PHYSICAL REVIEW E VOLUME 62, NUMBER 5 NOVEMBER 2000

Symmetry breaking and dynamical independence in a multimode laser
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Multimode lasers display various behaviors caused by the asymmetry between the modes belonging to
orthogonal polarizations. We discuss dynamical independence, clustering, and grouping in a solid state laser
with intracavity second harmonic generation, and show that these effects result from unstable cycles lying
within their invariant planes. These invariant planes are dynamically independent. The sequential or random

itinerancy of limit unstable cycles lying within the invariant planes explains most of the effects caused by
asymmetry.

PACS numbd(s): 05.45—a, 05.40—-a, 42.65.Pc

[. INTRODUCTION sure of the conversion efficiency of the fundamental fre-
quency intensity into the frequency-doubled intensity js
In a recent publicatiohl], we have analyzed dynamical and 8 is the cross saturation parametet, represents an
properties of a multimode laser with intracavity second harinjected field. If the linearly polarized modes andr have
monic generation with alN modes oscillating with the same the same polarizatiop,,=g, where 0<g=<1 is a geometri-
polarization of the electric field. The symmetry of the modelcal factor whose value depends crucially on the angle be-
results in an N —1)-fold degenerate Hopf bifurcation of the tween the fast axes of the active and doubling crystals as
N-mode steady state, which leads to dynamics Nr-0)!  well as the phase delays due to their birefringence. Otherwise
periodic or quasiperiodic attractors, characterized by any, . =1-g. Experimentally, the relevant domain of param-
tiphased oscillations, i.e., equally phase-shifted oscillationgters iss, »<1 anda,B,y,e/ 7=0(1).
with the same amplitudg2]. Spontaneous symmetry break-  The steady-state solutions of Eq%) and (2) and condi-
ing can also occur and produces new solutions characterizegbns for Hopf bifurcation were first analyzed [i6]. Another
by different oscillation amplitudes. dynamical scenario and mode hopping between different
In this paper we consider second harmonic generation in gtates are described [ifi]. It was shown in that reference that
Fabry-Perot cavity containing birefringent elements, such aghe mode hopping in a frequency-doubled laser is similar to
the neodymium-doped yttrium aluminum garridid:YAG)  the antiphase self-modulation regime in a bidirectional class
laser with intracavity potassium titanyl phosphdt€TP). B laser and arises after a global bifurcati@.
The presence of birefringent elements destroys the symmetry Bjrefringent elements have two orthogonal optical axes,
between the two polarizations and each longitudinal mode ofhe ordinary and extraordinary axes, with different refractive
the multimode cavity splits into a pair of orthogonally polar- indices and therefore different speeds of light along these
ized electric field components propagating at different vetwo directions. This breaks the symmetry among the cavity
locities. A model has been developed over the years to dgasing modes and induces in the laser a spatial asymmetry,
scribe the Nd:YAG/KTP laserl3] to account for the which can lead to a situation where the dynamics of modes
polarization propertie$4,5]. In the rate equation limit, the with orthogonal polarizations can be nonreciprocal: modes in
modal intensities , and nonlinear gain&, satisfy the evo-  one polarization influence modes in the other polarization
lution equations but not the converse. It was reported[B] that, when two
modes oscillate in one polarization and a single mode oscil-
lates in the orthogonal polarization, the two modes can dis-
play chaos while the orthogonal mode remains apparently
periodic despite global coupling. Small amplitude noise
N added to the system does not affect this dynamical indepen-
1+(1—B)|m+,32 |r>' ) dence. ForN>3, the signature of nonrgciprocal indepen-
T dence has been found in several situations such as the for-
mation of clustered and grouped states. In fkenode
where »=7./7; is the ratio of the cavity round trip time,  clustered regimeN—M modes oscillate in phase ari
and the fluorescence lifetimeg . The cavity loss parameter is modes antiphase; in general, the in-phase modes have the
a and the linear gain of modm is y. The mode indexm  same polarizatiof10]. Grouped states display modal inten-
varies from 1 toN, the number of oscillating modes. A mea- sities with different oscillation period@sually with rational
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0.15 this line. The point TB onP is a Z,-symmetric Takens-

Bogdanov codimension-2 bifurcation for the=1, steady-
state solution. It is the limit point of the curvd. At this
point the Jacobian matrix of Eqél) and (2) has a double
zero eigenvalue. According to local analysis of the dynamics
near the Takens-Bogdanov bifurcatidr], there can be two
different bifurcation scenarios of the breakup of the an-
tiphase periodic regime that bifurcates at the cureThe
result depends on the parameters of the normal form equa-
two-mode tions. The first scenario is associated with a global bifurca-
operatlon . . .. . .
. . ' tion that forms a pair of heteroclinic orbits connecting the
045 050 055 060 065 asymmetric two-mode steady stalgs-1, andl,<I,. This
g case was already described[if]. Another scenario occurs
o . ~ for the parameter values of Fig. 1. We find numerically that
~ FIG. 1. Laser operating in two modes with orthogonal polariza-there s a global bifurcation responsible for the breakup of
t|ons._B|furcat|on loci for the steady-state solutions of Eds.and 4 antiphase periodic regime. The bifurcation takes place
(2) with 5=0.002,£=0.05,2¢=0.02,5=0.292. The boundaryl  |oyeen the curveS andH' where the asymmetric steady

indicates a Hopf bifurcation from the symmetric two-mode steady : Iy
statel ;=1,. The boundanSis the stability boundary of the single- states are stable and, hence, there exists a very narrow bist

mode solutions, which are stable below this boundary. The bound‘rfltbllcIty do_maln \l/)vetWﬁen Eﬂe tantlphfasle bp?rl;qfdlc a;rjd ?teady-
ary P is above the boundargand corresponds to a pitchfork bifur- state regimes. vve show the type of giobal bifurcation from a
cation of the two-mode regime. Asymmetric two-mode steadynormal form a”‘?"YS_'il‘*]- Accord'ng, to this gnaly5|s per-
states exist betweeB and P and exhibit a Hopf bifurcation at the formed |n.the V_'C'r,"ty of t'he TB, point, a pair Of unstable
curveH’. TB is a codimension-2 point resulting from the interac- @8Symmetric periodic solutions bifurcates subcriticallyHt
tion between the steady state and the Hopf bifurcation. and then glue into a single unstable symmetric limit cycle.
The gluing occurs via a global bifurcation with a pair of
ratiog in different polarizations and can exhibit a self- Orbits homoclinic to thel; =1, steady state. The unstable
induced switching among grouped pattefm]. symmetric cycle collides with the stable antiphase periodic
birefringent-induced asymmetric oscillations can be induced Nis global saddle-node bifurcation is responsible for the
by external modulation at suitable frequenci@g] and ex-  Preakup of the antiphase periodic regime that appears via a
ploited in cryptography13]. This paper is organized as fol- HOPpf bifurcation at the curveél. .
lows. In Sec. Il, we analyze the case of two modes with \We want to stress the similarity between the two different
different polarizations, which is essential for the understandbifurcation scenarios, which is a direct consequence of the
ing of the dynamical effects caused by the asymmetry. IParameter domain relevant to experimenige<1. The
Sec. I, we investigate the three-mode case and the effect giSymmetric steady states exist in a very narrow domain and
dynamical independence. We then consider the noise inflldlobal bifurcations leading to a breakup of the antiphase pe-

ence in Sec. IV and conclude in Sec. V with a discussion ofiodic regime occur very close to the bound&yTherefore,
the clustered states. when the system is close to the breakup of the antiphase

periodic regime, the phase trajectory goes into very close
proximity of the single-mode steady states, and the periodic
solution looks like a hopping between two single-mode
Consider the simplest case of a laser operating in twdtates, similar to that described [i]. The phase trajectory
orthogonally polarized modeNE 2). The bifurcation dia- and steady states are shown in Fig. 2.
gram in the ¢, y) plane is shown in Fig. 1 in the absence of If N>2, the two-mode antiphase cycles persist in the in-
injected signal ¢, ,=0). The steady-state solution, charac- variant planes characterized by only two nonzero modal in-
terized by equa| modal intensitieslé |2), loses its Stabmty tensities, and are stable within these planes. Although these
on the boundary, which indicates a Hopf bifurcation, lead- cycles can be unstable with respect to perturbations trans-
ing to an antiphased periodic regime. The boundaipdi-  Verse to invariant planes, they give a key to understanding
cates a pitchfork bifurcation of tHg =1, steady state, which the dynamical behaviors resulting from the asymmetry be-
leads to a pair of unstable steady states with unequal mod#&veen orthogonal polarizations.
intensitiesl ;>1, (1,<1,). The asymmetry in the amplitudes
of the modal intensities, which can be characterized by the

pulsed
operation
single mode
0.05 [operation

TB

Il. TWO-MODE LASER MODEL: GLOBAL BIFURCATION

Ill. THREE-MODE LASER MODEL:

quantity|l,—1,|, increases with the distance from the pitch- DYNAMICAL INDEPENDENCE
fork bifurcation, and finally the asymmetric solution
>1, (I;<I,) collides with the single-mode steady staie Let us now move to the case of a laser operating in three

>0,1,=0 (1,>0,l,=0) at the boundaryS The single- linearly polarized modes. The polarizations can be either par-
mode steady states are stable to the left of the c@rviehe  allel or orthogonal. The asymmetry between modes in Egs.
boundariesS andP are very close to each other in Fig. 1 as (1) and (2) is described by the fact thaj#0.5. Let the

can be seen in the inset. Asymmetric two-mode steady statesodes 1 and 3 be in the same polarization state whereas the
with 1,>1, and1;<I, exist in the narrow strip betwee® mode 2 is in the orthogonal polarization. Bifurcation loci for
andP. They are stable below the lintd¢’ and unstable above Egs.(1) and(2) with N=3 ando; , ;=0 are shown in Fig. 3.
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FIG. 2. Periodic antiphase regime in a laser operating in two (

modes with orthogonal polarizations. Fillédmpty stars indicate

the location of the single-modéasymmetric two-mode steady \
states. The phase trajectory visits a very close proximity of the I
single-mode steady states, as is known to occur close to a hetero-

clinic bifurcation point. However, local analysis in the vicinity of L

the Takens-Bogdanov point predicts another type of global bifurca-

tion. g=0.49y=0.119. Other parameters are as in Fig. 1. FIG. 4. Three-mode laser with all modal parameters identical,

g=0.5, y=0.095,0, , 3=0. Other parameters are the same as for

Th in th in th . . Fig. 3. (8 Intensity time traces indicate regular antiphase mode
e parameters remain the same as In the previous SeCtIC‘rlibpping;(b) three-dimensional3D) phase portrait as a sequential

The bC).undaI’ie@.lol and H]_o]_ (Pllo al:]dHllp) in F|g 3 are itinerancy in the hyperp'anéoj_l*)2101*>21104’2011-
the loci of the pitchfork and Hopf bifurcations for the two-

mode steady-state solutiop=15, 1,=0 (I;=1,, I3=0and . . . :
I,=15, 1;=0). The single-mode solutions are stable belowftﬂ Invariant hy_per_planes where only two ques with or-
the steady-state bifurcation lo8io, andSy;9. They become ogonal polar|;at|9ns have nonzero |nten5|t|qs. Therefore,
unstable on increasing the pump parametand mode hop- these curves c0|nC|d.e with the curnvies H, and_Sln Fig. 1.
ping appears, displaying an antiphased dynamics. Note th‘,r‘atmlf the parameteg is small enough, the antiphased oscil-

. : ons involve only two modes belonging to the same polar-
the bifurcations at the curvé;,o, H,4, and take place .7 - . . e
10, 7110 So10 P ization, whereas the third mode with orthogonal polarization

has zero intensity.

o1k If g=0.5, all modes are equivalent in E¢%) and(2) and
) oscillate with nonzero intensities. The temporal dynamics is
I a periodic hopping featuring antiphase dynamics as shown in
0.09~ Fig. 4(a): all modes oscillate identically but with azZ3
i i phase shift between consecutive modes. The phase portrait of
0.07 the antiphase three-mode limit cycle is presented in Rig. 4
- The limit cycle consists of three segments, each lying near an
0.05 - /,.f" invariant hyperplane characterized by only two nonzero
L Hy,, single mode ) H modal intens.ities. The invariant hyperplargs, > 101,.and
003 IOPera“"nl o 3110 are defined byl;=0, 1,=0, andl;=0, respectively.

' There are two sequences of hyperplane alternations corre-
0.3 04 05 06 sponding to the two possible stable antiphase solutions:
g Eonﬁzloll—{z 110~ 2011 ANA X 917~ 2130~ 2101~ 011
It is a trivial consequence of the symmetry between the
FIG. 3. Bifurcation loci Bifurcation loci for the steady-state so- odes forg=0.5 that each invariant hyperplane contains a
lutions of Egs.(1)—(2) for a three-mode laser. Modes 1 and 3 have iyt cycle similar to the limit cycle responsible for the an-
the same polarization, mode 2 is in the orthogonal polarlzatlontiphase mode hopping in a two-mode laser, which was dis-

Hopt bifroaton of e wo-mode seacly state with squal mensiieCUSSed I the previous section. Though this limit cycle is
in the same polarizatioh, = 1,>0 andl,=0 belonging to the in- Stable in its hyperplane, it can be unstable with respect to

variant hyperpland, ;. The boundan .o, is above the boundary perturbations of the third mode, which has zero intensity.

Si00 @nd corresponds to a pitchfork bifurcation of this steady state.The cycles in the hyperplanes appear via Hopf bifurcations

The single-mode steady-state solutions are stable below the bounﬁpd disappear via global bifurcations that take place simul-
aries Sy00 and Soyo. The boundarie$d;;, and P,y indicate Hopf ~ t@neously fog=0.5. _

and pitchfork bifurcations of the two-mode steady-state solutions | 97 0.5 the modes are no longer equivalent. The sym-
I,=1,>0, 13=0 andl;=1,>0, I,=0, which belong to the invari- Metry of the model is broken for modes operating in or-
ant hyperplane€ ;;, and 3;;, respectively. Asterisks show the thogonal polarizations. The asymmetry introduced dy
positions of codimension-2 points resulting from the interaction be-# 0.5 splits the breakup boundaries for the antiphase periodic
tween steady-state and Hopf bifurcations. solutions lying in different hyperplanes. The breakup bound-
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FIG. 5. Modal intensity time traces displaying dynamical inde-
pendenceg=0.5161,y=0.095. Other parameters are as in Fig. 4.

ary that destroys the two-mode unstable limit cycle in the
hyperplane, ;j; occurs between the boundari®sy; and

81_00' Another blfurca_tlon takes_place between the bound- FIG. 6. (a) 3D phase portrait of the dynamical independence
ariesPy;0 and Spyo. |t_ IS reSponS,'ble for the breakup of the regime shown in Fig. 5. The phase trajectory exhibits random itin-
two-mode unstable limit cycles in the hyperpladesi; and  grancy between the limit cycles in the invariant plaBigs;, S 110,

2 110- ) ) and X,;,. (b) Unstable limit cycles lying in the planes
If g=0.5, the laser equatior(d) and (2) with all modes 5., ... andS,,, .

identical have another set of three invariant planes defined by

{I1=1,,G1=G,}, {I;=13,G;=G3}, and{l,=13,G,=G3}.  all its time in the vicinity of the three unstable cycles, which
We denote these planes 3s .1, 2,14, and3,, ,, re-  are very close to each other near the single-mode steady state
spectively. The asymmetry generated ¢y 0.5 obviously [;=15=0, 1,>0. Moreover, even for jumps from the cycles
destroys the invariant planés, ,; andX,, ., whereas the lying in the planes,;; and > ;;,to the cycle in the plane
invariant planeX ., , for which the two modes with iden- X ;. , its projection on the plang ;. still remains almost
tical polarization have equal intensities; €13), is pre- on the unstable cycle lying in the plan&s;; (2110 (see
served. The plan& .1, contains an unstable cycle, impor- Fig. §).

tant for our analysis. This cycle appears from a global The chaos associated with dynamical independence is
bifurcation near the boundar$y;, and is stable it ., , closely related to the symmetry properties of E(S. and

but unstable with respect to transverse directions.

As mentioned above, i§>0.5 is large enough, the un-
stable limit cycle inX 4, disappears after a collision with
another periodic solution. The bifurcation sequence, includ-
ing this bifurcation, produces significant qualitative changes
in the antiphase motion shown in Fig. 4 fg=0.5. The
motion near the invariant hyperplankg;; and. ;;o remains
and the two unstable limit cycles in these hyperplanes are
still the destination for the phase trajectory, as shown in Figs.
5 and 6. However, the cycle ik 5, no longer exists, and
what is observed are jumps to and from the unstable limit
cycle inX ;. , as shown in Figs. 6—8. This cycle is charac-
terized by the in-phase oscillations of modes in each polar-
ization and out-of-phase oscillations between the two polar-
izations. Therefore, the two asymmetric attractors form a
symmetric attractor by a “gluing” process in the invariant
plane ,,, [16].

Since the jumps t&® , ;. take place either near 4q;
where the orthogonally polarized motighas zero intensity
or very close to the stable manifold of the cycledn ;. ,
they do not much affect the dynamics of that orthogonal
mode, which appears periodic, whereas the two other modes
display chaos caused by the jumigee Fig. 5. This is the FIG. 7. Enlarged parts of Fig.(§ demonstrating jumps be-
mechanism underlying dynamical independeri®¢ The  tween invariant planesga) Jumps froms , ;. t0 3411 @and3 140. (b)
chaotic motion and jumps between the unstable cycles ar&umps from3,;; and 3,0 to 244, . Unstable limit cycles in the
illustrated also in Fig. 8. The phase trajectory spends almogilanes.;;, %119, and 1, are drawn with a bold line.
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007k K b) the hyperplane§0n and X 1o. The symmetric cycle loses
stability to a pair of asymmetric cycles after a symmetry
5 0.06F 5 breaking bifurcation, as shown in Fig(. This pair of
) asymmetric cycles becomes a singfossibly homoclinig
0.05 L orbit and therefore a symmetric cycle occurs by attaching the
A P symmetric pair together. The symmetric cycle is shown in
00 05 10 15 0.0 05 1.0 15 Fig. 9c). After that, a succession of similar bifurcations
L I takes place, which is illustrated by Figs(b®-9(e). They
affect only the behavior of the modes with the same polar-
0.07 b“-a..,u ©) ization and take place near the invariant plades;, and
N " 2 101-
O 0.06¢ #

The motion near the invariant plang&s;, and 2,4 and,
R therefore, the behavior of the mode 2, remains almost unaf-
0.05 - "v’e e fected. Finally, the sequence produces two asymmetric cha-
00 05 1.0 1.5 00 05 1.0 15 otic attractors which coalesce to form a symmetric attractor.
This explains the dynamical independence in the presence of
I I chaos, as mode 2 remains unaffected in the invariant planes
FIG. 8. 2D phase portraits illustrating dynamical independence? o1 and> o, while modes 1 and 3 exhibit chaos near the
shown in Figs. 5 and(@). (&) Projection of the chaotic phase tra- invariant planes, ,;, and2 ;.
jectory and the unstable limit cycles on the, (G,) plane. The
projection of the unstable cycle lying in the hyperplane IV. INFLUENCE OF NOISE
314 (2110 is labeled by circlegsquares (b) The same trajectory
projected on thel,G,) plane.(c) The projection of the unstable
cycle(s) lying in the hyperplan&, . ;. (2q11and3 1) is labeled by
circles(squares (d) Superposition ofb) and(c).

It was shown i 9] that noise added to the systéf) and
(2) does not qualitatively affect the dynamically independent
mode. Let us consider first what happens with the mecha-
nism of dynamical independence described in the previous

(2). It is worth to stress again that the system retains its_section, when a small amplitude constant field is injected
symmetry between modes 1 and 3 even get0.5. This N0 the system and particularly to mode ar;(>0, 023
symmetry explains that the cascades of bifurcations for Eqs_0)- The existence of the invariant plade , , , character-
(1) and (2) are similar to those described 6] and [15]. |ged by in-phase oscillations for modes within each polariza-
Let us analyze the behavior of the system when vargng tion, results from the symmetry between modes 1 and 3.
The fixed parameters are the same as for Fig. 4310.5 is Injection in one m_ode _only breaks this symmetry and th_ere-
not too large, the limit cycle presented in Figbpstill re-  fore destroys the invariant plae, ; . . As a result, the pair
mains symmetric but only with respect to the invariant plane®f Symmetric attractorgone with modes 1,3 and 2, the other
S ... [see Fig. 8)]. The period of this symmetric stable With modes 3,1 and 2) no longer exists and the phase trajec-
cycle is twice the period of the two-mode unstable cycles irflzc’i;y i‘c’("g)Ches to a stable asymmetric limit cycle shown in
Numerical simulations with noise injected in the three-
mode regimél,=13,1,>0} show that the asymmetric cycle
a) b) is stable if the amplitude of the injection is greater than®.0
However, the three modes have different responses to the
change of the injected amplitude. The motion of mdde
remains very close to the unstable cycle lying in the invariant
hyperplaneX ;1 (2110 and hardly changegsee Fig. 1()],
while the amplitudes of oscillations of the modgsandl 5 in
the orthogonal polarization change significantly, as shown in
o Fig. 1Q(c) for I 5. If the noise is modeled as a random injec-
4 tion [ o= 6&;(t), where&;(t),i=1,2,3, is a uniform distri-
bution of random numbers on the intery&l,1] and § is an
appropriate amplitude one could expect that the phase tra-
jectory will always go along the stable cycles corresponding
to the different amplitudes of the injection. Therefore, the
pair of modes in the same polarization will have noisy oscil-
I @ lations defined by jumps between the stable cycles with dif-
e) ferent amplitudes, while the mode in the orthogonal polar-
ization will remain unaffected in the invariant hyperplanes
I 211 @nd = 5.

Wl

L
) V. CLUSTERING, GROUPING,
FIG. 9. 3D phase portraits for Eg4) and(2). (a) g=0.513,(b) AND INDUCED SWITCHING
g=0.5145,(c) g=0.515,(d) g=0.515 86, ande) g=0.516. Other
parameters are the same as for Fig. 2. Thin and thick lines corre- The other nonreciprocal behaviors previously reported in

spond to the two asymmetric cycles. [10] for N>3 have a similar nature, but the number of in-
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0
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time
<) the same polarizations and can again be described as a se-
quential itinerancy in the two invariant planes belonging to
AN A : L
o " p” p” 2 this subspace. These planes are similar to the pEpgsand

2011 Of the previous sections.
time The motion near a particular invariant plane is almost
FIG. 10. Three-mode laser subjected to a small amplitude injecindependent of the remaining phase space, but can define
tion o; in mode 1. Modes 1 and 3 have the same polarization anavhich plane will be the next destination of the phase trajec-
mode 2 is in the orthogonal polarization. Fixed parameters as itory. This independence can be used to arrange a switching
Figs. 3.(a) Modal time traces indicate stable periodic behavior for between different antiphase states. The seeding procedure
all modes foro;=2x10"%; (b) time traces of mode 2 for;  described if10] is simply a way to perturb the motion near
=2x10"° (bold line), 0, =4x10"° (thin line), o, =10"° (dashed  the plane. There is an unstable antiphase limit cycle lying in
line); (c) time traces of mode 3 foor;=2x10"° (bold line), o1 an invariant plane and stable within this plane as described in
=4x10"° (thin line), o, =102 (dashed ling Sec. Il and Sec. Ill. When the phase trajectory moving near
this cycle comes close to a single-mode steady-state solution,
variant planes containing unstable periodic solutions ineven a very small perturbation can put it into the vicinity of
creases with the mode numblr Two groups of orthogo- an unstable cycle lying within another invariant plane.
nally polarized modes form a number of different sets ofTherefore, if the seeding pulse is chosen appropriately, there
invariant hyperplanes and jumps between them are respoiyill be a switching to a certain antiphase state. An inappro-
sible for grouping, clustering, and self-induced switching.priate choice for timing of a perturbation or pulse intensity
The results of numerical simulations fdf=8, where six can cause a random jump to another hyperp|ane' and the
modes are in the same polarization and two modes are in thgattern formation can no longer be predicted.
orthogonal polarization, are shown in Fig. 11. In the clus-
tere_d_ state, the six Iasin_g modes Wi_th_ the same polari_zation ACKNOWLEDGMENTS
emit in-phase pulses while the remaining two modes display
antiphase oscillations with equal maxima shifted in such a This research has been supported by the Fonds National
way that the maxima correspond to minima in the orthogonatle la Recherche Scientifique, the Inter-University Attraction
polarization. The motion takes place in the invariant subPole program of the Belgian government, and an INTAS
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