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Abstract

We introduce the simplest one-dimensional model of a dispersive optical medium with saturable dissipative nonlinearity
Ž . Ž .and filtering dispersive loss which gives rise to stable solitary pulses autosolitons . In the particular case when the

dispersive loss is absent, the same model may also be interpreted as describing a stationary field in a planar optical
waveguide with uniformly distributed saturable gain and absorption. In a certain region of the model’s parameter space, two
coexisting solitary-pulse solutions are found numerically, one of which may be stable. Solving the corresponding linearized
eigenvalue problem, we identify stability borders for the solitary pulses in their parametric plane. Beyond one of the borders,
the symmetric pulse is destroyed by asymmetric perturbations, and at the other border it undergoes a Hopf bifurcation, which
may turn it into a breather. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

‘Autosolitons’ are robust localized pulses in mod-
els combining conservative and dissipative nonlinear

w xand dispersive terms 1 . They occur and find impor-
w xtant applications in nonequilibrium plasmas 1,2 and

w x Žsemiconductors 1 , in hydrodynamics Poiseille flow
w x w x.3 and traveling-wave convection 4–6 , and in

w xnonlinear optics 7–14 .
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The simplest model which gives rise to solitary
pulses that may be interpreted as autosolitons is the

Ž .cubic complex Ginzburg–Landau GL equation,

< < 2E sEq 1y ic E y 1q ic E E, 1Ž . Ž . Ž .z 1 tt 2

which is written in the standard ‘optical’ notation
w x19 , i.e., E is the local amplitude of the electromag-

Žnetic wave, z to be treated as the evolutional vari-
.able is the propagation distance, and ts tyzrVgr

is the ‘local time’, t and V being the physical timegr

and the mean group velocity of the carrier wave.
Ž .Further, c and c are coefficients of the chromatic1 2

Ž .dispersion and Kerr nonlinearity, while the terms
the coefficients in front of which are normalized to
be 1 account for, respectively, linear gain, dispersive

0375-9601r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
Ž .PII: S0375-9601 00 00541-7



( )B.A. Malomed et al.rPhysics Letters A 274 2000 111–116112

Ž . Žlosses spectral filtering , and nonlinear losses two-
. Ž .photon absorption . Eq. 1 always has a single exact

w xsolitary-pulse solution 2,3 ; however, this solution is
always unstable, as its background, the trivial solu-
tion Es0, is obviously unstable because of the
presence of the linear gain.

The simplest possibility to modify the model so
that to let it generate stable solitary pulses is to

w xconvert it into the quintic GL equation 20,21 ,

< < 2E syEq 1y ic E q 1q ic E EŽ . Ž .z 1 tt 2

< < 5y Gq ic E E, 2Ž . Ž .3

where the linear gain and cubic loss are replaced,
respectively, by linear loss and cubic gain, G)0 is
the coefficient of quintic loss, and c accounts for a3

possible quintic correction to the Kerr effect. In this
case, the trivial solution is stable, and two solitary-
pulse solutions, one unstable and one stable, may
coexist at fixed values of all the parameters in Eq.
Ž .2 .

However, the quintic GL equation is a phe-
nomenological model, and it would be very desirable
to find more realistic models allowing for the exis-
tence of stable solitary pulses. One possibility is to
consider a model of a dual-core nonlinear optical
fiber, in which the linear gain, dispersion, filtering,

Ž .and Kerr purely cubic nonlinearity are present in
Ž . Ž .one active core, while the other passive one,

linearly coupled to the active core, has only linear
w xloss 9,10 . Thus, the model consists of a cubic GL

equation linearly coupled to the second, purely lin-
ear, equation. It is easy to select parameters of the
model so that to provide for the stability of the trivial
solution. Then, two exact solitary-pulse solutions
Ž .autosolitons can be found, following the pattern of
the exact solution to the cubic GL equation, and
direct numerical simulations clearly show that one of

w xthe two exact solitary pulses may be stable 9,10 .
The simulations have revealed nontrivial
autosoliton’s stability borders in the parameter space

Žof the model ‘nontrivial’ implies that the borders
are different from obvious stability conditions for the

.zero background . Moreover, interactions between
the stable autosolitons have also been simulated in

w xdetail in this model 11 .

2. The model

In this work, we aim to demonstrate that stable
optical autosolitons can also be easily found in a

w xmodel similar to that introduced in Ref. 12 , which
combines saturable gain and saturable absorption in
a lasing medium, while the Kerr nonlinearity may be
completely neglected. Thus, the nonlinearity in the
model is purely dissipative. The gain and loss coeffi-
cients in the model are to be chosen so that its
linearized version has no gain, in order to provide for
the stability of the zero background. The presence of
the linear loss suggests that linear dispersive loss,

Ž .i.e., the filtering diffusion-like term should also be
included.

All the ingredients of the saturable model dis-
Žcussed above are dissipative considering gain as

.negative dissipation . However, from the experience
accumulated in the studies of the quintic GL equa-

w xtion in the strong-dissipation limit 15–17 , it is
known that, while solitary-pulse solutions may exist
in a purely dissipative model, they can never be

w xstable 18 . The presence of one, at least, conserva-
Žtive term which may enter with a small coefficient

w x.15–17 is necessary to provide for the stability of
the corresponding autosoliton. In optical media, this
role may be very naturally played by the dispersion.

Thus, the model combining saturable gain, sat-
Ž .urable absorption, dispersion and not necessarily

Žfiltering takes the form cf. similar models for the
w x.lasers with saturable absorbers 12–14,22 :

g a0 0yiuE y ie E s y1q y E,z tt ž /1q IrI 1q IrIg a

< < 2I' E , 3Ž .

where g and a are positive gain and absorption0 0

coefficients in the linear approximation, and I andg

I are saturation intensities for the gain and absorp-a
Žtion the linear loss coefficient is normalized to be 1,

Ž ..cf. Eq. 2 . The real coefficient u characterizes a
Žrelation between the dispersion and filtering diffu-

.sion coefficients, which are proportional, respec-
tively, to cos u and sin u . By means of an obvious
rescaling, we may set I s1, then all the remaininga
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parameters are fully independent, and their number
cannot be further reduced.

The underlying condition of the stability of the
Ž .zero background Es0 takes the form

g -1qa , 4Ž .0 0

which must be supplemented by g )1, as otherwise0

the model can never provide for an effective gain.
The positiveness of the effective filtering coefficient
imposes another necessary condition, 0(u(p . In
fact, the range of the parameter u can be restricted to

0(u-pr2 , 5Ž .
as the region pr2-u(p can be mapped into
0(u-pr2 by means of complex conjugation, E
™E). The value uspr2 is excluded, as it corre-
sponds to the purely dissipative model that cannot
give rise to stable pulses.

Ž .In the particular case us0 no filtering , the
same model with the temporal variable t replaced by
the transverse coordinate x has an alternative inter-
pretation in nonlinear optics: it may describe a sta-

w xtionary field in a planar waveguide 19 with the
saturable gain and absorption uniformly distributed
in it. In that case, the term iE accounts for thex x

diffraction in the waveguide.

3. Autosolitons and their stability in the saturable
model

Ž . Ž .An autosoliton solitary-pulse solution to Eq. 3
Ž . Ž .is sought for in an obvious form, E z,t sexp ia z

Ž .PEE t , where a is the propagation constant, and0
Ž . < <EE t is a complex eÕen function vanishing at t ™0

` and determined by an equation

d2 EE g0 0ius ie y1q iaq2 2ždt < <1q EE rI0 g

a0
y EE . 6Ž .02 /< <1q EE rI0 a

w xAs is well known 9,10,15–17 , an autosoliton will
have no chance to be stable if only one solitary-pulse
solution exists at given values of the parameters.

Ž .Indeed, due to the condition 4 , the system has a
trivial attractor, Es0. If there is also a nontrivial
attractor in the form of an autosoliton, there must

simultaneously exist an unstable solitary-pulse solu-
tion that plays the role of a separatrix between the
attraction basins of the two attractors. It is well
known too that the two solitary-pulse solutions may
undergo a bifurcation at some critical point, where
they merge and disappear, so that no autosoliton
exists past this point.

In exact accordance with these expectations, nu-
Ž .merical integration of Eq. 6 reveals that solitary

pulses exist only in a pair in some parametric region,
and do not exist at all in other regions. As a typical
illustration, in Fig. 1 we display the autosoliton’s
propagation constant as a function of u at fixed
values of the other parameters. In the particular case
shown in this figure, the autosolitons actually exist at
0(u-0.34, i.e., inside a relatively small part of the

Ž .formally available region 5 , which implies that the
saturable gain cannot compensate filtering losses

Ž .when they are too strong see also below . Note that,
despite the large ratio I rI s10 in the case showng a

in Fig. 1, we cannot use an approximation with
I s`: as it is follows from a simple considerationg

Ž .of Eq. 3 , in this limit the model either can provide
no effective gain at all, if g -1, or it will blow up0
Ž < < 2 .be unstable at E ™` in the opposite case. Above
a certain threshold value of the linear gain parameter

Fig. 1. The autosoliton’s propagation constant versus the parame-
ter u controlling the ratio between the dispersion and filtering
Ž . Ž .diffusion coefficients, that may vary in the interval 5 . In this
figure and in Fig. 2 below, the other parameters are g s2.06,0

a s2, and I r I s10. Two branches of the autosoliton solutions0 g a

correspond to the upper and lower curves in this plot. The whole
upper branch, and the dotted part of the lower one correspond to
unstable autosolitons; see below.
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g the upper and lower autosoliton branches do not0

merge any longer with the increase of u and, hence,
the saddle-node bifurcation shown in Fig. 1 disap-

Ž .pears see Fig. 2 . In Fig. 2, which corresponds to
g s2.11, T is the limit point for the stable autosoli-0

ton branch. When approaching this point from the
left the width of the autosoliton solution tends to
infinity.

For the study of the stability of the stationary
Ž .autosolitons, we linearized the full Eq. 3 near the

Ž . Ž .stationary solution, assuming E z,t sexp ia z
Ž .P EE t qexp g z EE t , where EE t is anŽ . Ž . Ž .0 1 1

eigenmode of the infinitesimal perturbation, and g is
the corresponding instability growth rate. Because

Ž .the unperturbed solution EE t is even, the resultant0

linear eigenvalue problem for g can be solved sepa-
Ž . Ž .rately for even symmetric and odd antisymmetric
w xeigenmodes EE 23 .1

Numerical results for the corresponding eigenval-
Žues are presented in Fig. 3 for the same values of
.the parameters as in Fig. 1 . As is it obvious from

the figure, all the upper branch of the stationary
solutions from Fig. 1 is unstable against symmetric
perturbations, while all the lower branch is stable
against them. However, a part of the stationary solu-
tions belonging to the lower branch is destabilized

Fig. 2. Same as in Fig. 1, but for g s2.11. The upper autosoliton0

branch is always unstable and terminates at the point a s0,
u sp r2, which corresponds to the unstable autosoliton of the
purely dissipative model. The lower branch becomes unstable via

Ža Hopf bifurcation for small values of the parameter u dotted
.line . This branch terminates at the point T.

Fig. 3. The instability growth rates g and g for the symmetrics as
Ž . Ž .a and antisymmetric b infinitesimal perturbations of the sta-
tionary autosolitons versus u . The dashed and continuous curves
Ž .g u pertain, respectively, to the upper and lower branches in

Fig. 1.

Žby antisymmetric perturbations this part of the lower
.branch is dotted in Fig. 1 . It is noteworthy that the

antisymmetric eigenmodes related to the upper branch
in Fig. 1 undergo a bifurcation at uf0.22, therefore

Ž .the corresponding curve g u in Fig. 3b has severalas
Žparts, marked by the numbers 2, 3, and 4 mark 1 is

Ž .reserved for the smooth curve g u correspondingas
.to the lower-branch autosolitons .

To present the stability results in a possibly most
general and compact form, we continued the numeri-
cal analysis, varying u and, additionally, the gain
parameter g , while for the absorption coefficient0

and the ratio of the saturation intensities the same
fixed values were kept as in Figs. 1, 2, and 3, i.e.,
a s2 and I rI s10. This way to vary the parame-0 g 0

ters has a clear physical sense, as in the experiment
the loss factor and saturation intensity ratio are both
fixed for a given setup, while the gain can be readily
adjusted changing the pump power.

Ž .The region in the parametric plane g ,u where0

the autosoliton is stable according to the numerical
solution of the linearized eigenvalue problem is
shown in Fig. 4. Above the upper border AS, the
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Ž .Fig. 4. Stability borders for the autosoliton in the g ,u plane.0

The other parameters are a s2 and I r I s10.0 g a

autosoliton loses its stability to antisymmetric pertur-
bations, similarly to what was discussed in detail
above for the particular case g s2.06. Another0

upper border, T, corresponds to a bifurcation set
where the stable autosoliton branch terminates as it
is shown in Fig. 2. The lower border, H, starting at
g f2.094, is a new one: at this border, the autosoli-0

ton loses stability against a perturbation eigenmode
with a complex instability growth rate, correspond-
ing to a Hopf bifurcation that is going to transform

Žthe stationary autosoliton into a breather vibrating
.autosoliton . A detailed study of the breather is

beyond the scope of the present work.
Note that the autosolitons do not exist at all at

g -2.026, which can be easily explained by the fact0

that, when the gain is too weak, it cannot provide for
the balance with loss, necessary for the existence of
a stationary pulse. It is also noteworthy that the
upper stability border is going up very steeply with
the increase of g , which may be qualitatively real-0

ized too: an excessive gain makes it possible to
compensate extra filtering losses proportional to
sin u . Besides that, it was argued above that the
region pr2-u(p is fully symmetric to the region
Ž .5 ; from here it follows that, in order to comply
with the symmetry, the upper border must turn back
at uspr2, which explains its steep ascent.

4. Conclusion

We have described the simplest model of a dis-
Žpersive optical medium which, in the general case,

.includes dispersive loss too with saturable dissipa-
tive nonlinearity, which gives rise to stable solitary
pulses. If the dispersive loss is absent, the same
model may also be interpreted as describing a sta-
tionary field in a planar optical waveguide with
uniformly distributed saturable gain and absorption.
In a certain parametric region, two coexisting soli-
tary-pulse solutions were found numerically, one of
which may be stable. Numerical solution of the
corresponding linearized eigenvalue problem has de-
termined actual stability borders for the autosoliton.
Beyond one of the borders, the symmetric autosoli-
ton is destroyed by asymmetric perturbations, while
at the other border it undergoes a Hopf bifurcation,
which may turn it into a breather.
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