, cs
†~x!;~61!sbse

7(g1 iv)x,

x→6`. ~8!

Here the coefficientsa andbs can be calculated numerically
Since stable autosoliton solutions can appear only in the
05660
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rameter domain where the zero-intensity steady state of
~1! is stable, we have the inequalityf (0),0. Using this
inequality we obtain g5ImAa2 i f (0).0 and v
5ReAa2 i f (0).0.

III. INTERACTION OF AN AUTOSOLITON PAIR

In this section we construct equations governing autos
ton interaction using a perturbative approach similar to t
in Ref. @20#. We consider weak interaction of two identic
autosoliton solutions~3! each being stable when taken sep
rately. It follows from Eq.~8! that if the autosoliton separa
tion is large their overlap can be characterized by the qu
tity e2gz2, where z25z22z1.0 is the distance betwee
autosoliton intensity maxima. Let the overlap be we
enough,e2gz2;«2 («!1) and the diffusion coefficient be
small, d5O(«). The latter condition assumes that the G
ilean symmetry of Eq.~1! is only slightly broken. We write
the solution of Eq.~1! describing the interacting autosolito
pair in the form

E~x,t !5e2 iatH F (
j 51

2

uj
(0)~x,t !G1u(1)~x,t !1u(2)~x,t !

1O~«3!J . ~9!

Here the functionsuj
(0) are the autosoliton solutions

uj
(0)~x,t !5Aje

2 iw j (t), Aj5A@x2z j~ t !#, ~10!

with the coordinatesz1,2, phasesw1,2, and velocities] tz1,2
being slowly varying functions of time,] tz j5O(«),
] tw j ,] ttz j5O(«2). The functionsu(m)(x,t) with m51,2 in
Eq. ~9! describe first- and second-order corrections to E
~10!, u(m)5O(«m). Since the autosoliton velocities are a
sumed to be of order«, we have] tu

(m)5O(«m11).
Let us introduce the notationsu(m)Ä„u(m)(x,t),

u(m)* (x,t)…T and Cs j5(e2 iw jcs j ,e
iw jcs j* )T with cs j5cs(x

2z j ) defined by Eq.~7!. Then substituting Eq.~9! into Eq.
~1! and collecting the first-order terms in« we get the equa-
tion

L̂S (
j 51

2

uj
(0)D u(1)52(

j 51

2

C1 j] tz j ,

which has a solution

u(1)52(
j 51

2

C3 j] tz j1O~«3!.

Finally, equating the second-order terms in« we obtain

L̂S (
j 51

2

uj
(0)D u(2)52(

j 51

2

@C5 j~] tz j !
21C2 j] tw j1C3 j] ttz j

1dC4 j] tz j #2H, ~11!

whereC4 j52]xxC3 j andC5 j5]xC3 j .
7-2
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Since the overlap between the autosolitons is weak,
vector H5„h(x,t),h* (x,t)…T in the right-hand side of Eq
~11! is small,h(x,t)5O(«2). It is defined by

h~x,t !5S (
j 51

2

Aje
2 iw j D f S U(

j 51

2

Aje
2 iw jU2D

2(
j 51

2

Aje
2 iw j f ~ uAj u2!1O~«3!

5 (
j 51,j Þk

2

@Aje
2 iw j~ f S1uAku2f S8 2 f j !

1Aj
2Ake

2 i (2w j 2wk) f S8 #1O~«3!, ~12!

where f S , f S8 5 f , f 8(uA1u21uA2u2) and f j , f j85 f , f 8(uAj u2).
The equations governing the slow-time evolution of t

individual autosoliton parameters are obtained from the s
ability conditions for Eq.~11!. The right-hand side of Eq
~11! must be orthogonal to the solutions of the linear hom
geneous equationL̂†(( j 51

2 uj
(0))C†50. These solutions can

be estimated as(s, j 51
2 Cs jCs j

† 1O(«2) with arbitrary con-
stantCs j and

Cs j
† 5~e2 iw jcs j

† ,eiw jcs j
†* !T, cs j

† 5cs
†~x2z j ! ~s, j 51,2!.

~13!

Using the relationŝC1,2
† ,C1&50, we obtain the following

orthogonality conditions:

N1] tv652^C12
† 6C11

† ,H&2qv6d, ~14!

N2] tw652^C22
† 6C21

† ,H&1
p

4
@~v11v2!26~v12v2!2#,

~15!

with w65w26w1 , z65z26z1, andv65] tz6 . The coef-
ficients in Eqs. ~14! and ~15! are N15^C3

† ,C1&
5^C1

† ,C3&, N25^C2
† ,C2&, p5^C2

†,C5& , and q
5^C1

† ,C4&. The scalar products ^Cs2
† 6Cs1

† ,H&
52 Re*2`

` (cs2
†* h6cs1

†* h)dx from Eqs. ~14! and ~15! are
evaluated in the Appendix. Using the expressions given
the Appendix we rewrite Eqs.~14! and ~15! in the forms

] ttz21D] tz25r 1e2gz2 cosw2 sin~vz21u1!, ~16!

] tw25r 2e2gz2 sinw2 cos~vz21u2!1Pv1v2, ~17!

] tv11Dv15r 1e2gz2 sinw2 cos~vz21u1!, ~18!

] tw15r 2e2gz2 cosw2 sin~vz21u2!1P~v1
2 1v2

2 !/2,
~19!

with r s5(21)s4Ns
21uabs* uAg21v2, us5arg(abs* )1arg(g

2 iv), D5qd/N1, and P5p/N2 . The quantitiesr 1,2 , and
u1,2 can be
05660
e
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evaluated numerically. In particular, ford50, g052.04,
a052, andb510 stable isolated autosoliton solution exis
which corresponds to the frequency shifta50.067 251 3. It
is shown in Fig. 1~a! by solid line. The quantities determin
ing the asymptotic behavior of this solution are given byg
50.668 992 andv50.717 497. For the above given param
eter values we have obtained the following numerical res
q/N1.0, r 1'2128, r 252169, u1'20.14, and u2'
20.02. Note that the damping terms in Eqs.~16! and ~18!
are proportional to the diffusion coefficientd ~see also Ref.
@21#!. In the next section we show that these terms can
bilize certain inphase and antiphase BS’s.

IV. BOUND AUTOSOLITON STATES

Equations~16! and ~17! govern the time evolution of the
distance between the autosoliton intensity maximaz2 and
the phase differencew2 , whereas Eqs.~18! and ~19! deter-
mine the center-of-mass velocityv1/2 and the mean fre-
quency shift] tw1/2 of the autosoliton pair. The steady-sta
solutions of Eqs.~16!–~18! correspond to bound-autosolito
states. They are given by

BS0 : w250, z25
pn2u1

v
, v150,

] tw15~21!nr 2e2gz2 sinu2 , ~20!

BSp : w25p, z25
pn2u1

v
, v150,

] tw15~21!n11r 2e2gz2 sinu2 , ~21!

FIG. 1. Numerically calculated bound autosoliton states of E
~1! with d50, g052.04, a052, and b510. ~a! Stable isolated
autosoliton~solid line!. Four in-phase BS’s corresponding to sma
est distances between the autosolitons~dotted lines!. These states
are unstable and correspond ton54,5,6,7 in Eq.~20!. ~b! Two
antiphase bound states with smallest distances between the aut
tons. Stable~unstable! state corresponds ton53 (n54) and is
shown by solid~dotted! line.
7-3
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BS6p/2 : w256
p

2
, z25

p~n11/2!2u2

v
,

v156~21!n
r 1

D
e2gz2 sinu2 , ] tw15Pv1

2 /2 ~22!

with u25u22u1. According to Eqs.~20!–~22! the BS’s
with the phase differencew250,p between the autosoliton
are motionless, while the states withw256p/2 travel at the
velocity v1/256@(21)nr 1e2gz2 sinu2#/(2D).

The stability of the BS solutions can be analyzed in
framework of Eqs.~16!–~18!. For D,v.0 the stability con-
ditions for the steady statesBS0 andBSp are

r 1r 2 cosu2.0, 7~21!nr 1.0, ~23!

where the sign2 (1) corresponds to the stateBS0 (BSp).
It follows from Eq.~23! that all the statesBS0,p are unstable
when r 1r 2 cosu2,0. If, on the contrary,r 1r 2 cosu2.0 the
statesBS0 (BSp) with sgn@(21)nr 1#,0 „sgn@(21)nr 1#
.0… appear to be stable. According to Eqs.~16! and~17! for
D50 andr 1r 2 cosu2.0 these solutions, each having a pa
of pure imaginary eigenvalues, are neutrally stable. Sev
bound autosoliton states calculated numerically ford50 us-
ing the procedure described in Ref.@14# are presented in
Figs. 1~a!,~b!. We have found that all these BS’s are weak
unstable except for the stable antiphase stateBSp corre-
sponding to the steady-state solution~21! with n53. The
latter state exhibiting minimal possible distance between
autosolitons is shown in Fig. 1~b! by solid line. Figure 2
presents the comparison of the numerical results with th
obtained from Eqs.~20!. In this figure the quantityda is the
frequency shift of theBS0 state with respect to the frequenc
of the isolated-autosoliton solution. Analytically it can b
estimated asda'] tw1/2 with w1/2 given by Eq.~20!.

FIG. 2. Absolute value of the dimensionless frequency s
udau5an2a0 vs dimensionless autosoliton intensity maxima sp
ing z2 for the in-phase BS’s. Filled~empty! squares correspond t
BS’s calculated numerically@obtained from Eqs.~20!#. Parameter
values are the same as in Fig. 1.
05660
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Using the procedure proposed in Ref.@14# we have found
numerically that for the parameter values of Figs. 1 and 2
BS0 state with minimal distance between the autosolito
corresponds ton54 @see Fig. 1~a!#. For the values of the
coefficients of Eqs.~16!–~19! given in the end of Sec. III we
obtain r 1r 2 cosu2'21.53103.0 . Since Figs. 1 and 2 cor
respond to the diffusionless limitd50, according to Eq.~23!
this solution is neutrally stable in the framework of Eq
~16!–~19!. As it was mentioned above, numerical resu
have indicated that it is weakly unstable. The instabil
could be related to the contribution of the higher order ter
in «, which were neglected in the derivation of Eqs.~16!–
~19!. However, as it follows from Eq.~23!, for D.0 the
in-phase BS can become stable when the contribution of
diffusion coefficient to the eigenvalues describing its stab
ity is greater than that of the higher order terms. Hence,
could expect that there exists a threshold value of the di
sion coefficientd above which the stateBS0 with n54 is
stable. This conclusion is illustrated by Fig. 3 in which n
merically calculated dependence of the frequency shift of
BS0 state is shown as a function of the diffusion coefficie
d. Solid ~dashed! line indicates stable~unstable! BS. It is
seen from Fig. 3 and Fig. 4 that ford.d0 the stateBS0 with
n54 is stable. Similar threshold should exist for the inpha
BS’s corresponding to oddn.4 and the antiphase BS’s co
responding to evenn.3. Since the contribution of the ne
glected higher order terms is smaller for greatern, the thresh-
old valued0 is expected to decrease with the increase of
numbern.

Now let us turn to the statesBS6p/2 characterized by the
phase shift6p/2 between the autosolitons. Forr 1r 2 cosu2

.0 these solutions are always unstable in the framework
Eqs. ~16!–~19!. Moreover, it follows from Eq.~18! that the
bound statesBS6p/2 travelling with constant velocity do no
exist forD50 (d50). This conclusion is in agreement wit
the rigorous result obtained in Ref.@14# where it was shown
using the bifurcation-theory methods that the only motio

t
-

FIG. 3. Dimensionless frequency shift of theBS0 state withn
54 vs normalized diffusion coefficientd. Solid ~dashed! line cor-
responds to stable~unstable! BS.d0 indicates the threshold value o
the diffusion coefficient above which the inphaseBS0 state is
stable. The parameter values areg052.04, a052, andb510.
7-4
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STABLE BOUND STATES OF ONE-DIMENSIONAL . . . PHYSICAL REVIEW E 63 056607
less and uniformly moving BS’s that can appear in the d
fusionless limitd50 are in-phase and antiphase ones.

When the diffusion coefficientd increases the secon
term in the left-hand side of Eqs.~16! and~18! can become a
dominating one. In this case we neglect the second deriva
] ttz2 in Eq. ~16!. Then forv650 Eqs.~16! and~17! take the
form

] tz25D21r 1e2gz2 cosw2 sin~vz21u1!, ~24!

] tw25r 2e2gj2 sinw2 cos~vz21u2!, ~25!

The steady states of these equations coincide with thos
Eqs. ~16! and ~17!. In the framework of Eqs.~24! and ~25!
the stability conditions for the bound statesBS0,p are again
given by Eq. ~23!. Note, however, that now these stea
states cannot undergo a Hopf bifurcation since their eig
values are always real. The statesBS6p/2 of Eqs. ~16! and
~17! are neutrally stable. Therefore, one could expect that
stability analysis of the latter states requires inclusion
the higher order terms into Eqs.~24! and ~25!. Note, that
Eqs.~24! and~25! are similar to those derived in Refs.@8,9#
where the interaction of localized solutions of the quin
CGLE was studied. The difference, however, is that in th
publications the equations governing autosoliton interac
were derived from a single potential function with the a
sumption that dissipative parameters of the quintic CG
can be considered as small perturbations. Under this assu
tion the eigenvectors of the adjoint operator can be appr
mated by the relationCs

†5„ics(x),2 ics* (x)…T (s51,2),
which implies thatu25p2arctan(g/v). For this particular
value ofu2 the statesBS0,p of the quintic CGLE were found
to be unstable saddles. Numerical investigation of the B
stability properties that was performed in Ref.@10# con-
firmed analytical conclusion about the instability of th
BS0,p states and demonstrated that the statesBS6p/2 are

FIG. 4. Two nonzero eigenvalues with greatest real parts
scribing the stability of theBS0 branch shown in Fig. 3. S indicate
the real part of the two complex conjugate eigenvalues assoc
with even perturbations invariant underx→2x. The eigenvalue
associated with odd perturbations is represented by the line Ad
5d0 corresponds to a Hopf bifurcation that is the stability thresh
for the BS solution.
05660
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weakly unstable. Similar results concerning the instability
theBS0,p states of the quintic CGLE were obtained by dire
numerical simulation in Refs.@11,12# where it was shown
that the bound statesBS6p/2 can be either weakly unstable o
weakly stable. Here we show that if the value diffusion c
efficientd is above a certain very low threshold, stableBS0,p

states can exist in the model equation~1! that in contrast to
the quintic CGLE considered in Refs.@8–12# is characterized
by purely dissipative type of nonlinearity.

V. CONCLUSION

We have derived asymptotic equations~16!–~19! govern-
ing the interaction of two weakly overlapping 1D autosolito
solutions in the transverse section of a bistable class A la
Using these equations we have performed stability anal
of the autosoliton BS’s in the parameter domain where
isolated-autosoliton solution is stable. Our analytical resu
concerning BS’s stability are in a good agreement with th
obtained numerically using the procedure described in@14#
~see Fig. 3!. According to Eqs.~16!–~19! for the parameter
values of Figs. 1 and 2 the in-phase~antiphase! BS corre-
sponding to evenn in Eq. ~20! @odd n in Eq. ~21!# are neu-
trally stable ford50 and become stable for positived. We
have demonstrated numerically that these BS’s~except for
the antiphase BS withn53) are unstable below a certai
very low thresholdd,d0 and are stable ford.d0 ~see Fig.
3!. For d50 only the antiphase BS withn53 was found to
be stable. The instability of the autosoliton BS that appear
d,d0 cannot be described in the framework of Eqs.~16!–
~19!. It could be related to the contribution of the high
order terms that we neglected in the derivation of Eqs.~16!–
~19!. However, when the diffusion coefficientd is greater
then the threshold valued0, so that the contribution of the
diffusion into the eigenvalues that are pure imaginary in
framework of Eqs.~16!–~19! is greater than the contributio
of the neglected higher order terms, the BS under consi
ation becomes stable. All the BS’s with the phase differen
6p/2 between the autosolitons have been found to be
stable for the parameter values we used in our calculatio

Note that the results presented here differ from those
previous studies concerning the stability of BS’s in the qu
tic CGLE @8–12# where all the in-phase and antiphase BS
were found to be unstable saddles. Here we have prese
analytical and numerical evidence of the existence of s
stable states in the model equations~1! and~2!. Though in a
certain limit situation our model~1! and ~2! can be reduced
to the quintic CGLE, the parameter domain we studied h
is quite different from that considered in Refs.@8–12#. Ana-
lytical derivation of the interaction potential that was pe
formed in @8–10# is based on the assumption that the dis
pative terms in the quintic CGLE can be considered as sm
perturbations. This assumption does not hold in our c
since we consider a purely dissipative saturable type of n
linearity ~2!. Moreover, when dissipative terms are not sm
in general case the quantityu2 can take arbitrary values
and, hence, Eqs.~24! and ~25! cannot be derived from a
single potential function.

e-
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Taking into account Eqs.~12! and~13! the scalar products
in Eqs.~14! and ~15! can be expressed as

^Cs j
† ,H&5E

2`

`

@cs j
†* Ak~ f S1uAj u2f S8 2 f k!e

iw jk

1cs j
†* Aj

2Ak* f j8e
2 iw jk#dx1c.c.1O~«3!

5E
2`

`

@Ake
iw jk$ f j1uAj u2f j82 f ~0!%cs j

†*

1Aj
2Ak* f j8e

2 iw jkcs j
†* #dx1c.c.1O~«3!

5^uk
(0) ,@ L̂†~Aj !2L̂†~0!#Cs j

† &1O~«2!

52^uk
(0) ,L̂~0!Cs j

† &1O~«3!

522 ReE
2`

`

@eiw jkAkL̂11~0!cs j
†* #dx1O~«3!,

with L̂, L̂11, and uk
(0)Ä(uk

(0) ,uk
(0)* )T are defined by Eqs

~4!,~5!, and~10!, respectively.w jk5w j2wk ands, j ,k51,2;
j Þk. Here we have used the relationsf S5 f 11 f 22 f (0)
1O(«2) and L̂†(Aj )Cs j

† 50.
Thus, we get

^Cs2
† 6Cs1

† ,H&522 ReE
2`

`

@eiw21A1L̂11~0!cs2
†*

6e2 iw21A2L̂11~0!cs1
†* #dx1O~«3!,
-

tt.

.

E

s

05660
wherew215w22w1[w2 .
Finally, using the relation

E
2`

`

@A2L̂11~0!cs1
†* #dx

5~21!sE
2`

`

@A1L̂11~0!cs2
†* #dx

'~21!sE
z1/2

`

@A1L̂11~0!cs2
†* #dx

we obtain

2^Cs2
† 6Cs1

† ,H&

52 ReF ~eiw26~21!se2 iw2!E
z1/2

`

~A1L̂11~0!cs2
†* !dxG

1O~«3!

522 Im$@eiw26~21!se2 iw2#

3@cs2
†* ]xA12A1]xcs2

†* #ux5z1/2%1O~«3!

522 Im$@eiw26~21!se2 iw2#]j2
~A1cs2

†* !ux5z1/2%

1O~«3!

52e2gz2 Im$~21!sabs* ~g2 iv!

3@eiw26~21!se2 iw2#eivz2%1O~«3!,

where the coefficientsa andbs are defined by Eq.~8!.
t.

.
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