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Symmetry breaking and dynamical independence in a multimode laser
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Multimode lasers display various behaviors caused by the asymmetry between the modes belonging to
orthogonal polarizations. We discuss dynamical independence, clustering, and grouping in a solid state laser
with intracavity second harmonic generation, and show that these effects result from unstable cycles lying
within their invariant planes. These invariant planes are dynamically independent. The sequential or random
itinerancy of limit unstable cycles lying within the invariant planes explains most of the effects caused by
asymmetry.

PACS number~s!: 05.45.2a, 05.40.2a, 42.65.Pc
l
ar
e
e
e

an
on
k-
iz

in
a

e
e
r-
ve
d

s

a-

re-

be-
as
ise
-

ent
t

r to
ass

es,
ive
ese
ity

etry,
des
s in
ion

cil-
is-

ntly
se
en-

n-
for-

the
n-
I. INTRODUCTION

In a recent publication@1#, we have analyzed dynamica
properties of a multimode laser with intracavity second h
monic generation with allN modes oscillating with the sam
polarization of the electric field. The symmetry of the mod
results in an (N21)-fold degenerate Hopf bifurcation of th
N-mode steady state, which leads to dynamics on (N21)!
periodic or quasiperiodic attractors, characterized by
tiphased oscillations, i.e., equally phase-shifted oscillati
with the same amplitude@2#. Spontaneous symmetry brea
ing can also occur and produces new solutions character
by different oscillation amplitudes.

In this paper we consider second harmonic generation
Fabry-Perot cavity containing birefringent elements, such
the neodymium-doped yttrium aluminum garnet~Nd:YAG!
laser with intracavity potassium titanyl phosphate~KTP!.
The presence of birefringent elements destroys the symm
between the two polarizations and each longitudinal mod
the multimode cavity splits into a pair of orthogonally pola
ized electric field components propagating at different
locities. A model has been developed over the years to
scribe the Nd:YAG/KTP laser@3# to account for the
polarization properties@4,5#. In the rate equation limit, the
modal intensitiesI m and nonlinear gainsGm satisfy the evo-
lution equations

h
dIm

dt
5I mS Gm2a1«gIm22«(

r

N

mmrI r D 1sm , ~1!

dGm

dt
5g2GmS 11~12b!I m1b(

r

N

I r D , ~2!

whereh5tc /t f is the ratio of the cavity round trip timetc
and the fluorescence lifetimet f . The cavity loss parameter i
a and the linear gain of modem is g. The mode indexm
varies from 1 toN, the number of oscillating modes. A me
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sure of the conversion efficiency of the fundamental f
quency intensity into the frequency-doubled intensity is«,
and b is the cross saturation parameter.sm represents an
injected field. If the linearly polarized modesm and r have
the same polarizationmmr5g, where 0<g<1 is a geometri-
cal factor whose value depends crucially on the angle
tween the fast axes of the active and doubling crystals
well as the phase delays due to their birefringence. Otherw
mmr512g. Experimentally, the relevant domain of param
eters is«,h!1 anda,b,g,«/h5O(1).

The steady-state solutions of Eqs.~1! and ~2! and condi-
tions for Hopf bifurcation were first analyzed in@6#. Another
dynamical scenario and mode hopping between differ
states are described in@7#. It was shown in that reference tha
the mode hopping in a frequency-doubled laser is simila
the antiphase self-modulation regime in a bidirectional cl
B laser and arises after a global bifurcation@8#.

Birefringent elements have two orthogonal optical ax
the ordinary and extraordinary axes, with different refract
indices and therefore different speeds of light along th
two directions. This breaks the symmetry among the cav
lasing modes and induces in the laser a spatial asymm
which can lead to a situation where the dynamics of mo
with orthogonal polarizations can be nonreciprocal: mode
one polarization influence modes in the other polarizat
but not the converse. It was reported in@9# that, when two
modes oscillate in one polarization and a single mode os
lates in the orthogonal polarization, the two modes can d
play chaos while the orthogonal mode remains appare
periodic despite global coupling. Small amplitude noi
added to the system does not affect this dynamical indep
dence. ForN.3, the signature of nonreciprocal indepe
dence has been found in several situations such as the
mation of clustered and grouped states. In theN-mode
clustered regime,N2M modes oscillate in phase andM
modes antiphase; in general, the in-phase modes have
same polarization@10#. Grouped states display modal inte
sities with different oscillation periods~usually with rational
6312 ©2000 The American Physical Society
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ratios! in different polarizations and can exhibit a se
induced switching among grouped patterns@11#.

The present study is motivated by the fact th
birefringent-induced asymmetric oscillations can be indu
by external modulation at suitable frequencies@12# and ex-
ploited in cryptography@13#. This paper is organized as fo
lows. In Sec. II, we analyze the case of two modes w
different polarizations, which is essential for the understa
ing of the dynamical effects caused by the asymmetry.
Sec. III, we investigate the three-mode case and the effe
dynamical independence. We then consider the noise in
ence in Sec. IV and conclude in Sec. V with a discussion
the clustered states.

II. TWO-MODE LASER MODEL: GLOBAL BIFURCATION

Consider the simplest case of a laser operating in
orthogonally polarized modes (N52). The bifurcation dia-
gram in the (g,g) plane is shown in Fig. 1 in the absence
injected signal (s1,250). The steady-state solution, chara
terized by equal modal intensities (I 15I 2), loses its stability
on the boundaryH, which indicates a Hopf bifurcation, lead
ing to an antiphased periodic regime. The boundaryP indi-
cates a pitchfork bifurcation of theI 15I 2 steady state, which
leads to a pair of unstable steady states with unequal m
intensitiesI 1.I 2 (I 1,I 2). The asymmetry in the amplitude
of the modal intensities, which can be characterized by
quantity uI 12I 2u, increases with the distance from the pitc
fork bifurcation, and finally the asymmetric solutionI 1
.I 2 (I 1,I 2) collides with the single-mode steady stateI 1
.0, I 250 (I 2.0,I 150) at the boundaryS. The single-
mode steady states are stable to the left of the curveS. The
boundariesS andP are very close to each other in Fig. 1
can be seen in the inset. Asymmetric two-mode steady st
with I 1.I 2 and I 1,I 2 exist in the narrow strip betweenS
andP. They are stable below the lineH8 and unstable above

FIG. 1. Laser operating in two modes with orthogonal polari
tions. Bifurcation loci for the steady-state solutions of Eqs.~1! and
~2! with h50.002,«50.05,a50.02,b50.292. The boundaryH
indicates a Hopf bifurcation from the symmetric two-mode stea
stateI 15I 2. The boundaryS is the stability boundary of the single
mode solutions, which are stable below this boundary. The bou
ary P is above the boundarySand corresponds to a pitchfork bifur
cation of the two-mode regime. Asymmetric two-mode stea
states exist betweenS andP and exhibit a Hopf bifurcation at the
curveH8. TB is a codimension-2 point resulting from the intera
tion between the steady state and the Hopf bifurcation.
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this line. The point TB onP is a Z2-symmetric Takens-
Bogdanov codimension-2 bifurcation for theI 15I 2 steady-
state solution. It is the limit point of the curveH. At this
point the Jacobian matrix of Eqs.~1! and ~2! has a double
zero eigenvalue. According to local analysis of the dynam
near the Takens-Bogdanov bifurcation@14#, there can be two
different bifurcation scenarios of the breakup of the a
tiphase periodic regime that bifurcates at the curveH. The
result depends on the parameters of the normal form eq
tions. The first scenario is associated with a global bifur
tion that forms a pair of heteroclinic orbits connecting t
asymmetric two-mode steady statesI 1.I 2 and I 1,I 2. This
case was already described in@7#. Another scenario occurs
for the parameter values of Fig. 1. We find numerically th
there is a global bifurcation responsible for the breakup
the antiphase periodic regime. The bifurcation takes pl
between the curvesS and H8 where the asymmetric stead
states are stable and, hence, there exists a very narrow
ability domain between the antiphase periodic and stea
state regimes. We show the type of global bifurcation from
normal form analysis@14#. According to this analysis per
formed in the vicinity of the TB point, a pair of unstabl
asymmetric periodic solutions bifurcates subcritically atH8
and then glue into a single unstable symmetric limit cyc
The gluing occurs via a global bifurcation with a pair
orbits homoclinic to theI 15I 2 steady state. The unstab
symmetric cycle collides with the stable antiphase perio
solution bifurcating at the curveH and both cycles disappea
This global saddle-node bifurcation is responsible for
breakup of the antiphase periodic regime that appears v
Hopf bifurcation at the curveH.

We want to stress the similarity between the two differe
bifurcation scenarios, which is a direct consequence of
parameter domain relevant to experiments,h,«!1. The
asymmetric steady states exist in a very narrow domain
global bifurcations leading to a breakup of the antiphase
riodic regime occur very close to the boundaryS. Therefore,
when the system is close to the breakup of the antiph
periodic regime, the phase trajectory goes into very cl
proximity of the single-mode steady states, and the perio
solution looks like a hopping between two single-mo
states, similar to that described in@7#. The phase trajectory
and steady states are shown in Fig. 2.

If N.2, the two-mode antiphase cycles persist in the
variant planes characterized by only two nonzero modal
tensities, and are stable within these planes. Although th
cycles can be unstable with respect to perturbations tra
verse to invariant planes, they give a key to understand
the dynamical behaviors resulting from the asymmetry
tween orthogonal polarizations.

III. THREE-MODE LASER MODEL:
DYNAMICAL INDEPENDENCE

Let us now move to the case of a laser operating in th
linearly polarized modes. The polarizations can be either p
allel or orthogonal. The asymmetry between modes in E
~1! and ~2! is described by the fact thatgÞ0.5. Let the
modes 1 and 3 be in the same polarization state wherea
mode 2 is in the orthogonal polarization. Bifurcation loci f
Eqs.~1! and~2! with N53 ands1,2,350 are shown in Fig. 3.
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The parameters remain the same as in the previous sec
The boundariesP101 andH101 (P110 andH110) in Fig. 3 are
the loci of the pitchfork and Hopf bifurcations for the two
mode steady-state solutionI 15I 3 , I 250 (I 15I 2 , I 350 and
I 25I 3 , I 150). The single-mode solutions are stable bel
the steady-state bifurcation lociS100 andS010. They become
unstable on increasing the pump parameterg and mode hop-
ping appears, displaying an antiphased dynamics. Note
the bifurcations at the curvesP110, H110, andS010 take place

FIG. 2. Periodic antiphase regime in a laser operating in
modes with orthogonal polarizations. Filled~empty! stars indicate
the location of the single-mode~asymmetric two-mode! steady
states. The phase trajectory visits a very close proximity of
single-mode steady states, as is known to occur close to a he
clinic bifurcation point. However, local analysis in the vicinity o
the Takens-Bogdanov point predicts another type of global bifu
tion. g50.49,g50.119. Other parameters are as in Fig. 1.

FIG. 3. Bifurcation loci Bifurcation loci for the steady-state s
lutions of Eqs.~1!–~2! for a three-mode laser. Modes 1 and 3 ha
the same polarization, mode 2 is in the orthogonal polarizat
Parameters are the same as in Fig. 1. The boundaryH101 indicates a
Hopf bifurcation of the two-mode steady state with equal intensi
in the same polarizationI 15I 3.0 andI 250 belonging to the in-
variant hyperplaneS101. The boundaryP101 is above the boundary
S100 and corresponds to a pitchfork bifurcation of this steady st
The single-mode steady-state solutions are stable below the bo
ariesS100 and S010. The boundariesH110 and P110 indicate Hopf
and pitchfork bifurcations of the two-mode steady-state soluti
I 15I 2.0, I 350 andI 35I 2.0, I 150, which belong to the invari-
ant hyperplanesS110 and S011, respectively. Asterisks show th
positions of codimension-2 points resulting from the interaction
tween steady-state and Hopf bifurcations.
on.

at

in invariant hyperplanes where only two modes with o
thogonal polarizations have nonzero intensities. Theref
these curves coincide with the curvesP, H, andS in Fig. 1.

If the parameterg is small enough, the antiphased osc
lations involve only two modes belonging to the same pol
ization, whereas the third mode with orthogonal polarizat
has zero intensity.

If g50.5, all modes are equivalent in Eqs.~1! and~2! and
oscillate with nonzero intensities. The temporal dynamics
a periodic hopping featuring antiphase dynamics as show
Fig. 4~a!: all modes oscillate identically but with a 2p/3
phase shift between consecutive modes. The phase portr
the antiphase three-mode limit cycle is presented in Fig. 4~b!.
The limit cycle consists of three segments, each lying nea
invariant hyperplane characterized by only two nonze
modal intensities. The invariant hyperplanesS011, S101, and
S110 are defined byI 150, I 250, and I 350, respectively.
There are two sequences of hyperplane alternations co
sponding to the two possible stable antiphase solutio
S011→S101→S110→S011 andS011→S110→S101→S011.

It is a trivial consequence of the symmetry between
modes forg50.5 that each invariant hyperplane contains
limit cycle similar to the limit cycle responsible for the an
tiphase mode hopping in a two-mode laser, which was d
cussed in the previous section. Though this limit cycle
stable in its hyperplane, it can be unstable with respec
perturbations of the third mode, which has zero intens
The cycles in the hyperplanes appear via Hopf bifurcatio
and disappear via global bifurcations that take place sim
taneously forg50.5.

If gÞ0.5 the modes are no longer equivalent. The sy
metry of the model is broken for modes operating in o
thogonal polarizations. The asymmetry introduced byg
Þ0.5 splits the breakup boundaries for the antiphase perio
solutions lying in different hyperplanes. The breakup boun
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FIG. 4. Three-mode laser with all modal parameters identic
g50.5, g50.095,s1,2,350. Other parameters are the same as
Fig. 3. ~a! Intensity time traces indicate regular antiphase mo
hopping;~b! three-dimensional~3D! phase portrait as a sequenti
itinerancy in the hyperplanesS011→S101→S110→S011.
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PRE 62 6315SYMMETRY BREAKING AND DYNAMICAL . . .
ary that destroys the two-mode unstable limit cycle in
hyperplaneS101 occurs between the boundariesP101 and
S100. Another bifurcation takes place between the bou
ariesP110 andS010. It is responsible for the breakup of th
two-mode unstable limit cycles in the hyperplanesS011 and
S110.

If g50.5, the laser equations~1! and ~2! with all modes
identical have another set of three invariant planes define
$I 15I 2 ,G15G2%, $I 15I 3 ,G15G3%, and$I 25I 3 ,G25G3%.
We denote these planes asS111 , S111 , and S111 , re-
spectively. The asymmetry generated bygÞ0.5 obviously
destroys the invariant planesS111 andS111 , whereas the
invariant planeS111 , for which the two modes with iden
tical polarization have equal intensities (I 15I 3), is pre-
served. The planeS111 contains an unstable cycle, impo
tant for our analysis. This cycle appears from a glo
bifurcation near the boundaryS010 and is stable inS111 ,
but unstable with respect to transverse directions.

As mentioned above, ifg.0.5 is large enough, the un
stable limit cycle inS101 disappears after a collision wit
another periodic solution. The bifurcation sequence, incl
ing this bifurcation, produces significant qualitative chang
in the antiphase motion shown in Fig. 4 forg50.5. The
motion near the invariant hyperplanesS011 andS110 remains
and the two unstable limit cycles in these hyperplanes
still the destination for the phase trajectory, as shown in F
5 and 6. However, the cycle inS101 no longer exists, and
what is observed are jumps to and from the unstable li
cycle inS111 , as shown in Figs. 6–8. This cycle is chara
terized by the in-phase oscillations of modes in each po
ization and out-of-phase oscillations between the two po
izations. Therefore, the two asymmetric attractors form
symmetric attractor by a ‘‘gluing’’ process in the invaria
planeS111 @16#.

Since the jumps toS111 take place either near toS101
where the orthogonally polarized modeI 2 has zero intensity
or very close to the stable manifold of the cycle inS111 ,
they do not much affect the dynamics of that orthogo
mode, which appears periodic, whereas the two other mo
display chaos caused by the jumps~see Fig. 5!. This is the
mechanism underlying dynamical independence@9#. The
chaotic motion and jumps between the unstable cycles
illustrated also in Fig. 8. The phase trajectory spends alm

FIG. 5. Modal intensity time traces displaying dynamical ind
pendence.g50.5161,g50.095. Other parameters are as in Fig.
e
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all its time in the vicinity of the three unstable cycles, whic
are very close to each other near the single-mode steady
I 15I 350, I 2.0. Moreover, even for jumps from the cycle
lying in the planesS011 and S110 to the cycle in the plane
S111 , its projection on the planeS111 still remains almost
on the unstable cycle lying in the planesS011 (S110) ~see
Fig. 8!.

The chaos associated with dynamical independenc
closely related to the symmetry properties of Eqs.~1! and

-
.

FIG. 6. ~a! 3D phase portrait of the dynamical independen
regime shown in Fig. 5. The phase trajectory exhibits random i
erancy between the limit cycles in the invariant planesS011, S110,
and S111 . ~b! Unstable limit cycles lying in the plane
S011, S110, andS111 .

FIG. 7. Enlarged parts of Fig. 6~a! demonstrating jumps be
tween invariant planes.~a! Jumps fromS111 to S011 andS110. ~b!
Jumps fromS011 and S110 to S111 . Unstable limit cycles in the
planesS011, S110, andS111 are drawn with a bold line.
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~2!. It is worth to stress again that the system retains
symmetry between modes 1 and 3 even forgÞ0.5. This
symmetry explains that the cascades of bifurcations for E
~1! and ~2! are similar to those described in@16# and @15#.
Let us analyze the behavior of the system when varyingg.
The fixed parameters are the same as for Fig. 4. Ifg.0.5 is
not too large, the limit cycle presented in Fig. 4~b! still re-
mains symmetric but only with respect to the invariant pla
S111 @see Fig. 9~a!#. The period of this symmetric stabl
cycle is twice the period of the two-mode unstable cycles

FIG. 8. 2D phase portraits illustrating dynamical independen
shown in Figs. 5 and 6~a!. ~a! Projection of the chaotic phase tra
jectory and the unstable limit cycles on the (I 1 ,G1) plane. The
projection of the unstable cycle lying in the hyperpla
S111 (S110) is labeled by circles~squares!. ~b! The same trajectory
projected on the (I 2 ,G2) plane.~c! The projection of the unstable
cycle~s! lying in the hyperplaneS111 (S011 andS110) is labeled by
circles ~squares!. ~d! Superposition of~b! and ~c!.

FIG. 9. 3D phase portraits for Eqs.~1! and~2!. ~a! g50.513,~b!
g50.5145,~c! g50.515,~d! g50.515 86, and~e! g50.516. Other
parameters are the same as for Fig. 2. Thin and thick lines co
spond to the two asymmetric cycles.
s

s.

e

n

the hyperplanesS011 and S110. The symmetric cycle loses
stability to a pair of asymmetric cycles after a symme
breaking bifurcation, as shown in Fig. 9~b!. This pair of
asymmetric cycles becomes a single~possibly homoclinic!
orbit and therefore a symmetric cycle occurs by attaching
symmetric pair together. The symmetric cycle is shown
Fig. 9~c!. After that, a succession of similar bifurcation
takes place, which is illustrated by Figs. 9~b!–9~e!. They
affect only the behavior of the modes with the same po
ization and take place near the invariant planesS111 and
S101.

The motion near the invariant planesS011 andS110 and,
therefore, the behavior of the mode 2, remains almost u
fected. Finally, the sequence produces two asymmetric c
otic attractors which coalesce to form a symmetric attrac
This explains the dynamical independence in the presenc
chaos, as mode 2 remains unaffected in the invariant pla
S011 andS110, while modes 1 and 3 exhibit chaos near t
invariant planesS111 andS101.

IV. INFLUENCE OF NOISE

It was shown in@9# that noise added to the system~1! and
~2! does not qualitatively affect the dynamically independe
mode. Let us consider first what happens with the mec
nism of dynamical independence described in the previ
section, when a small amplitude constant field is injec
into the system and particularly to mode 1 (s1.0, s2,3
50). The existence of the invariant planeS111 , character-
ized by in-phase oscillations for modes within each polari
tion, results from the symmetry between modes 1 and
Injection in one mode only breaks this symmetry and the
fore destroys the invariant planeS111 . As a result, the pair
of symmetric attractors~one with modes 1,3 and 2, the oth
with modes 3,1 and 2) no longer exists and the phase tra
tory switches to a stable asymmetric limit cycle shown
Fig. 10~a!.

Numerical simulations with noise injected in the thre
mode regime$I 15I 3 ,I 2.0% show that the asymmetric cycl
is stable if the amplitude of the injection is greater than 1029.
However, the three modes have different responses to
change of the injected amplitude. The motion of modeI 2
remains very close to the unstable cycle lying in the invari
hyperplaneS011 (S110) and hardly changes@see Fig. 10~b!#,
while the amplitudes of oscillations of the modesI 1 andI 3 in
the orthogonal polarization change significantly, as shown
Fig. 10~c! for I 3. If the noise is modeled as a random inje
tion @s i5dj i(t), wherej i(t), i 51,2,3, is a uniform distri-
bution of random numbers on the interval@0,1# andd is an
appropriate amplitude#, one could expect that the phase tr
jectory will always go along the stable cycles correspond
to the different amplitudes of the injection. Therefore, t
pair of modes in the same polarization will have noisy osc
lations defined by jumps between the stable cycles with
ferent amplitudes, while the mode in the orthogonal pol
ization will remain unaffected in the invariant hyperplan
S011 andS110.

V. CLUSTERING, GROUPING,
AND INDUCED SWITCHING

The other nonreciprocal behaviors previously reported
@10# for N.3 have a similar nature, but the number of i
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variant planes containing unstable periodic solutions
creases with the mode numberN. Two groups of orthogo-
nally polarized modes form a number of different sets
invariant hyperplanes and jumps between them are res
sible for grouping, clustering, and self-induced switchin
The results of numerical simulations forN58, where six
modes are in the same polarization and two modes are in
orthogonal polarization, are shown in Fig. 11. In the clu
tered state, the six lasing modes with the same polariza
emit in-phase pulses while the remaining two modes disp
antiphase oscillations with equal maxima shifted in suc
way that the maxima correspond to minima in the orthogo
polarization. The motion takes place in the invariant su
space defined by equal intensities of the six modes ha

FIG. 10. Three-mode laser subjected to a small amplitude in
tion s1 in mode 1. Modes 1 and 3 have the same polarization
mode 2 is in the orthogonal polarization. Fixed parameters a
Figs. 3.~a! Modal time traces indicate stable periodic behavior
all modes fors15231028; ~b! time traces of mode 2 fors1

5231029 ~bold line!, s15431029 ~thin line!, s151028 ~dashed
line!; ~c! time traces of mode 3 fors15231029 ~bold line!, s1

5431029 ~thin line!, s151028 ~dashed line!.
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s

ys
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the same polarizations and can again be described as
quential itinerancy in the two invariant planes belonging
this subspace. These planes are similar to the planesS110 and
S011 of the previous sections.

The motion near a particular invariant plane is almo
independent of the remaining phase space, but can de
which plane will be the next destination of the phase traj
tory. This independence can be used to arrange a switc
between different antiphase states. The seeding proce
described in@10# is simply a way to perturb the motion nea
the plane. There is an unstable antiphase limit cycle lying
an invariant plane and stable within this plane as describe
Sec. II and Sec. III. When the phase trajectory moving n
this cycle comes close to a single-mode steady-state solu
even a very small perturbation can put it into the vicinity
an unstable cycle lying within another invariant plan
Therefore, if the seeding pulse is chosen appropriately, th
will be a switching to a certain antiphase state. An inapp
priate choice for timing of a perturbation or pulse intens
can cause a random jump to another hyperplane, and
pattern formation can no longer be predicted.

ACKNOWLEDGMENTS

This research has been supported by the Fonds Nati
de la Recherche Scientifique, the Inter-University Attracti
Pole program of the Belgian government, and an INTA
grant.

c-
d
in
r

FIG. 11. Clustered state: N58, h50.002,«50.04,a
50.02,b50.292,g50.11,g50.505.
y

@1# A. G. Vladimirov, E. A. Viktorov, and P. Mandel, Phys. Re
E 60, 1616~1999!.

@2# P. Mandel,Theoretical Problems in Cavity Nonlinear Optic
~Cambridge University Press, Cambridge, England, 1997!.

@3# T. Baer, J. Opt. Soc. Am. B3, 1175~1986!.
@4# K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, Ph

Rev. Lett.65, 1749~1990!.
@5# L. Friob, P. Mandel, and E. A. Viktorov, Quantum Semicla

sic. Opt.10, 1 ~1998!.
@6# J.-Y. Wang and P. Mandel, Phys. Rev. A48, 671 ~1993!.
@7# A. G. Vladimirov and P. Mandel, Phys. Rev. A58, 3320

~1998!.
@8# A. G. Vladimirov, Opt. Commun.149, 67 ~1998!.
@9# J.-Y. Wang and P. Mandel, Opt. Lett.19, 533 ~1994!.
.

@10# K. Otsuka, P. Mandel, and J.-Y. Wang, Opt. Commun.112, 71
~1994!.

@11# K. Otsuka, Y. Sato, and J.-L. Chern, Phys. Rev. E56, 4765
~1997!.

@12# E. A. Viktorov and P. Mandel, Quantum Semiclassic. Opt.8,
1205 ~1996!.

@13# E. A. Viktorov and P. Mandel, Opt. Lett.22, 1568~1997!.
@14# V. I. Arnold, Geometrical Methods in the Theory of Ordinar

Differential Equations~Springer, Heidelberg, 1983!.
@15# A. Arneodo, P. Coullet, and C. Tresser, Phys. Lett.81A, 197

~1981!.
@16# P. Glendinning,Stability, Instability and Chaos~Cambridge

University Press, Cambridge, England, 1994!.


